
MIT Open Access Articles

Coded Emulation of Shared Atomic Memory
for Message Passing Architectures

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Cadambe, Viveck R., Nancy Lynch, Muriel Medard, and Peter Musial. "Coded Emulation
of Shared Atomic Memory for Message Passing Architectures." 2014 IEEE 13th International
Symposium on Network Computing and Applications (August 2014).

As Published: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6924235

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/100840

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/100840
http://creativecommons.org/licenses/by-nc-sa/4.0/

ar
X

iv
:1

40
7.

41
67

v1
 [

cs
.D

C
]

15
 J

ul
 2

01
4

A Coded Shared Atomic Memory Algorithm for Message Passing
Architectures

Viveck R. Cadambe
RLE, MIT,

Cambridge, MA, USA
viveck@mit.edu

Nancy Lynch
CSAIL, MIT

Cambridge, MA, USA
lynch@theory.lcs.mit.edu

Muriel Médard
RLE, MIT

Cambridge, MA, USA
medard@mit.edu

Peter Musial
Advanced Storage Division, EMC2

Cambridge, MA, USA
peter.musial@emc.com ∗

Abstract

This paper considers the communication and storage costs ofemulating atomic (linearizable) multi-
writer multi-reader shared memory in distributed message-passing systems. The paper contains three main
contributions:
(1) We present a atomic shared-memory emulation algorithm thatwe call Coded Atomic Storage(CAS).
This algorithm useserasure codingmethods. In a storage system withN servers that is resilient tof server
failures, we show that the communication cost of CAS isN

N−2f
. The storage cost of CAS is unbounded.

(2) We present a modification of the CAS algorithm known as CAS with Garbage Collection (CASGC). The
CASGC algorithm is parametrized by an integerδ and has a bounded storage cost. We show that in every
execution where the number of write operations that are concurrent with a read operation is no bigger than
δ, the CASGC algorithm with parameterδ satisfies atomicity and liveness. We explicitly characterize the
storage cost of CASGC, and show that it has the same communication cost as CAS.
(3) We describe an algorithm known as the Communication Cost Optimal Atomic Storage (CCOAS) algo-
rithm that achieves a smaller communication cost than CAS and CASGC. In particular, CCOAS incurs read
and write communication costs ofN

N−f
measured in terms of number of object values. We also discuss

drawbacks of CCOAS as compared with CAS and CASGC.

∗This work was supported by in part by AFOSR contract no. FA9550-13-1-0042, NSF award no.s CCF-1217506 and 0939370-CCF,
and by BAE Systems National Security Solutions, Inc., award739532-SLIN 0004.

1

http://arxiv.org/abs/1407.4167v1

1 Introduction

Since the late 1970s, emulation of shared-memory systems indistributed message-passing environments has
been an active area of research [2–8, 12–18, 24, 29, 30]. The traditional approach to building redundancy for
distributed systems in the context of shared memory emulation isreplication. In their seminal paper [7], Attiya,
Bar-Noy, and Dolev presented a replication based algorithmfor emulating shared memory that achieves atomic
consistency [19, 20]. In this paper we consider a simple multi-writer generalization of their algorithm which
we call theABDalgorithmi . This algorithm uses a quorum-based replication scheme [31], combined with read
and write protocols to ensure that the emulated object is atomic [20] (linearizable [19]), and to ensure liveness,
specifically, that each operation terminates provided thatat most⌈N−1

2 ⌉ server nodes fail. A critical step in
ensuring atomicity in ABD is thepropagatephase of the read protocol, where the readers write back the value
they read to a subset of the server nodes. Since the read and write protocols require multiple communication
phases where entire replicas are sent, this algorithm has a high communication cost. In [14], Fan and Lynch
introduced a directory-based replication algorithm knownas the LDR algorithm that, like [7], emulates atomic
shared memory in the message-passing model; however, unlike [7], its read protocol is required to write only
some metadata information to the directory, rather than thevalue read. In applications where the data being
replicated is much larger than the metadata, LDR is less costly than ABD in terms of communication costs.

The main goal of our paper is to develop shared memory emulation algorithms, based on the idea oferasure
coding, that are efficient in terms of communication and storage costs. Erasure coding is a generalization of
replication that is well known in the context of classical storage systems [10,11,21,28]. Specifically, in erasure
coding, each server does not store the value in its entirety,but only a part of the value called acoded element. In
the classical coding theory framework which studies storage of a single version of a data object, this approach
is well known to lead to smaller storage costs as compared to replication (see Section 3). Algorithms for shared
memory emulation that use the idea of erasure coding to storemultiple versions of a data object consistently
have been developed in [2–4,6,8,12,13,18,29]. In this paper, we develop algorithms that improve on previous
algorithms in terms of communication and storage costs. We summarize our main contributions and compare
them with previous related work next.

Contributions

We consider a static distributed message-passing setting where the universe of nodes is fixed and known, and
nodes communicate using a reliable message-passing network. We assume that client and server nodes can fail.
We define our system model, and communication and storage cost measures in Sec. 2.

The CAS algorithm:We develop theCoded Atomic Storage(CAS) algorithm presented in Section 4, which
is an erasure coding based shared memory emulation algorithm. We present a brief introduction of the technique
of erasure coding in Section 3. For a storage system withN nodes, we show in Theorem 4.9 that CAS ensures
the following liveness property: all operations that are invoked by a non-failed client terminate provided that
the number ofserverfailures is bounded by a parameterf, wheref < ⌈N2 ⌉ and regardless of the number of
client failures. We also show in Lemma 4.9 that CAS ensures atomicity regardless of the number of (client or
server) failures. In Theorem 4.10 in Section 4, we also analyze the communication cost of CAS. Specifically, in
a storage system withN servers that is resilient tof server node failures, we show that the communication costs
of CAS are equal to N

N−2f . We note that these communication costs of CAS are smaller than replication based
schemes (see Appendix A for an analysis of communication costs of ABD and LDR algorithms.). The storage
cost of CAS, however, are unbounded because each server stores the value associated with the latest version of
the data object it receives. Note that in comparison, in the ABD algorithm which is based on replication, the
storage cost is bounded because each node stores only the latest version of the data object (see Appendix A for
an explicit characterization of the storage cost incurred by ABD).

iThe algorithm of Attiya, Bar-Noy and Dolev [7] allows only a single node to act as a writer. Also, it did not distinguish between
client and server nodes as we do in our paper.

2

The CASGC algorithm:In Section 5, we present a variant of CAS called the CAS with Garbage Collection
(CASGC) algorithm, which achieves a bounded storage cost bygarbage collection, i.e., discarding values
associated with sufficiently old versions. CASGC is parametrized by an integerδ which, informally speaking,
controls the number of tuples that each server stores. We show that CASGC satisfies atomicity in Theorem 5.1
by establishing a formal simulation relation [23] between CAS and CASGC. Because of the garbage collection
at the servers, the liveness conditions for CASGC are more stringent than CAS. The liveness property satisfied
by CASGC is described in Theorem 5.5 in Section 5, where we argue that in an execution of CASGC where the
number of write operations concurrent with a read operationis no bigger than a parameterδ, every operation
terminates. The main technical challenge lies in careful design of the CASGC algorithm in order to ensure that
an unbounded number of writes that fail before propagating enough number of coded elements do not prevent
a future read from returning a value of the data object. In particular, failed writes that begin and end before a
read is invoked are not treated as operations that are concurrent with the read, and therefore do not contribute to
the concurrency limit ofδ. While CASGC incurs the same communication costs as CAS, it incurs a bounded
storage cost. A non-trivial bound on the storage cost incurred by an execution of CASGC is described in
Theorem 5.11.

Communication Cost Lower Bound:In Section 6 we describe a new algorithm called the Communication
Cost Optimal Atomic Storage (CCOAS) algorithm that satisfies the same correctness conditions as CAS, but
incurs smaller communication costs. However, CCOAS would not be easily generalizable to settings where
channels could incur losses because, unlike CAS and CASGC, it requires that messages from clients to servers
are delivered reliably even after operations associated with the message terminates. While CCOAS is appli-
cable in our model of reliable channels, designing a protocol with this property may not be possible when the
channel has losses especially if the client fails before delivering the messages. We describe CCOAS, analyse
its communication costs, and discuss its drawbacks in Section 6.

Comparison with Related Work

Erasure coding has been used to develop shared memory emulation techniques for systems with crash failures
in [3, 4, 13, 29] and Byzantine failures in [2, 8, 12, 18]ii . In erasure coding, note that each server stores a coded
element, so a reader has to obtain enough coded elements to decode and return the value. The main challenge
in extending replication based algorithms such as ABD to erasure coding lies in handling partially completed
or failed writes. In replication, when a read occurs during apartially completed write, servers simply send
the stored value and the reader returns the latest value obtained from the servers. However, in erasure coding,
the challenge is to ensure that a read that observes the traceof a partially completed or failed write obtains a
enough coded elements corresponding to the same version to return a value. Different algorithms have different
approaches in handling this challenge of ensuring that the reader decodes a value of the data object. As a
consequence, the algorithms differ in the liveness properties satisfied, and the communication and storage costs
incurred. We discuss the differences here briefly.

Among the previous works, [8, 12, 13, 18] have similar correctness requirements as our paper; these refer-
ences aim to emulate an atomic shared memory that supports concurrent operations in asynchronous networks.
We note that the algorithm of [8] cannot be generalized to lossy channel models (see discussion in [13]). We
compare our algorithms with theORCAS-Balgorithm of [13]iii , the algorithm of [18], which we call theHGR
algorithm, and theM-PoWerStorealgorithm of [12]. We note that [13] assumes lossy channels and [12, 18]
assume Byzantine failures. Here, we interpret the algorithms of [12, 13, 18] in our model that has lossless
channels and crash failures, and use worst-case costs for comparison.

The CAS and CASGC algorithms resemble the M-PoWerStore and HGR algorithms in their structure.
These algorithms handle partially completed or failed writes byhidingongoing writes from a read until enough

ii An earlier version of our work is presented in a technical report [9].
iii TheORCAS-Aalgorithm of [13], although uses erasure coding, has the sameworst casecommunication and storage costs as ABD.

3

coded elements have been propagated to the servers. The write communication costs of CAS, CASGC, M-
PoWerStore, HGR and ORCAS-B are all the same. However, thereare differences between these algorithms in
the liveness properties, garbage collection strategies and read communication costs.

CAS is essentially a restricted version of theM-PoWerStorealgorithm of [12] for the crash failure model.
The main difference between CAS and M-PoWerStore is that in CAS, servers perform gossipiv . However,
M-PoWerStore does not involve garbage collection and therefore incurs an infinite storage cost. The garbage
collection strategies of HGR and ORCAS-B are similar to thatof CASGC with the parameterδ set to1. In
fact, the garbage collection strategy of CASGC may be viewedas a non-trivial generalization of the garbage
collection strategies of ORCAS-B and HGR. We next discuss differences between these algorithms in terms of
their liveness properties and communication costs.

The ORCAS-B algorithm satisfies the same liveness properties as ABD and CAS, which are stronger than
the liveness conditions of CASGC. However, in ORCAS-B, to handle partially completed writes, a server sends
coded elements corresponding to multiple versions to the reader. This is because, in ORCAS-B, a server, on
receiving a request from a reader, registers the clientv and sends all the incoming coded elements to the reader
until the read receives a second message from a client. Therefore, the read communication cost of ORCAS-B
grows with the number of writes that are concurrent with a read. In fact, in ORCAS-B, if a read client fails in
the middle of a read operation, servers may send all the codedelements it receives from future writes to the
reader. In contrast, CAS and CASGC have smaller communication costs because each server sends only one
coded element to a client per read operation, irrespective of the number of writes that are concurrent with the
read.

In HGR, read operations satisfyobstruction freedom, that is, a read returns if there is a period during the
read where no other operation takes steps for sufficiently long. Therefore, in HGR, operations may terminate
even if the number of writes concurrent with a read is arbitrarily large, but it requires a sufficiently long period
where concurrent operations do not take steps. On the contrary, in CASGC, by settingδ to be bigger than1,
we ensure that read operations terminate even if concurrentoperations take steps, albeit at a larger storage cost,
so long as the number of writes concurrent with a read is bounded byδ. Interestingly, the read communication
cost of HGR is larger than CASGC, and increases with the number of writes concurrent to the read to allow for
read termination in presence of a large number of concurrentwrites.

We note that the server protocol of the CASGC algorithm is more complicated as compared with previous
algorithms. In particular, unlike ORCAS-B, HGR and M-PoWerStore, the CASGC algorithm requires gossip
among the servers to ensure read termination in presence of concurrent writes at a bounded storage cost and
low communication cost. A distinguishing feature of our work is that we provide formal measures of com-
munication and storage costs of our algorithms. Our contributions also include the CCOAS algorithm, and
complete correctness proofs of all our algorithms through the development of invariants and simulation rela-
tions, which may be of independent interest. The generalization of CAS and CASGC algorithms to the models
of [8, 12, 13, 18] which consider Byzantine failures and lossy channel models is an interesting direction for
future research.

2 System Model

2.1 Deployment setting.

We assume astatic asynchronous deployment settingwhere all the nodes and the network connections are
known a priori and the only sources of dynamic behavior are node stop-failures (or simply, failures) and pro-
cessing and communication delays. We consider a message-passing setting where nodes communicate via

ivAs we shall see later, the server gossip is not essential to correctness of CAS. It is however useful as a theoretical tool to prove
correctness of CASGC.

vThe idea of registering a client’s identity was introduced originally in [25] and plays an important role in our CCOAS algorithm as
well.

4

point-to-point reliable channels. We assume a universe of nodes that is the union ofserverandclient nodes,
where the client nodes arereaderor writer nodes.N represents the set of server nodes;N denotes the cardi-
nality of N . We assume that server and client nodes can fail (stop execution) at any point. We assume that the
number of server node failures is at mostf . There is no bound on the number of client failures.

2.2 Shared memory emulation.

We consider algorithms that emulate multi-writer, multi-reader (MWMR) read/write atomic shared memory
using our deployment platform. We assume that read clients receive read requests (invocations) from some
local external source, and respond with object values. Write clients receive write requests and respond with
acknowledgments. The requests follow a “handshake” discipline, where a new invocation at a client waits for
a response to the preceding invocation at the same client. Werequire that the overall external behavior of the
algorithm corresponds to atomic (linearizable) memory. For simplicity, in this paper we consider a shared-
memory system that consists of just a single object.

We represent each version of the data object as a(tag, value) pair. When a write client processes a write
request, it assigns atag to the request. We assume that the tag is an element of a totally ordered setT that has
a minimum elementt0. The tag of a write request serves as a unique identifier for that request, and the tags
associated with successive write requests at a particular write client increase monotonically. We assume that
value is a member of a finite setV that represents the set of values that the data object can take on; note that
value can be represented bylog2 |V| bitsvi . We assume that all servers are initialized with a default initial state.

2.3 Requirements

The key correctness requirement on the targeted shared memory service isatomicity.A shared atomic object is
one that supports concurrent access by multiple clients andwhere the observed global external behaviors “look
like” the object is being accessed sequentially. Another requirement isliveness, by which we mean here that an
operation of a non-failed client is guaranteed to terminateprovided that the number of server failures is at most
f , and irrespective of the failures of other clientsvii .

2.4 Communication cost

Informally speaking, the communication cost is the number of bits transferred over the point-to-point links
in the message-passing system. For a message that can take any value in some finite setM, we measure its
communication cost aslog2 |M| bits. We separate the cost of communicating a value of the data object from
the cost of communicating the tags and other metadata. Specifically, we assume that each message is a triple
(t, w, d) wheret ∈ T is a tag,w ∈ W is a component of the triple that depends on the value associated with tag
t, andd ∈ D is any additional metadata that is independent of the value.Here,W is a finite set of values that the
second component of the message can take on, depending on thevalue of the data object.D is a finite set that
contains all the possible metadata elements for the message. These sets are assumed to be known a priori to the
sender and recipient of the message. In this paper, we make the approximation:log2 |M| ≈ log2 |W|, that is,
the costs of communicating the tags and the metadata are negligible as compared to the cost of communicating
the data object values. We assume that every message is sent on behalf of some read or write operation. We
next define the read and write communication costs of an algorithm.

For a given shared memory algorithm, consider an executionα. The communication cost of a write opera-
tion in α is the sum of the communication costs of all the messages sentover the point-to-point links on behalf
of the operation. The write communication cost of the execution α is the supremum of the costs of all the write

viStrictly speaking, we need⌈log2 |V|⌉ bits since the number of bits has to be an integer. We ignore this rounding error.
vii We assume thatN > 2f, since correctness cannot be guaranteed ifN ≤ 2f [23].

5

operations inα. The write communication cost of the algorithm is the supremum of the write communication
costs taken over all executions. The read communication cost of an algorithm is defined similarly.

2.5 Storage cost

Informally speaking, at any point of an execution of an algorithm, thestorage costis the total number of bits
stored by the servers. Specifically, we assume that a server node stores a set of triples with each triple of the
form (t, w, d), wheret ∈ T , w depends on the value of the data object associated with tagt, andd represents
additional metadata that is independent of the values stored. We neglect the cost of storing the tags and the
metadata; so the cost of storing the triple(t, w, d) is measured aslog2 |W| bits. The storage cost of a server is
the sum of the storage costs of all the triples stored at the server. For a given shared memory algorithm, consider
an executionα. The storage cost at a particular point ofα is the sum of the storage costs of all the non-failed
servers at that point. The storage cost of the executionα is the supremum of the storage costs over all points of
α. The storage cost of an algorithm is the supremum of the storage costs over all executions of the algorithm.

3 Erasure Coding - Background

Erasure coding is a generalization of replication that has been widely studied for purposes of failure-tolerance
in storage systems (see [10, 11, 21, 26, 28]). The key idea of erasure coding involves splitting the data into
severalcoded elements, each of which is stored at a different server node. As long asa sufficient number of
coded elements can be accessed, the original data can be recovered. Informally speaking, given two positive
integersm,k, k < m, an (m,k) Maximum Distance Separable (MDS) code maps ak-length vector to anm-
length vector, where the inputk-length vector can be recovered from anyk coordinates of the outputm-length
vector.This implies that an(m,k) code, when used to store ak-length vector onm server nodes - each server
node storing one of them coordinates of the output - can tolerate(m − k) node failures in the absence of any
consistency requirements (for example, see [1]). We proceed to define the notion of an MDS code formally.

Given an arbitrary finite setA and any setS ⊆ {1, 2, . . . ,m}, let πS denote thenatural projection mapping
from Am onto the coordinates corresponding toS, i.e., denotingS = {s1, s2, . . . , s|S|}, wheres1 < s2 . . . <

s|S|, the functionπS : Am → A|S| is defined asπS (x1, x2, . . . , xm) = (xs1 , xs2 , . . . , xs|S|
).

Definition 3.1 (Maximum Distance Separable (MDS) code). LetA denote any finite set. For positive integers
k,m such thatk < m, an (m,k) code overA is a mapΦ : Ak → Am. An (m,k) codeΦ overA is said to
beMaximum Distance Separable(MDS) if, for everyS ⊆ {1, 2, . . . ,m} where|S| = k, there exists a function
Φ−1
S : Ak → Ak such that:Φ−1

S (πS(Φ(x)) = x for everyx ∈ Ak, whereπS is the natural projection mapping.

We refer to each of them coordinates of the output of an(m,k) codeΦ as acoded element. Classical
m-way replication, where the input value is repeatedm times, is in fact an(m, 1) MDS code. Another example
is the single parity code: an (m,m − 1) MDS code overA = {0, 1} which maps the(m − 1)-bit vector
x1, x2, . . . , xm−1 to them-bit vectorx1, x2, . . . , xm−1, x1 ⊕ x2 ⊕ . . .⊕ xm−1.

We now review the use of an MDS code in the classical coding-theoretic model, where a single version of
a data object with valuev ∈ V is stored overN servers using an(N, k) MDS code. We assume thatV = Wk

for some finite setW and that an(N, k) MDS codeΦ : Wk → WN exists overW (see Appendix B for a
discussion). The valuev of the data object can be used as an input toΦ to getN coded elements overW; each
of theN servers, respectively, stores one of these coded elements.Since each coded element belongs to the set

W, whose cardinality satisfies|W| = |V|1/k = 2
log2 |V|

k , each coded element can be represented as alog2 |V|
k

bit-vector, i.e., the number of bits in each coded element isa fraction 1
k of the number of bits in the original

data object. When we employ an(N, k) code in the context of storing multiple versions, the size ofa coded
element is closely related to communication and storage costs incurred by our algorithms (see Theorems 4.10
and 5.11).

6

write(value)
query: Send query messages to all servers asking for the highest tagwith label ‘fin’; await responses from a quorum.

pre-write: Select the largest tag from thequeryphase; let its integer component bez. Form a new tagt as(z+1, ‘ id’), where ‘id’
is the identifier of the client performing the operation. Apply the (N, k) MDS codeΦ (see Sec. 3) to the value to obtain coded
elementsw1, w2, . . . , wN . Send(t, ws, ‘pre’) to servers for everys ∈ N . Await responses from a quorum.

finalize: Send afinalizemessage(t, ‘null’ , ‘fin’) to all servers. Terminate after receiving responses from a quorum.

read
query: As in the writer protocol.

finalize: Send afinalizemessage with tagt to all the servers requesting the associated coded elements. Await responses from
a quorum. If at leastk servers include their locally stored coded elements in their responses, then obtain thevalue from these
coded elements by invertingΦ (see Definition 3.1) and terminate by returningvalue.

server
state variable:A variable that is a subset ofT × (W ∪ {‘null’})× {‘pre’ , ‘fin’}

initial state: Store(t0, w0,s, ‘fin’) wheres denotes the server andw0,s is the coded element corresponding to servers obtained
by applyΦ to the initial valuev0.

On receipt ofquerymessage: Respond with the highest locally known tag that hasa label ‘fin’, i.e., the highesttag such that the
triple (tag, ∗, ‘fin’) is at the server, where∗ can be a coded element or ‘null’.

On receipt ofpre-writemessage: If there is no record of the tag of the message in the list of triples stored at the server, then add
the triple in the message to the list of stored triples; otherwise ignore. Send acknowledgment.

On receipt offinalizefrom a writer: Lett be the tag of the message. If a triple of the form(t, ws, ‘pre’) exists in the list of stored
triples, then update it to(t,ws, ‘fin’). Otherwise add(t, ‘null’ , ‘fin’) to list of stored triplesxvi . Send acknowledgment. Send
‘gossip’ message with item(t, ‘fin’) to all other servers.

On receipt offinalizefrom a reader: Lett be the tag of the message. If a triple of the form(t, ws, ∗) exists in the list of stored
triples where∗ can be ‘pre’ or ‘fin’, then update it to(t, ws, ‘fin’) and send(t,ws) to the reader. Otherwise add(t, ‘null’ , ‘fin’)
to the list of triples at the server and send an acknowledgment. Send ‘gossip’ message with item(t, ‘fin’) to all other servers.

On receipt of ‘gossip’ message: Lett be the tag of the message. If a triple of the form(t, x, ∗) exists in the list of stored triples
where∗ is ‘pre’ or ‘fin’ and x is a coded element of ‘null’, then update it to(t, x, ‘fin’). Otherwise add(t, ‘null’ , ‘fin’) to the
list of triples at the server.

Figure 1: Write, read, and server protocols of the CAS algorithm.

4 Coded Atomic Storage

We now present theCoded Atomic Storage(CAS) algorithm, which takes advantage of erasure coding tech-
niques to reduce the communication cost for emulating atomic shared memory. CAS is parameterized by an
integerk, 1 ≤ k ≤ N − 2f ; we denote the algorithm with parameter valuek by CAS(k). CAS, like ABD and
LDR, is a quorum-based algorithm. Later, in Sec. 5, we present a variant of CAS that has efficient storage costs
as well (in addition to having the same communication costs as CAS).

Handling of incomplete writes is not as simple when erasure coding is used because, unlike in replication
based techniques, no single server has a complete replica ofthe value being written. In CAS, we solve this
problem byhiding ongoing write operations from reads until enough information has been stored at servers.
Our approach essentially mimics [12], projected to the setting of crash failures. We describe CAS in detail next.
Quorum specification. We define our quorum system,Q, to be the set of all subsets ofN that have at least
⌈N+k

2 ⌉ elements (server nodes). We refer to the members ofQ, as quorum sets. We show in Apppendix C that
Q satisfies the following property:

Lemma 4.1. Suppose that1 ≤ k ≤ N − 2f. (i) If Q1, Q2 ∈ Q, then|Q1∩Q2| ≥ k. (ii) If the number of failed
servers is at mostf , thenQ contains at least one quorum setQ of non-failed servers.

The CAS algorithm can, in fact, use any quorum system that satisfies properties (i) and (ii) of Lemma 4.1.

7

4.1 Algorithm description

In CAS, we assume that tags are tuples of the form(z, ‘ id’), wherez is an integer and ‘id’ is an identifier of
a client node. The ordering on the set of tagsT is defined lexicographically, using the usual ordering on the
integers and a predefined ordering on the client identifiers.We add a ‘gossip’ protocol to CAS, whereby each
server sends eachitem from T × {‘fin’} that it ever receives once (immediately) to every other server. As a
consequence, in any fair execution, if a non-failed server initiates ‘gossip’ or receives ‘gossip’ message with
item (t, ‘fin’), then, every non-failed server receives a ‘gossip’ message with this item at some point of the
execution. Fig. 1 contains a description of the read and write protocols, and the server actions of CAS. Here,
we provide an overview of the algorithm.

Each server node maintains a set of(tag, coded-element, label)viii triples, where we specialize the meta-
data tolabel ∈ {‘pre’ , ‘fin’}. The different phases of the write and read protocols are executed sequentially.
In each phase, a client sends messages to servers to which thenon-failed servers respond. Termination of each
phase depends on getting responses from at least one quorum.

The query phase is identical in both protocols and it allows clients todiscover a recentfinalized object
version, i.e., a recent version with a ‘fin’ tag. The goal of thepre-writephase of a write is to ensure that each
server gets a tag and a coded element with label ‘pre’. Tags associated with label ‘pre’ are not visible to the
readers, since the servers respond toquerymessages only with finalized tags. Once a quorum, sayQpw, has
acknowledged receipt of the coded elements to the pre-writephase, the writer proceeds to itsfinalizephase. In
this phase, it propagates a finalize (‘fin’) label with the tag and waits for a response from a quorum of servers,
sayQfw. The purpose of propagating the ‘fin’ label is to record that the coded elements associated with the
tag have been propagated to a quorumix . In fact, when a tag appears anywhere in the system associated with a
‘fin’ label, it means that the corresponding coded elements reached a quorumQpw with a ‘pre’ label at some
previous point. The operation of a writer in the two phases following its query phasehelps overcome the
challenge of handling writer failures. In particular, notice that only tags with the ‘fin’ label are visible to the
reader. This ensures that the reader gets at leastk unique coded elements from any quorum of non-failed nodes
in response to its finalize messages, because such a quorum has an intersection of at leastk nodes withQpw.
Finally, the reader helps propagate the tag to a quorum, and this helps complete possibly failed writes as well.

We note that the server gossip is not necessary for correctness of CAS. We use ‘gossip’ in CAS mainly
because it simplifies the proof of atomicity of theCASGCalgorithm, which is presented in Section 5.

4.2 Statements and proofs of correctness

We next state the main result of this section.

Theorem 4.2. CAS emulates shared atomic read/write memory.

To prove Theorem 4.2, we show atomicity, Lemma 4.3, and liveness, Lemma 4.9.

4.2.1 Atomicity

Lemma 4.3. CAS(k) is atomic.

The main idea of our proof of atomicity involves defining, on the operations of any executionβ of CAS, a
partial order≺ that satisfies the sufficient conditions for atomicity described by Lemma 13.16 of [23]. We state
these sufficient conditions in Lemma 4.4 next.

Lemma 4.4(Paraphrased Lemma 13.16 [23].). Suppose that the environment is well-behaved, meaning thatan
operation is invoked at a client only if no other operation was performed by the client, or the client received a

viii The ‘null’ entry indicates that no coded element is stored; the storage cost associated storing anull coded element is negligible.
ixIt is worth noting thatQfw andQpw need not be the same quorum.

8

response to the last operation it initiated. Letβ be a (finite or infinite) execution of a read/write object, where
β consists of invocations and responses of read and write operations and where all operations terminate. Let
Π be the set of all operations inβ.

Suppose that≺ is an irreflexive partial ordering of all the operations inΠ, satisfying the following proper-
ties: (1) If the response forπ1 precedes the invocation forπ2 in β, then it cannot be the case thatπ2 ≺ π1. (2)
If π1 is a write operation inΠ andπ2 is any operation inΠ, then eitherπ1 ≺ π2 or π2 ≺ π1. (3) The value
returned by each read operation is the value written by the last preceding write operation according to≺ (or
v0, if there is no such write).

The following definition will be useful in defining a partial order on operations in an execution of CAS that
satisfies the conditions of Lemma 4.4.

Definition 4.5. Consider an executionβ of CAS and consider an operationπ that terminates inβ. Thetagof
operationπ, denoted asT (π), is defined as follows: Ifπ is a read, then,T (π) is the highest tag received in its
queryphase. Ifπ is a write, then,T (π) is the new tag formed in itspre-writephase.

We define our partial order≺ as follows: In any executionβ of CAS, we order operationsπ1, π2 asπ1 ≺ π2
if (i) T (π1) < T (π2), or (ii) T (π1) = T (π2), π1 is a write andπ2 is a read. We next argue that the partial
ordering≺ satisfies the conditions of 4.4. We first show in Lemma 4.6 that, in any executionβ of CAS, at
any point after an operationπ terminates, the tagT (π) has been propagated with the ‘fin’ label to at least one
quorum of servers. Intuitively speaking, Lemma 4.6 means that if an operationπ terminates, the tagT (π) is
visible to any operation that is invoked afterπ terminates. We crystallize this intuition in Lemma 4.7, where
we show that any operation that is invoked after an operationπ terminates acquires a tag that is at least as large
asT (π). Using Lemma 4.7 we show Lemma 4.8, which states that the tag acquired by each write operation
is unique. Then we show that Lemma 4.7 and Lemma 4.8 imply conditions (1) and (2) of Lemma 4.4. By
examination of the algorithm, we show that CAS also satisfiescondition(3) of Lemma 4.4.

Lemma 4.6. In any executionβ of CAS, for an operationπ that terminates inβ, there exists a quorumQfw(π)
such that the following is true at every point of the execution β afterπ terminates: Every server ofQfw(π) has
(t, ∗, ‘fin’) in its set of stored triples, where∗ is either a coded element or ‘null’, and t = T (π).

Proof. The proof is the same whetherπ is a read or a write operation. The operationπ terminates after complet-
ing its finalizephase, during which it receives responses from a quorum, sayQfw(π), to its finalizemessage.
This means that every servers in Qfw(π) responded to thefinalizemessage fromπ at some point before the
point of termination ofπ. From the server protocol, we can observe that every servers in Qfw(π) stores the
triple (t, ∗, ‘fin’) at the point of responding to thefinalizemessage ofπ, where∗ is either a coded element or
‘null’. Furthermore, the servers stores the triple at every point after the point of responding to thefinalize
message ofπ and hence at every point after the point of termination ofπ.

Lemma 4.7. Consider any executionβ of CAS, and letπ1, π2 be two operations that terminate inβ. Suppose
thatπ1 returns beforeπ2 is invoked. ThenT (π2) ≥ T (π1). Furthermore, ifπ2 is a write, thenT (π2) > T (π1).

Proof. To establish the lemma, it suffices to show that the tag acquired in thequery phase ofπ2, denoted
as T̂ (π2), is at least as big asT (π1), that is, it suffices to show that̂T (π2) ≥ T (π1). This is because, by
examination of the client protocols, we can observe that ifπ2 is a read,T (π2) = T̂ (π2), and if π2 is a write,
T (π2) > T̂ (π2).

To show thatT̂ (π2) ≥ T (π1) we use Lemma 4.6. We denote the quorum of servers that respondto the
queryphase ofπ2 asQ̂(π2). We now argue that every servers in Q̂(π2)∩Qfw(π1) responds to thequeryphase
of π2 with a tag that is at least as large asT (π1). To see this, sinces is in Qfw(π1), Lemma 4.6 implies that
s has a tagT (π1) with label ‘fin’ at the point of termination ofπ1. Sinces is in Q̂(π), it also responds to the

9

querymessage ofπ2, and this happens at some point after the termination ofπ1 becauseπ2 is invoked afterπ1
responds. From the server protocol, we infer that servers responds to thequerymessage ofπ2 with a tag that is
no smaller thanT (π1). Because of Lemma 4.1, there is at least one servers in Q̂(π2)∩Qfw(π1) implying that
operationπ2 receives at least one response in itsqueryphase with a tag that is no smaller thanT (π1). Therefore
T̂ (π2) ≥ T (π1).

Lemma 4.8. Letπ1, π2 be write operations that terminate in an executionβ of CAS. ThenT (π1) 6= T (π2).

Proof. Let π1, π2 be two write operations that terminate in executionβ. Let C1, C2 respectively indicate the
identifiers of the client nodes at which operationsπ1, π2 are invoked. We consider two cases.
Case 1,C1 6= C2: From the write protocol, we note thatT (πi) = (zi, Ci). SinceC1 6= C2, we have
T (π1) 6= T (π2).
Case 2,C1 = C2 : Recall that operations at the same client follow a “handshake” discipline, where a new
invocation awaits the response of a preceding invocation. This means that one of the two operationsπ1, π2
should complete before the other starts. Suppose that, without loss of generality, the write operationπ1 com-
pletes before the write operationπ2 starts. Then, Lemma 4.7 implies thatT (π2) > T (π1). This implies that
T (π2) 6= T (π1).

Proof of Lemma 4.3.Recall that we define our ordering≺ as follows: In any executionβ of CAS, we order
operationsπ1, π2 asπ1 ≺ π2 if (i) T (π1) < T (π2), or (ii) T (π1) = T (π2), π1 is a write andπ2 is a read.

We first verify that the above ordering is a partial order, that is, if π1 ≺ π2, then it cannot be thatπ2 ≺ π1.
We prove this by contradiction. Suppose thatπ1 ≺ π1 andπ2 ≺ π1. Then, by definition of the ordering, we
have thatT (π1) ≤ T (π2) and vice-versa, implying thatT (π1) = T (π2). Sinceπ1 ≺ π2 andT (π1) = T (π2),
we have thatπ1 is a write andπ2 is a read. But a symmetric argument implies thatπ2 is a write andπ1 is a read,
which is a contradiction. Therefore≺ is a partial order.

With the ordering≺ defined as above, we now show that the three properties of Lemma 4.4 are satisfied.
For property(1), consider an executionβ and two distinct operationsπ1, π2 in β such thatπ1 returns before
π2 is invoked. Ifπ2 is a read, then Lemma 4.7 implies thatT (π2) ≥ T (π1). By definition of the ordering, it
cannot be the case thatπ2 ≺ π1. If π1 is a write, then Lemma 4.7 implies thatT (π2) > T (π1) and so,π1 ≺ π2.
Since≺ is a partial order, it cannot be the case thatπ2 ≺ π1.

Property(2) follows from the definition of the≺ in conjunction with Lemma 4.8.
Now we show property(3): The value returned by each read operation is the value written by the last

preceding write operation according to≺, or v0 if there is no such write. Note that every version of the data
object written in executionβ is uniquelyassociated with a write operation inβ. Lemma 4.8 implies that every
version of the data object being written can be uniquely associated withtag. Therefore, to show that a read
π returns the last preceding write, we only need to argue that the read returns the value associated withT (π).
From the write, read, and server protocols, it is clear that avalue and/or its coded elements are always paired
together with the corresponding tags at every state of everycomponent of the system. In particular, the read
returns the value fromk coded elements by inverting the MDS codeΦ; thesek coded elements were obtained
at some previous point by applyingΦ to the value associated withT (π). Therefore Definition 3.1 implies that
the read returns the value associated withT (π).

4.2.2 Liveness

We now state the liveness condition satisfied by CAS.

Lemma 4.9 (Liveness). CAS(k) satisfies the followinglivenesscondition: If 1 ≤ k ≤ N − 2f , then every
non-failingx operation terminates in every fair execution of CAS(k) where the number of server failures is no
bigger thanf .

xAn operation is said to have failed if the client performing the operation fails after its invocation but before its termination.

10

Proof. By examination of the algorithm we observe that terminationof any operation depends on termination
of its phases. So, to show liveness, we need to show that each phase of each operation terminates. Let us
first examine thequeryphase of a read/write operation; note that termination of the queryphase of a client
is contingent on receiving responses from a quorum. Every non-failed server responds to aquery message
with the highest locally available tag marked ‘fin’. Since every server is initialized with(t0, v0, ‘fin’), every
non-failed server has at least one tag associated with the label ‘fin’ and hence responds to the client’squery
message. Since the client receives responses from every non-failed server, property (ii) of Lemma 4.1 ensures
that thequeryphase receives responses from at least one quorum, and henceterminates. We can similarly show
that thepre-write phase andfinalize phase of a writer terminate. In particular, termination of each of these
phases is contingent on receiving responses from a quorum. Their termination is guaranteed from property (ii)
of Lemma 4.1 in conjunction with the fact that every non-failed server responds, at some point, to apre-write
message and afinalizemessage from a write with an acknowledgment.

It remains to show the termination of a reader’sfinalizephase. By using property (ii) of Lemma 4.1, we
can show that a quorum, sayQfw of servers responds to a reader’sfinalizemessage. For thefinalizephase of
a read to terminate, there is an additional requirement thatat leastk servers include coded elements in their
responses. To show that this requirement is satisfied, suppose that the read acquired a tagt in its queryphase.
From examination of CAS, we infer that, at some point before the point of termination of the read’squeryphase,
a writer propagated afinalizemessage with tagt. Let us denote byQpw(t), the set of servers that responded to
this write’spre-writephase. We argue that all servers inQpw(t)∩Qfw respond to the reader’sfinalizemessage
with a coded element. To see this, lets be any server inQpw(t)∩Qfw. Sinces is inQpw(t), the server protocol
for responding to apre-write message implies thats has a coded element,ws, at the point where it responds
to that message. Sinces is in Qfw, it also responds to the reader’sfinalizemessage, and this happens at some
point after it responds to thepre-writemessage. So it responds with its coded elementws. From Lemma 4.1, it
is clear that|Qpw(t)∩Qfw| ≥ k implying that the reader receives at leastk coded elements in itsfinalizephase
and hence terminates.

4.3 Cost Analysis

We analyze the communication costs of CAS in Theorem 4.10. The theorem implies that the read and write
communication costs can be made as small asN

N−2f log2 |V| bits by choosingk = N − 2f.

Theorem 4.10.The write and read communication costs of the CAS(k) are equal toN/k log2 |V| bits.

Proof. For either protocol, observe that messages carry coded elements which have sizelog2 |V|
k bits. More

formally, each message is an element fromT ×W×{‘pre’ , ‘fin’}, where,W is a coded element corresponding
to one of theN outputs of the MDS codeΦ. As described in Sec. 3,log2 |W| = log2 |V|

k . The only messages
that incur communication costs are the messages sent from the client to the servers in thepre-writephase of a
write and the messages sent from the servers to a client in thefinalizephase of a read. It can be seen that the
total communication cost of read and write operations of theCAS algorithm areNk log2 |V| bits, that is, they
are upper bounded by this quantity and the said costs are incurred in certain worst-case executions.

5 Storage-Optimized Variant of CAS

Although CAS is efficient in terms of communication costs, itincurs an infinite storage cost because servers
can store coded elements corresponding to an arbitrarily large number of versions. We here present a variant of
the CAS algorithm calledCAS with Garbage Collection(CASGC), which has the same communication costs
as CAS and incurs a bounded storage cost under certain reasonable conditions. CASGC achieves a bounded
storage cost by usinggarbage collection, i.e., by discarding coded elements with sufficiently smalltags at the
servers. CASGC is parametrized by two positive integers denoted ask andδ, where1 ≤ k ≤ N − 2f ; we

11

servers
state variable:A variable that is a subset ofT × (W ∪ {‘null’})× {‘pre’ , ‘fin’ , (‘pre’ , ‘gc’), (‘fin’ , ‘gc’)}
initial state: Same as in Fig. 1.
On receipt ofquerymessage: Similar to Fig. 1, respond with the highest locallyavailable tag labeled ‘fin’, i.e., respond with
the highesttag such that the triple(tag, x, ‘fin’) or (tag, ‘null’ , (‘fin’ , ‘gc’)) is at the server, wherex can be a coded element or
‘null’.

On receipt of apre-write message: Perform the actions as described in Fig. 1 except the sending of an acknowledgement.
Perform garbage collection. Then send an acknowledgement.

On receipt of afinalizefrom a writer: Lett be the tag of the message. If a triple of the form(t, x, ‘fin’) or (t, ‘null’ , (‘fin’ , ‘gc’)) is
stored in the set of locally stored triples wherex can be a coded element or ‘null’, then ignore the incoming message. Otherwise,
if a triple of the form(t,ws, ‘pre’) or (t, ‘null’ , (‘pre’ , ‘gc’)) is stored, then upgrade it to(t, ws, ‘fin’) or (t, ‘null’ , (‘fin’ , ‘gc’)).
Otherwise, add a triple of the form(t, ‘null’ , ‘fin’) to the set of locally stored triples. Perform garbage collection. Send ‘gossip’
message with item(t, ‘fin’) to all other servers.

On receipt of afinalizemessage from a reader: Lett be the tag of the message. If a triple of the form(t, ws, ∗) exists in the list
of stored triples where∗ can be ‘pre’ or ‘fin’, then update it to(t, ws, ‘fin’), perform garbage collection, and send(t, ws) to the
reader. If(t, ‘null’ , (∗, ‘gc’)) exists in the list of locally available triples where∗ can be either ‘fin’ or ‘pre’, then update it to
(t, ‘null’ , (‘fin’ , ‘gc’)) and perform garbage collection, but donot send a response. Otherwise add(t, ‘null’ , ‘fin’) to the list of
triples at the server, perform garbage collection, and sendan acknowledgment. Send ‘gossip’ message with item(t, ‘fin’) to all
other servers.

On receipt of a ‘gossip’ message: Lett denote the tag of the message. If a triple of the form(t, x, ‘fin’) or (t, ‘null’ , (‘fin’ , ‘gc’))
is stored in the set of locally stored triples wherex can be a coded element or ‘null’, then ignore the incoming message.
Otherwise, if a triple of the form(t, ws, ‘pre’) or (t, ‘null’ , (‘pre’ , ‘gc’)) is stored, then upgrade it to(t,ws, ‘fin’) or
(t, ‘null’ , (‘fin’ , ‘gc’)). Otherwise, add a triple of the form(t, ‘null’ , ‘fin’) to the set of locally stored triples. Perform garbage
collection.

garbage collection:If the total number of tags of the set{t : (t, x, ∗) is stored at the server, wherex ∈ W ∪ {‘null’} and∗ ∈
{‘fin’ , (‘fin’ , ‘gc’)}} is no bigger thanδ + 1, then return. Otherwise, lett1, t2, . . . tδ+1 denote the highestδ + 1 tags from the
set, sorted in descending order. Replace every element of the form(t′, x, ∗) wheret′ is smaller thantδ+1 by (t′, ‘null’ , (∗, ‘gc’))
where∗ can be either ‘pre’ or ‘fin’ andx ∈ W ∪ {‘null’}.

Figure 2: Server Actions for CASGC(k, δ).

denote the algorithm with parameter valuesk, δ by CASGC(k, δ). Like CAS(k), we use an(N, k) MDS code in
CASGC(k, δ). The parameterδ is related to the number of coded elements stored at each server under “normal
conditions”, that is, if all operations terminate and thereare no ongoing write operations.

5.1 Algorithm description

The CASGC(k, δ) algorithm is essentially the same as CAS(k) with an additional garbage collection step at
the servers. In particular, the only differences between the two algorithms lie in the server actions on receiving
a finalize message from a writer or a reader or ‘gossip’. The server actions in the CASGC algorithm are
described in Fig. 2. In CASGC(k, δ), each server stores the latestδ + 1 triples with the ‘fin’ label plus
the triples corresponding to later and intervening operations with the ‘pre’ label. For the tags that are older
(smaller) than the latestδ + 1 finalized tags received by the server, it stores only the metadata, not the data
itself. On receiving afinalizemessage either from a writer or a reader, the server performsa garbage collection
step before responding to the client. The garbage collection step checks whether the server has more thanδ+1
triples with the ‘fin’ label. If so, it replaces the triple(t′, x, ∗) by (t′, ‘null’ , (∗, ‘gc’)) for every tagt′ that is
smaller than all theδ + 1 highest tags labeled ‘fin’, where∗ is ‘pre’ or ‘fin’, andx can be a coded element or
‘null’. If a reader requests, through afinalizemessage, a coded element that is already garbage collected,the
server simply ignores this request.

12

5.2 Statements and proofs of correctness

We next describe the correctness conditions satisfied by CASGC. We begin with a formal statement of atomicity.
Later, we describe the liveness properties of CASGC.

5.2.1 Atomicity

Theorem 5.1(Atomicity). CASGC is atomic.

To show the above theorem, we observe that, from the perspective of the clients, the only difference between
CAS and CASGC is in the server response to a read’sfinalizemessage. In CASGC, when a coded element has
been garbage collected, a server ignores a read’sfinalizemessage. Atomicity follows similarly to CAS, since,
in any execution of CASGC, operations acquire essentially the same tags as they would in an execution of CAS.
We show this formally next.

Proof (Sketch).Note that, formally, CAS is an I/O automaton formed by composing the automata of all the
nodes and communication channels in the system. We show atomicity in two steps. In the first step, we
construct a I/O automaton CAS′ which differs from CAS in that some of the actions of the servers in CAS′ are
non-deterministic. However, we show that from the perspective of its external behavior (i.e., its invocations,
responses and failure events), any execution of CAS′ can be extended to an execution of CAS implying that
CAS′ satisfies atomicity. In the second step, we will show that CASGC simulates CAS′. These two steps suffice
to show that CASGC satisfies atomicity.

We now describe CAS′. The CAS′ automaton is identical to CAS with respect to the client actions, and to
the server actions on receipt ofqueryandpre-write messages andfinalizemessages from writers. A server’s
response to afinalizemessage from a read operation can be different in CAS′ as compared to CAS. In CAS′,
at the point of the receipt of thefinalizemessage at the server, the server could respond either with the coded
element, or not respond at all (even if it has the coded element).The server performs ‘gossip’ in CAS′ as in
CAS.

We note that CAS′ “simulates” CAS. Formally speaking, for every executionα′ of CAS′, there is a natural
corresponding executionα of CAS with an identical sequence of actions of all the components with one ex-
ception; when a server ignores a read’sfinalizemessage inα′, we assume that the corresponding message inα
is indefinitely delayed. Therefore, from the perspective ofclient actions, for any executionα′ of CAS′, there
is anα of CAS with the same set of external actions. Since CAS satisfies atomicity,α has atomic behavior.
Thereforeα′ is atomic, and implying that CAS′ satisfies atomicity.

Now, we show that CASGC “simulates” CAS′. That is, for every executionαgc of CASGC, we construct
a corresponding executionα′ of CAS′ such thatα′ has the same external behavior (i.e., the same invocations,
responses and failure events) as that ofαgc. We first describe the executionα′ step-by-step, that is, we consider
a step ofαgc and describe the corresponding step ofα′. We then show that the executionα′ that we have
constructed is consistent with the CAS′ automaton.

We constructα′ as follows. We first set the initial states of all the components ofα′ to be the same as they
are inαgc. At every step, the states of the client nodes and the message passing system inα′ are the same as
the states of the corresponding components in the corresponding step ofαgc. A server’s responses on receipt
of a message is the same inα′ as that of the corresponding server’s response inαgc. In particular, we note
that a server’s external responses are the same inαgc andα′ even on receipt of a reader’sfinalizemessage, that
is, if a server ignores a reader’s finalize message inαgc, it ignores the reader’s finalize message inα′ as well.
Similarly, if a server sends a message as a part of ‘gossip’ in αgc, it sends a message inα′ as well. The only
difference betweenαgc andα′ is in the change to the server’s internal state at a point of receipt of afinalize
message from a reader or a writer. At such a point, the server may perform garbage collection inαgc, whereas it
does not perform garbage collection inα′. Note that the initial state, the server’s response, and theclient states
at every step ofα′ are the same as the corresponding step ofαgc. Also note that a server that fails at a step of

13

αgc fails at the corresponding step ofα′ (even though the server states could be different in generalbecause of
the garbage collection). Hence, at every step, the externalbehavior ofα′ andαgc are the same. This implies
that the external behavior of the entire executionα′ is the same as the external behavior ofαgc.

We complete the proof by noting that executionα′ consistent with the CAS′ automaton. In particular, since
the initial states of all the components are the same in the CAS′ and CASGC algorithms, the initial state of
α′ is consistent with the CAS′ automaton. Also, every step ofα′ is consistent with CAS′. Therefore, CASGC
simulates CAS′. Since CAS′ is atomic,αgc has atomic behavior. So CASGC is atomic.

5.2.2 Liveness

Showing operation termination in CASGC is more complicatedthan CAS. This is because, in CASGC, when
a reader requests a coded element, the server may have garbage collected it. The liveness property we show
essentially articulates conditions under which read operations terminate in spite of the garbage collection. In-
formally speaking, we show that CASGC satisfies the following liveness property: every operation terminates
in an execution where the number of failed servers is no bigger thanf and the number of writesconcurrentwith
a read is bounded byδ + 1. Before we proceed to formally state our liveness conditions, we give a formal defi-
nition of the notion of concurrent operations in an execution of CASGC. For any operationπ that completes its
query phase, the tag of the operationT (π) is defined as in Definition 4.5. We begin with defining theend-point
of an operation.

Definition 5.2 (End-point of a write operation). In an executionβ of CASGC, the end point of a write operation
π in β is defined to be

(a) the first point ofβ at which a quorum of servers that do not fail inβ has tagT (π) with the ‘fin’ label,
whereT (π) is the tag of the operationπ, if such a point exists,

(b) the point of failure of operationπ, if operationπ fails and (a) is not satisfied.

Note that if neither condition (a) nor (b) is satisfied, then the write operation has no end-point.

Definition 5.3 (End-point of a read operation). The end point of a read operation inβ is defined to be the point
of termination if the read returns inβ. The end-point of a failed read operation is defined to be the point of
failure.

A read that does not fail or terminate has no end-point.

Definition 5.4 (Concurrent Operations). One operation is defined to be concurrent with another operation if it
is not the case that the end point of either of the two operations is before the point of invocation of the other
operation.

Note that if both operations do not have end points, then theyare concurrent with each other. We next
describe the liveness property satisfied by CASGC.

Theorem 5.5(Liveness). Let1 ≤ k ≤ N − 2f . Consider a fair executionβ of CASGC(k, δ) where the number
of write operations concurrent to any read operation is at most δ, and the number of server node failures is at
mostf . Then, every non-failing operation terminates inβ.

The main challenge in proving Theorem 5.5 lies in showing termination of read operations. In Lemma 5.6,
we show that if aread operation does not terminatein an execution of CASGC(k, δ), then the number of write
operations that are concurrent with the read is larger thanδ. We then use the lemma to show Theorem 5.5 later
in this section. We begin by stating and proving Lemma 5.6.

14

Lemma 5.6. Let1 ≤ k ≤ N − 2f . Consider any fair executionβ of CASGC(k, δ) where the number of server
failures is upper bounded byf . Letπ be a non-failing read operation inβ that does not terminate. Then, the
number of writes that are concurrent withπ is at leastδ + 1.

To prove Lemma 5.6, we prove Lemmas 5.7 and 5.8. Lemma 5.7 implies that in a fair execution where the
number of server failures is bounded byf , if a non-failing server receives a finalize message corresponding to a
tag at some point, then the write operation corresponding tothat tag has an end-point in the execution. We note
that the server gossip plays a crucial role in showing Lemma 5.7. We then show Lemma 5.8 which states that
in an execution, if a write operationπ has an end-point, then every operation that begins after theend-point of
π acquires a tag that is at least as large as the tag ofπ. Using Lemmas 5.7 and 5.8, we then show Lemma 5.6.

Lemma 5.7. Let1 ≤ k ≤ N − 2f . Consider any fair executionβ of CASGC(k, δ) where the number of server
failures is no bigger thanf . Consider a write operationπ that acquires tagt. If at some point ofβ, at least one
non-failing server has a triple of the form(t, x, ‘fin’) or (t, ‘null’ , (‘fin’ , ‘gc’)) wherex ∈ W ∪ {‘null’}, then
operationπ has an end-point inβ.

Proof. Notice that every server that receives afinalizemessage with tagt invokes the ‘gossip’ protocol. If a
non-failing servers stores tagt with the ‘fin’ label at some point ofβ, then from the server protocol we infer
that it received afinalizemessage with tagt from a client or another server at some previous point. Sinceserver
s receives thefinalizemessage with tagt, everynon-failing server also receives afinalizemessage with tagt
at some point of the execution because of ‘gossip’. Since a server that receives afinalizemessage with tagt
stores the ‘fin’ label after receiving the message, and the server does not delete the label associated with the tag
at any point, eventually, everynon-failing serverstores the ‘fin’ label with the tagt. Since the number of server
failures is no bigger thanf , there is a quorum of non-failing servers that stores tagt with the ‘fin’ label at some
point of β. Therefore, operationπ has an end-point inβ, with the end-point being the first point ofβ where a
quorum of non-failing servers have the tagt with the ‘fin’ label.

Lemma 5.8. Consider any executionβ of CASGC(k, δ). If write operationπ with tagt has an end-point inβ,
then the tag of any operation that begins after the end point of π is at least as large ast.

Proof. Consider a write operationπ that has an end-point inβ. By definition, at the end-point ofπ, there
exists at least one quorumQ(π) of non-failing servers such that each server has the tagt with the ‘fin’ label.
Furthermore, from the server protocol, we infer that each server in quorumQ(π) has the tagt with the ‘fin’
label at every point after the end point of the operationπ.

Now, suppose operationπ′ is invoked after the end point ofπ. We show that the tag acquired by operation
π′ is at least as large ast. Denote the quorum of servers that respond to thequeryphase ofπ′ asQ(π′). We
now argue that every servers in Q(π) ∩ Q(π′) responds to thequeryphase ofπ′ with a tag that is at least as
large ast. To see this, sinces is inQ(π), it has a tagt with label ‘fin’ at the end-point ofπ. Sinces is inQ(π′),
it also responds to thequerymessage ofπ′, and this happens at some point after the end-point ofπ becauseπ′

is invoked after the end-point ofπ. Therefore servers responds with a tag that is at least as large ast. This
completes the proof.

Proof of Lemma 5.6.Note that the termination of the query phase of the read is contingent on receiving a
quorum of responses. By noting that every non-failing server responds to the read’s query message, we infer
from Lemma 4.1 that the query phase terminates.It remains to consider termination of the read’s finalize phase.
Consider an operationπ whose finalize phase does not terminate. We argue that there are at leastδ + 1 write
operations that are concurrent withπ.

Let t be the tag acquired by operationπ. By property (ii) of Lemma 4.1, we infer that a quorum, sayQfw

of non-failingservers receives the read’sfinalizemessage. There are only two possibilities.
(i) There is no servers in Qfw such that, at the point of receipt of the read’s finalize message at servers, a

triple of the form(t, ‘null’ , (∗, ‘gc’)) exists at the server.

15

(ii) There is at least one servers in Qfw such that, at the point of receipt of the read’s finalize message at
servers, a triple of the form(t, ‘null’ , (∗, ‘gc’)) exists at the server.

In case(i), we argue in a manner that is similar to Lemma 4.9 that the read receives responses to its finalize
message from quorumQfw of which at leastk responses include coded elements.We repeat the argument here
for completeness. From examination of CASGC, we infer that,at some point before the point of termination
of the read’squeryphase, a writer propagated afinalizemessage with tagt. Let us denote byQpw(t), the set
of servers that responded to this write’spre-write phase. We argue that all servers inQpw(t) ∩ Qfw respond
to the reader’sfinalizemessage with a coded element. To see this, lets′ be any server inQpw(t) ∩Qfw. Since
s′ is in Qpw(t), the server protocol for responding to apre-writemessage implies thats′ has a coded element,
ws′ , at the point where it responds to that message. Sinces′ is in Qfw, it does not contain an element of the
form (t, ‘null’ , (∗, ‘gc’)) implying that it has not garbage collected the coded elementat the point of receipt of
the reader’s finalize message. Therefore, it responds to thereader’sfinalizemessage, and this happens at some
point after it responds to thepre-writemessage. So it responds with its coded elementws′ . From Lemma 4.1,
it is clear that|Qpw(t) ∩ Qfw| ≥ k implying that the reader receives at leastk coded elements in itsfinalize
phase and hence terminates. Therefore the finalize phase ofπ terminates, contradicting our assumption that it
does not. Therefore(i) is impossible.

We next argue that in case(ii), there are at leastδ + 1 write operations that are concurrent with the read
operationπ. In case(ii), from the server protocol of CASGC, we infer that at the pointof receipt of the reader’s
finalize message at servers, there exist tagst1, t2, . . . , tδ+1, each bigger thant, such that a triple of the form
(ti, x, ‘fin’) or (ti, ‘null’ , (‘fin’ , ‘gc’)) exists at the server. We infer from the write and server protocols that, for
everyi in {1, 2, . . . , δ+1}, a write operation, sayπi, must have committed to tagti in its pre-writephase before
this point inβ. Becauses is non-failing inβ, we infer from Lemma 5.7 that operationπi has an end-point in
β for every i ∈ {1, 2, . . . , δ + 1}. Sincet < ti for every i ∈ {1, 2, . . . , δ + 1}, we infer from Lemma 5.8
that the end point of write operationπi is after the point of invocation of operationπ. Therefore operations
π1, π2, . . . , πδ+1 are concurrent with read operationπ.

A proof of Theorem 5.5 follows from Lemma 5.6 in a manner that is similar to Lemma 4.9. We briefly
sketch the argument here.

Proof Sketch of Theorem 5.5.By examination of the algorithm we observe that terminationof any operation
depends on termination of its phases. So, to show liveness, we need to show that each phase of each operation
terminates. We first consider a write operation. Note that termination of thequeryphase of a write operation
is contingent on receiving responses from a quorum. Every non-failed server responds to aquery message
with the highest locally available tag marked ‘fin’. Since every server is initialized with(t0, v0, ‘fin’), every
non-failed server has at least one tag associated with the label ‘fin’ and hence responds to the writer’squery
message. Since the writer receives responses from every non-failed server, property (ii) of Lemma 4.1 ensures
that thequeryphase receives responses from at least one quorum, and henceterminates. We can similarly show
that thepre-writephase andfinalizephase of a writer terminate.

It remains to consider the termination of a read operation. Suppose that a non-failing read operation does
not terminate. Then, from Lemma 5.6, we infer that there are at leastδ + 1 writes that are concurrent with the
read. This contradicts our assumption that the number of write operations that are concurrent with a read is no
bigger thanδ. Therefore every non-failing read operation terminates.

5.3 Bound on storage cost

We bound the storage cost of an execution of CASGC by providing a bound on the number of coded elements
stored at a server atany particular pointof the execution. In particular, in Lemma 5.10, we describe conditions
under which coded elements corresponding to the value of a write operation are garbage collected atall the

16

servers. Lemma 5.10 naturally leads toastorage cost bound in Theorem 5.11. We begin with a definitionof an
ω-supersededwrite operationfor a point in an execution, for a positive integerω.

Definition 5.9 (ω-superseded write operation). In an executionβ of CASGC, consider a write operationπ
that completes its query phase. LetT (π) denote the tag of the write. Then, the write operation is saidto be
ω-superseded at a pointP of the execution ifthere are at leastω terminating write operations, each with a
tag that is bigger thanT (π), such that every message on behalf of each of these operations(including ‘gossip’
messages) has been delivered by pointP .

We show in Lemma 5.10 that in an execution of CASGC(k, δ), if a write operation is(δ+1)-supersededat
a point, then, no server stores a coded element corresponding to the operation at that point because of garbage
collection. We state and prove Lemma 5.10 next. We then use Lemma 5.10 to describe a bound on the storage
cost of any execution of CASGC(k, δ) in Theorem 5.11.

Lemma 5.10. Consider an executionβ of CASGC(k, δ) and consider any pointP of β. If a write operationπ
is (δ + 1)-supersededat pointP , then no non-failed server has a coded element corresponding to the value of
the write operationπ at pointP .

Proof. Consider an executionβ of CASGC(k, δ) and a pointP in β. Consider a write operationπ that is(δ+1)-
supersededat pointP . Consider an arbitrary servers that has not failed at pointP . We show that servers does
not have a coded element corresponding to operationπ at pointP. Since operationπ is (δ + 1)-supersededat
pointP , there exist at leastδ + 1 write operationsπ1, π2, . . . , πδ+1 such that, for everyi ∈ {1, 2, . . . , δ + 1},

• operationπi terminates inβ,
• the tagT (πi) acquired by operationπi is larger thanT (π), and
• every message on behalf of operationπi is delivered by pointP .

Since operationπi terminates, it completes itsfinalizephase where it sends a finalize message with tagT (πi)
to servers. Furthermore, thefinalizemessage with tagT (πi) arrives at servers by pointP . Therefore, by point
P , servers has received at leastδ + 1 finalize messages, one from each operation in{πi : i = 1, 2, . . . , δ + 1}.
The garbage collection executed by the server on the receiptof the last of these finalize messages ensures that
the coded element corresponding to tagT (π) does not exist at servers at pointP . This completes the proof.

Theorem 5.11. Consider an executionβ of CASGC(k, δ) such that, at any point of the execution,the number
of writes that have completed their query phase by that pointand are not(δ + 1)-superseded at that point is
upper bounded byw. The storage cost of the execution is at mostwN

k log2 |V|.

Proof. Consider an executionβ where at any point of the execution, the number of writes thathave completed
their query phase by that point and are not(δ + 1)-superseded at that point is upper bounded byw. Consider
an arbitrary pointP of the executionβ, and consider a servers that is non-failed at pointP . We infer from the
write and server protocols that, at pointP , servers does not store a coded element corresponding to any write
operation that has not completed its query phase by pointP . We also infer from Lemma 5.10 that servers does
not store a coded element corresponding to an operation thatis (δ + 1)-superseded at pointP . Therefore, if
servers stores a coded element corresponding to a write operation atpointP , we infer that the write operation
has completed its query phase but is not(δ+1)-superseded by pointP . By assumption on the executionβ, the
number of coded elements at point P ofβ at servers is upper bounded byw. Since each coded element has a
size of 1k log2 |V| bits and we considered an arbitrary servers, the storage cost at pointP, summed over all the
non-failed servers, is upper bounded bywN

k log2 |V| bits. Since we considered an arbitrary pointP , the storage
cost of the execution is upper bounded bywN

k log2 |V| bits.

17

write (value)
query: Same as in CAS(N − 2f).
pre-write: Select the largest tag from thequeryphase; form a new tagt by incrementing integer by 1 and adding its ‘id’. Apply an
(N,N−f) MDS codeΦ to valueand obtain coded elementsw1, . . . , wN . Send(t,ws, ‘pre’) to every servers. Await responses
from a quorum.
finalize: Same as in CAS(N − 2f).

read
query: Same as in CAS(N − 2f).
finalize: Select largest tagt from the query phase. Sendfinalizemessage(t, ‘null’ , ‘fin’) to all servers requesting the associated
coded elements. Await responses with coded elements from a quorum. Obtain thevalue by invertingΦ, and terminate by
returningvalue.

server
state variables: State is a subset ofT × (W ∪ {‘null’})× {‘pre’ , ‘fin’} × 2C.
initial state: (t0, w0,s, ‘fin’ , {}).
Response toquery: Send highest locally known tag that has label ‘fin’.
Response topre-write: If the tagt of the message is not available in the locally stored set of tuples, add the tuple(t, ws, ‘pre’ , {})
to the locally stored set. If(t, ‘null’ , ‘fin’ , C0) exists in the locally stored set of tuple for some set of clientsC0, then send(t, ws)
to every client inC0 and modify the locally stored tuple to(t, ws, ‘fin’ , {}). Send acknowledgement to the writer.
Response tofinalizeof write: Lett denote the tag of the message. If(t,ws, ‘pre’ , {}) exists in the locally stored set of tuple where
∗ can be ‘pre’ or ‘fin’, update to(t, ws, ‘fin’ , {}). If no tuple exists in the locally stored set with tagt, add(t, ‘null’ , ‘fin’ , {}) to
the locally stored set. Send acknowledgement.
Response tofinalize of read: Lett denote the tag of the message andC ∈ C denote the identifier of the client sending the
message. If(t, ws, ∗, C0) exists in the locally stored set, update the tuple as(t, ws, ‘fin’ , C0) and send(t, ws) to reader. If
(t, ‘null’ , ‘fin’ , C0) exists at the server, update it as(t, ‘null’ , ‘fin’ , C0 ∪ {C}). Otherwise, add(t, ‘null’ , ‘fin’ , {C}) to the list of
locally stored tags.

Figure 3: The CCOAS algorithm. We denote the (possibly infinite) set of clients byC. The notation2C denotes
the power set of the set of clientsC.

We note that Theorem 5.11 can be used to obtain a boundon the storage cost of executions in terms of
various parameters of the system components. For instance,the theorem can be used to obtain a bound on the
storage cost in terms of an upper bound on the delay of every message, the number of steps for the nodes to take
actions, the rate of write operations, and the rate of failure. In particular, the above parameters can be used to
bound the number of writes that are not(δ + 1)-superseded, which can then be used to bound the storage cost.

6 Communication Cost Optimal Algorithm

A natural question is whether one might be able to prove a lower bound to show that communication costs of
CAS and CASGC are optimal. Here, we describe a new“counterexample algorithm”calledCommunication
Cost Optimal Atomic Storage(CCOAS) algorithm, which shows that such a lower bound cannot be proved.
We show in Theorem 6.5 that CCOAS has write and read communication costs of N

N−f log2 |V| bits, which
is smaller than the communication costs of CAS and CASGC. Because elementary coding theoretic bounds
imply that these costs can be no smaller thanNN−f log2 |V| bits, CCOAS is optimal from the perspective of
communication costs. CCOAS, however, is infeasible in practice because of certain drawbacks described later
in this section.

6.1 Algorithm description

CCOAS resembles CAS in its structure. Like CAS(N − 2f), its quorumQ consists of the set of all subsets of
N that have at leastN − f elements. We also use terms “query”, “pre-write”, and “finalize” for the various

18

phases of operations. We provide a formal description of CCOAS in Fig. 3. Here, we informally describe the
differences between CAS and CCOAS.

• In CCOAS, the writer uses an(N,N − f) MDS code to generate coded elements. Note the contrast
with CAS(k) which uses an(N, k) code, where the parameterk is at mostN − 2f. Because we use an
(N,N−f) code in CCOAS, the size of each coded element is equal tolog2 |V|

N−f bits, and as a consequence,

the read and write communication costs are equal toN
N−f log2 |V| bits.

• In CCOAS, a reader requiresN − f responses with coded elements for termination of its finalize phase.
In CAS, in general, at mostN − 2f responses with coded elements are required.

• In CCOAS, the servers respond to finalize messages from a readwith coded elements only. This is unlike
CAS, where a server that does not have a coded element corresponding to the tag of a reader’s finalize
message at the point of reception responds simply with an acknowledgement. In CCOAS, if a server
does not have a coded element corresponding to the tagt of a reader’s finalize message at the point of
reception, then, in addition to adding a triple of the form(t, ‘null’ , ‘fin’) to its local storage, the server
registers this read along with tagt in its logs. When the corresponding coded element with tagt arrives at
a later point, the server, in addition to storing the coded element, sends it to every reader that is registered
with tagt. We show in our proofs of correctness that, in CCOAS, every non-failing server responds to a
finalize message from a read with a coded element at some point.

6.2 Proof of correctness and communication cost

We next describe a formal proof of the correctness of CCOAS.

6.2.1 Atomicity

Theorem 6.1. CCOAS emulates shared atomic read/write memory.

The main challenge in showing Theorem 6.1 lies in showing termination of read operations, specifically
to show that every non-failing server sends a coded element in response to a reader’s finalize message. The
theorem follows from Lemmas 6.3 and 6.2, which are stated next.

Lemma 6.2. The CCOAS algorithm satisfies atomicity.

Proof. Atomicity can be shown via a simulation relation with CAS. Weprovide a brief informal sketch of the
relation here. We argue that for every executionβ of CCOAS, there is an executionβ′ of CAS with the same
trace. To see this, we note that the write protocol of CCOAS isessentially identical to the write protocol in
CAS, with the only difference between the two algorithms being the erasure code used in the pre-write phase.
Similarly, the query phase of the read protocols of both algorithms are the same. Also note that the server
responses to messages from a writer and query messages from areader are identical in both CAS and CCOAS.
The main differences between CCOAS and CAS in the server actions. The first difference is that, in CCOAS,
the servers do not perform ‘gossip’. The second difference is that in CCOAS, if the server does not have a
coded element corresponding to the tag of the reader’s finalize message, then the server does not respond at this
point. Instead, the server sends a coded element to the reader at the point of receipt of the pre-write message
with this tag. We essentially createβ′ from β by delaying all messages ‘gossip’ messages indefinitely, and
delaying reader’s finalize messages so that they arrive at each server at the point of, or after the receipt of the
corresponding pre-write message by the server. This delaying ensures that the server actions are identical in
bothβ andβ′.

Specifically, we createβ′ as follows. Inβ′ the points of

• invocations of operations,
• sending and receipt of messages between writers and servers,

19

• sending and receipt of query messages between readers and servers,
• and sending of finalize messages from the readers

are identical toβ. The server ‘gossip’ messages inβ′ are delayed indefinitely. A crucial difference between
β andβ′ lies in the points of receipt of reader’s finalize messages atthe servers. Consider a read operation
that acquired tagt in β and letP denote the point of receipt of a reader’s finalize message to servers. Let P ′

denote the point of receipt of a pre-write message with tagt at servers in β. Now, consider the corresponding
read operation that acquired tagt in β′. Now, if P precedesP ′ in β, then the reader’s finalize message with
tag t arrives at servers at P ′ in β′, else, it arrives at pointP in β′. This implies that servers responds to
reader’s finalize messages at the same points inβ andβ′. Finally, we complete our specification ofβ′ by letting
a server’s response to the reader’s finalize message arrive at the client at the same point inβ′ as inβ.

Note that if an operation acquires tagt in β, the corresponding operation inβ′ also acquires tagt. Also
note that the points of invocation, responses of operationsand the values returned by read operations are the
same in bothβ andβ′. Therefore, there exists an executionβ′ of CAS with the same trace as an arbitrary
executionβ of CCOAS. Since CAS is atomic,β′ has atomic behavior, and so doesβ. Therefore, CCOAS
satisfies atomicity.

6.2.2 Liveness

We next state the liveness condition of CCOAS.

Lemma 6.3. CCOAS satisfies the liveness condition: in every fair execution where the number of failed servers
is no bigger thanf , every non-failing operation terminates.

To show Lemma 6.3, we first state and prove Lemma 6.4. Informally speaking, Lemma 6.4 implies that
every non-failing server responds to a reader’s finalize message with a coded element. As a consequence, every
read operation getsN − f coded elements in response to its finalize messages. Therefore its finalize phase
implying that the operation returns implying Lemma 6.3. We first state and prove Lemma 6.4. Then we prove
Lemma 6.3.

Lemma 6.4. Consider any fair executionα of CCOAS and a servers that does not fail inα. Then, for any
read operation inα with tag t, the servers responds to the read’s finalize message with the coded element
corresponding to tagt at some point ofα.

Proof sketch.Consider a servers that does not fail inα and consider the pointP of α where servers receives a
finalize message with tagt from a reader. Since the read operation at the reader acquired tagt, from examination
of the algorithm we can infer that a write with tagt completed its pre-write phase at some point ofα. From
the write protocol, note that this implies that the writer sent a coded element with tagt to every server in its
pre-write phase. In particular, the writer sent coded element ws to servers. Since the channels are reliable and
sinces does not fail inα, this means that at some pointP ′ of α, the servers receives the coded elementws.
There are only two possible scenarios. First,P ′ precedesP in α, and second,P precedesP ′. To complete the
proof, we show that, in the first scenario the server respondsto the reader’s finalize message withws at point
P , and in the second scenarioxi , the server responds to the reader’s finalize message withws at pointP ′.

In the first scenario, note that the server has a coded elementws at the pointP . By examining the server
protocol, we observe that servers responds to the reader’s finalize message with a coded element ws.

In the second second scenario, pointP ′ comes afterP in α. Because of the server protocol on receipt of
the reader’s finalize message, servers adds a tuple of the form(t, ‘null’ , ‘fin’ , C0), whereC ∈ C0, to the local
state at pointP . Also, note that, at pointP ′, the server stores a tuple of the form(t, ‘null’ , ‘fin’ , C1), where

xiNote that in this second scenario, the server does not respond with a coded element in CAS, where the server only sends an
acknowledgement. In contrast to the proof here, the liveness proof of CAS involved showing that at leastk servers satisfy the condition
imposed by the first scenario.

20

C ∈ C1. Finally, based on the server protocol on receipt of a pre-write message, we note that at pointP ′, the
server sendsws to all the clients inC1 including clientC. This completes the proof.

We next prove Lemma 6.3.

Proof of Lemma 6.3.To prove liveness, it suffices to show that in any fair executionα where at mostf servers
fail, every phase of every operation terminates. The proof of termination of a write operation, and the query
phase of a read operation is similar to CAS and omitted here for brevity. Here, we present a proof of termination
of the finalize phase of a read in any fair executionα where at mostf servers fail.

To show the termination of a read, note from Lemma 6.4 that in executionα, every non-failed servers
responds to a reader’s finalize message with a coded element.Because the number of servers that fail inα is at
mostf , this implies that reader obtains at leastN − f messages with coded elements in response to its finalize
message. From the read protocol, we observe that this suffices for termination of the finalize phase of a read.
This completes the proof.

6.2.3 Communication cost

We next state the communication cost of CCOAS.

Theorem 6.5. The write and read communication costs of CCOAS are both equal to N
N−f log |V|.

The proof of Theorem 6.5 is similar to the proof of Theorem 4.10 and is omitted here for brevity.

6.3 Drawbacks of CCOAS

CCOAS incurs a smaller communication cost mainly because the reader acquiresN − f coded elements, thus
allowing the writer to use an(N,N − f) MDS code. Since a write operation returns after getting responses
from some quorum, there are executions of our algorithm where, at the point of termination of a write operation,
only a quorumQpw containingN − f servers have received its pre-write messages. Now, if one ofthe servers
in Qpw fails after the termination of the write, then, since a reader that intends to acquire the value written
requiresN − f coded elements, it is important that at least one of the pre-write messages sent by the writer to
a server outside ofQpw reaches the server. In other words, it is crucial for liveness of read operations that the
pre-write messages sent by the write operation are delivered to every non-failing server, even if some of these
messages have not been delivered at the point of terminationof the write. We use this assumption implicitly in
the proof of correctness of CCOAS.

Although, in our model, channels deliver messages of operations that have terminated, the dependence of
liveness on this assumption is a significant drawback of CCOAS. The modeling assumption of reliable channels
is often an implicit abstraction of a lossy channel and an underlying primitive that retransmits lost messages
until they are delivered. From a practical point of view, however, it is not well-motivated to assume that this
underlying primitive retransmits lost messages corresponding to operations that have terminated, especially if
the client performing the operation fails.We note that CAS and CASGC do not share this drawback of CCOAS.
An interesting future exercise is to generalize CAS and CASGC to lossy channel models (see, for example, the
model used in [13]).

7 Conclusions

We have proposed low-cost algorithms for atomic shared memory emulation in asynchronous message-passing
systems. We also contribute to this body of work through rigorous definitions and analysis of (worst-case) com-
munication and storage costs. We show that our algorithms have desirable properties in terms of the amount
of communication and storage costs. There are several relevant follow up research directions in this topic. An

21

interesting question is whether the storage cost can be reduced through a more sophisticated coding strategy,
for instance, using the code constructions of [32]. We note that when erasure coding is used for shared memory
emulation, the communication and storage costs of various algorithms seem to depend on the number of parallel
operations in the system. For instance, in all the erasure coding-based algorithms, servers store coded elements
corresponding to multiple versions at the servers. Similarly, in ORCAS-B and HGR, servers send coded ele-
ments corresponding to multiple versions to the reader. A natural question is whether there exist fundamental
lower bounds that capture this behavior, or whether there exist algorithms that can achieve low communication
and storage costs whichdo not growwith the extent of parallelism in the system. Among the remaining ques-
tions, we emphasize the need for generalizing of CAS and CASGC to lossy channels, and to dynamic settings
possibly through modifications of RAMBO [17].

22

References

[1] Common RAID disk data format specification, March 2009.

[2] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J. Wylie. Fault-scalable byzantine
fault-tolerant services. InACM SIGOPS Operating Systems Review, volume 39, pages 59–74, 2005.

[3] A. Agrawal and P. Jalote. Coding-based replication schemes for distributed systems.Parallel and Dis-
tributed Systems, IEEE Transactions on, 6(3):240 –251, March 1995.

[4] M. K. Aguilera, R. Janakiraman, and L. Xu. Using erasure codes efficiently for storage in a distributed
system. InDependable Systems and Networks, 2005. DSN 2005. Proceedings. International Conference
on, pages 336–345. IEEE, 2005.

[5] M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer. Dynamic atomic storage without consensus.J. ACM,
58:7:1–7:32, April 2011.

[6] E. Anderson, X. Li, A. Merchant, M. A. Shah, K. Smathers, J. Tucek, M. Uysal, and J. J. Wylie. Effi-
cient eventual consistency in pahoehoe, an erasure-coded key-blob archive. InDependable Systems and
Networks (DSN), 2010 IEEE/IFIP International Conference on, pages 181–190. IEEE, 2010.

[7] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing systems. InPro-
ceedings of the ninth annual ACM symposium on Principles of distributed computing, PODC ’90, pages
363–375, New York, NY, USA, 1990. ACM.

[8] C. Cachin and S. Tessaro. Optimal resilience for erasure-coded byzantine distributed storage. In2006
International Conference on Dependable Systems and Networks (DSN),, pages 115–124. IEEE, 2006.

[9] V. R. Cadambe, N. Lynch, M. Medard, and P. Musial. Coded emulation of shared atomic memory for mes-
sage passing architectures. 2013. MIT-CSAIL-TR-2013-016, http://dspace.mit.edu/handle/1721.1/79606.

[10] Y. Cassuto. What can coding theory do for storage systems? ACM SIGACT News, 44(1):80–88, 2013.

[11] A. Datta and F. Oggier. An overview of codes tailor-madefor better repairability in networked distributed
storage systems.ACM SIGACT News, 44(1):89–105, 2013.

[12] D. Dobre, G. Karame, W. Li, M. Majuntke, N. Suri, and M. Vukolić. PoWerStore: proofs of writing
for efficient and robust storage. InProceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 285–298. ACM, 2013.

[13] P. Dutta, R. Guerraoui, and R. R. Levy. Optimistic erasure-coded distributed storage. InDistributed
Computing, pages 182–196. Springer, 2008.

[14] R. Fan and N. Lynch. Efficient replication of large data objects. InIn Proceedings of the 17th International
Symposium on Distributed Computing (DISC), pages 75–91, 2003.

[15] A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partitionable group communication
service.ACM Trans. Comput. Syst., 19(2):171–216, 2001.

[16] D. K. Gifford. Weighted voting for replicated data. InProceedings of the seventh ACM symposium on
Operating systems principles, SOSP ’79, pages 150–162, New York, NY, USA, 1979. ACM.

[17] S. Gilbert, N. Lynch, and A. Shvartsman. RAMBO: A robust, reconfigurable atomic memory service for
dynamic networks.Distributed Computing, 23(4):225–272, December 2010.

23

[18] J. Hendricks, G. R. Ganger, and M. K. Reiter. Low-overhead byzantine fault-tolerant storage.SOSP,
pages 73–86, 2007.

[19] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.ACM Trans.
Program. Lang. Syst., 12:463–492, July 1990.

[20] L. Lamport. On interprocess communication. Part I: Basic formalism. Distributed Computing, 2(1):77–
85, 1986.

[21] S. Lin and D. J. Costello.Error Control Coding, Second Edition. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 2004.

[22] N. Lynch and A. Shvartsman. Robust emulation of shared memory using dynamic quorum-acknowledged
broadcasts. InIn Symposium on Fault-Tolerant Computing, pages 272–281. IEEE, 1997.

[23] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1996.

[24] D. Malkhi and M. Reiter. Byzantine quorum systems.Distributed Computing, 11(4):203–213, October
1998.

[25] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal byzantine storage. InDistributed Computing, pages
311–325. Springer, 2002.

[26] J. S. Plank. T1: erasure codes for storage applications. In Proc. of the 4th USENIX Conference on File
and Storage Technologies., pages 1–74, 2005.

[27] I. S. Reed and G. Solomon. Polynomial codes over certainfinite fields.Journal of the Society for Industrial
& Applied Mathematics, 8(2):300–304, 1960.

[28] R. Roth. Introduction to coding theory. Cambridge University Press, 2006.

[29] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence. Fab: building distributed enterprise disk
arrays from commodity components.ACM SIGOPS Operating Systems Review, 38(5):48–58, 2004.

[30] R. Thomas. A majority consensus approach to concurrency control for multiple copy databases.ACM
Transactions on Database Systems, 4(2):180–209, 1979.

[31] M. Vukolić. Quorum systems: With applications to storage and consensus.Synthesis Lectures on Dis-
tributed Computing Theory, 3(1):1–146, 2012/03/01 2012.

[32] Z. Wang and V. R. Cadambe. Multi-version coding in distributed storage. In2014 IEEE International
Symposium on Information Theory (ISIT)., July 2014.

24

A Descriptions of the ABD and LDR Algorithms

As baselines for our work we use the MWMR versions of the ABD and LDR algorithms [7, 14]. Here, we
describe the ABD and LDR algorithms, and evaluate their communication and storage costs. We present the
ABD and LDR algorithms in Fig. 4 and Fig. 5 respectively. The costs of these algorithms are stated in
Theorems A.1 and A.2.

write(value)
get: Send query request to all servers, await(tag) responses from a majority of server nodes. Select the largest tag; let its integer
component bez. Form a new tagt as(z + 1, ‘ id’), where ‘id’ is the identifier of the client performing the operation.

put: Send the pair(t, value) to all servers, await acknowledgment from a majority of server nodes, and then terminate.

read
get: Send query request to all servers, await(tag, value) responses from a majority. Select a tuple with the largest tag, say(t, v).

put: Send(t, v) to all servers, await acknowledgment from a majority, and then terminate by returning the valuev.

server
state variable:A variable which contains an element ofT × V
initial state: Store the default(tag, value) pair (t0, v0).

On receipt ofget message from a read: Respond with the locally available(tag, value) pair.

On receipt ofget message from a write: Respond with the locally availabletag.

On receipt ofput message: If the tag of the message is higher than the locally available tag, store the(tag, value) pair of the
message at the server. In any case, send an acknowledgment.

Figure 4: Write, read, and server protocols of the ABD algorithm.

Theorem A.1. The write and read communication costs of ABD are respectively equal toN log |V| and
2N log |V| bits. The storage cost is equal toN log2 |V| bits.

The LDR algorithm divides its servers intodirectory serversthat store metadata, andreplica serversthat
store object values. The write protocol of LDR involves the sending of object values to2f + 1 replica servers.
The read protocol is less taxing since in the worst-case, it involves retrieving the data object values fromf + 1
replica servers. We state the communication costs of LDR next (for formal proof, see Appendix A.)

Theorem A.2. In LDR, the write communication cost is(2f + 1) log2 |V| bits, and the read communication
cost is(f + 1) log2 |V| bits.

In the LDR algorithm, each replica server stores every version of the data object it receivesxii . Therefore,
the (worst-case) storage cost of the LDR algorithm is unbounded.
Communication and Storage costs of ABD and LDR algorithms.
Proof of Theorem A.1.We first present arguments that upper bound the communication and storage cost for
every execution of the ABD algorithm. The ABD algorithm presented here is fitted to our model. Specifically
in [7,22] there is no clear cut separation between clients and servers. However, this separation does not change
the costs of the algorithm. Then we present worst-case executions that incur the costs as stated in the theorem.
Upper bounds:First consider the write protocol. It has two phases,get andput. The get phase of a write
involves transfer of a tag, but not of actual data, and therefore has negligible communication cost. In theput
phase of a write, the client sends a value from the setT ×V to every server node; the total communication cost
of this phase is at mostN log2 |V| bits. Therefore the total write communication cost is at most N log2 |V| bits.
In the get phase of the read protocol, the message from the client to theservers contains only metadata, and
therefore has negligible communication cost. However, in this phase, each of theN servers could respond to

xii This is unlike ABD where the servers store only the latest version of the data object received.

25

write(value)
get-metadata:Send query request to directory servers, and await(tag, location) responses from a majority of directory servers.
Select the largest tag; let its integer component bez. Form a new tagt as(z + 1, ‘ id’), where ‘id’ represents the identifier of the
client performing the operation.

put: Send(t, value) to 2f + 1 replica servers, await acknowledgment fromf + 1. Record identifiers of the firstf + 1 replica
servers that respond, call this set of identifiersS .

put-metadata:Send(t,S) to all directory servers, await acknowledgment from a majority, and then terminate.

read
get-metadata:Send query request to directory servers, and await (tag, location) responses from a majority of directory servers.
Choose a (tag, location) pair with the largest tag, let this pair be(t,S).

put-metadata:Send(t,S) to all directory servers, await acknowledgment from a majority.

get: Sendget objectrequest to anyf + 1 replica servers recorded inS for tag t. Await a single response and terminate by
returning a value.

replica server
state variable:A variable that is subset ofT × V

initial state: Store the default(tag, value) pair (t0, v0).

On receipt ofput message: Add the(tag, value) pair in the message to the set of locally available pairs. Send an acknowledg-
ment.

On receipt ofget message: If the value associated with the requested tag is inthe set of pairs stored locally, respond with the
value. Otherwise ignore.

directory server
state variable:A variable that is an element ofT × 2R where2R is the set of all subsets ofR.

initial state: Store(t0,R), whereR is the set of all replica servers.

On receipt ofget-metadatamessage: Send the(tag,S) be the pair stored locally.

On receipt ofput-metadatamessage: Let(t,S) be the incoming message. At the point of reception of the message, let(tag,S1)
be the pair stored locally at the server. Ift is equal to thetag stored locally, then store(t,S ∪ S1) locally. If t is bigger thantag
and if |S| ≥ f + 1, then store(t,S) locally. Send an acknowledgment.

Figure 5: Write, read, and server protocols of the LDR algorithm

the client with a message fromT × V; therefore the total communication cost of the messages involved in the
getphase is upper bounded byN log2 |V| bits. In theput phase of the read protocol, the read sends an element
of T × V toN servers. Therefore, this phase incurs a communication costof at mostN log2 |V| bits. The total
communication cost of a read is therefore upper bounded by2N log2 |V| bits.

The storage cost of ABD is no bigger thanN log2 |V| bits because each server stores at most one value -
the latest value it receives.
Worst-case executions:Informally speaking, due to asynchrony and the possibilityof failures, clients always
send requests to all servers and in the worst case, all servers respond. Therefore the upper bounds described
above are tight.

For the write protocol, the client sends the value to allN nodes in itsputphase. So the write communication
cost in an execution where at least one write terminates isN log2 |V| bits. For the read protocol, consider the
following execution, where there is one read operation, andone write operation that is concurrent with this
read. We will assume that none of theN servers fail in this execution. Suppose that the writer completes its
get phase, and commits to a tagt. Note thatt is the highest tag in the system at this point. Suppose that among
theN messages that the writer sends in its put phase with the valueand tagt, Now the writer begins its put
phase where it sendsN messages with the value and tagt. At least one of these messages, say the message
to server1, arrives.the remaining messages are delayed, i.e., they are assumed to reach after the portion of the
execution segment described here. At this point, the read operation begins and receives(tag, value) pairs from

26

all theN server nodes in its get phase. Of theseN messages, at least one message contains the tagt and the
corresponding value. Note thatt is the highest tag it receives. Therefore, the put phase of the read has to sends
N messages with the tagt and the corresponding value - one message to each of theN servers that which
responded to the read in the get phase with an older tag.

The read protocol has two phases. The cost of a read operationin an execution is the sum of the com-
munication costs of the messages sent in itsget phase and those sent in itsput phase. Theget phase involves
communication ofN messages fromT × V, one message from each server to the client, and therefore incurs
a communication cost ofN log2 |V| bits provided that every server is active. Theput phase involves the com-
munication of a message inT × V from the client to every server thereby incurring a communication cost of
N log2 |V| bits as well. Therefore, in any execution where allN servers are active, the communication cost of
a read operation is2N log2 |V| bits and therefore the upper bound is tight.

The storage cost is equal toN log2 |V| bits since each of theN servers store exactly one value fromV.
Proof of Theorem A.2.
Upper bounds:In LDR servers are divided into two groups:directoryservers used to manage object metadata,
andreplication servers used for object replication. Read and write protocols have three sequentially executed
phases. Theget-metadataandput-metadataphases incur negligible communication cost since only metadata
is sent over the message-passing system. In theput phase, the writer sends its messages, each of which is an
element fromT × V, to 2f +1 replica servers and awaitsf + 1 responses; since the responses have negligible
communication cost, this phase incurs a total communication cost of at most(2f + 1) log2 |V| bits. The read
protocol is less taxing, where the reader during thegetphase queriesf +1 replica servers and in the worst case,
all respond with a message containing an element fromT × V thereby incurring a total communication cost of
at most(f + 1) log2 |V| bits.
Worst-case executions:It is clear that in every execution where at least one writer terminates, the writer sends
out (2f + 1) messages to replica servers that contain the value, thus incurring a write communication cost of
(2f + 1) log2 |V| bits. Similarly, for a read, in certain executions, all(f + 1) replica servers that are selected
in theput phaseof the read respond to theget request from the client. So the upper bounds derived above are
tight.

B Discussion on Erasure Codes

For an(N, k) code, the ratioNk - also known as theredundancy factorof the code - represents the storage
cost overhead in the classical erasure coding model. Much literature in coding theory involves the design of
(N, k) codes for which the redundancy factorxiii can be made as small as possible. In the classical erasure
coding model, the extent to which the redundancy factor can be reduced depends onf - the maximum number
of server failures that are to be tolerated. In particular, an (N, k) MDS code, when employed to store the value
of the data object, toleratesN − k server node failures; this is because the definition of an MDScode implies
that the data can be recovered from anyk surviving nodes. Thus, for anN -server system that uses an MDS
code, we must havek ≤ N − f , meaning that the redundancy factor is at leastN

N−f . It is well known [28]
that, givenN andf , the parameterk cannot be made larger thanN − f so that the redundancy factor is lower
bounded by N

N−f for anycode even if it is not an MDS code; In fact, an MDS code can equivalently be defined
as one which attains this lower bound on the redundancy factor. In coding theory, this lower bound is known as
the Singleton bound [28]. Given parametersN, k, the question of whether an(N, k) MDS code exists depends
on the alphabet of codeW. We next discuss some of the relevant assumptions that we (implicitly) make in this
paper to enable the use of an(N, k) MDS code in our algorithms.

xiii Literature in coding theory literature often studies therate N
k

of a code, which is the reciprocal of the redundancy factor, i.e., the
rate of an(N, k) code is k

N
. In this paper, we use the redundancy factor in our discussions since it enables a somewhat more intuitive

connection with the costs of our algorithms in Theorems A.1,A.2, 4.10, 5.11.

27

Assumption on|V| due to Erasure Coding

Recall that, in our model, each valuev of a data object belongs to a finite setV. In our system, for the use of
coding, we assume thatV = Wk for some finite setW and thatΦ : Wk → WN is an MDS code. Here we
refine these assumptions using classical results from erasure coding theory. In particular, the following result is
useful.

Theorem B.1. Consider a finite setW such that|W| ≥ N. Then, for any integerk < N , there exists an(N, k)
MDS codeΦ : Wk → WN .

One proof for the above in coding theory literature is constructive. Specifically, it is well known that when
|W| ≥ N , thenΦ can be constructed using the Reed-Solomon code construction [21,27,28]. The above theorem
implies that, to employ a Reed-Solomon code over our system,we shall need the following two assumptions:

• k divideslog2 |V|, and

• log2 |V|/k ≥ log2N .

Thus all our results are applicable under the above assumptions.
In fact, the first assumption above can be replaced by a different assumption with only a negligible effect on

the communication and storage costs. Specifically, iflog2 |V| were not a multiple ofk then, one could pad the

value with
(

⌈ log2 |V|k ⌉k − log2 |V|
)

“dummy” bits, all set to 0, to ensure that the (padded) objecthas a size that

is multiple ofk; note that this padding is an overhead. The size of the paddedobject would be⌈ log2 |V|
k ⌉k bits and

the size of each coded element would be⌈ log2 |V|
k ⌉ bits. If we assume thatlog2 |V| ≫ k then,⌈ log2 |V|

k ⌉ ≈ log2 |V|
k

meaning that the padding overhead can be neglected. Consequently, the first assumption can be replaced by the
assumption thatlog2 |V| ≫ k with only a negligible effect on the communication and storage costs.

C Proof of Lemma 4.1

Proof of property (i): By the definition, eachQ ∈ Q has cardinality at least⌈N+k
2 ⌉. Therefore, forQ1, Q2 ∈ Q,

we have

|Q1 ∩Q2| = |Q1|+ |Q2| − |Q1 ∪Q2|

≥ 2

⌈

N + k

2

⌉

− |Q1 ∪Q2|

(a)

≥ 2

⌈

N + k

2

⌉

−N ≥ k,

where we have used the fact that|Q1 ∪Q2| ≤ N in (a).
Proof of property (ii): LetB be the set of all the server nodes that fail in an execution, where|B| ≤ f . We need to
show that there exists at least one quorum setQ ∈ Q such thatQ ⊆ N−B, that is, at least one quorum survives.
To show this, because of the definition of our quorum system, it suffices to show that|N − B| ≥ ⌈N+k

2 ⌉. We
show this as follows:

|N − B| ≥ N − f
(b)

≥ N −

⌊

N − k

2

⌋

=

⌈

N + k

2

⌉

,

where,(b) follows becausek ≤ N − 2f implies thatf ≤ ⌊N−k
2 ⌋.

28

	1 Introduction
	2 System Model
	2.1 Deployment setting.
	2.2 Shared memory emulation.
	2.3 Requirements
	2.4 Communication cost
	2.5 Storage cost

	3 Erasure Coding - Background
	4 Coded Atomic Storage
	4.1 Algorithm description
	4.2 Statements and proofs of correctness
	4.2.1 Atomicity
	4.2.2 Liveness

	4.3 Cost Analysis

	5 Storage-Optimized Variant of CAS
	5.1 Algorithm description
	5.2 Statements and proofs of correctness
	5.2.1 Atomicity
	5.2.2 Liveness

	5.3 Bound on storage cost

	6 Communication Cost Optimal Algorithm
	6.1 Algorithm description
	6.2 Proof of correctness and communication cost
	6.2.1 Atomicity
	6.2.2 Liveness
	6.2.3 Communication cost

	6.3 Drawbacks of CCOAS

	7 Conclusions
	A Descriptions of the ABD and LDR Algorithms
	B Discussion on Erasure Codes
	C Proof of Lemma ??

