
MIT Open Access Articles

Multi-message broadcast with abstract
MAC layers and unreliable links

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Mohsen Ghaffari, Erez Kantor, Nancy Lynch, and Calvin Newport. 2014. Multi-message
broadcast with abstract MAC layers and unreliable links. In Proceedings of the 2014 ACM
symposium on Principles of distributed computing (PODC '14). ACM, New York, NY, USA, 56-65.

As Published: http://dx.doi.org/10.1145/2611462.2611492

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/100846

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/100846
http://creativecommons.org/licenses/by-nc-sa/4.0/

Multi-Message Broadcast with

Abstract MAC Layers and Unreliable Links∗

Mohsen Ghaffari
MIT

ghaffari@csail.mit.edu

Erez Kantor
MIT

erezk@csail.mit.edu

Nancy Lynch
MIT

lynch@csail.mit.edu

Calvin Newport
Georgetown University

cnewport@cs.georgetown.edu

Abstract

We study the multi-message broadcast problem using abstract MAC layer models of wireless
networks. These models capture the key guarantees of existing MAC layers while abstracting
away low-level details such as signal propagation and contention. We begin by studying upper
and lower bounds for this problem in a standard abstract MAC layer model—identifying an
interesting dependence between the structure of unreliable links and achievable time complexity.
In more detail, given a restriction that devices connected directly by an unreliable link are not
too far from each other in the reliable link topology, we can (almost) match the efficiency of the
reliable case. For the related restriction, however, that two devices connected by an unreliable
link are not too far from each other in geographic distance, we prove a new lower bound that
shows that this efficiency is impossible. We then investigate how much extra power must be
added to the model to enable a new order of magnitude of efficiency. In more detail, we consider
an enhanced abstract MAC layer model and present a new multi-message broadcast algorithm
that (under certain natural assumptions) solves the problem in this model faster than any known
solutions in an abstract MAC layer setting.

1 Introduction

Most existing work on distributed algorithms for wireless networks assumes low-level synchronous
models that require algorithms to deal directly with link-layer issues such as signal fading (e.g., [22,
20, 13]) and contention (e.g., [2, 16, 28, 12]). These low-level models are appropriate for answering
basic science questions about the capabilities and limits of wireless communication. We argue,
however, that they are often not appropriate for designing and analyzing algorithms meant for real
world deployment, because: (1) they fail to capture the unpredictable reality of real radio signal
propagation (which tends not to follow simple collision or fading rules [33]); (2) they do not address
issues like network co-existence (it is rarely true that your algorithm is alone in using the wireless
channel); and (3) they ignore the presence of general purpose MAC layers which are standard and
hard to bypass in existing devices.

∗Supported in a part by AFOSR FA9550-13-1-0042 and NSF grants Nos. CCF-0939370, CCF-1217506, and
CCF-AF-0937274.

1

In [29, 30], we introduced the abstract MAC layer approach as an alternative to low-level models
for studying wireless algorithms. This approach moves the algorithm designer up the network stack
by modeling the basic guarantees of most existing wireless MAC layers. In doing so, it abstracts
away low level issues such as signal fading and contention, instead capturing the impact of this
behavior on higher layers with model uncertainty. Because abstract MAC layers are defined to
maintain the basic guarantees of most standard wireless MAC layers, algorithms developed in such
models can be deployed on existing devices while maintaining their formally proved properties.

In this paper, we study the basic communication primitive of multi-message broadcast (a subset
of devices start with one or more messages they need to disseminate to the whole network) in
abstract MAC layer models that include unreliable links. We produce new upper and lower bounds,
and explore new model variants. Our results, summarized below and in Figure 1, provide new
theoretical insight into the relationship between unreliability and efficiency, and identify practical
algorithmic strategies.

Abstract MAC Layer Models. Abstract MAC layer models provide devices with an acknowl-
edged local broadcast primitive that guarantees to deliver a message to a device’s reliable neighbors
(captured by a graph G) and possibly some arbitrary subset of additional unreliable neighbors
(captured by a graph G′). At some point after the message is delivered, the sender receives an
acknowledgment.1 The performance of the model in a given execution is defined by two constants:
Fack, the maximum time for a given local broadcast to complete and be acknowledged, and Fprog,
the maximum time for a device to receive some message when at least one nearby device is broad-
casting. We note that in both theory and practice, Fprog � Fack.

2

Results. In this paper, we consider the multi-message broadcast (MMB) problem. This problem
distributes k ≥ 1 messages to devices at the beginning of an execution, where k is not known
in advance. It is considered solved once all messages are delivered to all nodes. We begin by
studying a natural MMB strategy called Basic Multi-Message Broadcast (BMMB) in what we
call the standard abstract MAC layer model: a basic model that captures the key guarantees of
existing MAC layers. The BMMB algorithm implements an expected strategy for broadcast: on
first receiving a message m, from the environment or from another device, add it to your FIFO
queue of messages to broadcast; going forward, discard any additional copies of m that you receive.
In previous work [30], we proved that BMMB solves the problem in O(DFprog + kFack) time in
the standard abstract MAC layer model under the strong assumption that G′ = G, i.e., there are
no unreliable links, and D is the diameter of G. In the first part of this paper, we investigate the
performance of strategy in the presence of unreliability.

We begin by considering the case where G′ is arbitrary; i.e., there are no constraints on the
structure of unreliable links. Under this pessimistic regime, we reanalyze BMMB, proving a new

1The acknowledgment in this model describes the behavior of a standard MAC layer asking for the next message
to broadcast from the send queue; i.e., after a CSMA back-off protocol finishes with a given packet. It does not
represent an acknowledgment explicitly sent from the receivers.

2From a theory perspective, we note that standard probabilistic strategies like decay (cycle through an exponen-
tially decreasing series of broadcast probabilities), when analyzed in graph-based, low-level wireless models, offer
Fprog values that are polylogarthmic in the maximum possible contention, while Fack values can be linear (or worse)
in this same parameter (see [18] for more discussion). From a practical perspective, this gap is easily demonstrated.
Consider, for example, a star network topology centered on device u where all points in the star have a message
to broadcast. If these nodes are using standard back-off style strategies, u will receive some message quickly. But
regardless of how contention is managed, there are some points in the star that will have to wait a long time (i.e.,
linear in the star size) for their turn.

2

Model/G’ Const. G′ = G r-Restricted Grey Zone

Standard O(DFprog + kFack) [30] O(DFprog + rkFack) Θ((D + k)Fack)

Enhanced same as grey zone open O((D + k log n+ log3 n)Fprog)

Figure 1: A summary of results categorized by model type and constraints assumed regarding G′. With the
exception of the G′ = G result for the standard model, the results in this table are proved for the first time in this
paper. We note that the grey zone result for the standard model summarizes two separate results: an upper bound
and matching lower bound. These two results also hold for arbitrary G′.

guarantee of O((D + k)Fack) time, which is (potentially) much slower than what is possible when
G′ = G. The presence of unreliable edges, it turns out, breaks the careful induction at the core
of the G′ = G result, as they allow old messages to arrive unexpectedly from farther away in the
network at inopportune points in an execution.

Not satisfied with this slow-down, we then consider the case of an r-restricted G′—a natural
constraint that only allows G′ edges between nodes within r hops in G. Under these constraints,
we can now show that BMMB solves the problem in O(DFprog + r · k · Fack) time, which is close
to the G′ = G case for small r. This proof discards the core strategy of the G′ = G case, which
depends heavily on the lack of unreliable links, and instead uses a new type of pipelining argument
that carefully accounts for the possible message behavior over r-restricted G′ links.

We conclude our investigation of BMMB by studying the grey zone constraint [4, 19]: a natural
geographic restriction on G′ that generalizes the unit disk graph model. Here we prove the perhaps
surprising lower bound result that every MMB algorithm requires Ω((D + k)Fack) time, in the
worst case, to solve the problem under this constraint. This result establishes the optimality of
our analysis of BMMB under the grey zone constraint, as well as for arbitrary G′, and opens an
intriguing gap between the grey zone and r-restricted assumptions. At the core of this lower bound
is a careful scheduling strategy that synchronizes broadcasters in two parallel lines to a sufficient
degree to allow their messages to cause mutual delay.

Having established the limits of MMB in the standard abstract MAC layer model, we then
explore the possibility of adding more power to the model to enable more efficient solutions. In
particular, we use the enhanced abstract MAC layer model of [30] which also allows nodes to abort
transmissions in progress and use knowledge of Fprog and Fack. Combining this model with the grey
zone constraint on G′, we describe and analyze a new algorithm, which we call Fast Multi-Message
Broadcast (FMMB), that solves the MMB problem in O((D log n+k log n+log3 n)Fprog) time (with
high probability in the network size, n3)—avoiding an Fack term altogether. This algorithm begins
by building a maximal independent set (a subroutine of independent interest), then efficiently
gathers and spreads messages over the overlay network defined by these nodes. We note that the
assumptions that separate the enhanced from standard model were chosen in part because they are
feasible to implement using existing technology.

Discussion. From a theoretical perspective, the new upper and lower bounds proved in this paper
emphasize the perhaps surprising insight that the efficiency of message dissemination depends on
the structure of unreliability, not the quantity. We are able, for example, to solve MMB fast with an
r-restricted G′. This constraint allows for a large number of unreliable edges in every neighborhood,
and only forbids these edges from covering long distances in G. Our lower bound, on the other

3We define high probability to be at least 1− 1/n. We note that BMMB’s guarantees are deterministic but that
our lower bound works even for randomized solutions.

3

hand, demonstrates that even a small number of unreliable edges is sufficient to slow down any
MMB solution, so long as these edges are allowed to cover large distances in G.

From a practical perspective, our efficient time bounds for BMMB under the (reasonable)
r-restricted assumption helps explain why straightforward flooding strategies tend to work well
in real networks. In addition, our enhanced MAC layer results provide feedback to MAC layer
designers, indicating that the ability to abort messages might prove crucial for enabling more
efficient distributed protocols running on these layers.

Related Work. The study of broadcast in wireless networks has a long line of history, dating
back to 1985 work of Chalamatac and Kutten[5], and has since received a vast amount of attention
(see e.g., [3, 1, 26, 11, 31, 27, 15, 23, 17, 34, 14]). Most of this existing work deals directly with
low-level issues such as managing contention on the shared medium.

The abstract MAC layer model was proposed in [29, 30] as an alternative approach, which moves
up the network stack and abstracts away low level issues with model uncertainty. This model has
since been used to study a variety of problems; e.g., [24, 9, 10, 25, 7, 6, 32]. Most relevant to this
paper is the work of [29] and subsequently [24], which study broadcast in various abstract MAC
layer models, but under the assumption of no unreliable edges.

A core property of the abstract MAC layer models studied in this paper, by contrast, is the
presence of unreliable links in addition to reliable links. A lower level model also assuming these
dual link types was introduced by Clementi et al. [8], where it was called the dynamic fault model.
We independently reintroduced the model in [29] with the name dual graph model. By now it is
well-known that most problems that are simple in the absence of unreliability (when G′ = G),
become significantly harder in its presence (when G′ 6= G); e.g., [29, 18, 19, 4]. For instance, in
the dual graph model with an offline adaptive adversary, single-message broadcast require Ω(n)
rounds, even in constant diameter graphs [29]. We emphasize, however, that this existing work on
dual graphs focuses on low level models, whereas this paper carries this behavior to a higher level
of abstraction.

2 Model and Problem

There is no single abstract MAC layer model, but instead many different such models that all share
the same strategy of abstracting standard wireless link layer behavior and therefore preventing
the algorithm from having to deal directly with low level wireless behavior. Below we define the
basics shared by these models, then specify the two variants studied in this paper. We conclude by
formalizing the multi-message broadcast problem.

Abstract MAC Layer Basics. Abstract MAC layer models typically define the connectivity of
a radio network with a pair of graphs, G and G′, where G = (V,E), G′ = (V,E′), and E ⊆ E′.
The n vertices in V correspond to the wireless devices (which we call nodes in this paper), while
the edges in G and G′ describe the communication topology. At a high-level, edges in E indicate
reliable links over which the model can always deliver messages, while edges in E′ \ E indicate
unreliable links over which the model sometimes delivers messages and sometimes does not.

The model provides an acknowledged local broadcast primitive. To simplify the definition of
this primitive, assume without loss of generality that all local broadcast messages are unique. When
a node u ∈ V broadcasts a message m, the model delivers the message to all neighbors in E and
(perhaps) some neighbors in E′ \ E. It then returns an acknowledgment of m to u indicating the

4

broadcast is complete. These are the only message deliveries performed by the model. We assume
nodes are well-formed in the sense that they always wait for the acknowledgment of their current
message before initiating a new broadcast.

This model provides two timing bounds, defined with respect to two positive constants, Fack and
Fprog which are fixed for each execution. The first is the acknowledgment bound, which guarantees
that each broadcast will complete and be acknowledged within Fack time. The second is the progress
bound, which guarantees the following slightly more complex condition: fix some (u, v) ∈ E and
interval of length Fprog throughout which u is broadcasting a message m; during this interval v
must receive some message (though not necessarily m). The progress bound, in other words, bounds
the time for a node to receive some message when at least one of its neighbors is broadcasting.
As mentioned in the introduction, in both theory and practice it is reasonable to assume that
Fprog is much smaller than Fack. We emphasize that in abstract MAC layer models, the choice
of which neighbors in E′ \ E receive a given message, as well as the order of receive events, are
determined non-deterministically by an arbitrary message scheduler. The timing of these events is
also determined non-deterministically by the scheduler, constrained only by the above time bounds.

We assume that nodes have unique ids. We also assume that each node can differentiate between
their neighbors in E and E′ \E, an assumption justified by the standard practice in real networks
of assessing link quality. For a given network definition (G,G′), we use D to describe the diameter
of G, and dG(u, v), for u, v ∈ V , to describe the shortest path distance between u and v in G. We
define D′ and dG′ similarly, but for G′. Finally, when proving lower bounds, we explicitly model
randomness by passing each node at the beginning of the execution sufficiently many random bits
to resolve probabilistic choices.
The Standard Abstract MAC Layer. The standard abstract MAC layer models nodes as
event-driven automata. It assumes that an environment abstraction fires a wake-up event at each
node at the beginning of each execution. The environment is also responsible for any events specific
to the problem being solved. In multi-message broadcast, for example, the environment provides
the broadcast messages to nodes at the beginning of the execution.
The Enhanced Abstract MAC Layer. The enhanced abstract MAC layer model differs from
the standard model in two ways. First, it allows nodes access to time (formally, they can set timers
that trigger events when they expire), and assumes nodes know Fack and Fprog. Second, the model
also provides nodes an abort interface that allows them to abort a broadcast in progress.
Restrictions on G′. When studying a problem in an abstract MAC layer model, it is often useful
to consider constraints on the graph G′. In the original paper on these models [29], for example, we
considered the very strong constraint that G′ = G. In this paper, we consider three more general
constraints on G′.

First, we say G′ is arbitrary to indicate that we place no restrictions on its definitions (other
than the default constraint of E ⊂ E′). Second, we say G′ is r-restricted, for some r ≥ 1, if for
every (u, v) ∈ E′, dG(u, v) ≤ r. In studying this constraint, we sometimes use the notation Gr to
describe the graph with edges between every u, v ∈ V , u 6= v, where u and v are within r hops in
G. An r-restricted G′ is a subgraph of Gr. Third, we say G′ is grey zone restricted if (in addition
to the general constraint of E ⊆ E′), the following is also true: we can embed the nodes in the
Euclidean plane, giving each v ∈ V a position p(v) ∈ R2 such that (1) For each pair of nodes
v, u ∈ V , (v, u) ∈ E if and only if ‖p(v)− p(u)‖2 ≤ 1, and (2) for each pair of nodes v, u ∈ V , if
(v, u) ∈ E′, then ‖p(v)− p(u)‖2 ≤ c, where c is a universal constant such that c ≥ 1. The range
between 1 and c, in other words, describes a grey zone in which communication is uncertain. We

5

emphasize that the second property described above only states that edges in E′ cannot be longer
than c, it does not require that every pair of nodes that have distance less than or equal to c must
be G′-neighbors.
The Multi-Message Broadcast Problem. The multi-message broadcast (MMB) problem as-
sumes the environment injects k ≥ 1 messages into the network at the beginning of an execution,4

perhaps providing multiple messages to the same node. We assume k is not known in advance.
The problem is solved once every message m, starting at some node u, reaches every node in u’s
connected component in G. To achieve strong upper bound we do not, in other words, assume
that G is connected. We treat messages as black boxes that cannot be combined; for example, we
do not consider network coding solutions. We also assume that only a constant number of these
messages can fit into a single local broadcast message. In this paper, we consider both determin-
istic and randomized algorithms. We require randomized solutions to solve the problem with high
probability (w.h.p.), which we define to be at least 1− 1/n.

3 Multi-Message Broadcast with a Standard Abstract MAC Layer

In this section we study multi-message broadcast in what we call the standard abstract MAC layer
model. As mentioned in the introduction, in previous work [29, 30] we described the Basic Multi-
Message Broadcast (BMMB) algorithm, which implements the standard strategy of broadcasting
each message only the first time you receive it. In more detail, the BMMB protocol works as follows.
Every process i maintains a FIFO queue and list of received messages. When a process i receives a
message m from the MAC layer it checks whether it already received it. If it has already received it,
it discards the message. Otherwise, process i adds m to the back of its queue. Process i broadcasts
the message at the head of its queue (if its queue is not empty) and waits for acknowledgment from
the MAC layer. When the MAC layer acknowledges the message, i removes it from the queue and
moves on to the next message (if any).

In [30], we proved that BMMB solves the MMB problem in O(DFprog + kFack) time under the
strong assumption that G′ = G. In the two subsections that follow, we study its behavior under
more general definitions of G′. We then prove a lower bound for all MMB solutions.

3.1 The BMMB Algorithm for Arbitrary G’

The natural next step in analyzing BMMB is considering its performance in our model when we
assume an arbitrary G′. It is easy to show, of course, that the algorithm always terminates in
O(DkFack) time, as a message m, on arriving at a new hop, must wait for at most O(k) messages
to be broadcast before it too is broadcast. Here we apply a more detailed pipeline argument to
show that BMMB performs better than this basic bound in this difficult setting.

Theorem 3.1. The BMMB algorithm solves the MMB problem in O((D + k)Fack) time in the
standard abstract MAC layer model for arbitrary G′.

Proof. For the sake of analysis, assume each node u keeps a sent set to which it adds every message
that it has successfully broadcast (i.e., broadcast and received an ack for). Next, fix some execution
and an arbitrary message m from among the k messages provided to BMMB to broadcast in this

4A general version of the MMB problem, in which the messages arrive in an online manner, is studied in [30] and
elsewhere.

6

execution. Let um ∈ V be the node that is provided m by the environment at the start of the
execution. For each node v ∈ V , let dv = dG(v, um). For each ` ∈ [1, k], let t`(v) = dv + `.

Our strategy is to prove the following key claim: for each ` ∈ [1, k] and node v, after t`(v)Fack
time, node v’s sent set either: (1) contains m; or (2) contains at least ` other messages. Once we
prove this claim, it will then follow that after tk(v)Fack ≤ (D + k)Fack time, v has sent (and thus
also received) m. Applying this to all nodes and all k messages then yields the theorem statement.
We prove our key claim using induction on h = dv + `. For the base case of h = 0, notice that
h = 0 implies dv = 0. This, in turn, reduces the key claim to a statement about the local queue of
v that follows directly from the definition of the algorithm.

For the inductive step, consider some v such that dv + ` = h. To show the key claim holds
for t`(v) = h, we leverage the inductive hypothesis for nearby nodes and combinations of relevant
values that sum to h − 1. First, we note that if dv = 0, then the base case argument once again
applies. Assume, therefore, that dv ≥ 1. Next, fix some G-neighbor u of v such that du = dv − 1.
By the induction hypothesis, we know that after s = t`−1(v)Fack = t`(u)Fack time: v has either
sent m or sent `− 1 other messages, and u has either sent m or sent ` other messages. If v has sent
m or at least ` messages by s then we are done. If it has not, then by time s, u will have either
sent it m or a new message (i.e., distinct from the ` − 1 messages v has already sent by time s).
In either case, in the Fack time that passes between s and t`(v)Fack, v will either send m or an `th

message, establishing the key claim for t`(v) = h.

3.2 The BMMB Algorithm for r-Restricted G’

We have shown that moving from G′ = G to an unrestricted definition of G′ slows down the
performance of BMMB; i.e., replacing a DFprog factor with DFack, which might be substantially
slower. In this section we seek a middle ground—attempting to identify just enough constraints on
G′ to enable faster MMB performance. In more detail, we study BMMB with an r-restricted G′

and prove that its performance scales well with r:

Theorem 3.2. For any r ≥ 1, the BMMB algorithm solves the MMB problem in O(DFprog +
rkFack) time in the standard abstract MAC layer model with an r-restricted G′.

Notice that for small r, this bound is better than the O((D + k)Fack) bound we established
in Theorem 3.1 for arbitrary G′, and comes close to matching the bound proved in [30] for the
case where G′ = G. This result implies the DFack factor of the arbitrary G′ bound is somehow
dependent on the possibility of G′ edges between nodes distant in G. We emphasize that the above
bound does not follow naturally from the O(DFprog + kFack) bound for G′ = G. The presence of
unreliability fundamentally disrupts the core induction of this existing bound and requires a new
approach.

We present the proof of Theorem 3.2 using a more formal description of the abstract MAC
layer. We can model our systems using Timed I/O Automata [21].

Consider some positive integer r. The r’th power Gr(V,Er) of a graph G is a graph with the
same vertex set V , and two nodes v, u ∈ V are adjacent, (u, v) ∈ Er, when their distance in G is
at most r. That is, Er = {(u, v) | u 6= v and dG(u, v) ≤ r}. (The rth power graph Gr does not
includes self-loops.) For a given node j ∈ V , let N r

G(j) = {j′ | dG(j, j′) ≤ z} denote the set of
nodes that are within r hops of j in G, including j itself. A graph G′ = (V ′, E′) is a subgraph of
G = (V,E) (denoted by G ⊆ G′), if V = V ′ and E′ ⊆ E.

7

3.2.1 Guarantees for the Abstract MAC Layer

Here we provide a set of properties that constrain the behavior of the abstract MAC layer automa-
ton. Technically, these properties are expressed for admissible timed executions of the timed I/O
automaton modeling the complete system.

Well-Formedness Properties. We assume some constraints on the behavior of the user au-
tomata. Let α be an admissible execution of the system consisting of user and abstract MAC layer
automata. We say α is user-well-formed if the following hold, for every i:

1. Every two bcasti events have an intervening acki or aborti event.

2. Every abort(m)i is preceded by a bcast(m)i (for the same m) with no intervening bcasti, acki,
or aborti events.

The rest of this subsection gives constraints on the behavior of the abstract MAC layer automa-
ton, in system executions that are user-well-formed. Thus, from now on in the section, we assume
that α is a user-well-formed system execution.

Constraints on Message Behavior. We assume that there exists a “cause” function that maps
every rcv(m)j event in α to a preceding bcast(m)i event, where i 6= j, and that maps each ack(m)i
and abort(m)i to a preceding bcast(m)i.

We use the term message instance to refer to the set consisting of a bcast event and all the
other events that are related to it by the cause function.

We now define two safety conditions and one liveness condition regarding the relationships
captured by the cause function:

1. Receive correctness: Suppose that bcast(m)i event π causes rcv(m)j event π′ in α. Then
(i, j) ∈ E′, and no other rcv(m)j event or ack(m)i event caused by π precedes π′.

2. Acknowledgment correctness: Suppose that bcast(m)i event π causes ack(m)i event π′

in α. Then for every j such that (i, j) ∈ E, a rcv(m)j event caused by π precedes π′. Also,
no other ack(m)i event or abort(m)i caused by π precedes π′.

3. Termination: Every bcast(m)i causes either an ack(m)i or an abort(m)i.

Time Bounds. We now impose upper bounds on the time from a bcast(m)i event to its corre-
sponding ack(m)i and rcv(m)j events.5

Let Fack and Fprog be positive real numbers. We use these to bound delays for a specific
message to be delivered and an acknowledgment received (the “acknowledgment delay”), and for
some message from among many to be received (the “progress delay”). We think of Fprog as smaller
than Fack, because the time to receive some message among many is typically less than the time
to receive a specific message. The statement of the acknowledgment bound is simple:

4. Acknowledgment bound: Suppose that a bcast(m)i event π causes an ack(m)i event π′ in
α. Then the time between π and π′ is at most Fack.

5 We express these here as constants rather than functions, because we will not worry about adaptive bounds in
this paper.

8

The statement of the progress bound is a bit more involved, and requires some auxiliary defini-
tions. Let α′ be a closed execution fragment within the given execution α,6 and let j be a process.
Then define:

• connect(α′, j) is the set of message instances in α such that α′ is wholly contained between
the bcast and terminating event (ack or abort) of the instance, and (i, j) ∈ E, where i is the
originator of the bcast of the message instance.

• contend(α′, j) is the set of message instances in α for which the terminating event does not
precede the beginning of α′, and (i, j) ∈ E′, where i is the originator of the bcast of the
message instance.

Lemma 3.3. For every α′ and j, connect(α′, j) ⊆ contend(α′, j).

5. Progress bound: For every closed fragment α′ within α, and for every process j, it is not
the case that all three of the following conditions hold:

(a) The total time of α′ is strictly greater than Fprog.

(b) connect(α′, j) 6= ∅.
(c) No rcvj event from a message instance in contend(α′, j) occurs by the end of α′.

In other words, j should receive some message within time Fprog provided that at least one
message is being sent by a G-neighbor.

Note that our definitions allow a rcv for a particular bcast to occur after an abort for that bcast.
We impose a (small) bound εabort on the amount of time after an abort when such a rcv may occur.

3.2.2 The Multi-Message Broadcast Problem

A user automaton is considered to be an MMB protocol provided that its external interface includes
an arrive(m)i input and deliver(m)i output for each user process i and message m ∈M.

We say an execution of an MMB protocol is MMB-well-formed if and only if it contains at most
one arrive(m)i event for each m ∈M; that is, each broadcast message is unique. We say an MMB
protocol solves the MMB problem if and only if for every MMB-well-formed (admissible) execution
α of the MMB protocol composed with a MAC layer, the following hold:

(a) For every arrive(m)i event in α and every process j, α contains a deliver(m)j event.

(b) For every m ∈M and every process j, α contains at most one deliver(m)j event and it comes
after an arrive(m)i event for some i.

We describe a simple MMB protocol that achieves efficient runtime.

The Basic Multi-Message Broadcast (BMMB) Protocol
Every process i maintains a FIFO queue named bcastq and a set named rcvd. Both are initially
empty.

6Formally, that means that there exist fragments α′′ and α′′′ such that α = α′′α′α′′′, and moreover, the first state
of α′ is the last state of α′′. Notice, this allows α′ to begin and/or end in the middle of a trajectory.

9

If process i is not currently sending a message (i.e., not waiting for an ack from the MAC layer)
and bcastq is not empty, the process immediately (without any time-passage) bcasts the message
at the head of bcastq on the MAC layer.

When process i receives an arrive(m)i event, it immediately performs a local deliver(m)i output
and adds m to the back of its bcastq, and to its rcvd set.

When i receives a message m from the MAC layer it checks its rcvd set. If m ∈ rcvd, procsss i
discards the message. Otherwise, i immediately performs a deliver(m)i event, and adds m to
the back of its bcastq and to its rcvd set.

Theorem 3.4. The BMMB protocol solves the MMB problem.

We give two definitions that we will use in our complexity proof. In the following, let α be some
MMB-well-formed execution of the BMMB protocol composed with a MAC layer. We begin with
two definitions that we will use in our complexity proof.

get events. We define a get(m)i event with respect to α, for some arbitrary message m and
process i, to be one in which process i first learns about message m. Specifically, get(m)i is the
first arrive(m)i event in case message m arrives at process i, otherwise, get(m)i is the first rcv(m)i
event.

clear events Let m ∈ M be a message for which an arrive(m)i event occurs in α. We define
clear(m) to describe the final ack(m)j event in α for any process j.7

3.2.3 Proof Preliminaries

For the rest of Section 3, we consider the special case of the general MMB problem in which all
messages arrive from the environment at time t0 = 0, that is, all arrive events occur at time 0.
We fix a particular MMB-well-formed execution α of the BMMB protocol composed with a MAC
layer. We assume that an arrive(m)i0 event occurs in α for some message m ∈ M at some node
i0, at time t0 = 0.

For each node i ∈ V and each time t, we introduce two sets of messages, which we call R (for
”received messages”) and C (for ”completed messages”). We define:

• Ri(t) ⊆M is the set of messages m′ ∈M for which the get(m′)i event occurs by time t.

• Ci(t) ⊆M is the set of messages m′ ∈M for which the ack(m′)i event occurs by time t.

That is, Ri(t) is the set of messages that have been received by process i by time t, and Ci(t) is the
set of messages that process i has finished (completed) processing by time t.8

The following two lemmas express some very basic properties of the R and C sets.

Lemma 3.5. For every i, i′, t and t′ such that t ≤ t′:

1. Ri(t) ⊆ Ri(t′) and Ci(t) ⊆ Ci(t′).
7 By the definition of BMMB, if an arrive(m)i occurs, then i eventually bcasts m, so ack(m)i eventually occurs.

Furthermore, by the definition of BMMB, there can be at most one ack(m)j event for every process j. Therefore,
clear(m) is well-defined.

8 Note that both Ri(t) and Ci(t) may include m.

10

2. Ci(t) ⊆ Ri(t′).

3. If i and i′ are neighbors in G, then Ci′(t) ⊆ Ri(t′).

Proof. Straightforward.

Lemma 3.6. Fix i and t ≥ 0, and let s be the final state at time t. Then, in state s, bcastqi
contains exactly the messages in Ri(t)− Ci(t).

Proof. By the operation of the algorithm, bcastqi contains exactly the messages that have had a
get and no ack at node i. These are exactly the elements of Ri(t)− Ci(t).

Lemma 3.7. Fix i and t ≥ 0, and let s be the final state at time t.

1. If in state s, m′ is in position k ≥ 1 of bcastqi, then m′ ∈ Ci(t+ kFack).

2. If in state s, bcastqi has length at least k ≥ 0, then |Ci(t+ kFack)| ≥ |Ci(t)|+ k.

3. If |Ri(t)| ≥ k ≥ 0, then |Ci(t+ kFack)| ≥ k.

Proof. 1. For k = 1, the abstract MAC layer properties say that, within time Fack, m
′ is ac-

knowledged at i. Therefore, m′ ∈ Ci(t+Fack), which yields the result for k = 1. The statement
for general k follows from repeated application of the statement for k = 1.

2. The statement is trivial for k = 0, so consider k ≥ 1. Part 1, applied to the first k messages
in bcastqi in state s, implies that all of these messages are in Ci(t+Fack). Lemma 3.6, implies
that none of these messages are in Ci(t). Therefore, |Ci(t+ Fack)| ≥ |Ci(t)|+ k.

3. Suppose that |Ri(t)| = |Ci(t)|+ |Ri(t)− Ci(t)| ≥ k. By Lemma 3.6, every element of Ri(t)−
Ci(t) is on bcastqi in state s, so the length of bcastqi in state s is at least |Ri(t)− Ci(t)|. We
consider two cases. If |Ri(t)− Ci(t)| ≤ k, then

|Ci(t+ k · Fack)| ≥ |Ci(t+ |Ri(t)− Ci(t)| · Fack)| ≥ |Ci(t)|+ |Ri(t)− Ci(t)| ≥ k,

as needed for Part 3, where the first inequality follows, since Ci(t + |Ri(t) − Ci(t)| · Fack) ⊆
Ci(t+k ·Fack) by Part 1 of Lemma 3.5 (with t = t+ |Ri(t)−Ci(t)| ·Fack and t′ = t+k ·Fack);
the second inequality follows by Part 2 of the lemma; and the last inequality holds by the
assumption of Part 3 (of the lemma). If |Ri(t)−Ci(t)| > k, then |Ci(t+k ·Fack)| ≥ |Ci(t)|+k,
by Part 2 of the lemma. Part 3 follows.

The following corollary is a special case of Part 2 of Lemma 3.7.

Corollary 3.8. Fix i, t ≥ 0 and ` > 0. If |Ci(t)| ≥ `− 1 and |Ri(t)| ≥ `, then |Ci(t+ Fack)| ≥ `.

Proof. The case where |Ci(t)| ≥ ` follows by Part 1 of Lemma 3.5. Suppose that |Ci(t)| = `−1. Since
|Ri(t)| ≥ `, it follows that Ri(t)−Ci(t) 6= ∅. Therefore, by Lemma 3.6, at the final state s at time t,
bcastqi has length at least at least one. Thus, by Part 2 of Lemma 3.7, |Ri(t+Fack)| ≥ |Ri(t)|+ 1.
The Corollary follows.

11

Now we have two key lemmas that describe situations when a process i is guaranteed to receive
a new message. The first deals with i receiving its first message.9

Lemma 3.9. Let i and j be neighboring nodes in G, and suppose t ≥ 0. If Rj(t) 6= ∅, then
Ri(t+ Fprog) 6= ∅.

Proof. Assume for contradiction that Ri(t + Fprog) = ∅. Choose t′ > t + Fprog to be some time
strictly after t+ Fprog, when Ri(t′) = ∅; this is possible because the next discrete event after time
t+ Fprog must occur some positive amount of time after t+ Fprog.

We obtain a contradiction to the progress bound. Let α′ be the closed execution fragment of
α that begins with the final state s at time t and ends with the final state s′ at time t′. We show
that α′ provides a contradiction to the progress bound. We verify that the three conditions in the
definition of the progress bound are all satisfied for α′. Condition (a), that the total time of α′ is
strictly greater than Fprog, is immediate.

Condition (b) says that connect(α′, i) 6= ∅. Since Ri(t) = ∅, Lemma 3.5, Part 3, implies that
Cj(t) = ∅. Since Rj(t) 6= ∅, Lemma 3.6, implies that, in state s, bcastqj is nonempty. Let m′ be
the message at the head of bcastqj in state s. Since s is the final state at time t and the protocol
has 0 delay for performing bcasts, it must be that the bcast event for process j’s instance for m′

occurs before the start of α′. Since m′ /∈ Ri(t′), m′ is not received by process i by the end of α′.
This implies that the ackj(m

′) event, which terminates j’s instance for m′, must occur after the
end of α′. It follows that j’s instance for m′ is in connect(α′, i), so that connect(α′, i) 6= ∅, which
shows Condition (b).

Condition (c) says that no rcvi event from a message instance in contend(α′, i) occurs by the
end of α′. We know that no rcvi occurs by the end of α′, because Ri(t′) = ∅. So no rcvi event from
a message instance in contend(α′, i) occurs by the end of α′, which shows Condition (c).

Thus, α′ satisfies the combination of three conditions that are prohibited by the progress bound
assumption, yielding the needed contradiction.

The next lemma deals with the fast positive progress scenario in which process j receives some
“new” message in Fprog time.

Lemma 3.10. Let i and j be neighboring nodes in G, and suppose t ≥ 0. Suppose that:

1. Ri(t) ⊆ Ci′(t) for every neighbor i′ of i in G′.

2. Rj(t)−Ri(t) 6= ∅.

Then, |Ri(t+ Fprog)| > |Ri(t)|.

This says that, if every message that i has already received is already completed at all of i’s
neighbors in G′ and some neighbor j of i in G has received some message that i hasn’t yet received,
then i will receive a new message within Fprog time.

Proof. Assume for contradiction that Ri(t) ⊆ Ci′(t) for every neighbor i′ of i in G′, that Rj(t) −
Ri(t) 6= ∅, and that |Ri(t+ Fprog)| = |Ri(t)|. Then it must be that Ri(t+ Fprog) = Ri(t). Choose
t′ > t+ Fprog to be some time strictly after t+ Fprog, when Ri(t′) = Ri(t); this is possible because
the next discrete event after time t+Fprog must occur some positive amount of time after t+Fprog.

9 Actually, this lemma is formally a corollary to the following one, but it might be nicer to see this proof as a
“warm-up”.

12

We obtain a contradiction to the progress bound. Let α′ be the closed execution fragment of α
that begins with the final state s at time t and ends with the final state s′ at time t′. We verify
that the three conditions in the definition of the progress bound are all satisfied for α′.

• Condition (a): The total time of α′ is strictly greater than Fprog.
This is immediate.

• Condition (b): connect(α′, i) 6= ∅.
Since Rj(t) − Ri(t) 6= ∅ and Cj(t) ⊆ Ri(t) (by Part 3 of Lemma 3.5 with i = i, i′ = j), we
have Rj(t)− Cj(t) 6= ∅.
Then Lemma 3.6, implies that, in state s, bcastqj is nonempty. Let m′ be the message at the
head of bcastqj in state s. Since s is the final state at time t and the protocol has 0 delay
for performing bcasts, it must be that the bcast event for process j’s instance for m′ occurs
before the start of α′.

Also, we know that m′ /∈ Ri(t), because m′ /∈ Cj(t) and Ri(t) ⊆ Cj(t).
Since Ri(t′) = Ri(t), we also know that m′ /∈ Ri(t′). Therefore, m′ is not received by process
i by the end of α′. This implies that the ackj(m

′) event, which terminates j’s instance for
m′, must occur after the end of α′. It follows that j’s instance for m′ is in connect(α′, i), so
that connect(α′, i) 6= ∅.

• Condition (c): No rcvi event from a message instance in contend(α′, i) occurs by the end of
α′. We claim that, if a message m′′ has an instance in contend(α′, i), then m′′ /∈ Ri(t). To
see this, let i′ be a neighbor of i in G′ originating an instance of m′′ in contend(α′, i). If
m′′ ∈ Ri(t), then by hypothesis 1 (of the lemma), also m′′ ∈ Ci′(t). That means that the ack
event of node i′’s instance of m′′ occurs before the start of α′, which implies that the instance
is not in contend(α, i).

With this claim, we can complete the proof for Condition (c). Suppose for contradiction that
a rcvi(m

′′) event from some message instance in contend(α, i) occurs by the end of α′. Using
the first claim above, m′′ ∈ Ri(t′). But by the second claim above, m′′ /∈ Ri(t). But we have
assumed that Ri(t′) = Ri(t), which yields a contradiction.

Thus, α′ satisfies the combination of three conditions that are prohibited by the progress bound
assumption, yielding the needed contradiction.

The next lemma deals with the slow positive progress scenario in which process j is guaranteed
to receive some “new” message in z · Fack time (for some positive integer z).

Lemma 3.11. Fix some time t ≥ 0. Suppose that:

1. |Cj(t)| ≥ `− 1.

2. Cj(t) ⊆ Cj′(t) for every node j′ ∈ N z
G(j).

3. There exists some j′′ ∈ N z
G(j) such that |Rj′′(t)| ≥ `.

Then |Rj(t+ zFack)| ≥ `.

13

This says that, if (1) j completes at least ` − 1 messages by time t; (2) every message that j has
completed by time t is also completed at all of j’s neighbors in Gz by time t; and (3) there exists
at least one neighbor of j in Gz that receives at least ` messages by that time, then j receives at
least ` messages by time t+ z · Fack .

Proof. We prove this lemma by induction on z. For the base, z = 0, the statement trivially follows,
since N0(j) = {j}, which implies together with condition 3 that |Rj(t)| ≥ `. For the inductive step,
we assume z ≥ 1. We assume the lemma statement for z′ < z and prove it for z. If |Rj(t)| ≥ `,
then by Part 1 of Lemma 3.5, |Rj(t+ Fack)| ≥ ` and we are done.

If Cj(t+Fack) 6= Cj(t), then by assumption 1 and Part 1 of Lemma 3.5, |Cj(t+Fack)| ≥ `, which
implies by Part 2 of Lemma 3.5 that |Rj(t+ z · Fack)| ≥ `, as needed.

It remains to consider the case where |Rj(t)| = ` − 1 and Cj(t + Fack) = Cj(t). Let j′′ be a
closest neighbor of j such that |Rj′′(t)| ≥ `. Note that, j′′ must be at distance at least 1 from j
(by the assumptions for this case) and j′′ must be at distance at most z from j (by assumption 3
of the lemma). Moreover, by the first two assumptions of the lemma, it follow that |Cj′′(t)| ≥ `− 1.
Combining this inequality with |Rj′′(t)| ≥ ` and Corollary 3.8, we get that

|Cj′′(t+ Fack)| ≥ `. (1)

Let j∗ be the next-closer node on a shortest path in G from j′′ to j. We now apply the inductive
hypothesis for z′ = z − 1 and time t′ = t+ Fack. Note that, j∗ ∈ N z′

G (j). To do this, we show that
the three assumptions of the lemma indeed hold for z′ and t′. The first assumption of the lemma
holds as

|Cj(t′)| ≥ |Cj(t)| ≥ `− 1,

where the first inequality holds since Cj(t) ⊆ Cj(t′) (by Part 1 of Lemma 3.5, with t ≤ t′); and the
second inequality holds by assumption 1 for z and t. The second assumption of the lemma holds
as,

Cj(t′) ⊆ Cj′(t) ⊆ Cj′(t′), for every node j′ ∈ N z′
G ,

where the first inequality holds since, in this case, Cj(t′) = Cj(t) and Cj(t) ⊆ Cj′(t) (by assumption
2 of the lemma for z > z′ and t); and the second inequality holds by Part 1 of Lemma 3.5 with
t ≤ t′. We next argue that the third assumption holds as well. Specifically, we claim that j∗, in
particular, satisfies this assumption. That is, j∗ ∈ N z′

G (j) and |Rj∗(t′)| ≥ `. The first statement
holds, since z′ = z − 1 and dG(j, j∗) < dG(j, j′′) ≤ z. The second statement holds as,

|Rj∗(t′)| ≥ |Cj′′(t′)| ≥ `,

where the first inequality holds, since Cj′′(t′) ⊆ Rj∗(t′) (by Part 3 of Lemma 3.5) and the second
inequality holds by combining together Inequality (1) with t′ = t+ Fack.

Having shown the three assumptions, we can now invoke the inductive hypothesis for z′ and
t′. We have |Rj(t′ + z′ · Fack)| ≥ `. In addition, t′ + z′ · Fack ≤ t + z · Fack, since t′ = t + Fack
and z′ ≤ z − 1. Combining these two inequalities together with Part 1 of Lemma 3.5, we get that
|Rj(t+ z · Fack)| ≥ `, as needed. The lemma follows.

14

3.2.4 The Key Lemma

We continue to assume all the context we established earlier in Subsection 3.2.3. The lemma below
summarizes some helpful complexity bounds.

Lemma 3.12 (“Complexity Bounds”). The following hold for the td,` values:

1. For d′ ≤ d′′, td′,` ≤ td′′,` (monotonically increasing in terms of d).

2. For ` ≥ 2, d ≥ 1, td+r,`−1 + r · Fack ≤ td,`.

3. For ` ≥ 2, d ≥ 1, td+r,`−1 + Fack ≤ td−1,`.

4. For ` ≥ 1, d ≥ 1, td−1,` + Fprog = td,`.

5. For ` > 1, ` · Fack ≤ t0,`.

Proof. By simple algebraic calculations.

To prove the key lemma, we show a double induction for ` as an “outer” induction and for
distance d as an “inner” induction. To warm up, let us begin with two special cases. The first
(Lemma 3.13 below) will be used in the base case for ` = 1 for the outer induction of the inductive
proof in the main lemma. The second (see Lemma 3.14) will be used in the base case for d = 0 for
the inner induction of the inductive proof in the main lemma.

Lemma 3.13. Let j be a node at distance d = dG(i0, j) from i0. Then:

1. Rj(td,1) 6= ∅.

2. Cj(td,1 + Fack) 6= ∅.

Proof. 1. For Part 1, we use induction on d. For the base case, consider d = 0. Then j = i0 and
td,1 = t0,1 = 0. Since m ∈ Ri0(0), we see that Rj(td,1) 6= ∅, as needed.

For the inductive step, assume Part 1 for d− 1 and prove it for d. Let j′ be the predecessor
of j on a shortest path in G from i0 to j; then dG(i0, j

′) = d − 1. By inductive hypothesis,
we know that Rj′(td−1,1) 6= ∅. Then Lemma 3.9 implies that Rj(td−1,1 + Fprog) 6= ∅. Since
td,1 = td−1,1 + Fprog, this implies that Rj(td,1) 6= ∅, as needed.

2. Part 2 follows from Part 1 using Lemma 3.7, Part 3, applied with k = 1.

Lemma 3.14. Let ` ≥ 1. Then:

1. m ∈ Ri0(t0,`).

2. Either m ∈ Ci0(t0,` + Fack) or |Ci0(t0,` + Fack)| ≥ `.

Proof. Since m ∈ Ri0(0), and 0 ≤ t0,`, we have m ∈ Rj(t0,`), which yields Part 1.
For Part 2, if m ∈ Ci0(0), then clearly m ∈ Ci0(t0,` + Fack), which suffices. So suppose that

m /∈ Ci0(0). Then m ∈ Ri0(0)− Ci0(0), so m is on bcastqi0 in the final state s0 at time t = 0.

15

If in state s0, the position of m on bcastqi0 is ≤ `, then Lemma 3.7, Part 1, implies that
m ∈ Ci0(`Fack). By Part 5 of Lemma 3.12, `Fack ≤ t0,` + Fack, which implies together with Part 1
of Lemma 3.5 that m ∈ Ci0(t0,` + Fack), which is sufficient to establish the claim.

On the other hand, if in state s0, the position of m on bcastqi0 is strictly greater than `, then we
apply Lemma 3.7, Part 2, to conclude that |Ci0(`Fack)| ≥ `. That implies that |Ci0(t0,`+Fack)| ≥ `,
which again suffices.

And now, for the main lemma.

Lemma 3.15. Let j be a node at distance d = dG(i0, j) from i0 in G. Let ` be any positive integer.
Then:

1. Either m ∈ Rj(td,`) or |Rj(td,`)| ≥ `.

2. Either m ∈ Cj(td,` + Fack) or |Cj(td,` + Fack)| ≥ `.

Proof. We prove both parts together by induction on `. For the base, ` = 1, both statements
follow immediately from Lemma 3.13. For the inductive step, let ` ≥ 2. We assume the lemma
statement for `− 1 (and for all d) and prove it for `. To prove the lemma statement for `, we use
a second, “inner”induction, on the distance d from i0 and the destination j. For the base, d = 0,
both statements follow from Lemma 3.14.
Inductive Step: d ≥ 1. For the inductive step, we assume d ≥ 1. Assume both parts of the
lemma for (1) ` − 1 (as “outer” induction hypothesis) for all distances; and (2) for ` for distance
d− 1 (as “inner” induction hypothesis). We prove both parts of the lemma for ` and distance d.

By our “outer” inductive hypothesis, all processors of the network satisfy the two parts of the
lemma for `− 1 and all values of d. In particular, by combining the inductive hypothesis for `− 1
and all values of d with Part 1 of Lemma 3.12 and Part 1 of Lemma 3.5, it follows that for every
node j′ ∈ N r

G(j), either

(S1) m ∈ Cj′(td+r,`−1 + Fack) or |Cj′(td+r,`−1 + Fack)| ≥ `− 1.

We use distance d + r for j′ because j′ is at distance at most d + r from i0 in G (j is at distance
d from i0 in G; and j′ is either j itself or it at distance at most r from j in G, since j′ ∈ N r

G(j)).
Let t∗ = td+r,`−1 + Fack. Recall that, by Part 2 of Lemma 3.12,

t∗ + (r − 1)Fack ≤ td,` . (2)

1. We now prove Part 1 of the lemma (for ` and d). Suppose that m ∈ Cj(t∗) or |Cj(t∗)| ≥ `.
Then, either m ∈ Rj(td,`) or |Rj(td,`)| ≥ `, since Cj(t∗) ⊆ Rj(td,`), by Inequality (2) and
Part 2 of Lemma 3.5 (with t = t∗ and t′ = td,`). This implies that j satisfies Part 1 of the
lemma statement for `. This implies Part 1. Now, suppose the contrary, that m 6∈ Cj(t∗)
and |Cj(t∗)| < `. Since, j does satisfy (S1) for ` − 1, it follows that |Cj(t∗)| ≥ ` − 1, since
m 6∈ Cj(t∗). Thus, in the remaining case, we have

m 6∈ Cj(t∗) and |Cj(t∗)| = `− 1. (3)

We next prove that |Rj(td,`)| ≥ ` (which implies Part 1 of the lemma). We consider two cases
regarding the set of messages that j completes by time t∗ and the sets of messages that are
completed (by that time) by all neighbors of j in Gr.

16

Case 1: There exists some neighbor j′ of j in Gr such that Cj′(t∗) 6= Cj(t∗).
Choose a closest node j′′ to j in G with this property, and let j∗ be the next-closer node
on some shortest path from j′′ to j in G. That is, j′′ ∈ arg min{dG(j, i′) | Ci′(t∗) 6= Cj(t∗)},
(j′′, j∗) ∈ E and dG(j, j∗) = dG(j, j′′) − 1. Recall that, in this case, there exists such a
neighbor j′′ ∈ N r

G(j) with this property, hence 0 ≤ dG(j, j∗) < dG(j, j′′) ≤ r.
To apply Lemma 3.11, with z = dG(j, j∗) ≤ r − 1 and t = t∗, we first need to show that
the three hypothesis of the lemma hold. First, by the second conjunct of (3), we have
|Cj(t∗)| = `− 1, which implies the first hypothesis of Lemma 3.11. Second, we need to show
that Cj(t∗) ⊆ Cj′(t∗), for every j′ ∈ N z

G(j). This follows from the fact that dG(j, j′′) = z + 1
and the fact that j′′ is a closest node to j in G with the property that Cj′′(t∗) 6= Cj(t∗).
This implies that Cj(t∗) = Cj′(t∗), and in particular Cj(t∗) ⊆ Cj′(t∗), for every j′ ∈ N z

G(j), as
needed. Third, we need to show that |Rj′(t∗)| ≥ ` for some neighbor j′ ∈ N z

G(j). We show
that |Rj∗(t∗)| ≥ ` (that is, j∗, in particular, does satisfy this property).

The fact that j′′ is a closest node with this property and node j∗ is closer than j′′ to j in G,
implies that Cj∗(t∗) = Cj(t∗) and that Cj′′(t∗) 6= Cj∗(t∗). By the inductive hypothesis for `−1,
we obtain that either m ∈ Cj′′(t∗) or |Cj′′(t∗)| ≥ `− 1; either way, by Inequality (3), there is
some message m′ ∈ Cj′′(t∗) \ Cj∗(t∗), which implies by Part 3 of Lemma 3.5 (with t = t′ = t∗,
i′ = j′′ and i = j∗), that m′ ∈ Rj′′(t∗)\Cj′′(t∗). This, in turn implies that |Rj∗(t∗)| ≥ `. Then
Lemma 3.11 (using z = dG(j, j∗) ≤ r − 1 and t = t∗), yields that |Rj(t∗ + (r − 1)Fack)| ≥ `.
Since t∗ = td+r,`−1 + Fack, by Part 2 of Lemma 3.12, we have that td,` ≥ t∗ + (r − 1)Fack.
Thus, |Rj(td,`)| ≥ ` as needed for Part 1 of the lemma.

Case 2: Cj′(t∗) = Cj(t∗), for all neighbors j′ ∈ N r
G(j).

Since G′ ⊆ Gr 10, it holds, in particular, that Cj′(t∗) = Cj(t∗), for all neighbors j′ of j in G′.
Let’s focus on time td−1,` . By Part 3 and Part 4 of Lemma 3.12, we have

t∗ ≤ td−1,` + Fprog = td,` . (4)

Now, if |Rj(td−1,`)| ≥ `, then |Rj(td,`)| ≥ `, by Part 1 of Lemma 3.15 and we are done. So
suppose that |Rj(td−1,`)| ≤ `− 1. Recall that

|Cj(t∗)| = `− 1 and Cj(t∗) ⊆ Rj(td−1,`), (5)

where the second inequality holds by combining Inequality (4) together with Part 2 of Lemma
3.5 (with t = t∗ and t′ = td−1,`). This implies that |Rj(td−1,`)| ≥ `− 1. Hence, |Rj(td−1,`)| =
`− 1, which implies together with Inequality (5) that

Rj(td−1,`) = Cj(t∗). (6)

Now we will apply Lemma 3.10, with t = td−1,` . To do this, we need to show the two
hypotheses of that lemma: First, we need to show that Rj(td−1,`) ⊆ Cj′(td−1,`) for every
neighbor j′ of j in G′. Consider some neighbor j′ of j in Gr. We have

Rj(td−1,`) = Cj′(t∗) ⊆ Cj′(td−1,`), for every neighbor j′ of j in Gr,

10 Note that this is the first place that we use this assumption.

17

where the first equality holds by the case analysis assumption and Equality (6); and the
second inequality holds by combining the first inequality of (4) with Part 1 of Lemma 3.5.
This implies, in particular, that Rj(td−1,`) ⊆ Cj′(td−1,`), for every neighbor j′ of j in G′ (since
G′ ⊆ Gr), as needed for the first hypothesis of Lemma 3.10.

To show the second hypothesis of Lemma 3.10, we need to show thatRj′(td−1,`)−Rj(td−1,`) 6=
∅, for some neighbor j′ of j in G. So, fix a neighbor j∗ of j in G at distance d − 1 from i0.
By the inductive hypothesis for d, we obtain that either m ∈ Rj∗(td−1,`) or |Rj∗(td−1,`)| ≥ `;
either way, by Inequality (3), there is some message m′ ∈ Rj∗(td−1,`) \ Cj(t∗).
Then, Lemma 3.10 yields that |Rj(td−1,` + Fprog)| > |Rj(td−1,`)| = ` − 1. This implies that
|Rj(td,`)| ≥ `, since td,` = td−1,` + Fprog (by Part 4 of Lemma 3.12). Part 1 of the lemma
follows.

2. Now, we prove Part 2 of the lemma. Before proceeding recall that t∗ = td+r,`−1 + Fack ≤
td,` < td,` + Fack (where the left inequality holds by Part 3 of Lemma 3.12), which implies
together with Part 1 of Lemma 3.5, that

Cj(t∗) ⊆ Cj(td,`) ⊆ Cj(td,` + Fack).

Now, suppose that m ∈ Cj(t∗). Then, m ∈ Cj(td,` + Fack) (since Cj(t∗) ⊆ Cj(td,` + Fack)) and
we are done. Next, assume that m 6∈ Cj(t∗). Then, by the inductive hypothesis for ` − 1,
|Cj(t∗)| ≥ ` − 1. This implies, in particular, that |Cj(td,`)| ≥ ` − 1 (since Cj(t∗) ⊆ Cj(td,`)).
By Part 1, either m ∈ Rj(td,`) or |Rj(td,`)| ≥ `; either way, we obtain that |Rj(td,`)| ≥ `,
since, Cj(t∗) ⊆ Rj(td,`), |Cj(t∗)| ≥ ` − 1 and m 6∈ Cj(t∗). Then Corollary 3.8 implies that
|Cj(td,` + Fack)| > |Cj(td,`)|, so |Cj(td,` + Fack)| ≥ ` as needed.

3.2.5 The Main Theorem

Let K ⊆M be the set of messages that arrive at the nodes in a given execution α.

Theorem 3.16. If |K| ≤ k then Rj(t1) = K for every node j, where t1 = (D+ (r+ 1)k−2)Fprog +
r(k − 1)Fack.

The conclusion of this theorem says all the messages of K are received at all nodes by time t1.

Proof. Follows directly from Lemma 3.15.

3.3 Lower Bound for Grey Zone G’

We are left with two questions concerning MMB. First, does BMMB perform as well as the r-
restricted case when we we consider other natural restrictions on G′, such as the grey zone con-
straint? And second, if not BMMB, are there any MMB algorithms for the standard abstract MAC
layer model model that can perform well given the grey zone restriction, or perhaps even perform
well for arbitrary G′? Below, we answer both questions in the negative by proving that all MMB
algorithms require Ω((D + k)Fack) time to solve MMB with a grey zone restricted G′. This result
establishes that our analysis of BMMB from Section 3.1 is tight, and it opens an intriguing gap
between the superficially similar r-restricted and grey zone constraints.

18

. . .

. . .

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

a
D-2

a
D-1

a
D

b
1

b
2

b
3

b
4

b
5

b
6

b
7

b
8

b
D-2

b
D-1

b
D

m
0

m
1

Figure 2: The lower bound network. The green solid lines represent the reliable edges, i.e., those in G, and

the red dashed lines represent the unreliable edges, i.e., those in G′ \G.

Theorem 3.17. For any Multi-Message Broadcast algorithm A, every k > 1, and random bit
assignment, there exists a network, message assignment, and message scheduler such that A requires
Ω((D + k)Fack) time to solve the MMB problem.

To prove our main theorem, we handle the kFack and DFack terms separately. The kFack part
is simple: consider a node u that represents the only bridge in G between a receiver v and the
source(s) of k messages. Our message size limit restricts u to send only a constant number of
messages to v at a time, inducing the Ω(kFack) bound.

Lemma 3.18. For every k ∈ [1, n − 2], algorithm A, and random bit assignment, there exists a
network with G′ = G, a message assignment that has no node begins with more than one message—
what we call a singleton assignment—and a message scheduler such that A requires Ω(kFack) time
to solve the MMB problem.

Proof. We first fix our definition of G′ = G. To define G, connect each node in U = {u1, u2, ..., uk−1}
to uk, forming a star. Then connect uk to some other node v. Start each node in U ∪ {uk} with a
unique broadcast message. Consider a message schedule that requires the full Fack time between
each broadcast and its corresponding acknowledgment. We now bound the time for v to receive all
k messages. The key observation is that uk is a choke-point through which all messages must pass
to arrive at v. To bound the time for messages to make it through this constriction, divide time
into rounds of length Fack. By our assumption on the scheduler, uk can begin the transmission
of at most a constant number of message per round. Therefore, v can receive at most a constant
number of new messages per round. The Ω(kFack) bound follows directly.

The more interesting step is proving the Ω(DFack) term. To accomplish this goal, we begin by
defining the network used in our proof argument. Fix some diameter D that is divisible by 2 (the
below proof can be easily modified to handle odd D). Fix two node sets UA = {a1, a2, ..., aD} and
UB = {b1, b2, ..., bD}. Let A and B be the two line graphs that connect, in order of their indices,
the nodes in UA and UB, respectively. Let C be the dual graph network over nodes UA∪UB where:
G consists of the edges in A, B, and G′ is defined to include all the edges in G, as well as the
following extra edges: for i < D, ai (resp. bi) is connected to bi+1 (resp. ai+1). Notice that our
definition of G′ in C satisfies the definition of grey zone restricted for a sufficiently large value for
the constant c (see Section 2). An example of this network is shown in Figure 2.

In the following, we define a endpoint-oriented execution to be an execution of an MMB broad-
cast algorithm for k = 2, in C, for message set M = {m0,m1}, where m0 starts at a1 and m1

starts at b1. Given a finite endpoint-oriented execution α, let `0(α) be the largest node in A (by
increasing index order) that has received m0 in α, and `1(α) be the largest node in B that has
received m1. Let q0 and q1 be defined in the same way, except now capturing the largest node in

19

the relevant line to have received and initiated a broadcast of the relevant message. Finally, we call
an execution (or execution prefix/extension) valid, if the message events and their timing satisfy
the model guarantees.

The main insight in our proof argument is that given the right scheduling strategy, m0’s progress
down A can slow m1’s progress down B, as well as the other way around. This strategy, however,
requires that nodes that receive these messages proceed to then broadcast them as well. The below
lemma argues that when m0 and m1 make progress, either the next hops start broadcasting, or we
can show that at least one of the messages is delayed long enough to establish our desired result.

Lemma 3.19. Let α be a finite endpoint-oriented execution of a MMB algorithm A with random
bit assignment κ in network C, such that q0(α) < `0(α) = ai and q1(α) < `1(α) = bi for some
i ∈ {1, ..., D−1}. There exists a message schedule that produces one of the following outcomes: (1)
an extension α′ of α in which no time passes and q0(α

′) = `0(α
′) = ai and q1(α

′) = `1(α
′) = bi; or

(2) an extension α′′ of α of duration Ω(DFack) in which the MMB problem is not yet solved.

Proof. Let α be the finite execution specified by the lemma statement. By assumption ai has m0

and bi has m1 at the end of α, but neither node has yet initiated a broadcast of this message. We
begin by extending α using the following message schedule behavior:

For every broadcast initiated by a node in UA ∪ UB \ {ai, bi}, or broadcast by ai (resp. bi)
but not containing m0 (resp. m1): deliver the message to the broadcaster’s neighbors in G (but
to no G′-only neighbors) and then return an acknowledgment to the broadcaster, instantaneously
(i.e., with no time passing). In scheduling these events, construct the schedule to proceed in a
round robin fashion through all nodes; that is, for each node in this order, if there is a receive or
acknowledgment event to schedule (as specified in the above rule), schedule that event and allow
the node to initiate its next broadcast (if its algorithm dictates), then move on to the next node in
the round robin order.

Call this extension β. Notice, β is not necessarily a valid execution of our algorithm because
if ai or bi initiate a broadcast of m0 and m1, respectively, in β, they are starved by the schedule.
We now use β, however, to force our algorithm to satisfy one of the two lemma outcomes. In more
detail, let sa be the step in β where ai initiates a broadcast containing m0 (define sa = ⊥ if no
such step exists). Define sb the same with respect to bi and m1. Because our schedule in β never
allows these broadcasts to complete, there can only be at most one such step for ai and bi in β.
We consider three cases depending on the values of sa and sb.

Case 1: Assume that sa 6= ⊥ and sb 6= ⊥. Let α′ be the prefix of β that stops at whichever of
these two steps happens later in β. Notice, α′ provides a valid extension of α: even though either ai
or bi might have been delayed from delivering a message in this extension, no time passed between
α and the end of α′, so no timing guarantees were violated. Accordingly, we see that α′ satisfies
outcome (1) of the lemma statement.

Case 2: sa = sb = ⊥. In this case, β does not starve any node: every initiated broadcast is
delivered to G neighbors and acknowledged. Let α′ be a transformation of β where we: (1) allow
Fprog time to pass between each broadcast and its corresponding acknowledgment; and (2) we stop
after DFack time has passed since the end of α. Because our algorithms are event-driven (and
therefore have no concept of time), it is straightforward to see that α′ is indistinguishable from β
for all nodes. We also node that the schedule in α′ satisfies the necessary time constraints, as we
never delay a pending delivery by more than Fprog time. It follows that α satisfies outcome (2) of
the lemma statement.

20

Case 3: either sa = ⊥ or sb = ⊥, but not both. Assume, w.l.o.g., that sa = ⊥ (the other case
is symmetric). Let β′ be an extension of α defined with the same rules as β with two exceptions:
(1) schedule bi’s broadcasts of m1 the same as all other broadcasts; and (2) allow Fprog time to
pass between each broadcast and its corresponding acknowledgment. Let α′ be the prefix of β′ that
ends after DFack time has passed since the end of α. As in the previous case, we note that α′ is
indistinguishable from β with respect to nodes in A (the scheduling rules defined above for β do
not allow messages from B to be delivered to nodes in A, therefore nodes in A cannot learn that,
in β′, bi can succeed in its broadcasts of m1) and that it still satisfies the model’s time bounds. As
a result, ai behaves the same in α′ as in β and does not broadcast m0. Because ai, by assumption,
is the furthest node down the line in A to receive m0 so far, it follows that by the end of α′ there
are nodes in A that have not yet received m0. It follows that α′ satisfies outcome (2).

With the above lemma established, we can use it to prove the main lemma regarding the necessity
of DFack rounds. Here is the main idea: As the messages arrive at each new hop in their respective
lines, we apply the above lemma to force these new hops to initiate broadcasts (or, directly prove
our time bound by delaying too long). Once we have established that the message frontiers on each
line are broadcasting, we can allow these broadcasts to mutually interfere over G′ \G edges in such
a way that satisfies the progress bound while preventing useful dissemination.

Lemma 3.20. For every algorithm A and random bit assignment κ, there exists a message as-
signment and schedule such that A requires Ω(DFack) time to solve MMB in network C for k = 2.

Proof. We construct an endpoint oriented execution of A in C with random bits κ, by defining the
message schedule behavior. We start with α0: the finite execution that captures the behavior of
the above system only through a1 receiving m0 and b1 receiving m1. These events happen at the
beginning of the execution, so no time passes in α0.

Notice, α0 satisfies the preconditions required to apply Lemma 3.19. Apply this lemma to α0.
By the definition of this lemma, there are two possible outcomes. If it is the second outcome, we
have proved our theorem. Assume, therefore, that the lemma produces an extension α′0 of α0 that
satisfies the first outcome. At the end of α′0, we know that a1 has initiated a broadcast of m0 and
b1 has initiated a broadcast of m1, and no time has passed since these broadcasts are initiated. We
further note that at this point, m0 has made it no further down the A line and b1 has made it no
further down the B line.

We now extend α′0 with a message schedule that delays m0’s arrival at a2 and m1’s arrival
at b2 by the maximum Fack time. To do so, partition an interval of Fack time following α′0 into
sub-intervals of length Fprog. At the end of each sub-interval, deliver m0 from a1 to b2 (over a G′

edge) and m1 from b1 to a2 (also over a G′ edge). At the end of this Fack interval, allow m0 to make
it to a2 and m1 to make it to b2, and acknowledge these broadcasts. Notice, this schedule satisfies
both the progress and acknowledgment bounds for a1 and b1’s broadcasts during this interval.
During this Fack interval, however, we must also schedule other nodes’ broadcasts. To do so, we
use a simple rule: for every other broadcast, allow the message to be delivered to all (and only) G
neighbors and be acknowledged at the end of the next Fprog interval.

Notice, our above delay strategy leads to a finite execution α1, of duration Fack longer than
α0, where q0(α1) 6= `0(α1) = a2 and q1(α1) 6= `1(α1) = b2. We can, therefore, apply our above
argument again, now replacing α0 with α1. Indeed, we can keep applying this argument until
either we arrive at outcome (2) from Lemma 3.19, or we build up to αD−2, an execution of length

21

Ω(DFack) in which m0 and m1 have not yet made it to the end of the A and B lines, respectively.
Either way, we have proved the theorem statement.

4 Multi-Message Broadcast with an Enhanced Abstract MAC
Layer

In Section 3, we proved that in the standard abstract MAC layer model, Ω(kFack) time is necessary
to solve MMB, and for some definitions of G′, an additional Ω(DFack) time is also necessary. Our
analysis of BMMB then established that this algorithm is essentially the best you can do in this
model. In this section, we tackle the question of how much additional power we must add to our
model definition to enable faster solutions under the assumption that Fprog � Fack, pointing to the
extra assumptions of the enhanced abstract MAC layer model as one possible answer. In particular,
we describe a new algorithm, which we call Fast Multi-Message Broadcast (FMMB), that guarantees
the following time complexity when run in the enhanced abstract MAC layer model with a grey
zone restricted G′:

Theorem 4.1. The FMMB algorithm solves the MMB problem in O((D log n+k log n+log3 n)Fprog)
time, w.h.p., in the enhanced abstract MAC layer model and grey zone restricted G′.

This result has no Fack term. As the size of Fprog decreases, this result’s advantage over BMMB
increases.

Preliminaries. In the following, for v ∈ V , we use ID(v) to refer to v’s unique id, NG(v) to
describe the ids of v’s neighbors in G, and NG′(v) to describe the ids of v’s neighbors in G′. We
use M to refer to the set of messages to be disseminated in a given execution of MMB. We call
a set S ⊆ V of nodes G-independent if for each pair of nodes u, v ∈ S, we have (v, u) /∈ E. In
our analysis, we make frequent use of the following well-known fact, sometimes referred to as the
Sphere Packing Lemma.11

Lemma 4.2. Consider P ⊆ R2 such that ∀p1 6= p2 ∈ P , we have 1 < ‖p1 − p2‖2 ≤ d. Then
|P | = O(d2).

4.1 Algorithm Outline

The FMMB algorithm divides time into lock-step rounds each of length Fprog. This can be achieved
by leveraging the ability of a node to use time and abort a broadcast in progress in the enhanced
abstract MAC layer. In more detail, when we say a node broadcasts in round t, we mean that it
initiates the broadcast at the beginning of the time slot dedicated to round t, and aborts it (if not
completed yet) at the end of the time slot.

The FMMB algorithm uses three key subroutines which we summarize here, but detail and
analyze in the subsections that follow. All three subroutines are randomized and will be shown
to hold with sufficiently high probability that their correctness guarantees can be combined with
a union bound. The FMMB algorithms begins by having nodes construct a maximal independent
set (MIS) in G using O(log3 n) rounds. We note that this MIS subroutine might be of independent
interest.12 The FMMB algorithm then uses a gather subroutine to gather the broadcast messages

11Although the precise constants in the bound on the cardinality of S in Lemma 4.2 are known, the asymptotic
version stated above is sufficient for our purposes.

12The previously best known MIS solution for an abstract MAC layer model uses time that is linear in n [32].

22

at nearby MIS nodes in an additional O(k+log n) rounds. Finally, it uses an overlay dissemination
subroutine that broadcasts the messages to all MIS nodes, and then to their neighbors (i.e., all
nodes), in O((D + k) log n) rounds. The total combined running time of FMMB is therefore
O(D log n+ k log n+ log3 n) rounds, which requires O((D log n+ k log n+ log3 n)Fprog) total time.

We continue by explaining each of the three subroutines. Theorem 4.1 follows directly Lem-
mata 4.5, 4.6, and 4.8. We also note that all three subroutines depend on the assumption of a grey
zone restricted G′, which is leveraged in our analysis to enforce useful regionalization properties on
the MIS nodes.

4.2 The MIS Subroutine

We now describe an MIS subroutine that succeeds in building an MIS in G in O(c4 log3 n) rounds,
w.h.p., where c is the universal constant from the grey zone definition (see Section 2). In more
detail, the algorithm runs for a fixed length of time, tMIS ∈ O(c4 log3 n). At the end of this period,
some set S ⊆ V of nodes join the MIS. The algorithm guarantees, w.h.p.,13 that S is a maximal
G-independent set: (1) all pairs of nodes in S are G-independent; and (2) every u ∈ V is either in
S or neighbors a node in S in G.

The subroutine (called “algorithm” from here forward) works as follows: initially, all nodes are
active. In the course of the algorithm, some nodes join the MIS and some nodes become inactive.
The algorithm runs in O(c2 log2 n) phases, each of which consists of O(c2 log n) rounds, which are
divided into two parts: election and announcement.

The election part has 4 log n rounds. At the start, each active node v picks a random bit-string
b(v) ∈ {0, 1}4 logn. In each round τ ∈ [1, 4 log n] of this part, each active node v broadcasts its
bit-string b(v) iff the τ th bit of b(v) is 1. If node v did not broadcast but it received a message
b(u), be it from a G or a G′ neighbor, then node v becomes temporarily inactive for the rest of this
phase. At the end of 4 log n rounds of the election part, if a node v is still active, then v joins the
MIS set S.

The announcement part has O(c2 log n) rounds. In each round, each node v that joined the
MIS in this phase broadcasts a message containing ID(v) with probability Θ(1/c2), and does not
broadcast any message with probability 1−Θ(1/c2). If a node u that has not joined the MIS receives
a message ID(v) from a G-neighbor, then u knows that one of its G-neighbors is in the MIS and
thus node u becomes permanently inactive. At the end of the announcement part, each node that
joined the MIS in this phase becomes permanently inactive, while each temporarily inactive node
becomes active again.

Lemma 4.3. The set S of nodes that join the MIS nodes is G-independent with high probability.

Proof. We show that the probability that there are two G-neighbors v, u ∈ S is at most 1
n .

First suppose that there are two G-neighbors v and u that joined the MIS in the same phase.
Then, it must hold that in that phase b(v) = b(u). This is because, otherwise there would exist
a round of the election part where one of the two nodes, say v, is not broadcasting but the other
one, u, is broadcasting. In that case, v would receive the message of a G′-neighbor—which might
be v or not—and thus become temporarily inactive which means that v would not join the MIS in
this phase. It is an easy calculation to see that the probability that b(v) = b(u) is at most 1

n4 and

13For this guarantee, as with the other subroutines we consider, we assume that the high probability is of the form
1− n−c for a sufficiently large constant c to enable a union bound on the fail probability for all three subroutines.

23

a union bound over all choices of the pair u, v establishes that the probability of existence of such
a pair is at most 1

n2 .
Now suppose that there were not two G-neighbors that joined the MIS in the same phase but

there were two nodes that joined the MIS in different phases. Let t be the first phase in which there
are two G-neighbors v, u that are in the MIS. Without loss of generality, suppose that v was not
in the MIS at the end of phase t and u joined the MIS in phase t′ < t. The set S′ of G′-neighbors
of v that joined the MIS in phase t′ is a G-independent set. Hence, using Lemma 4.2, we get
that |S′| = O(c2). Now in each round of the announcement part of t′, node u broadcasts with
probability Θ(1/c2) and each other node in S′ does not broadcast with probability Θ(1/c2). Hence,
the probability that v receives the message of u in one round is at least Θ(1/c2)(1−Θ(1/c2))|S

′|−1 ≥
Θ(1/c2)(1 − Θ(1/c2))O(c2) = Θ(1/c2). Hence, during the Θ(c2 log n) rounds of the announcement
part, v receives the message of u with probability at least 1− 1

n4 . Hence, the probability does not
receive this message and later joins the MIS is at most 1

n4 . Again, taking a union over all node
pairs shows that the probability of existence of such a pair u, v is at most 1

n2 .
Overall, using another union bound over the two cases considered in the above two paragraphs,

we get that the probability that there are two G-neighbors v, u ∈ S is at most 1
n .

Lemma 4.4. For each phase t and each node v. If at the start of phase t, node v is active, then
in phase t, at least one node u such that ‖p(v)− p(u)‖2 = O(c log n) joins the MIS.

Proof. Consider a phase t and a node v that is active at the start of phase t. We use a node variable
uτ , for round τ ∈ [1, 4 log n] of the election part, to keep track of a node that is still active. Initially,
u1 = v. For each round τ , if in round τ , node uτ broadcasts or it does not broadcast but it also
does not receive a message, then let uτ+1 = uτ . If uτ does not broadcast in round c but it receives
a message from a G′-neighbor w, then let uτ+1 = w. It follows from this recursive definition that
u4 logn is active at the end of round 4 log n of the election part and hence, u = u4 logn joins the MIS.
Furthermore, it is easy to see that ‖p(uτ+1)− p(uτ)‖2 ≤ τ and hence, using the triangular inequal-

ity, we have ‖p(u)− p(v)‖2 = ‖p(u4 logn)− p(u1)‖ ≤
∑4 logn−1

τ=1 ‖p(uτ+1)− p(uτ)‖2 ≤ 4c log n. This
completes the proof.

Lemma 4.5. The set S of nodes that join the MIS is a maximal G-independent set with high
probability.

Proof. The proof requires us to establish two properties: (A) w.h.p., no two nodes v, u ∈ S are
G-neighbors, and (B) w.h.p., each node v ∈ V \ S has a G-neighbor in S. Property (A) follows
directly from Lemma 4.3. We now prove property (B). Consider a node v ∈ V , suppose that v
does not join the MIS, and let S′ be the set of nodes within distance O(c log n) of v that join the
MIS. Using Lemma 4.4, we know that for each phase t in which v starts as an active node, at least
one new node joins S′. On the other hand, from Lemma 4.3, we know that the set of nodes that
join MIS and thus also S′ is w.h.p. a G-independent set. Hence, using Lemma 4.2, we get that
|S′| = O(c2 log2 n). It follows that node v cannot be active at the start of more than O(c2 log2 n)
phases, which means that there is a phase in which v becomes permanently inactive. Recalling
the description of the algorithm, we get that this means that in the announcement part of that
phase, v receives the message of a G-neighbor that has just joined the MIS. Hence, v indeed has a
G-neighbor in the MIS set S, which proves property B.

24

4.3 The Message Gathering Subroutine

We now describe a message gathering subroutine (called “algorithm” in the rest of this subsection)
that delivers each MMB message to a nearby MIS node in O(c2(k+ log n)) rounds, w.h.p. In more
detail, each node v maintains message-set Mv ⊆ M of messages that the node currently owns.
When this algorithm is first called, these sets describe the initial assignment of MMB message to
nodes. Throughout the algorithm, the message-set of MIS nodes grow while the message set of
non-MIS nodes shrink. The goal is to arrive at a configuration where ∪v∈SMv = M: at which
point, all messages in M are owned by MIS nodes. The algorithm is divided into O(c2(k + log n))
periods, where each period consists of three rounds. At the start of each period, each MIS node
decides to be active with probability 1/Θ(c2), and inactive otherwise. Then, in the first round of
the period, each active MIS node broadcasts its ID, announcing that it is active. In the second
round, each non-MIS node v that received a message from one of its G-neighbors in the first round
and has at least one message left in its message-set Mv broadcasts one of the messages in Mv, along
with its own ID. In the same round, if an MIS node u receives a message m from a G-neighbor,
then node u updates its message-set as Mu = Mu ∪ {m}. In the third round of the period, each
MIS node u that received a message m in the second round sends an acknowledgment message,
which contains message m and its own ID. In this round, if a non-MIS node v receives a message
m from a G-neighbor, then v updates its message-set as Mv = Mv \ {m}.

Lemma 4.6. When the above algorithm is executed given a valid MIS S, the following holds at
termination, w.h.p.: ∪v∈SMv =M. That is, each message is owned by at least one MIS node.

Proof. Consider a non-MIS node v and suppose that at the start of the algorithm, node v has
message-set Mv = T0 6= ∅. We show that at the end of the algorithm, w.h.p., each message m ∈ T0
is held by at least one MIS node u. Fix u to be one (arbitrary) G-neighbor of v that is in the
MIS set. Let Au ⊆ M be the set of messages for which u has broadcast an acknowledgment and
this acknowledgment is received by all G-neighbors of u. We prove that in each period in which
Mv 6= ∅, with probability at least 1/Θ(c2), |Au| increases by one.

Let Su be the set of all MIS nodes that are within distance 2c of u. Using Lemma 4.2, we know
that |Su| = O(c2). Therefore, for each period t, the probability that u is the only MIS node in Su
that is active in period t is at least 1/Θ(c2)(1−1/Θ(c2))O(c2) = 1/Θ(c2). Suppose that u is the only
MIS node in Su that is active in period t. Furthermore, assume that Mv 6= ∅. Then, in the second
round of period t, the only G′-neighbors of u that are broadcasting are in fact G-neighbors of u. This
is because, consider a node w that is a G′-neighbor of u but not a G-neighbor of u and suppose that
w is broadcasting in the second round of period t. Then an MIS G-neighbor w′ 6= u of w must be
active in this period. It follows that ‖p(w′)− p(u)‖2 ≤ ‖p(w′)− p(w)‖2 + ‖p(w)− p(u)‖2 ≤ 1 + c.
Thus, w′ ∈ Su which is in contradiction with the assumption that u is the only active node in
Su. Now, in period t, node v broadcasts a message in Mv. Note that by the description of
the algorithm Mv ∩ Au = ∅. Hence, we conclude that u receives a message m from one of its
G-neighbors and this message is not in Au. In the third round of this period, u acknowledges
this message m. We claim that this acknowledgment is received by all G-neighbors of u, which
means that |Au| increases by one. The reason is that, if a G-neighbor w of u does not receive
the acknowledgment, it means that a G′-neighbor w′ 6= u of w was broadcasting in the third
round. By the description of the algorithm, we get that w′ is an active MIS node, and furthermore,
‖p(w′)− p(u)‖2 ≤ ‖p(w′)− p(w)‖2 + ‖p(w)− p(u)‖2 ≤ c + 1, which means that w′ ∈ Su, which is
a contradiction to the assumption that u is the only active MIS node in Su in period t. Hence,

25

we have established that in each period in which Mv 6= ∅, with probability at least 1/Θ(c2), |Au|
increases by one. Hence, in expectation, after O(kc2) such periods, |Au| ≥ k. That is, the set
Mv is emptied which means that for each message m that was originally in Mv, v has received
an acknowledgment and thus, the message m is now held by at least one MIS nodes. A basic
application of Chernoff bound then shows that after O(c2(k+ log n)) = O(c2(k+ log n)), w.h.p. we
have |Au| ≥ k and thus, each message m intially held by v is now held by at least one MIS nodes.
Taking a union bound over all non-MIS nodes v then completes the proof.

4.4 The Message Spreading Subroutine

We conclude by describing the subroutine (“algorithm” in the following subsection) used by FMMB
to efficiently spread the messages gathered at MIS nodes to the full network. This algorithm spreads
the messages to all nodes in the network in O((D + k) log n) rounds, w.h.p. In more detail, in the
following, let S be the set of MIS nodes when this algorithm is executed. Assume S is a valid
MIS. Let ES be the set of unordered pairs (v, u) ∈ E such that the hop distance of u and v in
graph G is at most 3. Consider the overlay graph H = (S,ES). The algorithm works by spreading
messages over H. For this purpose, we explain a simple procedure, that uses O(log n) rounds, and
that achieves the following: Suppose that each node v ∈ S starts this procedure with at most
one message mv. Then, at the end of this procedure, w.h.p., we have that mv is delivered to all
H-neighbors of v. We will then establish the final upper bound of O((D + k) log n) rounds by
combining this procedure with a standard pipelining argument applied to messages in H.

The Local Broadcast Procedure on the Overlay. The algorithm consists of O(c2 log n)
periods, each consisting of three rounds. In each period, each node v decides to be active with
probability 1/Θ(c2) and remains inactive otherwise. If a node v ∈ S is active, it broadcasts its
message mv in the first round, if it has a message mv. For all the three rounds of the period, if a
node u ∈ V receives a message from a G-neighbor in one round, it broadcasts this message in the
next round. At the end of the three rounds of the period, each node u ∈ S adds the messages that
it has received to its message-set.

Lemma 4.7. At the end of the procedure, we have that for each node v ∈ S, if v starts the procedure
with message mv, then mv is delivered to all H-neighbors of v with high probability.

Proof. Let Sv be the set of nodes u ∈ S such that ‖p(v)− p(u)‖2 ≤ 7c. For now suppose that v is
the only node in Sv that is active. We claim that in this case, in the τ th round of the period—where
τ ∈ {1, 2, 3}, all nodes that their G-distance to v is τ hops receive mv. Hence, overall the three
rounds, all H-neighbors of v receive mv. The proof of this claim is as follows. First consider the
case τ = 1. Then, if there is a G-neighbor w of v such that w does not receive mv in the first
round, it would mean that w has a G′-neighbor w′ that is in S and is active in this period. We
have ‖p(w′)− p(v)‖2 ≤ ‖p(w′)− p(w)‖2 + ‖p(w)− p(v)‖2 ≤ c + 1. Thus, w is in Sv which is in
contradiction with the assumption that v is the only node in Sv that is active. Now we move to
proving the claim for τ = 2 or τ = 3. Suppose that τ∗ is the smallest τ ∈ {2, 3} for which the claim
breaks and there is a node w that has G-distance of τ from v but it does not receive mv in round
τ . We know that w has a G-neighbor w′ that has G-distance τ∗ − 1 from v and w′ receives mv in
round τ∗ − 1. Hence, there must be a G′-neighbor w′′ of w that broadcasts a message m′ 6= mv

in round τ∗. Given the description of the algorithm, it follows that there is an active node u ∈ S
which started message m′ in this period and u is has G-distance at most τ∗ from w. Thus, we get

26

‖p(v)− p(u)‖2 ≤ ‖p(v)− p(w′′)‖2 + ‖p(w′′)− p(w)‖2 + ‖p(w)− p(v)‖2 ≤ τ∗ + c+ τ∗ ≤ c+ 6 ≤ 7c.
This means that w′′ is in Sv which is in contradiction with the assumption that v is the only node
in Sv that is active. This contradiction completes the proof of the claim, establishing that if v is
the only node in Sv that is active, then mv is delivered to all H-neighbors of v. Now note that
using Lemma 4.2, we get |Sv| = O(c2). Thus, in each period, the probability that v is the only
node in Sv that is active is 1/Θ(c2)(1 − 1/Θ(c2))O(c2) = 1/Θ(c2). Hence, in O(c2 log n) periods,
with high probability, there is at least one period in which v is the only node in Sv that is active.
Therefore, with high probability, mv gets delivered to all H-neighbors of v. Taking a union bound
over all choices of node v completes the proof.

This local broadcast on the overlay provides essentially the same guarantee as given by Fack
on the full network topology, but with respect to the overlay graph H. Having this simulated
broadcast, the problem can be solved by combining BMMB with this simulated broadcast, and
then analyzing its performance with respect to H. That is, we divide the time into phases, each
of length O(log n) rounds, where the constants are such that one run of the above procedure fits
in one phase. Then, in each phase, each MIS node sends a message that it has not sent so far, to
all of its H-neighbors. It follows from Theorem 3.1 that after O(DH + k) phases, all messages are
broadcast over H, i.e., to all MIS nodes. Here DH is the hop diameter of the overlay graph H, and
we clearly have DH ≤ DG = D. Below is a more detailed description of this part, as well as the
final lemma statement for this subroutine.

Broadcast on the Overlay Graph H. Here, we explain a more detailed version of the algorithm
that broadcasts messages on the overlay graph H, in O((D + k) log n) rounds. We divide the
O((D+ k) log n) rounds into O(D+ k) phases, each of length O(log n) rounds, where the constants
are such that one run of the above procedure fits in one phase. In the algorithm, each node v ∈ S
has a message-set Mv of messages that it has or it has received, and it also has a sent-set M ′v of
messages that contains all the messages that v has sent throughout this algorithm. Initially, for
each node v, M ′v = ∅. In each phase, each node v sets mv to be equal to one of the messages in
Mv \M ′v and runs the procedure explained above. At the end of the phase, node v adds mv to M ′v
and it also adds each message received during this phase to Mv. The following theorem shows that
this algorithm broadcasts all messages to all MIS nodes.

Lemma 4.8. At the end of DH + k phases, for each node v ∈ S, we have Mv =M. Here DH is
the hop diameter of the overlay graph H and we clearly have DH ≤ DG = D with high probability.

Proof. Consider a message m ∈ M and let Sm ⊆ S be the set of nodes u ∈ S that hold m at the
start of the algorithm. For each node v ∈ S, each d ∈ [1, DH], and ` ∈ [1, k], set tdv ,`(v) = dv + `,
where dv is the H-distance of node v to the set Sm, that is, the smallest d such that there is a node
u ∈ Sm that is within d H-hops of v.

We claim that for each node v, after td,`(v) phases, node v has m or ` other messages in its
sent-set M ′v, w.h.p. It would then immediately follow that after tDH,k(v), node v has m in its
sent-set M ′v and hence also in Mv.

We prove the claim using an induction on h = dv + `. The base case h = 0 is straightforward as
when h = 0, we also have dv = 0 and in that case, the claim reduces to a trivial statement about
the local queue of node v: Namely that if node v has message m in its local queue at the start
of the algorithm, then after ` phases, v has either message m or ` other messages in its sent-set
M ′v. For the inductive step, consider a node v ∈ S such that dv + ` = h. If dv = 0, then the

27

claim follows from the same trivial local-queue argument. Suppose that dv ≥ 1 and consider an
H-neighbor u of v such that du = dv − 1. By the induction hypothesis, we know that by the end of
phase h− 1 = dv + `− 1, v has either m or at least `− 1 other messages in M ′v, and u has either
m or at least ` other messages in M ′u. For each of these four possibilities, we get that with high
probability, by the end of phase h = dv + `, node v has either m or at least ` other messages in
M ′v. This is because of the following: if v already has m or at least ` other messages in M ′v at the
end of phase h − 1 =, then we are done. Otherwise, using Lemma 4.7, we get that w.h.p., by the
end of phase h − 1, node v has received either m or ` other messages from u which shows that at
the start of phase h, node v has at least one message in Mv \M ′v, either m or a different message.
Thus, at the end of phase h, either m or ` other messages are in M ′v. This finishes the proof.

5 Conclusion

In this paper, we applied the abstract MAC layer approach to a natural problem: disseminating an
unknown amount of information starting at unknown devices through an unknown network (what
we call multi-message broadcast). We proved that the presence of unreliable links has a significant
but perhaps unexpected impact on the worst-case performance of multi-message broadcast. In
particular, with no unreliability or unreliable links limited to nodes close in the reliable link graph,
basic flooding (what we called the BMMB algorithm) is efficient. Once we shift to the similar
constraint of unreliability limited to nodes close in geographic distance, however, all solutions are
inherently slow. This indicates an interesting property of unreliability: the ability to unreliably
connect nodes distant in the reliable link graph seems to be what degrades worst-case performance
of broadcast algorithms. Finally, we demonstrated that if nodes have estimates of the model
time bounds and can abort messages in progress, even more efficient solutions to this problem
are possible. Most existing MAC layers do not offer an interface to abort messages. This result
motivates the implementation of this interface (which seems technically straightforward).

In terms of future work, there exist many other important problems for which a similar analysis
can be performed, such as leader election, consensus, and network structuring. It would be interest-
ing to investigate whether there are properties of link unreliability that are universal to distributed
computation in this setting, or if the properties of this type that matter differ from problem to
problem. Another direction to study within this same general area is whether the strength of the
scheduler strongly impacts worst-case performance. In our lower bound, for example, the scheduler
knows the algorithm’s random bits. This is a strong assumption and motivates the question of
whether this bound can be circumvented with a weaker adversary and a more clever algorithm.

References

[1] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. A Lower Bound for Radio Broadcast. Journal
of Computer and System Sciences, 43(2):290–298, 1991.

[2] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the Time Complexity of Broadcast in Radio
Networks: an Exponential Gap Between Determinism and Randomization. In Proceedings of
the International Symposium on Principles of Distributed Computing, 1987.

28

[3] Reuven Bar-Yehuda, Oded Goldreich, and Alon Itai. On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and randomization. J.
Comput. Syst. Sci., 45(1):104–126, 1992.

[4] K. Censor-Hillel, Seth Gilbert, N. Lynch, and Calvin Newport. Structuring Unreliable Ra-
dio Networks. In Proceedings of the International Symposium on Principles of Distributed
Computing, 2011.

[5] I. Chlamtac and S. Kutten. On broadcasting in radio networks: Problem analysis and protocol
design. IEEE Transactions on Communications, 33(12):1240–1246, 1985.

[6] Hyun Chul Chung, Peter Robinson, and Jennifer L. Welch. Regional consecutive leader election
in mobile ad-hoc networks. In Proceedings of the 6th International Workshop on Foundations
of Mobile Computing, pages 81–90, 2010.

[7] Hyun Chul Chung, Peter Robinson, and Jennifer L. Welch. Optimal regional consecu-
tive leader election in mobile ad-hoc networks. In Proceedings of the 7th ACM ACM
SIGACT/SIGMOBILE International Workshop on Foundations of Mobile Computing, FOMC
’11, pages 52–61, 2011.

[8] A. E. F. Clementi, A. Monti, and R. Silvestri. Round Robin is Optimal for Fault-Tolerant
Broadcasting on Wireless Networks. Journal of Parallel and Distributed Computing, 64(1):89–
96, 2004.

[9] Alejandro Cornejo, Nancy Lynch, Saira Viqar, and Jennifer L Welch. Neighbor Discovery in
Mobile Ad Hoc Networks Using an Abstract MAC Layer. In Annual Allerton Conference on
Communication, Control, and Computing, 2009.

[10] Alejandro Cornejo, Saira Viqar, and Jennifer L Welch. Reliable Neighbor Discovery for Mobile
Ad Hoc Networks. In Proceedings of the Workshop on the Foundations of Mobile Computing,
2010.

[11] A. Czumaj and W. Rytter. Broadcasting algorithms in radio networks with unknown topology.
In Proceedings of the Symposium on Foundations of Computer Science, pages 492–501, 2003.

[12] A. Czumaj and W. Rytter. Broadcasting Algorithms in Radio Networks with Unknown Topol-
ogy. Journal of Algorithms, 60:115–143, 2006.

[13] Sebastian Daum, Seth Gilbert, Fabian Kuhn, and Calvin Newport. Broadcast in the Ad Hoc
SINR Model. In Proceedings of the International Symposium on Distributed Computing, 2013.

[14] S. Dolev, S. Gilbert, M. Khabbazian, and C. Newport. More channels is better: Efficient and
robust wireless broadcast, 2010. Submitted for publication.

[15] L. Gasieniec, D. Peleg, and Q. Xin. Faster communication in known topology radio networks.
Distributed Computing, 19(4):289–300, 2007.

[16] Leszek Gasieniec, Andrzej Pelc, and David Peleg. The Wakeup Problem in Synchronous
Broadcast Systems. SIAM Journal on Discrete Mathematics, 14(2):207–222, 2001.

29

[17] M. Ghaffari, B. Haeupler, and M. Khabbazian. Randomized broadcast in radio networks with
collision detection. In Proceedings of the International Symposium on Principles of Distributed
Computing, 2013.

[18] Mohsen Ghaffari, Bernhard Haeupler, Nancy Lynch, and Calvin Newport. Bounds on Con-
tention Management in Radio Networks. In Proceedings of the International Symposium on
Distributed Computing, 2012.

[19] Mohsen Ghaffari, Nancy Lynch, and Calvin Newport. The Cost of Radio Network Broadcast
for Different Models of Unreliable Links. In Proceedings of the International Symposium on
Principles of Distributed Computing, 2013.

[20] Tomasz Jurdzinski, Dariusz R. Kowalski, Michal Rozanski, and Grzegorz Stachowiak. Dis-
tributed Randomized Broadcasting in Wireless Networks under the SINR Model. In Proceed-
ings of the International Symposium on Distributed Computing, 2013.

[21] Dilsun K Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The theory of Timed
I/O Automata. Synthesis Lectures on Distributed Computing Theory, 1(1):1–137, 2010.

[22] Thomas Kesselheim and Berthold Vöcking. Distributed Contention Resolution in Wireless
Networks. In Proceedings of the International Symposium on Distributed Computing, 2010.

[23] M. Khabbazian and D. Kowalski. Time-efficient randomized multiple-message broadcast in
radio networks. In Proceedings of the International Symposium on Principles of Distributed
Computing, pages 373–380, 2011.

[24] Majid Khabbazian, Fabian Kuhn, Dariusz Kowalski, and Nancy Lynch. Decomposing Broad-
cast Algorithms Using Abstract MAC Layers. In Proceedings of the Workshop on the Founda-
tions of Mobile Computing, 2010.

[25] Majid Khabbazian, Fabian Kuhn, Nancy Lynch, Muriel Médard, and Ali ParandehGheibi.
MAC Design for Analog Network Coding. In Proceedings of the Workshop on the Foundations
of Mobile Computing, 2011.

[26] D. Kowalski and A. Pelc. Broadcasting in undirected ad hoc radio networks. In Proceedings
of the International Symposium on Principles of Distributed Computing, pages 73–82, 2003.

[27] D. Kowalski and A. Pelc. Optimal deterministic broadcasting in known topology radio net-
works. Distributed Computing, 19(3):185–195, 2007.

[28] D.R. Kowalski and A. Pelc. Broadcasting in Undirected Ad Hoc Radio Networks. Distributed
Computing, 18(1):43–57, 2005.

[29] Fabian Kuhn, Nancy Lynch, and Calvin Newport. The Abstract MAC Layer. In Proceedings
of the International Symposium on Distributed Computing, 2009.

[30] Fabian Kuhn, Nancy Lynch, and Calvin Newport. The Abstract MAC Layer. Distributed
Computing, 24(3-4):187–206, 2011.

30

[31] E. Kushilevitz and Y. Mansour. An O(Dlog(N/D)) lower bound for broadcast in radio net-
works. In Proceedings of the International Symposium on Principles of Distributed Computing,
pages 65–74, 1993.

[32] Nancy Lynch, Tsvetomira Radeva, and Srikanth Sastry. Asynchronous leader election and mis
using abstract mac layer. In Proceedings of the 8th International Workshop on Foundations of
Mobile Computing, pages 3:1–3:10, 2012.

[33] Calvin Newport, David Kotz, Yougu Yuan, Robert S Gray, Jason Liu, and Chip Elliott.
Experimental Evaluation of Wireless Simulation Assumptions. Simulation, 83(9):643–661,
2007.

[34] A. Pelc. Algorithmic aspects of radio communication. pages 1–2, 2008.

31

	Introduction
	Model and Problem
	Multi-Message Broadcast with a Standard Abstract MAC Layer
	The BMMB Algorithm for Arbitrary G'
	The BMMB Algorithm for r-Restricted G'
	Guarantees for the Abstract MAC Layer
	The Multi-Message Broadcast Problem
	Proof Preliminaries
	The Key Lemma
	The Main Theorem

	Lower Bound for Grey Zone G'

	Multi-Message Broadcast with an Enhanced Abstract MAC Layer
	Algorithm Outline
	The MIS Subroutine
	The Message Gathering Subroutine
	The Message Spreading Subroutine

	Conclusion

