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PART I. LONGITUDINAL MOTION

i. INTRODUCTION AND CONCLUSIONS

The present dynamical investigation of the stability of motion of
aeroplanes is based upon the well-known theory of small oscillations
of rigid dynamics as first applied by Bryan 1 to aeroplanes and ex-
tended by Bairstow.2 The necessary coefficients for use in the equa-
tions of motion were determined by model tests in the wind tunnel of
the Massachusetts Institute of Technology.

The application of model experiments to predict the performance
of full-size aeroplanes is now so well established that no general
discussion of the theory of models is undertaken. A great part of
the actual experimental work was performed by Messrs. Huff and
Douglas. The oscillating apparatus was designed by Mr. Chow
under the direction of Professor E. B. Wilson of the Department of
Mathematics. Captain V. E. Clark, U. S. A., while a student in
aeronautical engineering, designed an aeroplane which was selected
as one type for investigation.

It is necessary to acknowledge the cordial interest taken in the
work by Professor C. H. Peabody, head of the Department of Navat
Architecture. From the beginning of aeronautical research in his
department, Professor Peabody has offered the warmest encourage-
ment by countless arrangements to facilitate progress and to pre-
vent interruptions.

Following the analysis of Clark's aeroplane, the work was repeated
for a model of a military aeroplane known as Curtiss JN2.' The

' G. H. Bryan, " Stability in Aviation."
' Technical Report of the Advisory Committee for Aeronautics, London,

1912-13.
' Plans and description given in "First Annual Report of the National Ad-

visory Committee for Aeronautics" (Report No. i, "Report on Behavior of
Aeroplanes in Gusts," by J. C. Hunsaker and E. B. Wilson, Washington, D. C.,
1916), Senate Document No. 268, 64th Cong., 1st Sess.
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Curtiss Aeroplane Company gave their full cooperation with a desire
to learn what improvements in the design might be suggested by our
stability calculations. Dr. A. F. Zahm of the research department
of that company made careful tests to locate the center of gravity
and to determine the moments of inertia of the actual aeroplane.

The Curtiss machine is a practical aeroplane with powerful con-
trols, which does not pretend to possess any particular degree of
stability. The Clark aeroplane, on the other hand, was designed to
be inherently stable while departing as little as possible from the lines
of the ordinary military aeroplane as typified by the Curtiss JN2.

The comparison of these two aeroplanes is interesting and leads to
the conclusion that inherent dynamical stability, both longitudinal
and lateral, may be secured in an aeroplane of current type by careful
adjustment of its surfaces and without material effect on controlla-
bility or performance.

The discussion in detail is confined to the Clark model, for brevity
of presentation, and the results only of the parallel calculations for
the Curtiss model are introduced where a comparison is suggested.

In Part I the general equations of motion are deduced in a simpli-
fied form which applies to horizontal flight in still air. The longi-
tudinal motion is then considered separately and the necessary
aerodynamical constants determined from wind tunnel tests. It is
found that the longitudinal motion, if disturbed by any accidental
cause, is a slow undulation involving a rising and sinking of the
aeroplane as well as a pitching motion. This undulation is stable for
high aeroplane speeds since it is rapidly damped out. At lower
speeds, the undulation is less heavily damped until at a certain critical
low speed the damping vanishes. For speeds below this critical
speed, the undulations tend to increase in amplitude with each swing
and the longitudinal motion is, therefore, unstable.

Similar calculations for the Curtiss aeroplane show a similar
critical speed below which the longitudinal motion is unstable. It is
believed that the existence of instability at low speeds has not been
indicated before, and it is hoped that the recommendations made to
reduce the critical speed may be of assistance to designers.

It appears a simple matter to secure any desired degree of longi-
tudinal stability by the use of properly inclined tail surface, and by
the use of light wing loading. It is pointed out that.excessive statical
stability, as indicated by strong restoring moments, is undesirable
and may cause the motion to become violent in gusty air. This vio-
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lence of motion may seriously impair the pilot's control and the
aeroplane may " take charge " at a critical time.

However, the longitudinal motion for any particular speed of flight
may be made dynamically stable, while at the same time only slightly
stable in the static sense, by the use of a large tail surface which lies
very nearly in the relative wind. If the minimum of statical stability
be combined with the maximum of damping, the pitching will be very
slow and heavily damped. The longitudinal motion can then be
dynamically stable and yet be without violence of motion in gusty air.

The general prejudice among pilots against " very stable " aero-
planes is believed to be justified. It cannot be too strongly insisted
upon that true dynamical stability is better given by damping than by
stiffness.

Experience with rolling of vessels has led to the design of vessels
of small metacentric height (a measure of statical stability) fitted
with generous bilge-keels (damping surface) for passenger carrying.
An effort is made to get away from the violence of motion associated
with stiffness.

In Part II, the lateral or asymmetrical motion is investigated. The
necessary aerodynamical constants are determined by wind tunnel
tests wherever practicable and two coefficients which cannot readily
be found experimentally are calculated by a simple approximate
method. The character of the motion as indicated by the solution oTf
the determinant formed from the equations is then discussed.

It is found that the lateral motion is a combination of a roll, yaw,
and side slip or " skidding." Using approximate methods, the com-
bined motion is resolved into three components, two of which are
important.

One type of motion is a spiral subsidence if stable or divergence
if unstable. The Clark aeroplane becomes spirally unstable at low
speed. The motion is a " spiral dive " due to an overbank and a side
slip inwards. The aeroplane makes a rapid turn with rapidly increas-
ing bank accompanied by side slipping inwards. The instability is
such that an initial deviation from course will double itself in about

7 seconds.
It is shown that the spiral motion may be made stable by adequate

fin surface above the center of gravity or upturned wings and by
reduction in " weather helm " due to too much rudder or fin sur-
face aft.

3
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The Curtiss aeroplane shows the same sort of spiral instability at
high speeds. This aeroplane had no dihedral angle of wings and
had a large rudder and deep body.

The second type of motion has been called a "Dutch roll" -from
analogy to a figure in ice skating. The aeroplane takes up an oscilla-
tion in yaw and roll simultaneously. It swings to the right banking
for a right turn, then swings back to the left banking for a left turn.
The combined yaw and roll has a fairly rapid period. The Clark
model at all speeds shows that this motion is heavily damped and
hence stable. At high speed, the period is 6 seconds and an initial
amplitude is damped to half value in less than 2 seconds. At low
speed the period is 12 seconds, damped to half amplitude in 6 seconds.

It appears from an approximate calculation that the " Dutch roll "
may become unstable if an aeroplane has too much high fin surface
and if there be not sufficient " weather helm " or rear fin surface. It
is seen that these conditions are the reverse of those for spiral insta-
bility. The conflicting nature of the requirements for stability in
these two kinds of motion suggests that an aeroplane is unlikely ever
to be unstable in each sense. It also indicates the difficulty of obtain-
ing lateral stability by raised wing tips.

In confirmation of theory, we found the Curtiss spirally unstable
at high speed and stable in the " Dutch roll," while at low speed the
spiral motion was stable and the " Dutch roll" unstable. The period
was 6 seconds and an initial amplitude doubled itself in 8 seconds.

It is believed that the majority of modern aeroplanes of ordinary
type are spirally unstable because of excess of fin surface aft. When
attempts have been made to remedy this fault by use of a large
dihedral angle upwards for the wings, matters have been made
worse. It is only to be expected that in overcorrecting spiral in-
stability a " Dutch roll " of more or less violence may be introduced.
Especially in gusty air would one expect high fin surface to produce
violent rolling.

The Clark aeroplane has very slight rise of wings, about 1*6,
and a small rudder. It is shown that at ordinary speeds this aero-
plane is stable in every sense, both longitudinally and laterally.
Whether this stability is excessive can only be determined by actual
flight experience in turbulent air. However, it has appeared possible
to secure a degree of stability in every sense in an aeroplane of con-
ventional type.

The object of the research has been to show how various features
of design may affect the motion of the aeroplane and only incidentally

dim
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to produce a stable aeroplane. The discussion has been confined to
motion in still air. If an aeroplane be unstable in still air it is
obviously worse off in gusts. The converse is, unfortunately, not
true, for an aeroplane which is very stable in still air may be so stiff
that in turbulent air it will be violently tossed about.

It is conservative to conclude that aeroplanes should not be un-
stable and that they need not be, since slight changes in the nature
of adjustments suffice to correct such instability of motion.

In view of the military use of aeroplanes inside the zone of fire the
probability of controls becoming inoperative is ever present. An
inherently stable aeroplane, with controls abandoned or shot away,
could still be operated by a skilful pilot by manipulation of the motor
power alone.

Any sort of automatic (or gyroscopic) stabilizer which operates
on the controls is of no use when those controls fail, and it should
be judged as an accessory to assist a pilot rather than as a cure-all
for the inherent instability of an aeroplane's motion.

The ordinary type of aeroplane readily lends itself to adjustments
which make for inherent stability of motion and there is no reason
to seek radical changes of type to insure stability. Freak aeroplanes
of great "stability" may be excessively stable in some ways and
frankly unstable in others. It is likely that the most satisfactory
aeroplane will be only slightly stable and that this aeroplane will in
any possible attitude be easily controlled by the pilot.

Controllability and statical stability are to some extent incompatible.
Dynamical stability requires some amount of statical stability and
considerable damping. It appears to be of advantage to provide the
minimum of statical stability and the maximum of damping. Then
the aeroplane's motion will be of very long period but heavily damped.

It is believed that the methods of investigation here described may
be applied to any type of aeroplane, and, by the systematic variation
of one feature of design at a time, a full understanding may be had
of the effect on the motion of each change. The process is of
necessity laborious, but compared with the difficulty of full-scale
experiment in the open air, the model method is rapid and inex-
pensive. It is rarely possible in actual flying to obtain any idea of the
effect of slight changes in design. Weather conditions, motor
troubles, personal peculiarities of pilots, etc., tend to add to the com-
plexity of an otherwise very simple problem.

Furthermore, experimental flying is dangerous. For example, I
knew a pilot who, to determine whether a new aeroplane was spirally
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unstable, took his machine up to a good altitude and allowed it.
to get into a spiral dive. The machine made five turns of a rapidly
winding and. contracting helix before he could bring it out on a
horizontal path. If the controls had been only a little less powerful
the machine would surely have crashed to the ground. That the
controls were adequate was purely a matter of good fortune. The
experiment was a success in that spiral instability was demonstrated.
Only a few minutes of time was required. However, no information
was obtained as to. the degree of instability present nor as to what par-
ticular changes would remedy matters. To complete the experiment,
it would be necessary to repeat the dangerous feat fcr every change
which suggested itself. Naturally, a designer will-be very economical
in his suggestions under such conditions.

2. TYPE DESIGN

The type aeroplane selected for the first investigation is a two-place
biplane tractor designed by Captain V. E. Clark, U. S. A., while a
student in the graduate course in aeronautical engineering at the
Massachusetts Institute of Technology. This aeroplane is considered
to be representative of modern practice in aeroplane design. Its
principal dimensions are as follows:

Wing area, including ailerons.......... 464
Span, feet ............................. 41
Aspect ratio ........................... 7
G ap ............................... 6.37
Dihedral of wings, degrees............ 176-75
Area, stabilizer ...................... 16.1
Area, elevators ...................... 16.0
Area, rudder ........................ 9.35
Length, body ........................ 24.5
Depth, body, maximum ................ 3.2
Width, body, maximum ............... 3.3
W eight, bare ........................ 1,070
W eight, personnel ................... 320

W eight, fuel and oil.................. 415
Weight, full load................... 1,805

Radii of gyration ........

Brake horse-power ...................
Fuel and oil per B. H. P., hour ..........

5.2

4.65
6.975

110

sq. ft.
max., 40.2 mean.
f

f.

sq.
sq.
sq.
ft.
ft.
ft.
lbs.
lbs.
lbs.
lbs.
ft.,
ft.,
ft.,

ft.
ft.
ft.

in
in
in

roll.
pitch.
yaw.

0.73 lb.

6 VOL. 62
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Maximum speed ..................... 87 miles per hour.
Minimum speed ..................... 35 miles per hour.
Initial rate of climb................... 900 ft. per min.
Best glide .......................... ' in 9
Endurance, full power ................. 5.6 hours.
Endurance, reduced power, 14 hours at.. 47 miles per hour.

3. MODEL

A model, scale, was made by Edward Tighe, model maker,

giving a span of 1.58 feet. The size of the model was limited by the
size of the wind tunnel which is 16 square feet in section. The model
is shown in figure I (see pp. 8 and 9). Note that wires are omitted
and struts are made round instead of " stream line " in section. It is
believed that the effects of these changes on total resistance largely
counterbalance each other. This model was carefully shellacked and
polished to minimize skin friction. The model is, of course, much
more smooth than the full-size aeroplane, as it should be, in order that
the surfaces may remain geometrically similar. Model work was to
the nearest hundredth of an inch. No propeller was fitted, but in the
design account was taken of the propeller race in augmenting
resistance.

For simplicity, the model was made with trailing ailerons or wing
flaps integral with the wings. This somewhat increases the effective
supporting area. The stabilizer and elevator were made in one,
corresponding to the elevator flaps in neutral position. These points
are made clear on figure I.

4. WING COEFFICIENTS

In the course of the design, a wing section was devised by Clark
which showed a low resistance at high speed and small angle of
attack and at the same time was thick enough to permit the use of
robust wing spars. A model of this wing was made, of 18 inches
span by 3 inches chord, and tested in the wind tunnel. For various
angles of wing chord to wind, the lift L, drift D in pounds, and
pitching moment M in pounds-inches were observed for a wind of

30 miles per hour; air of density .07608 pound per cubic foot.
The wind tunnel and balance are duplicates of the 4-foot installa-

tion at the National Physical Laboratory, England, and reference
may be made to the technical report of the Advisory Committee for
Aeronautics, year 1912-13, for a description of the apparatus and
method of operation.
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FIG. IA.

FIG. IB.
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The lift and drift coefficients Ky and Kx were computed from the
observed L and D, using such units that the coefficient is pounds force
per square foot area per mile hour velocity. Curves of coefficients
are given on figure 2, which also shows the ratio L/D, a measure of

N

4:
'I'

S%< 'J /--.

26:< ////3 /
.002. ~~/ e -- _ -/s ~~ __

.006

.00/16 _ Yod

.00'4' ___/___ _/_

01

- -le 0 .4 6 -C /0 /l /f /6 A
o/f C/0o0-d to AY/./d .

Fic. 2.-Wing coefficients.

the effectiveness of the wing. A maximum L/D ratio of 18 was
found for an angle of attack of 3'. For a 41-foot wing at 70 miles
per hour, it is believed that the lift coefficient is not greatly different,
but that the drift coefficient at small angles is materially reduced.
The effect is to increase the ratio L/D. Results of tests at the
National Physical Laboratory (Tech. Rept. Adv. Comm. Aero., 1912-
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13, p. 81) were applied to the L/D curve for our model to obtain an
approximate curve of L/D to apply to the full-size wing. As a
monoplane surface, we get a maximum value of L/D of about 20.

The particular design is a biplane of aspect ratio 7. Well-known
corrections for biplane interference loss and aspect ratio gain were
applied to get a corrected curve for use in the design.

"4.

UP'. I Owen~

as1 th cntourt ofm th scio.Cete f rssrei dfned- h
vetr with-- th-pan-o- te hod tcs en tha, thei win setio

i sy s 3 if th.P e zwsng er a

.04S ols

00

Oo/

FIG. 3.-Wing section dimensions and resultant force vectors.

The center of pressure for this wing is shown b figure 3, as well
as the contour of the section. Center of pressure is defined as the
intersection of the resultant force on the wing (represented as a
-vector) with the plane of the chord. It is seen that the wing section
is unstable longitudinally at small angles. That is, if the wing heads
down so that the angle of attack becomes -30, the moment of the
resultant force tends to turn it down still farther.

Applied to the aeroplane, it is necessary to balance and correct this
tendency to dive by horizontal tail surfaces of proper size and

attitude.

I I
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respectively. The discrepancy is I per cent only and is about the

precision of the measurements. The comparison is best brought out

by eliminating reference to angle of attack as the effect of the change

in tail angle appears to be mainly to move the curves of L and D,
plotted on i, to the right or left.

Figure 5 shows the ratio L/D for the model for cases I, II, and III,
plotted on L in pounds as abscisso. For small values of L and angles

of incidence between -2' and +20, corresponding in practice to

high-flight velocity, the curves are practically identical. For angles

'9 / 2 ' f .6 7 19 x a Z/ ZO /~ Y 1 1/ /7

FIG. 5.-Curves of L/D plotted on L for three tail settings.

of incidence near 80, the L/D ratio for case III is 8.6, while it is 8.2

for case II, and 8.o for case I.

It appears, therefore, that changing the angle of tail surface has

but slight effect on the lift and drift of the aeroplane. The actual

aeroplane should have the same maximum and minimum speeds in

any case since the maximum lift and minimum drift are about the

same regardless of angle of tail surfaces.

The statical stability against longitudinal pitching is, however,

very different for the three cases. Thus the pitching moments (ob-

served about the spindle and converted to pitching moments about

the assumed center of gravity) are as follows, in pounds-inches on

the model at 30 miles per hour. Positive angles and positive moments

are stalling angles and stalling moments respectively.

7 - - __'__ __

- - - - -7' -

:2 Fe= __f .= - _
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___ ___ ___ J _e
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FIG. 4.-Curves L, D, and M for three tail settings.
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respectively. The discrepancy is I per cent only and is about the
precision of the measurements. The comparison is best brought out
by eliminating reference to angle of attack as the effect of the change
in tail angle appears to be mainly to move the curves of L and D,
plotted on i, to the right or left.

Figure 5 shows the ratio L/D for the model for cases I, II, and III,
plotted on L in pounds as abscissa. For small values of L and angles
of incidence between -2' and +20, corresponding in practice to
high-flight velocity, the curves are practically identical. For angles

V

4 / 2 5 5 6 ~7 .49'9 oZ ~ / ~/ 6

FIG. 5.-Curves of L/D plotted on L for three tail settings.

of incidence near 8', the L/D ratio for case III is 8.6, while it is 8.2

for case II, and 8.o for case I.

It appears, therefore, that changing the angle of tail surface has

but slight effect on the lift and drift of the aeroplane. The actual

aeroplane should have the same maximum and minimum speeds in

any case since the maximum lift and minimum drift are about the

same regardless of angle of tail surfaces.

The statical stability against longitudinal pitching is, however,

very different for the three cases. Thus the pitching moments (ob-

served about the spindle and converted to pitching moments about

the assumed center of gravity) are as follows, in pounds-inches on

the model at 30 miles per hour. Positive angles and positive moments

are stalling angles and stalling moments respectively.

6 _ _ _

7-/ R_
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PITCHING MOMENTS, POUNDS-INCHES

Case I Case II Case III

-4 +.089 + -599 +.26
-2 +.008 + -473 +.16
-1 +.022 + .454 +.12

o +.o16 + .292 +.12
+1 +.030 + .143 +.07
+2 +.037 + .037 -. OI
+4 +.039 - -159 -. 12

6 +.o16
8 +.023 - .476 -. 28

10 ... ...

12 +.o86 - .884 -- 39
14
16 -. 013 -1-328 -. 53
18 -. 336 -1.378 -. 82

Case I, with tail at -2'75, shows very small pitching moments and
may be said to be neutral for ordinary angles of' incidence. Thus
if the aeroplane be flown at +20 incidence, in order to maintain
balance at this attitude the pilot must impress a diving moment of
-. 037 pound-inch (on the model) to overcome the stalling moment

+ .037 given above. Then if the aeroplane be accidentally tilted up to
+12' by a wind gust or other cause, in the new attitude the net pitch-
ing moment is still positive, and hence tends to tilt the machine still
more. It is, therefore, unstable unless the pilot intervenes with the
horizontal rudder.

For case II, tail at -7', there is a strong righting moment always
acting to prevent stalling or diving. The machine is very stable, in
fact excessively so. For instance, flying at 20 incidence, the moment
to be held by the pilot is very small. Suppose, however, he wishes
to fly at +120 corresponding in the full-scale aeroplane to about 36
miles per hour. To maintain a balance at +12 incidence, he must
exert a stalling moment by use of the horizontal rudder equal to about

.884 X (26) 3 (362 1,970 pounds-feet. The arm of the elevator is

about 20 feet (distance aft of center of gravity), requiring a lift of
ioo pounds on the elevator flaps. The elevator is able to exert this
force if turned up about 10*. The elevator motion available for con-
trol in gusty air is thus largely used up in maintaining balance. The

I5
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drift on this elevator flap may be over 20 pounds, making a waste of

3.5 propeller horse-power, or about 6 brake horse-power.
It is preferable to balance a machine at high speed by placing the

center of gravity well forward. Then the pilot will have to carry
his elevator turned up when flying at low speed. But at low speed,
he is most in need of the full elevator motion for control of pitching.
We, therefore, conclude that case II, with fixed stabilizer at -7*,
is very much too stable or stiff longitudinally, and case I, with
stabilizer at 2275, is not stable enough.

Case III, with stabilizer at -5', appears to balance longitudinally
at +20 incidence, and at + 12' incidence to have (full size) a natural
diving moment which could be held by a negative lift on the elevator
of only about 44 pounds, corresponding to about 40 elevator angle.
Consequently, it was decided to adopt the arrangement of case III
for the subsequent stability investigation.

6. VECTOR REPRESENTATION

A clearer conception of longitudinal balance is obtained by repre-
senting the resultant forces acting on the model as vectors. Thus, for
case II, we observed on the balance the lift L and drift D. The
resultant force acting was then of magnitude R= /IVL'+D . This
resultant force lay in a direction making an angle 0 given by
0=tan-' L/D. The line of action of this resultant was at a per-
pendicular distance from the spindle axis given by d=M/R, where
M, is the observed pitching moment about the spindle. The re-
sultant force, R, is thus defined in magnitude, direction, and line of
application, and may be represented graphically as a vector. In
figure I, the resultant force vectors for case III are drawn on the
side elevation of the model. The'model is considered to be fixed and
the wind direction to change so that the angle of incidence varies
from -I to +8'. The vectors are, therefore, drawn relative to
the aeroplane.

The vector for 20 passes near the center of gravity. If it were
desired to balance the machine at some other attitude, 6* for example,
the center of gravity should be located at some point on the vector
for 60.

Note that on figure I, for angles greater than 20, the vectors pass
to the rear of the center of gravity indicating diving moments and
vice versa. Thus the machine is in stable equilibrium at 20, and if
deviated from this angle, righting moments are at once created which
tend to restore the normal attitude.

VOL. 62
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Such stability is " inherent " in the design of the aeroplane and
depends wholly on the location of the center of gravity and setting of
the stabilizer. No automatic devices are required which may or
may not function in an emergency. The inherent stability here shown
is static only. Later we will investigate the effects of inertia and
damping involved in dynamical inherent stability. However, dy-
namical stability is impossible unless there be statical stability, and
before undertaking a study of the former property, we were obliged
to provide a reasonable righting moment to oppose diving and
stalling.

7. PERFORMANCE CURVES

In the design of this aeroplane, the resistance, and hence the speed
for given power, was estimated from tests on wings, body, struts,
wires, etc., considered separately. The test results were corrected
and expanded to full speed full size, using reasonable corrective
factors. As is well known, the resistance of many parts does not
increase so rapidly as the square of the speed, on account of skin
friction. Making all allowances a speed of over 85 miles per hour
was predicted for IO brake horse-power.

If we use the lift and drift observed on the model full size

at 30 miles per hour and convert to full size by assuming the "law
of squares," the performance is not quite so favorable and a maxi-
mum speed of but 75 miles per hour is indicated.

For a stability investigation we are little concerned with the exact
speed, and for simplicity, the L and D from the wind tunnel test on
the complete model of figure I are converted to full size by multiply-
ing by the squares of speed and scale.

A total weight of 16oo pounds is assumed, corresponding to tanks
half full. For any speed V the lift is a function of speed and atti-
tude and must equal the weight W.

By the "law of squares "
Force on Model ( 3 

2

Force on Aeroplane \26V
hence:

26 = 'O

where L is lift on model at 30 miles per hour.
For a series of values of L, corresponding to a series of attitudes

or angles of incidence, the required speed V was computed. The

I7 -
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head resistance of the aeroplane moving at these attitudes and with
these speeds was computed from:

T=D (26V ,
30

where D is drift on model at 30
required.

miles per hour, and T total thrust

/60

160

/00

a 0

60

40

16

.,*/ 3*6 39 6, 97 --/ _-. 9 6.! 67
4

"rJlbd wspew- /Yoo"-

7;167 6 Z

FIG. 6.-Characteristic performance curves.

The effective horse-power required, angle of wing chord to wind
and thrust required are plotted as " characteristic performance
curves " on figure 6.

8. AXES AND NOTATION

We shall adopt a notation similar to Bairstow's for the study of
dynamical stability. The normal attitude of the aeroplane is its

position when in steady flight in a straight line. We select rectan-
gular axes with origin at the center of gravity and fixed in the aero-

7z
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plane and moving with it in space. In the normal attitude, the axis
of x is tangent to the trajectory of the center of gravity with its
positive direction toward the rear. The axis of z is normal to x and

Z

FIG. 7.-Coordinate axes, x, y, z.

y in the vertical plane, and the axis of y horizontal and directed to the
left. The axes are shown in figure 7. As the aeroplane rolls, yaws,
and pitches these axes move with it, so that z is no longer in the
vertical plane of x, nor y horizontal.

I9
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Let the aerodynamical forces along the axes x, y, z be denoted by
X, Y, Z and expressed in pounds force per unit mass.' The moments
about these axes are L, M, N in pounds-feet per unit mass. Angular
velocities about the axis are p, q, r in radians per second. Let angles
of pitch, roll, and yaw away from the normal attitude be 0, 4, q in
radians. Signs are positive in the directions xy, yz, and zx.

The radii of gyration about the axes x, y, z are KA, KB, K0 in feet.
The mass of the aeroplane is in in slugs. The products of inertia are

D, E, F. Two are zero for reasons of symmetry, and one is small in
ordinary aeroplanes.

In normal flight in still air, the apparent wind blows in the posi-
tive direction of the axis of x. Let this velocity be produced by
the forward velocity U of the aeroplane in normal flight. U is a
negative number of feet per second.

Let small changes in velocity components along the axes x, y, z

be u, v, w when any departure is made f rom the normal flying attitude.
In normal flight it is assumed that the power available maintains

the aeroplane at such a speed that the weight is sustained and also
that the normal attitude is that proper for the speed.

9. EQUILIBRIUM CONDITIONS AND DYNAMICAL
EQUATIONS OF MOTION

Let the inclination 2 of the flight path to the horizontal be 00. Since
normal flight takes place in a straight line, i0= o0=o. There is no
oscillation and p.=q=ro -o, and Lo=No=o.

If the propeller thrust T, be exerted in a line above or below the
center of gravity h feet, then

Mo = - Toh,
T,,= -gsin 00 -X 0,
Zo=g cos 00.

In this aeroplane h = o, and hence Mo= o.
If any accidental cause slightly disturbs the normal attitude of the

aeroplane, the relative wind is no longer symmetrical and the aero-
dynamical forces and moments are X, Y, Z, L, M, N.

In general, the aerodynamical forces and moments caused by the
deviation from "normal attitude " depend upon the relative motion
of the aeroplane through the air, which motion is defined by U, u,
v, w, p, q, r. Thus X=f(U, u, v, w, p, q, r) where the form of the
function f is not known; and five similar expressions for Y, Z,
L, M, N.

* Unit mass is the slug of 32.2 pounds weight.

2 Consider Oo positive for an upwardly inclined path as when climbing.
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In the theory of small oscillations u, v, w, p, q, r are small by hy-
pothesis and we may expand X by Maclaurin's theorem, neglecting
squares and products of these small quantities. Hence,

X = X 0 + uX, + vXv + wXw + pXv + qXq + rXr,
Y= Y 0 +uYU+vY,+WYFW+pYp+qYq+rYr,

and similar equations for Z, L, M, N.
Here X., Xv, etc., are the partial derivatives of X with respect to

u, v, etc., and are the rates of change of X with u, v, etc. That is,
XUax a9x

There are, therefore, 36 " resistance derivatives " involved which
are constants for the aeroplane and depend upon the arrangement
of surfaces and their presentation to the relative wind.

Fortunately, for reasons of symmetry, 18 of these derivatives
vanish, for example: X, Xp, X,. We then write:

X=X+uXu+wXw+qXq,
M=M0+uMu+wMw+qZq,
Z=Zo+uZu+wZw+qM,
Y Yo+vYv+pYp+rYr,
L=Lo+vLv+pLp+rLr,
N=N+vN,+pNp+rNr.

The above expressions are only approximate if u, v, w, etc., are not
small.

The equations of motion for a rigid body having all degrees of
freedom, are:

du
dt +wq-vr=X+T0 +gsin( 0 +),

d+ (U+u)r-wp=Y-g sin 0,

dt +vp-(U+u)q=Z-gcos(0+ ),
d h
dh- rh,+qh

8 =rmL,
dt
A 2  ph3+rh1=mM+hT,
dt

dh- qh1 + ph2 = MN,dt

where
h= pK m-qF -rE,

h2=qKm-rD - pF,
h3=rK2m-pE -qD.

2I
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But the products of inertia (relative to moving axes fixed in the
body) D=F=o, because the aeroplane is symmetrical about the xz
plane. Substituting the above expressions for h1, h2, h,, in the
equations of motion, and neglecting products of small quantities,
we have:

u=X+ T,+gsin(O+), K, E drL
dt dt Init

dv + Ur= Y+g sin sin( 0 +6) -g sin 4 cos(9 0 +6),

K dq = h'T,dtd

-wUq=Z-gcos(0+0), Ke = r Ed N.

If we substitute for X, Y, etc., their values from the expansion in
terms of the first powers of u, v, w, etc., and observing that from the
conditions of equilibrium,

M0 + Toh= To +Xo+g sin O 0=ZO-g Cos 60=0,
we will have, making sin 4=$, sin &=&, sin 0=0, and cos 6=1.

d uXu'+wXw+qXq+g9 cos O,

=qU +uZ.+wZ, + qZ7+g9 sin 60,

dv
- = -rU+vYv+ pY+rYr +gg sin 60 -g cos 0,

K,2, =uM+wMw+qM,

K,2 dp E dr'L PpL.K =vL +pL + rLl,,

K2dr E dp
K'" dt mdt =vNv+pNp+rNr.

We here assume To a constant, or that there is no change of pro-
peller thrust with small change in forward speed. With a motor in
" free route," if the machine speeds up, the propeller tends to race or
to speed up so that the slip shall be about constant, and hence the
thrust is not materially changed. Since the forward speed (U u)
is approximately equal to U, the thrust is approximately constant
and equal to To.

We have also assumed that T, lies parallel to the axis of x. At
very slow speed this is not exactly the case and T, has a small vertical
component assisting in sustaining the weight of the aeroplane. At
high speeds, T, is, however, usually parallel to x and the assumption
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that it always is so parallel is here made for simplicity. In any case
T, is eliminated by the conditions of equilibrium.

In the present investigation the normal flight path is assumed
horizontal, or 00=. The product of inertia E is small for ordinary
aeroplanes with the heavy weights fairly symmetrical above and
below the axis of x. In view of the probable insignificance of E and
the fact that E cannot easily be determined for an aeroplane by
simple experiments, it is here neglected. In the simplified form the
equations of motion then are:

du (a
du =uXu+wXw+qX +g9, (1a)

dw=qU+uZu+wZw+qZq, 
(ia)

dv = -g-rU+vYv+pYv+rYr, (ib)
dt

K A =vLV+pLp+rLr, (ib)
2 di

K=uM+wMw+qMq, (ia)

K ct=vN+pATv+rNr. (ib)

It is seen that equations (ia) involve only the longitudinal motion
or motion in the plane of symmetry xz of the aeroplane, -since p, r, v,
and p do not appear. Likewise, equations (ib) involve only the
asymmetrical motion, lateral and directional, and do not contain
0, u, w, and q. The two sets may then be considered separately, the
former on integration giving the " symmetrical motion" and the
latter the " asymmetrical motion."

.dOSince do =q, equations (ia) may be written in terms of three

variables u, w, and 9 and their first derivatives. The " resistance
derivatives "' X., X, Xq, etc., are constant coefficients. The three
variables are each functions of the time, and the three equations at
any instant of time must be satisfied by a concordant set of values of
u, w, and 0. The equations are, therefore, simultaneous and are
linear differential equations with constant coefficients.

Writing the operator D to indicate differentiation with regard to

time or d
dt'

(D-Xu)u-Xww-(XD+g)0,
-Zu+ (D-Zw)w- (Zq+ U)DO=, (2a)
- Miu- Mww+ (KB 2D 2- MD)= o.
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The right-hand members of these equations are no longer zero if
any wind gusts are assumed.' The complementary function may be
found by the well-known." operational method " by algebraic solution
for D. (See: Wilson's " Advanced Calculus," p. 223.)

The physical condition that the three equations shall be simul-
taneous is expressed mathematically by equating to zero the determi-
nant A formed by the coefficients of the variables u, w, and 6. Thus:

D+XU, -X, -(XaD+q)
= -Zu, D-ZW, -(Z+U)D O.

-Mu, -Mw, (K D 2-MqD)

Expanding the determinant we obtain:

A 1D
4 +B 1D 3 +C 1D 2 +D 1 D +E 1 =o,

where for abbreviation:

A =K ,

B - (Mq+X,jK+ZwK ),
_ Zw, U+Z Xu, Xq +K Xu, XMw, Mq Mw, Mq B ZU, Z,

XU, X, Xg Mu, (-) sin 60D 1=- Zu, Zw, U+Zq -g ,
MU, MW, Mqc

X, Xw, cos 60
E1 = -g Zu, Zw, sin 60.

MU, MW, o

The solution of the biquadratic A for D is of the form:

D=a, b, c, or d,
6o=K1ea +K2e0 +Kec'+ K4edt,

where K1, K2, K2, K4, K, . K12 are constants determined by initial
conditions. Solutions for u and w are similar.

The condition for stability of motion is that 6, u, and w shall
diminish as time goes on. Hence, each of the roots of the biquadratic
must be negative if real, or, if imaginary,-must have its real part
negative. This condition for stability may be applied without finding
the constants K1 to K-,2 by solving only the biquadratic for a, b, c, d.

Indeed, Bryan has shown that by use of Routh's discriminant the
biquadratic need not be solved. The condition that a biquadratic
equation have negative real roots or imaginary roots with real parts
negative, is that A, B1, C 1, D, E, and BCD,-AD 1

2 -B, 2 E, be
each positive.

' Loc. cit., p. i, i, footnote 3.
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In a similar manner the equations (ib) defining the asymmetric
motion may be expressed as linear differential equations with con-
stant coefficients.

Substitute D2 p for dp and Do for p.' Then:
dt

(D- Yv)v+ (U- Y,)r+ (g- YvD)q0=0,
- Lvv - Lr+ (K'D 2 - LpD )=0o,
-Nov+ (K D -Nr)r -NvD=o,

A 2 =A 2D +BD 3+C 2D+D2D+E2=,
where:

B2= - YKK' - K'L - N,.K,

C2 = - LrNp + NrLp + KcLvY, +NrY,KA+N,UKA
-(LvYpK' +NYrK2),

D 2 =Yv(LrNp-NrLv)+L,(UNv+gKC) -ULpNv
+ (N1rLp - LvYrNp+ LvYvNr - NYpLr),

E 2=g(NvLr - LvNr).

As before, the condition for stability is that the real roots and real
parts of imaginary roots of the biquadratic be negative.

io. CONVERSION TO MOVING AXES, LONGITUDINAL DATA

Horizontal flight at o incidence i of wing chord requires a
speed of 112.5 feet per second, or about 77 miles per hour (see the
characteristic performance curves). The normal attitude then has
the axis of x parallel to the wing chord and horizontal. The axis z
is vertical. For slow speed with an angle of incidence i of 12', a
speed of 54 feet per second, or about 37 miles per hour, must be main-
tained. In this case, the normal attitude has the axes x horizontal
and z vertical, but the axes are entirely different from those used for
the high-speed condition if they are considered with reference to the
aeroplane. The axis of y is, however, the same in both cases.

'Since we consider only the small oscillations, # and V/ are of the nature of
infinitesimals, and hence compound vectorially as do p and r. Professor
E. B. Wilson suggests the important simplification of the treatment given by

Bryan or Bairstow due to making =P and =.r. They used angular
t dt yue nua

coordinates giving expressions for and in terms of p and r and thedt dt
angles which are initially cumbersome but ultimately reduce to the simple
form here given.
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The aeroplane may pitch about its normal attitude. At any instant
the angle of pitch is the angle 0 between the normal attitude axis of
x and the new position of x. The axes, of course, pitch with the
aeroplane. The axes are fixed by the equilibrium conditions and
differ for each speed since each speed requires a different attitude.

~2 I IT IT VT I K

7ee

-66 /47'

t160

7./f'

0

FIG. 8.-X, Z, and M for i=o'.

It was convenient to measure in the wind tunnel the lift and drift

on the model referred to axes always vertical and horizontal. The

corresponding forces along the moving axes x and z are readily

obtained from:

Z'=L cos 6+D sin 0,
X'=D cos 0-L sin 0.

Here L and D are pounds on model, 0 is angle of pitch, and Z' and X'

are pounds force along the moving axes. X' and Z' are then con-
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verted to full-speed full scale as usual and divided by the mass m in
slugs to obtain X and Z in pounds per unit mass on the full-size aero-
plane at the proper speed.

_A0

_ _ _ _ _ _ _ _ - lea

177,--.5

--- 0 '0

FIG. .- X, Z, and M for i

1*0

=30

The pitching moment full size is obtained from the observed model
pitching moment about the center of gravity by an obvious manipula-
tion. The moment is expressed in pounds-feet per unit mass and
lettered M.

-r

I5

3

k
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For this aeroplane we have, for example,

44-- -/5-

tO te' ' -/1Kt6 f/10-e

-6* - * -- O*.. ? ' * f 6

FIG. io.-X, Z, and M for i=6*.

For this aeroplane we have, for example:

m = 50 slugs, 0 =0,
U -112.5 foot-seconds (high speed, 76.9 miles per hour),
i=o, normal attitude.

00 X Z M

-4 -4 +10.66 + 11.00 + 50.2
-I -I + 9.62 + 21.18 + 23.2

O 0 + 8.98 + 32.06 + 23.0

+I +1 + 8.28 + 43-74 + 13.5
2 2 + 7-38 + 56.oo - 1-93
4 4 + 4.80 + 78.26 - 23.2
8 8 - 2.58 117.00 - 54.0

12 12 -10.68 140.6 - 75-3
16 16 - 8.72 149.00 -102.3
18 18 - 1.25 147.00 -158.2
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____ ___ - 20

-Vo

F/0 -. .- X, ,- - r = *

FIG. I i.-X, Z, and M for i = 12*.

e 56

.3,.

1' 2s

N
me k

10

10

-9

r-1 '6"7

U= -54 foot-seconds (low speed, 36.9 miles per hour),
00=0, i=12', normal attitude.

X Z * M

-4 -16 +1.87 - 3.0 +11.6
0 -12 +3-58 + 6.8 + 5.30

+4 - 8 +4.84 +17.4 - 5.32
8 - 4 +5.02 +26.6 -12.5

12 0 +4-38 +32.3 -17.4
16 4 +5.24 +34.2 -23.6
18 6 +6.78 +33.4 -36.5

When 0=0, note that Z, should equal 32.2 or g, a check on the
table.

Curves of X, Z, M for the four speed conditions are given on
figures 8, 9, 10, and ii. These curves are not " faired," but drawn

3

29



SMITHSONIAN MISCELLANEOUS COLLECTIONS

through the experimental points to show the consistency of the
measurements and calculations.

ii. RESISTANCE DERIVATIVES, LONGITUDINAL

The longitudinal oscillations of the aeroplane are given by three
equations of motion of 9, in which certain " resistance derivatives"
are required.

The quantity X, is the rate of change of X with change of forward
speed u. Since X varies as the square of the speed, X"= CU 2 where
C is some constant.

Then =2CU=: 2X0 =X. and ZU 2Z0 = -, so that these
auT U _U U'

coefficients are readily calculated.
The derivatives XW,, Z,, M, represent the effect of a vertical com-

ponent of velocity w. The vertical component of velocity w acts with
the horizontal velocity U to cause the resultant wind to have an
inclination to the horizontal

AO=tan-1 U =57-3 U

when AO is a small angle measured in degrees.
Hence

Xw_ AX 57-3 AX
w U A6 '

Z -57.3 AZ
U AO '

M -57.3 AM
U A0

The method practically substitutes the slopes , AO ' of
AOAO AO

the tangents to curves of X, Z, M, at 6=0o, f or the actual curves. We
have assumed AO small. If a curve be nearly a straight line, we may
substitute the tangent for the curve without great error. Thus it
may not always be necessary to assume AO very small. In fact, a
range of from 5' to 8' is tolerable.

Since we assume M0 =o, the balance should be undisturbed by
change of forward speed. Therefore, M =o in all cases.

Note that a positive value of Mw corresponds to a curve of pitching
moments giving statical stability or a righting moment. If M, is
positive it does not necessarily follow that the aeroplane will be
dynamically stable, but if M, is negative, instability is of course
certain. X, should be negative to indicate increased resistance for
increase of forward speed - u. For stability, Zw should be large and
negative, indicating increase lift for larger angles of incidence and
vice versa. At stalling angles, Z,, tends to approach zero.
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12. DAMPING

The derivative Mq is the rate of change of pitching moment due to
angular velocity, or rapidity of pitching q. For a pitch of velocity
dO

=q, there is a moment of qMq tending to resist such pitching.

This is the damping due to the horizontal stabilizer, elevator flaps,
body, and all parts forward and aft of the center of gravity. The
pitching takes place about the center of gravity. The damping is
increased by a large tail and a long body.

The damping of a surface should depend on the area of the sur-
face, the moment arm of that surface, the linear velocity with which
it swings through the air (which varies also as the moment arm), and
with the velocity of advance. Thus: qMq-ql'U, where 1 is a linear
dimension.

If we can measure Mq for the model at any wind speed, we may
convert it to Mq for the full-scale aeroplane at its proper speed by
multiplying by the fourth power of the scale and the ratio of aero-
plane speed to wind speed. Naturally this is an approximate method,
but it is the best available since full-scale tests for Mq are not
practicable.

Similarly N,. and L, may be obtained from model tests. These
refer to the damping of a yaw and a roll respectively.

In order to measure Mq, N,, and Lp a special oscillator was de-
signed, shown in the photograph in figure 12. By setting the appa-
ratus to oscillate in pitch, roll, or yaw the corresponding damping
coefficients can be computed from the observed decrement. The pho-
tograph (pl. I) shows the apparatus with model as used for pitching
oscillations.

Let:
I=moment of inertia of all oscillating parts in slug foot units,
m'=mass of all oscillating parts in slugs,

M.-momefit of air forces on model at rest,
Mzzmoment of springs at rest,
KO-=additional moment of springs when deflected,

c=center of gravity of entire apparatus above pivot, feet,
O=angle of pitch from normal attitude in radians,

dO
/A0 =damping moment due to friction,

dO
dO- damping moment due to wind on apparatus,

dOdO =damping moment due to wind on model,kcn ' =t

cm'O =static moment due to gravity.
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The equation of motion then is:

d2 dO
I dt2 * + dt +(K-cm')0+Mo-Ms=o.

But Mo=M by the initial condition of equilibrium. Let

L=1o+-w+m;
then 

af2o dOthen p d- + (K -cm') 0 -o.
Idt 2 +/1 dt +K c'60

The solution of this equation is well known to be:

0= Cel cos { t (K-cm') - /A + ,

where C and a are arbitrary constants. If time be counted when the
amplitude of swing is a maximum, then cos I = I, and 0=0o, the

initial displacement. Also if the number of beats be counted by
observing the times for succeeding maxima, a plot of amplitude on
time will have for its equation the simple form:

0=0oe 21.

The coefficient IL is the logarithmic decrement of the oscillation and
must be numerically positive to insure that the oscillation dies out
with time.

The apparatus was fitted with a small reflecting prism by which a
pencil of light was deflected toward a ground glass plate set in the
roof of the tunnel. Nine lines spaced 0.2 inch were ruled on this plate.
With the model at rest the beam of light was brought to a sharp focus
on the line marked zero. By means of a trigger the observer started
an oscillation of the model, and the spot of light was observed to
oscillate across the scale. The time t was observed in which an
oscillation was damped from an amplitude of 9 to an amplitude of I,

for example.

Then: loge 00 = t =loge 9, and knowing I and t, ft is calculated.
0 21

Preliminary tests showed that the same value of IA was obtained
whether the timing stopped at 0=5, 4, 3, 2, or I.

Oscillation tests were made at five wind velocities varying from 5
to 35 miles per hour. The coefficient p. appeared to vary approxi-
mately as the first power of the velocity.

Similar tests were made with the model for no wind to determine

,Lo, which may be said to be due almost wholly to friction and very
slightly to the damping of apparatus and model moving through

the air.
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FIG. 12.-MODEL IN POSITION FOR PITCHING OSCILLATIONS ABOUT CENTER OF GRAVITY. L SPECTACLE LENS

A, PENCIL OF LIGHT DEFLECTED TO SCALE ON ROOF

VOL. 62, NO. 6, PL. 1
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Likewise Pw was obtained by oscillating the apparatus without
model in winds from 5 to 35 miles per hour.

The coefficient Im has the dimensions p14V, where p is density of
air, I a linear dimension, and V the velocity of the wind. To convert
/ym to Mq f or the full-size machine at full speed, multiply by the f ourth
power of 24, the scale, and by the ratio of full speed to model speed.

The model is mounted in such a manner that the axis of oscillation
through the two steel pivot points passes through the assumed center
of gravity location for the aeroplane. The actual center of gravity
of the model is not considered.

Transverse arms carry counter weights by which the natural period
may be adjusted. The springs insure that the motion shall be
oscillatory. Knife-edged shackles bearing in notches in the trans-
verse arms carry the pull of the springs. The springs are not cali-
brated as the calculation eliminates the spring coefficient.

Friction is kept small by careful design. All pivots are glass-hard
tool-steel points bearing inside polished conical depressions of tool
steel. A convenient period for observation is - second. In still air,
the apparatus will oscillate over 300 times before the amplitude is
diminished to - the initial displacement. The latter is about 3'.

Numerical results for the pitching oscillation follow:

13. OSCILLATIONS IN PITCH

Inertia, model and apparatus= .03945
Inertia, apparatus =.03680

APPARATUS

Wind velocity, miles per hour....... 30 20 0

t, seconds ....................... 94.0 96.2 105
............................... .00172 .ooi68 .00154

pt (less zero).................... .oooi8 .00014 0

APPARATUS AND MODEL, INCIDENCE OF WING, 0'

Velocity, miles per hour 35 30 24 18 8
t, seconds ........... 15.5 17.5 21.0 26.5 50
p ................... .0112 .00994 .00828 .00656 .00348

to .................. .0015 .00154 .00154 -00154 -00154
..................... .. 02 .0002 .00016 .00012 .00005

/A. (net) ............ . 00950 .00820 .00658 .oo4go .00189
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APPARATUS AND MODEL,

Velocity ..........
t . . . . . . . . . . . . . . . .

A . . . . . . . . . . . ... . .

140 ...............

p.Lw ...............

1. (net) .........

509

FIG. 13.-Curves for g. (net) and [tw f or oscillations in pitch.
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APPARATUS AND MODEL, INCIDENCE OF WING, 12'

Velocity ........ 35 30 24 18 8 o
t .............. 23.5 25.0 29.0 35-5 55.5 112

S.............. . .0074 .00696 .oo6o .0049 .00314 -00156
[to ................ . ..0016 .00156 .0016 .oo16 .00156 .00156
tw. ................. . .0002 .0002 .0002 .0001 .00005 .00000

/m (net) ....... ..0066 .0052 .0042 .0032 .00153 .00000

Values computed as above for Mm, net, for the three cases are plotted
in figure 13. The points appear to lie along straight lines in justifica-
tion of the assumption that the damping coefficient varies as the first
power of the velocity of flight, To convert to full-speed full-scale,
we use the formula,

Mq -t (26)4 [Velocity aeroplane-
fi 2 L Velocity model. I

for i=o*, Mq=(-)192.O=1.71U,

i=6*, Mq=(-) 93.7=I.43U,
i =12', M,-=(-) 6o.5=1.12U.

The marked decrease in damping at slow speed must impair
stability. For the Curtiss Tractor JN2, with a somewhat shorter
tail, we found Mq=I.32U at i=2', and Mq=1.66U at i=15'5.
Bairstow found for the Bl6riot, MA=q1.84U at i=6'. We should
expect greater damping to be shown there, since the horizontal tail
surface is very large.

14. LONGITUDINAL STABILITY, DYNAMICAL

We have now determined the resistance derivatives needed for
the three equations of the longitudinal motion in the plane of sym-
metry with the exception of Xq and Zq. From a consideration of
various terms in the criteria for stability it is concluded that both
Xq and Zq enter into products which are small and relatively unim-
portant. They are consequently neglected.

The biquadratic has been calculated, following the formule given
above, for several speeds and attitudes of flight. The results are
summarized in the following table. The curves of figures 8, 9, 1o.
and ii were used to obtain the resistance derivatives.
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V miles per hour 76.9 53.4 44.6 36.9
U feet per sec.. - 112.5 - 78.2 - 65-3 - 54.0
Normal incidence 00 30 60 120

XU ........... - .158 - .12 - .1194 - .162
XW ........... + .356 + .249 + .245 0

Z. ............. - -57 - .823 - .985 - 1-19
Zw ........... - 5.62 - 3.77 - 2.92 - 1.0

MW ........... + 3.2 + 3-99 + 2.25 + 1.41
Mq ........... - 192.0 -123.01 - 93.7 - 60.5
Al . . . . . . . . . . . .  21.6 21.6 21.6 21.6

B1  . . . . . . . . . . . .  317.0 207.0 159.3 85-1
C1 . . . . . . . . . . . .  1492.0 804.0 444.0 150.0
DI ............ 266.0 128.3 72.6 22.1

El . . . . . . . . . . .  59.2 io6.o 71.4 54-0
Routh's discr. . . +117 X 106 16.4 x 10" 3.2 X 10' - .12 X 106

m ............ 50 50 50 50
Long period, sec. 34.7 17.6 15.8 10-56
Time to damp, 50% 8.1 11.0 13-1
Time to double. .... .... .... 24.7
Character ...... Stable Stable Stable Unstable

The coefficients of the biquadratic computed from the formulk of
9 give for high speed

21.62D+317.oD 3+ 1492.oD2 + 266.oD + 59.2 = 0.

Each coefficient is positive and Routh's discriminant
B1C1D1-AD -B 1

2 E1

is also positive and equal to 117 x 10. The motion is, therefore,
stable. The aeroplane if set pitching will return in time to its normal
attitude.

Bairstow has shown that, considering the usual values of the
coefficients of the biquadratic, it may be factored approximately,
giving:

D2+ - D + C, D 2+ D l1D+ A- .

The first factor reduces to:
D2+ 14.75D+69.o=0,
D= - 7 .3 8 3 .83 i where i=V -.

This is the well-known condition for a simple damped oscillation of
period,

p -2 =1.64 seconds,
3.83

'By interpolation.
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and damped to one-half amplitude in time,

t= 0.69 _.094 second.
7.38

For most aeroplanes, this first factor corresponds to a short oscilla-
tion so heavily damped that it is of no importance. Indeed, it could
not be observed on the actual aeroplane in flight.

The second factor, similarly, reduces to:

D 2 +.17D +.o4=o,
D= - .085 =t.181 i,

27,-

p = =34.7 seconds,

t= 9.69 =8.1 seconds.
.o85

This is a longer oscillation but heavily damped. The period of 34-7
seconds for the motion is great, and at high speed this aeroplane if
left to itself after an accidental longitudinal disturbance should follow
an undulating path with rising and sinking of the center of gravity,
together with pitching and periodic changing of forward speed.
There is an oscillation in u, w, and 0. In 34.7 seconds, the aeroplane
runs 3900 feet, which is the distance from crest to crest of the flight
path. In one period the amplitude of the undulation is almost com-
pletely damped. It is unlikely that this motion would be uncom-
fortable to the pilot even if the initial disturbance due to a gust or
other cause were severe.

At high speed, this aeroplane is very stable compared with other
machines which have been tested. The natural period of the Curtiss
JN2 is about 34 seconds, damped 50 per cent in I I seconds, according
to calculations made by us. A B16riot monoplane model tested by
Bairstow had a period of pitching of 25 seconds, damped 50 per cent
in 15 seconds.

There is no other published data of this character. It appears that
great statical stability or large M. will give a stiff machine with a
rapid period. Such a machine, though very stable, may be so violent
in its motion as to lead the pilot to pronounce it unstable. The design
tested here appears to have as easy a period as the Curtiss and B16riot,
both considered very satisfactory in flight, together with greater
damping.

High speed and a long tail tend to damp the pitching. What we
aim to secure-namely, steadiness in flight-may better be obtained
by large damping factors rather than by strong righting moments
(statical stability). It is well known that the French monoplane pilots

AX-4

37



38 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 62

demanded at one time a neutral aeroplane with no stability whatever
against pitching, on the ground that " stable " aeroplanes were too
violent in their motion in gusty air. Another disadvantage of ex-
cessive statical stability lies in the tendency of the machine to " take
charge" and take a preferred attitude relative to the wind at a time
when such a maneuver may embarrass the pilot, as when approaching
a landing. However, it appears possible that a machine with the
minimum of " statical " stability may be given the maximum of damp-
ing and so have a very slow period of pitching. The motion will be
nearly dead beat.

This digression with regard to damping vs. " statical " stability
applies with equal force to the rolling and yawing motions of the
aeroplane to be considered under " lateral stability."

For low speed, 36.9 miles, similar calculations give for the longi-
tudinal motion

21.6D 4 +85.1D 3 + 149.8D 2 +22.iD+54=-0.

Routh's discriminant

B1C 1D 1-A 1D1
2 -B 1

2E1= -12X 104. Unstable.

Short oscillation:

D 2 + (B 1/A 1)D+ C1/A 1 =D2 +3-9D +6.94 =0,
D -1.95 I-77i,

p 27 _ 3.58 seconds,
'.77

t 0.69 - 36 second to damp 50 per cent. Stable.
1.95

Long oscillation:

D 2+ (D 1 /C 1-B 1 E1/C 1
2 )D + E1/C1 =D2 - .056D + .36=o,

D +.O28 -. 594i,

p 2r 10.56 seconds,
.594

t= o.69 = -24.7 seconds,
-. 028

or +24.7 seconds will double the initial amplitude. Unstable.
At this speed Routh's discriminant is negative, indicating that the

motion is unstable. The instability is seen to appear when the real
parts of the roots corresponding to the long oscillation become posi-
tive. The motion is rapid: only I I seconds' period compared with

35 seconds at high speed, and any initial displacement will double
itself in two periods. The damping of the motion has vanished and
although the increase of amplitude is not so rapid that there is danger
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FIG. 14.-Routh's discrifninant, variation with velocity.
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of the pilot's losing control, yet it is clear that he cannot fly at this
speed unless he is alert.

Taking Routh's discriminant as a measure of dynamical stability
we have its value +117X 106 at high speed and -O.12x 10 at low
speed. Compared with the high-speed value, the latter is insignificant
and we may conclude that the instability at low speeds is of relatively
slight danger. Indeed, we may say that the aeroplane is stable at high
speed and about neutral at low speed.

The progressive change in Routh's discriminant with speed is more
clearly shown on figure 14. On the same plot, we give a similar curve
for a Curtiss type tractor. The " critical velocity " for the Clark type
is about 40 miles per hour and 47 miles per hour for the Curtiss type.

All aeroplanes of normal type are probably longitudinally stable at
high speeds but lose this stability for all speeds below a certain critical
speed where Routh's discriminant becomes zero or changes sign.

The examination of the longitudinal stability of the Bleriot men-
tioned above applied only to high speed. The importance of investi-
gating stability at low speeds has, it is believed, never before been
shown.

The reason the stability of the longitudinal motion vanishes at a
critical velocity must be found in the approximate factor representing
the long oscillation.

D2+ - E D+ El _.
C1 C12 G

Stability vanishes where D1/C 1=E1 B1 /C2, or where D1C1---EB. In
other words, stability is reduced as E1B1 is made large or DjC1 small.
At high speed we have 266x 1492>59.2 X 317, but at low speed
22.1 X 149.8<54X85-I. It appears that B1 is smaller at low speeds,
which is desired, but D1 and C, are reduced to a greater degree, which
is not desired.

The cause of the reduction in the magnitude of D, from 266 to
22.1 can be shown in the effect of change in resistance derivatives in:

X1, Xw, Xq
D1  - Zu, Zw, U+Zq -g Ml, sin 00

Mu, Mw, Mq
For 0 =0, X =Zq Mu o, we have

D1 - XuZ wMg + XuUMw + ZuXwMq.

The first term is reduced at low speed because Zw is less than - and
Mq j of their values at high speed. Since U and Mw are smaller, the
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second term is but W of its high-speed value. The third term is
unimportant.

From

Cj= M", M| +XuA'I+K (XuZw-XWZu)
IMw, Mq

we see by inspection that the principal reduction in C1 at low speed
is due to smaller values U, Mw, Zw, and Mq which greatly reduce the
terms ZwMq and UM,. These two terms are the principal numerical
ones in the expression for C1.

In general, E1 = -gZM. will increase in value due to increase in
Z. and M., but the effect on the motion is not great. On the other
hand, B,= - M-K'(Xu+Zw) will drop rapidly for large angles
of incidence due to drop in MAq and in Z,. This is favorable to
stability.

It is seen that the quantities U, Zw, and Mq preponderate in the
numerical values of the coefficients DC, and E1B1. For ordinary
speeds, or speeds above the speed of minimum power, we have,
approximately,
D 1 - Xu(ZwM -UMw) +ZuXwM =Xu(ZwMq -UMw),
C1 (ZwMq -UMw) +XuMq+ KXZw- XZu)= (ZwM -UMw),
B1 = -M-KB Xu+Zw)= - KBZw,
E1 = -gZuMw.

The condition for damped motion then becomes:

D 1C1 >E1 B1 or (ZwMq-UMX) 2 > - U Mw(Mq+KBZw),

where ZU = Z and Mw are nearly constant. Damping of the long
XU 10

oscillation is then favored by large values of Zw, Mq, and U. That
is, by light wing loading, large damping surfaces, and high velocity.
As speed is reduced these quantities become smaller and the oscilla-
tion is less strongly damped.

For very low speeds, including those below the speed for minimum
power, the value of Zv nearly vanishes and Mq becomes small. Here
the approximate expressions would be written,

D= XuUMw + ZuXwMq,
C1= - UMW,
B1 = -Mq-KI(Xu+Zw),
E1 = -gZuM.,

and
- o MwU + M X, > -U (M,+K 2(Xu+Zw)).
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For very low speeds, the quantity X,, is often found to change sign;
therefore, the two terms on the left may be of opposite sign and a
large value for Mq diminishes DC1 and increases B1E1. In a " stall-
ing " attitude the aeroplane should have Mq small, M. large, and, if
possible, the radius of gyration in pitch KB small.

The attitude of a " stalled " aeroplane is not ordinarily considered
a "normal" attitude of flight, but, unfortunately, an aeroplane is
frequently " stalled." by an inexperienced pilot. The longitudinal
motion of an aeroplane if held in a "stall " would be, in general,
unstable, but under favorable circumstances with Zq, ZW, KB small
and 11, large it is possible to have a stable motion. For example,
in an extreme case with Zw zero, if the aeroplane head up higher due
to large Xw it slows down, loses lift and sinks. In sinking, M,, if
large, will head the machine down, speed will be gained on the dive
and the resultant gain in lift causes the aeroplane to rise again. The
oscillation will not increase in amplitude with time if the machine is
able to respond quickly to the righting moment M,. The damping
Mq and radius of gyration KB must not be too large. If Mq and
KB are too large, the machine is dynamically unstable by having
DC1<E1 B1 .

The question of safe flight at a stalling attitude is complicated by
the fact that the lateral controls become ineffective, but by manipula-
tion of the power delivered by the motor, combined with skilful use
of the rudder, an expert can land an aeroplane at surprisingly low
speed.

The period is given by the imaginary part of the roots, or
27r

1 /4E, /DIC - BlEt 2
2 \c C 1 2

Since DC BE 2 is usually small, we may write approximately,

2 7 ZwMq-UM- but Z_ 20

then

P=r 2U(U- M

At low speed, U as well as Zw and Mq are reduced and the period
becomes short. A stiff machine with large Mw would have a rapid
period. For given speed, if we make Mq large in order to provide
heavy damping, care must be taken that M, shall be small in order to
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secure a slow motion in pitch. It will be remembered that M, is a

measure of statical stability or " stiffness " and was mentioned as

somewhat analogous to metacentric height for a ship.

By adjustment of Z, Mq, and M, it appears possible to combine

heavy damping with a fairly long period and so obtain great steadi-

ness in normal flight.

15. CONCLUSIONS (LONGITUDINAL DYNAMICAL STABILITY)

Stability calculations are of greater interest when they can be com-

pared for different aeroplanes. At present, information is scanty but
we may obtain by inference some general conclusions by comparing
the Clark type aeroplane just described with a Curtiss type aeroplane
previously tested by us.

The two aeroplanes are designed to have about the same perform-
ance. The principal difference at first sight is the greater wing area

of the Clark-about 3.45 pounds per square foot against about 4.7
pounds per square foot for the Curtiss. In consequencc of the lighter
wing loading, the Clark type should have a steeper curve of Z giving
Z,, large, which is favorable to stability.

The Clark aeroplane has a smaller horizontal tail area than the
Curtiss, but the fixed part is inclined at - 5' to the wing chord against

-3'5 in the Curtiss. The Clark tail is only a trifle longer than the
Curtiss and we may conclude that the pitching moment due to air
pressure on the tail surfaces is about the same in the two machines.
However, the Clark model uses a wing section on which the center of

pressure motion for small angular changes is very slight. The

Curtiss has a section described as R. A. F. 6' in which this motion is
considerable. For equal tail moments we may then expect M, to be
larger for the Clark machine. This is favorable to stability.

Due to the smaller tail, the damping of the pitching for the Clark
model might be less than for the Curtiss. However, we find M. at

high speed - 15o for the Curtiss against - 192 for the Clark model.
The increase must be due to the greater wing area of the latter since
a calculation of the damping due to the tail alone gives a result less
than one-half that observed for the whole machine.

The greater stability of the Clark model at high speeds is then due

principally to greater values of Z, and M,. At low speeds, the

resistance derivatives of these two aeroplanes are not greatly differ-
ent. Both become very slightly unstable in their longitudinal motion.

1 See Technical Report Advisory Committee for Aeronautics, 1912-13.
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The following table facilitates comparison:
Stable High Speed

Curtiss Clark

Xu .......
Xw .......
Z u .. .. .. . .
Z . ........
M ........
M q ........

KB ........ .

A 1  . . . . . . . ..
Bi .........
C1 . . . . . . . .
Di ........
E . . . . . . . .
Routh's discr.
p sec.......
t sec........

- .128

+ .162

- .557

-. 3.95
+ 1.74
-150.0

34.0
34.0

289.0

834.0

115.0
31.2

18 x 10
34.0
11.0

U, ft.-sec... -115.5

00

-. 158

+ -356
- -57
- 5.62
+ 3.2
-192.0

21.6

21.6

317.0
1492.0

266.0

59.2
117 X 106

34.7
8.1

-112.5

We may infer in general that:
I. Any ordinary aeroplane is likely

below a certain critical speed.

Unstable Low Speed

Curtiss Clark
140 12

- .223 - .162

- .132 0
- -993 - 1.19
- -555 - 1.0
+ 1.99 + 1.41,
-108.0 -60-5

34.0 21.6

34.0 21.6

134.0 85-1
213.0 150-0
28.0 22.1

63.6 54.0
-37 X 106  - .12 X 10

11-5 io.6
- 24.7 -24.7
- 64.8 -54-0

to be unstable longitudinally

2. Stability is improved by large wing area, i. e., light load per
square foot.

3. Stability is improved by large horizontal tail surfaces.
4. Stability is improved by high speed.

5. Stability is improved by great head resistance or a poor lift.drift
ratio.

6. Stability is improved by a small longitudinal moment of inertia.

7. Stability is improved by wings with slight center of pressure
motion.'

There appears to be no reason to depart from the normal type of
aeroplane in a search for longitudinal stability. A steady motion in
flight is to be obtained by careful adjustment of surfaces in the ordi-
nary type aeroplane, and the invention of freak types to accomplish
great stability at the expense of speed or climb is to be discouraged.

Furthermore, the ordinary type of aeroplane may be made dy-
namically stable longitudinally without material sacrifice of desirable

' For a biplane combination giving a stationary center of pressure without
material loss in other desirable features, see "Stable Biplane Arrangements,"
by J. C. Hunsaker, Engineering, London, Jan. 7 and 14, 1916.
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flying qualities, such as ease of control. In this connection it is im-
portant not to give too great statical stability. Safety in flight may
well depend more upon ease of control than upon stability. The
almost universal prejudice among accomplished flyers against so-
called " stable aeroplanes " appears to have a rational foundation.

PART II. LATERAL MOTION

i. LATERAL OR ASYMMETRICAL TESTS

When the aeroplane is yawed to right or left of its course through
an angle of yaw t, the wind blows through the wings obliquely and
gives rise to a lateral force Y at right angles to the longitudinal axis x
of the aeroplane, a rolling moment L tending to roll the aeroplane
about the x axis, and a yawing moment N tending to yaw the machine
about the . axis.

To measure the force Y and moments L and N as the aeroplane
yaws, the model was mounted in the wind tunnel and held at various
angles of yaw to the direction of the wind. At each position measure-
ments were made from which the component forces X, Y, Z and
moments L, M, N could be calculated.

The details of the method are given in the Technical Report of the
Advisory Committee for Aeronautics, 1912-13, p. 128, where a de-
scription is found of the special apparatus required.

Briefly stated, the balance is arranged to measure the moments of
the air forces about axes parallel to those axes used for calculation,
whose origin is at the center of gravity of the aeroplane. A yawing
moment is measured about a vertical axis passing through the main
pivot of the balance. The moments of the drift and cross-wind forces
are measured about horizontal axes parallel and at right angles to
the tunnel axis and passing through the same point. In order com-
pletely to determine all forces and moments, a special fitting is pro-
vided on which three more measurements may be made. This moment
device measures the pitching and rolling moments about horizontal
axes passing through the pivot of the attachment. In addition, the
total lift or vertical force is measured on the balance. We then have
five moment observations and one force observation, as follows:

VF, measured on vertical force lever (a lift),
Mz, measured on torsion wire (a yawing moment),
Vp, pitching moment about a high point os,
VR, rolling moment about a high point oi,
AID, moment of drift force about a low point o2,
Mc, moment, of cross-wind force about o2

4
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We first reduce to the origin o, about which Vr and V n are
measured, which is I inches vertically above o2

Denote by primes forces and moments in pounds and pound-inches
on the model for 30 miles per hour wind velocity referred to axes
through the point o2. Then:

L'= VR cos O-Mz sin 0,
M' =VP,
N'= VR sin 0+Mz cos 9,

X'= - V sin 9+MD cos 41-Mo sin b- Vr c ,

F,_ VR-MC cos ,b-MD sin 4

Z'=rVcos 0+MIDcos 0-Mc sin 4-V4 h .

If the center of gravity of the aeroplane (model) be arranged to

have the y coordinate zero, and its x and z coordinates a and b (in
inches) referred to o, we have for the axes passing through the

center of gravity:

Y,= Y',
Zi=Z',Y
L 1=L'+cY',
M1=M'-cX'+aZ',
N1=N'-aY',

where X1, Y1, Z1, L1, M1, N, are the quantities expressed in pounds

and inch-pounds on the model at 30 miles per hour. Converting to

full-speed full-scale and to units of pounds and pounds-feet per unit

mass, we obtain the required X, Y, Z, L, M, N.
The model was first set at an angle of wing chord to wind of

00 corresponding to high speed. Measurements were then made

as above for angles of yaw of 25", 150, t 10, 50, o, keeping

the incidence constant. In reducing the observations, values for left-

and right-hand angles of yaw were averaged to eliminate errors due.

to lack of symmetry in the model. In the first test the angle of pitch

9 is zero, and the axis of x horizontal. The test was repeated with the

model at angles of incidence of 60 and 12*, corresponding to the

intermediate and slow speed conditions. Here, again, 0 in the

formulae of reduction is zero, since each new axis of x is also

horizontal.
It is apparent that the labor involved in the complete solution for

X, Y, Z, etc., is considerable and, unfortunately, the method requires
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the use of formulk in which the difference between products of ob-
served quantities is involved. Naturally, the precision of the result
is poor wh'en we are left with a small difference between large
quantities.

The measurements VF, Mz, Vp, Va, MD, Mc are probably correct
within 2 per cent. L involves no difference and may be taken as
equally precise.

Since N,=N'-aY', we may make the distance a very small in
setting up the apparatus and so keep the precision of N about 2 per
cent.

From

y,_ Vp-Mc cos i-21D sin '

we note that (MC cos -+ MD sin i) is from three to five times as
large as VR. The precision of Y should then be between 2 and 6 per
cent.

From similar reasoning, we may expect Z and X to be precise
within io per cent, but in special cases, where we must take the
difference of quantities of nearly equal magnitude, the precision is
not so good.

The quantity M is a small moment which should be nearly zero if
the aeroplane is balanced properly. Obviously, no estimate of the
precision of M as a per cent can be given in such a case. Where M
is large, as in the 120 condition, the measurement is precise to about
1o per cent.

Fortunately, for a study of lateral stability, we are concerned with
Y, L, and N only, and these quantities are determined with fair
precision.

The values computed for X, Z, and M for zero yaw may be com-
pared with X, Z, M, determined independently in the tests on lift
and drift discussed in Part I. The latter are probably precise within
2 per cent. Consequently the computed X, Z, and M obtained from
the asymmetrical tests have been adjusted to make them agree with
X, Z, A[ obtained from the symmetrical tests.

The change of X, Z, and M with P is not important, and X, Z,
and M are not used in the theory of asymmetrical or lateral stability.
Since by our equilibrium conditions, the pitching moment M0 must be
zero for normal flight, we must assume that the pilot makes M, zero
by slight adjustment of his elevator flaps. In the tables below, the
small value of M, observed when the angle of yaw i is zero has been
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subtracted from the observed M for each angle of yaw. This adjust-
ment is required to give longitudinal equilibrium to the aeroplane
when in its normal attitude.

The followin'g tables summarize the data upon which the subse-
quent calculations are based:

High-speed attitude, izo0, l='26 inches,
c=6.37 inches, a= -2.41 inches.

Vs

0

.284

-518
.764

1.222

VP

1.74

1.74
1.72
1.61

1.52

OBSERVED

MZ

0

.0333

.0474

.0676

.0851

CALCULATED

X Z M

9.00

9.99
9.72
9.66
8.69

32.2

31-5
31.2

30.8
28.3

0

+ 1.92

+ 1.92

-15-37
- 3.84

MD

4.25
4-41
4.52
4.73
5.43

.MC
0

.511
1.011

1.566
2.650

VP

.463

.453

.450

.445

.409

Y L N

0
2. o6
4-31
6.74

12.23

0
25.9

40.2

54.0
66.9

Intermediate-speed attitude, i=6', l=26 inches,
c=6.67 inches, a= -2.06 inches.

OBSERVED

Mz

0

.0041
.0090
.0054

- .0128

CALCULATED

'M

0

-2.6 -

-4.6 -
-37.6 -
-59.0 -

MD

6.26
6.39
6.50
6.62
7.11

Mc
0

.309

.633
1.173
2.11

Y L

0 0

.96 19.55

1.124 34-1
1.99 43.8

3.97 36.9

1P
0

5
10

15
25

P

I05
10

15
25

0
- 4.42
-13.45
-22.1

-47.4

q1
0

5
10

15
25

q,
0

5
10

15
25

VIZ

0

.416

.776
1.118

1-455

x
3.89
4.03
4.07
4.43
4.40

VP

3.84
3.80
3.72
3.22
2.69

Z
32.2
32. I

31.0
30.3
27.2

VF

1. o61
1.046
1.021

.993

.891

N

0

- 2.04

- 4.43
- 8.54
- 18.6
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Low-speed attitude, i=12*, 1=26 inches,
cZ=6.91 inches, a= -1.71 inch.

OBSERVED

P VB V, Mz MD me VF

O 0 3.73 0 9-395 0 1.483

5 .348 3.71 - -0195 9-53 .094 1.464
10 .718 3.67 - .0541 9.61 .259 1.441
15 1-059 3.52 - .0847 9.68 .464 1.402
25 1-705 3.27 -. 1455 9.86 .817 1.270

CALCULATED

1P X Z M Y L N

O 4.4 32.2 0 0 0 0

5 4.5 31.7 0 - .45 8.65 - 2.53
10 4.46 31.2 0 - .95 17.6 - 5-95*
15 4.43 29.8 - 3-5 - 1-51 24.7 - 9.35
25 4.14 27.1 0 - .2.45 37.8 -15.85

The variation, with angle of yaw, q, of the rolling moment L, yaw-
ing moment N, and lateral force Y, are shown by the curves of figure

15. In its symmetrical position, the aeroplane has no tendency to roll,
yaw, or slide slip, and L,, N., and Y0 are zero, as stated in connection
with the discussion of equilibrium conditions.

As the aeroplane yaws from its course, the plane of symmetry
swings through an angle t, measured positive to the pilot's right
hand. The momentum tends to carry the center of gravity forward
in its original direction of motion. As a result, the apparent wind
seems to strike the left cheek of the pilot. The curves of N show
that, if this aeroplane yaw to the right, a negative yawing moment is
produced which tends to turn the aeroplane to the left and hence to
put it back on its course. The aeroplane is hence " directionally "
stable, having a preponderance of fin surface behind the center of
gravity, and the pilot need not use his rudder to stop the yaw. Nu-
merically, we see that for a yaw of 10* at high speed, the value of
N is - 13.5 units, or about 670 pounds-feet. For a perfectly neutral
aeroplane, to produce an equal yawing moment the pilot must exert
a force of about 34 pounds on a vertical rudder 20 feet to the rear of
the center of gravity.

When flying straight ahead, if the direction of the wind suddenly
shifts so as to bring the apparent wind 100 to the left of the fore and
aft axis of the aeroplane, the aeroplane tends to head over into the
wind. An excessive amount of " directional " stability, indicated by
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a steep curve of yawing moments N, may cause the aeroplane to be
unmanageable in gusty air. It may "take charge" and, due to
excessive " weather helm," be difficult to keep on any desired course.

NI

'I

'3

-206

k'e/oA)/' 2 7 m.A %"0

-I0 '/oj /g
6 

'6m, *A, - = 6 __ _

Ye/ad /<yS.Y m, 4,4-=

/50e

0. /00

'a

'3
0)

FIG. 15.-Curves of lateral force, rolling moment,
angle of yaw changes.

and yawing moment, as

It will be shown later that the so-called " directional " stability is not
only undesirable in gusty air, but is the determining factor in " spiral
instability." Indeed, " directional stability " is very nearly incom-

patible with inherent dynamical stability in roll, yaw, and side slip

considered together.

MI

15 /ff 0
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If the aeroplane yaw to the right, it is practically starting off on a
turn to the right. As is well known, to make such a turn safely an
aeroplane should be "banked" to such an angle of roll that the
centrifugal force, acting to the left, is about balanced by the hori-
zontal component of the normal force Z acting to the right. In other
words, the bank proper to a right turn requires a positive angle of roll
,> given by a positive rolling moment L. The curves of L in the figure
show that for this aeroplane the natural rolling or banking moments
are positive for a positive yaw, and hence tend to bank the aeroplane
suitably for the turn. This property is extremely valuable in prevent-
ing capsizing.

As in the case of the yawing moments, an excessive amount of
natural banking may be uncomfortable, especially in gusty air. Thus,
if the wind shifts to the left, the relative angle of yaw is positive, the
aeroplane tends to turn to the left due to its " directional " stability
and to bank for a turn to the right due to the natural banking or
rolling moment L. The result may be to throw the aeroplane about in
a somewhat violent manner, or it may capsize. This motion is dis-
cussed later under the heading " Dutch roll."

Large banking moments L can be given by vertical fin surface
above the center of gravity, by a dihedral angle upwards or a
" retreat " or sweep back of the wings. All these arrangements are
probably equivalent and, though tending to give a stable motion in
still air, tend toward violence in gusty air.

The model under test has, as is shown by the drawings, a dihedral
angle upwards of the wings made by raising each wing tip 1.6'. This
amount of dihedral has been found in practice to be not excessive on
ordinary aeroplanes.

The curves of lateral force Y are negative for a positive yaw. This
means that if the aeroplane yaws to the right in still air, it is pushed
to the right and started off on a right turn. We saw above that the
natural banking is suitable for the turn. In gusty air, if the apparent
wind shifts 100 to the left the lateral force pushes the aeroplane to
the right.

Numerical values are interesting. Suppose a plus yaw of 1o* in
still air. The rolling moment at high speed is 2,000 pounds-feet.
This is equivalent to a down load of 55 pounds on the right aileron
and an up load of 55 pounds on the left aileron. The pilot with his
aileron control can, if he wish, produce a rolling moment over three
times this magnitude, so that he can prevent the aeroplane taking
charge and hold it level. Approaching a landing, it is most important

j
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that the aileron control shall be very powerful compared with the
natural banking tendency. Excessively stable aeroplanes may be
really dangerous to land in gusty air. In any aeroplane design, the
relative magnitudes of the natural rolling moment and the aileron
control available should be carefully considered.

If the aeroplane side slip with a lateral velocity v, the resultant
velocity of the center of gravity of the aeroplane is obtained by com-
bining v as a vector with the forward speed U. The apparent wind
in still air is then inclined to the axis of the aeroplane as it would be
were the aeroplane yawed from her course by an angle

tan-1 -

A side slip to the left is equivalent aerodynamically to a positive or
right-hand yaw. The sign of the lateral force Y is negative for a
plus yaw and hence resists the side slip, as is desired.

The asymmetrical motion is a combination of rolling, yawing, and
side slipping as is indicated by the qualitative discussion given above
and by the equations of motion in Part I, 9. In order that, under
the influence of N, L, and Y, acting in concert, the disturbed motion
shall be stable, the aeroplane must tend to return in time to its original
attitude. It is impossible to determine whether the aeroplane is thus
stable from a consideration of N, L, and Y separately. The term
"directional stability," frequently used, means very little with regard
to the probable motion of the aeroplane.

The quantitative determination of the stability of the motion can be
made only after we have found the numerical values of the coeffi-
cients needed in the equations of motion in Part I, 9.

2. RESISTANCE DERIVATIVES

The rates of change of N, L, and Y with velocity of side slip v are
the partial derivativesNo, Lo, Yv. The side slip velocity v is equiva-
lent to an angle of yaw i given by:

- V
tan =z - .

If q is small and measured in degrees, the tangent is equal approxi-
mately to the circular measure of the angle, or

I V

5 7.3 U'
and

N 57.3 AN
av U . '

I.



NO. 5 STABILITY OF AEROPLANES-HUNSAKER AND OTHERS

The fraction AN is the slope of the curve of N plotted on angle of yaw

q as abscisse.
Similarly: AL

V U A'
and

yV __57.3. _y

Taking the slopes of the curves of L, N, Y at f=o from figure 15,
we obtain the following "resistance derivatives" needed in the
lateral equations of motion.

High speed:

Yv= -. 204,

i=o L,= +.3.06,

LNV- .449.
Intermediate speed:

Y,= -. o878,
i=6' Lv= +344,

N=- -- 351.
Slow speed:

YV= -. 1o6,

i=12{ Lv=+1.91,

NV= -53.

Note that these derivatives do not change greatly with speed. In
the longitudinal motion the effect of change of speed (attitude) was
more marked.

3. ROLLING MOMENT DUE TO YAWING, Lr

It is obvious that if an aeroplane yaws quickly, the outer wing tip
moves through the air more rapidly than the inner wing tip and,
hence, due to the spin, the lift on the outer wing is the greater. The
resultant rolling moment tends to bank the aeroplane suitably for the
turn. The magnitude of this rolling moment was in dispute in the
recent Curtiss-Wright patent litigation. The following calculation
leads to a simple formula to determine the roll due to angular velocity
in yaw.

In our notation, a rolling moment L is expressed in pounds-feet
per unit mass. In pounds-feet on the aeroplane. the moment is mL.
where m is the mass W/g in slugs.
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The derivative L, is the rate of change of rolling moment with an
angular velocity in yaw of r radians per second, or

aL

Let U=the velocity of advance of the center of gravity of the aero-
plane in feet per second. U is a negative number.

S=span of the aeroplane (one plane) in feet.
b= chord of one plane in feet.

W/g=m= mass of aeroplane in slugs.
r=angular velocity of yaw in radians per second, positive for a

right-hand turn.
Consider an element of wing area on the left wing of width dy in

the y axis and depth b in x axis. The distance from the center of
gravity of the aeroplane to the center of this element is y feet, positive
for the left wing.

The velocity through the air of this element is U-yr, since the
increase of air speed due to spin is yr.

If we assume that the lift of the wings is equal to the weight of the
aeroplane, we neglect the small vertical forces on body and tail only.

The lift in pounds per square foot per foot-second velocity is the
usual " lift coefficient " for the wing, which can be computed from
the model tests for Z. Thus:

K= Zm
AU 2

Where:

A =265, the total area of both wings.

Then the lift in pounds on the elementary strip of wing of area
bdy is

Kbdy( U-yr)2 .

The rolling moment on the aeroplane of this elementary lift force is

Kbydy( U2 -2Uyr+y'r 2 ),
and the total rolling moment on one whole plane is,

Kb J2 (U2-2Uyr+y2 r2 )ydy.

But by 2dy=I, the moment of inertia of the area of one plane,

and

2 U2ydy=o= y dy.

U
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Hence the rolling moment on one plane is -2 UKIr, and substitut-
ing for K its expression above,

-2 Zom r.
AU

For two identical wings of rectangular form, we have for our com-
plete aeroplane a total rolling moment in pounds-feet per unit mass:

L=- 2 r, making Z,=g,

Lr= -- for horizontal flight.6U
It appears that L, can be made small by short span and high speed.
The sign of L, is such that the bank is proper for the turn.

Numerically, we have, making the mean span S=4o.2 feet and
b=5.62 feet,

Lrz= -866o/U,
= +77.0, high speed, i=o*,
=+132.5, intermediate speed, i=6*,
=+I6o.o, slow speed, i= 12*.

Note that Lr (which is unfavorable to "spirals" stability) becomes
larger at low speed.

4. YAWING MOMENT DUE TO ROLLING, Np

When an aeroplane rolls with an angular velocity p radians per
second (positive when right wing goes down), an elementary area of
the right wing has its angle of incidence increased and a correspond-
ing element of the left wing has its angle of incidence diminished by
the same amount.

If p is small, the resultant air velocity at a point y feet from the
center line is

V U2+pl-2 = U, neglecting p2.

On the right wing, the angle of incidence at any point is increased by
a small angle a, given by tan a=py/U. Due to the greater angle of
incidence, the head resistance of the element is increased.

On a curve of the "drift coefficient'" for the wing shape (see
fig. 3, Part I) we may draw a tangent line at the point on the curve
corresponding to the angle of incidence for normal flight. For small
changes in incidence from normal incidence, we may substitute this
tangent line for the actual curve without material error. The value
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of the drift coefficient in pounds per square foot per foot-seconad is
then

Kx=Kx,+ua,

where K,0 is the coefficient when i is the normal angle, u is the slope
of the tangent line and a the small change in incidence defined above.
The slope a is conveniently measured in units of K0. change per degree
angle. If the subtangent or projection of the tangent line is j degrees,

K,

and

K,=K ,+K aa

The head resistance of an element of the right wing is

-bdyK, U2= - (Kx,, K 0 ) bdyU 2,

and the yawing moment on the aeroplane due to it is

+ (K -+K0. I, ) b U2ydy.

But tan a= or a=57U , if a is small. Then the total yawing

moment on a single plane is

V ( K0K bU2ydy.

The integral of the first term is zero, and the second term reduces to

57.3UK I

where I is moment of inertia of one plane. For a biplane of two
rectangular wings, the total yawing moment in pounds-feet is

MN_ -57.3UK, bS2

6J
Hence:

N,= _ 57.3 UKObS2

To calculate No, we have:

i U Kx0  I b S m N
0 -112.5 .--- 00 5.62 40.2 50 0
6 - 65.3 .0000443 6.0 5.62 40.2 50 +33-5

12 - 54.0 .0001047 6-9 5.62 40.2 50 +57.0

Since U is feet per second, K0, must be in pounds per square foot
per foot-second velocity. Values for the drift coefficient were taken
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from a curve corrected to apply to full-speed full-scale, aspect ratio 7,
and biplane of gap 1.i times chord.

Note that the positive sign of N, indicates that for a positive roll

(to the right) a yaw to the right is assisted. At high speed the aero-

plane flies at a small angle of incidence where the drift curve plotted

on incidence is about horizontal. N, is, therefore, zero at this attitude.

5. DAMPING OF ROLL, L,

The wide spreading wings very effectively damp the rolling, and

the resisting or damping moment in pounds-feet on the aeroplane is

mpL, for an angular velocity p radians per second in roll.

The method of oscillations previously used to determine the damp-

ing of the pitching Mq is applied to determine L,. Figure 17 (pl. 2)

shows the oscillating apparatus set up to impress an oscillation in

roll about the center of gravity of the model.

Using a similar notation, the equation of motion of the complete

apparatus with model is

S + (Ao+X+Xm) + (K- Cm') p+Mo -M =o.

Where X, represents damping due to friction, Ak due to wind on

apparatus, and Xm due to wind on model. The moment of inertia of

the entire oscillating mass I is found by a simple experiment.

The solution for points of maximum amplitude is of the form
Xt

4z40 2I ,

or
kt - log, 0 =loge 9,21

since the ratio 00 is arranged to be as 9 to I on the scale for the pencil

of light.
The numerical work follows:

OSCILLATION IN ROLL

I model and apparatus= .0399, 00 =9

I apparatus =.0373

TEST ON BARE APPARATUS

V, wind velocity, miles.............. 30 20 0

t, seconds ......................... 78 98 197
A ............................ .. .0021 .00168 .00083
AX (less zero) ................... .. . 0013 .00085 0
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TEST ON APPARATUS WITH MODEL

INCIDENCE OF WINGS 00

35
7.3?
.024?

.001
.0014
.022?

30
6.o
.0292

.001

.001

.027

24
8.3
.0211

.001

.001

.019

18

12

.0146

.001

.0007

.013

VOL. 62
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30

0658
.001
.0003
.0045

0
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0
175

.001

.001
0
0

110
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FIG. I6.-Curves of damping coefficient for rolling.
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FIG. 17.-MODEL IN POSITION FOR ROLLING OSCILLATION. L, SPECTACLE LENS. AA, PENCIL OF LIGHT
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INCIDENCE OF WINGS 120

V .............. .... 35 30 24_ iso
t ................... 6.5 8 11 14.5 175
A ..................... .027 .022 .o16 .0121 .001

A . . . . . . . . . . . . . . . . . . .. .  . 001 .001 .001 .001 .001

Am .................. .001 .001 .001 .001 0

Am .................... .025 .020 .014 .010 0

The values of A. due to wind on apparatus are taken from the curve

of A on figure 16 and applied in the calculation to find Am net. Figure
16 shows the values of A. It is obvious that the values of Am for i=o*
at 35 miles per hour is grossly in error. This point is, therefore,
rejected.

The curves of Am appear to increase more rapidly than the velocity:
in fact, a plot on logarithmic paper shows that over the range of wind
tunnel speeds Am varies approximately as V- 5 .

Since this damping helps to stop violent rolling, we shall be on the
safe side in our stability calculation if we assume that the damping
varies directly as the velocity.

To convert Am to full scale, we have
-L2 6 4 V

Lp = . -- ,m.

Where Vm is the speed at which Am was measured. Taking the scale
factor 26, m=50 slugs, Vm=30 miles, V=76.9 miles for i=o, and

V=36.9 miles for i= 12', we have
L,= -631 5.61 U, for high speed,
L,= -224=4.15U, f or low speed,

and for the intermediate speed, by interpolation,
L1= -319=4.88U.

6. DAMPING OF YAW, Nr

The damping of an oscillation in yaw is probably due to the long
body and vertical surfaces at the tail, as well as to the wings. It is
not practicable to compute this, and we have employed the same
apparatus as before to determine the damping in yaw by the method
of oscillations. The model set for the oscillation in yaw is shown on
figure 18 (pl. 3).

The equation of motion is similar to that for roll and pitch, thus:

Id2 + (v+v+vm) d- + (K-cm')i+M-M=o,

and

00 e 21, or - =Ioge =log, 9.

fa
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OSCILLATION IN YAW

I model and apparatus =.0396
I apparatus .0343

V ...

V ....
v0  . . .
vo ...
Vw ...

V ...... . . .

t .............
v ............

VO . . . . . . . . . . . .

VW ...........

VM ...........

V . .. .. .. . ...-
t .............
v ...............

vo . . . . . . . . . . . .

V.............

vnt . .. . .. ... . .

v ...

V ....

V .
Vt, ..

TEST ON BARE APPARATUS

- 35. 20

. 108 115
. .0014 .00131

. .0013 .00126

. .0001 .00005

TEST ON APPARATUS WITH MODEL

INCIDENCE OF WINGS 00

35 30
52 57

.00335 -00306 .0

.00126 .00126 .0

.00013 -00011 .0

.00196 .00169 .0

INCIDENCE OF WINGS 120

35 30
33 36

.00528 .oo484

.00126 .00126

.00013 .00011

.00389 .00347

.0

.0

.0

.0

24

64
0272

0126

0009

0137

18

47
0371
0126
oo06
0239

INCIDENCE OF WINGS 60

35 30
46 53

.00379 .00329

.00126 .00126

.00013 -00011

.00240 .00192

26* V
Nr= 2 - vw.

50 Vrn
Nr-.35U = -39.4, f or i=o 0 ,
Nr=.398U= -26.0, for i=6',
Nr=.72U = -38.9, for i=12'.

6o VOL. 62

0

120

.00126

.00126

0

12

105?
.oo166?
.00126

.00004
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8
73

.00239

.00126

.00003

.00110
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71
.00245
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The curves of vm of figure 19 show that the damping of the yaw
increases with speed approximately as the first power. The damping
of yaw N, is in magnitude only about I the damping of roll L,.
Consequently, the precise determination of N, is attended with some
experimental difficulty.

It is to be noted that N, diminishes with the velocity, while at the
same time it increases with the angle of attack. The value of N, at

-. 00

'4

4.

0 0400

FIG. I.-Curves of damping coefficient for yawing.

high speed -35U is practically equal to its value at low speed .72U.
It seems reasonable to expect that at large angles of incidence the
damping of yaw due to the wings would be much greater than at
small angles were the speed the same.

For the intermediate speed i=6* the coefficient N, is least. This
is due to the fact that from o to 60, U drops from -117.5 to -65.3
feet per second, while from 60 to 12' U drops very little more: only
from -65.3 to -54 feet per second.
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7. NEGLECTED COEFFICIENTS

The changes in lateral force Y due to angular velocity of roll and

yaw, represented by the coefficients Yp and Yr, are neglected as un-
important. The surface of the aeroplane is fairly symmetrical about

the center of gravity and it is unlikely that any appreciable lateral
force could be created by any small angular velocity p or r. In the

calculations to f ollow Yp and Y, are made zero.

The products of inertia are also neglected as not important and

difficult to estimate for an actual machine.

8. INDEPENDENCE OF THE LONGITUDINAL AND
LATERAL MOTION

It is seen on figure 20 that the values of X, Z, and M are some-
what changed as the aeroplane yaws, and to this extent it is not strictly
correct to consider the lateral motion separately. We may imagine
that if there be set up a combined oscillation about the flight path in
roll, yaw, and side slip, the aeroplane will be influenced to take up an
oscillation in pitch of the nature of a forced oscillation. However,
any oscillation in pitch has already been shown to die out rapidly
(since the longitudinal motion is stable and strongly damped). We
may then consider the pitching induced by yawing, etc., as of the same
nature as that caused by any accidental disturbance of longitudinal
equilibrium, such as might result from gusty winds, shifting of
weights, or the firing of a gun. If the longitudinal motion be stable,
that stability should be quite independent of the nature of any dis-

turbing agent which gives the initial amplitude to the oscillation, pro-

vided the phenomenon of resonance is not present. That is, if the

natural period of the lateral motion, if oscillatory, happen by some

remote chance to be equal to the natural period of the longitudinal

oscillation, it may be possible for a machine which is unstable laterally

to seriously conhpromise its longitudinal stability.

If the lateral motion be stable and, if oscillatory, damp out quickly,

it is difficult to see how any marked disturbance of the longitudinal

motion can be induced by the lateral motion.

In circling flight, there is a constant angular velocity of yaw and

probably some side slip. In this case, the lateral and longitudinal

motions are interdependent, and the methods of calculation of this

paper will not apply. Indeed, we should have to combine the six

general equations of motion giving rise to a single equation of the

eighth order, which must then be solved for all the roots. In the
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present state of our knowledge, the calculation of the stability of
circling flight appears impracticable.
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FIG. 20.-Curves of normal force, longitudinal force, and pitching moment as
angle of yaw changes.

For flight in a straight line, we may reasonably conclude that if the
lateral motion be stable it will not compromise the stability of the
longitudinal motion, and vice versa. Such a machine should, in still

Y/O /;9 ot fil nU



SMITHSONIAN MISCELLANEOUS COLLECTIONS

air, follow its trajectory without the aid of the pilot. In gusty air, it
would roll and pitch and yaw as well as side slip and rise and sink,
but, if the altitude be great, there should be no danger. The machine
would not follow a fixed course, if controls were abandoned, but
would adjust its trajectory constantly to the changing conditions of
the air in an effort to maintain the same relative velocity through the
air and the same angle of incidence.

On the other hand, if the lateral motion be unstable and the angle
of yaw become as great as io, the curves of figure 16 show that the
head resistance X is not greatly changed for slow-speed attitudes and
increases but 10 per cent at high speed. This should tend to slow
down the aeroplane very little.

The change in Z, or lift, is insignificant.
However, the change in M is most interesting. For i= 12' 110

change in M is produced by yaw, but for i=6' a small diving moment
is induced. For an angle of yaw of 15' or more, this diving moment
is enormously increased. For i=6', g=15', mM=37X50=i,850
pounds-feet, corresponding to a force on the elevator of nearly TOO

pounds.
If the pilot attempt to turn without banking he may side slip so

rapidly that he has the relative wind making an angle of 150 to the
longitudinal axis of the aeroplane. The aeroplane will then tend to
dive sharply. Similarly, an excessive bank may induce a side slip
inwards and the same tendency to nose dive. The cause of this
tendency to nose dive shown here is not understood, but it is signifi-
cant that many accidents have occurred to inexperienced pilots in
turning.

9. LATERAL STABILITY, DYNAMICAL

The combined asymmetrical motion in roll, yaw, and side slip will
be called " lateral." For simplicity we will consider horizontal flight
in a straight line in still air, and for this condition investigate the
character of the disturbed motion.

From the detail plans, the radii of gyration KA and K0 have been
calculated. It is assumed that these values are not appreciably
changed by change of axes corresponding to the changed attitudes
proper for different speeds. KA and K0 as given are referred to the
axes used at high speed. The products of inertia are neglected as
unimportant.

From Part I, 9, we obtain the following simplified formulae for
the coefficients of the biquadratic equation which is characteristic of

- - mi-66r- "I . - I - __ -
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the lateral motion. The quantities Y, Yp, 0 are made equal to zero.
Then:

A 2D 4 +B 2D"+C 2D
2 +D 2D+E 2=o.

Where:

A =K K
B2= - YK 2K-K'L - K2Nr,

C2 =(NrLLrNp) + YvLK2 +K(NvU+NrYv),

. D2 -Y(NrL,-LNp)+U(NpL,-NT,L,)+g-KcL,

E2=g(NvLr-LN,).

These coefficients may now be calculated from the known constants

of the aeroplane, and Routh's discriminant, B 2 C2 D 9-A 2D 2
2 -B 2

2E 2,
found. The condition that the motion shall be stable is that A 2 , B2,

C 2, D 2, E 2 shall each be positive as well as Routh's discriminant.

The numerical work is laborious and the results only are given in

the table.

COEFFICIENTS AFFECTING LATERAL MOTION

High Intermediate Low
speed speed speed

Angle of incidence, i........ .. 0 6 120

Velocity, ft.-sec., U......... -112.5 - 65.3 - 54.0
Mass, slugs, i . ........... 50.0 50.0 50.0
KA ...... ............. ...... . 5.2 5.2 5.2

K0  . . . . . . . . . . . . . . . . . . . . . . .  6.975 6.975 6.975
YV . ...................... .204 - .0878 - .io6
L- ....................... + 3.06 + 3-44 + 1.91

o. ....................... - -449 - .351 - .53
Y , ....................... 0 0 0

Lp ....................... -631.0 -319.0 -224.0

p ........................ 0 + 33.5 + 57.0
Y . .... ..................... . 0 0 0

Lr ....................... + 77.0 + 132.5 +I6o.o

Nr ....................... - 39.4 - 26.0 - 38.9
A2 . . . .  . . . . . ..  - . . . . . . 1310.0 1310.0 1310.0
B2 . . . . . . . . . . . . . . . . . . . . .. 31830.0 16350.0 12090.0

C2  . . .  .  .... --- . .  .  .  .  .  .  .  .  . 3274.0 5910.0 1630.0

D2 . . . . . . . . . . . . . . . . . . . . . . . .  41780.0 5490.0 3490.0

E ....................... 2770.0 1386.0 -335.0

BC2D - AD2- B E2 ..... 37400 X 10' 123 X io 3.7 X 10'
Stable Unstable. .. StableCharacter of motion. .
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It is seen that, for the particular aeroplane under consideration,
Routh's discriminant and the coefficients of the biquadratic are all
positive at high and intermediate speeds. The motion in these two
cases is, therefore, stable.

At low speed, however, we observe that E 2 becomes negative,
indicating that the lateral motion is unstable. That is to say, one at
least of the roots of the b~iquadratic increases with time. In this case
Routh's discriminant continues to be positive, but is small compared
with its value at high speed.

It is unfortunate that this lateral instability is associated with the
longitudinal instability which was found in Part I to be present at low
speed.

io. CHARACTER OF LATERAL MOTION

Bairstow has shown that for the usual values of the coefficients of
the biquadratic equation for the lateral motion, the equation in ques-
tion may be factored approximately, giving:

(D E2 (D+ B22-A2C2) (D2 ( E2 D+ B2D2 0,
1)2 \ A22/ 2 D2) BE -As/

provided E 2 is small compared with B2 or D2, and B2 D2 - C 2 is small

compared with C2
2.

In our cases, the second condition is not satisfied but the error made
is found by trial solutions to be unimportant.

High Speed.
Thus for the high-speed condition:

First factor, D= - -. o665.

This is a subsidence which tends to reduce the amplitude of an initial

disturbance to half value in t= - 9 =1i. seconds. We may con-
.o66r cns.W aycn

sider this motion fairly stable.
For the second factor we have another subsidence given by

D - B=2 -AC 2  -23.2,A 2B,

which reduces to half value in t o.69 .03 second. Such motion
23.2

is so heavily damped that it would never be observed on the aeroplane.
The third factor gives upon substitution:

D2+ C 2 _ )2)D + BD2 D2 +.967D + I.375=o,
\B2 D2 + B2 2-A2C2

or
D =-.484 1.07i.
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This is a pair of imaginary roots indicating an oscillation of natural

period p - 27r -59 seconds, which is damped to half the initial
1.07

amplitude in t= 0.69 =1.4 second. The motion is so heavily damped
-484

as to be of no consequence. The period is fairly rapid, and if the
damping were not great, the oscillation might become uncomfortable.

For the high-speed case, it appears that the lateral motion is quite
stable.

Intermediate Speed.
At the intermediate speed, where i=6', we have f or the first f actor:

D= -. 252,

a subsidence which damps to half amplitude in

t_ o.69 -2.72 seconds.
.254

This motion is very strongly damped, even more than at the high
speed.

Similarly, the second factor gives an enormously damped sub-
sidence.

D= -12.1,

t 0.69 - .057 second.
12.1

The oscillation corresponding to the third factor is of fairly slow
period, but so strongly damped that it is of slight importance. Thus:

D2 +.1iD+.346=o,

D =--.55 - 586i,

P= =10.7 seconds' period,

t o.69 -1.25 second to damp 50 per cent.
-55

Slow Speed.
For the slow-speed condition, i= 12', we observed that the coeffi-

cient E2 is negative indicating instability of motion. Mathematically,
that is to say, the real root corresponding to the first factor of Bair-
stow's approximate method,

D= D-2 =.096,
D2

is now no longer a subsidence, but a divergence which doubles itself

in t= o.69 =7.2 seconds. This is not an alarming rate of increase,
.096

since 7 seconds should be ample time for a pilot to observe a devia-
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tion from normal attitude and to correct it by use of his controls.
However, the aeroplane could only be flown at this speed even in still
air provided the pilot were alert.

The second factor is a strongly damped subsidence D= -9.12,
which damps to half amplitude in .o8 second.

The third factor is an oscillation,

D 2+ .231D+.292=o,

D = -. 116 .528i,

having a period of 8 =12 seconds, which is damped to half ampli-
-528

tude in t= o.69 =6 seconds. This oscillation is stable, but the damp-- .-116
ing is only moderate, and it may well be felt on the aeroplane in flight.
In some types of aeroplane, it is likely that this motion may be
undamped and hence the amplitude of successive oscillations will be
increasing, giving rise to instability of a new character.

i1. THE "SPIRAL DIVE"

The motion found corresponding to E2 negative, as at slow speed,
may be traced to the resistance derivatives involved in the expression
for E2. Thus:

E2 =g(NvL,-LvNr),

and E2 will be positive only when LV/N is greater than L,/Nr. For

stability, or E, positive, L, and Nr should be large and N. and L,

small.
The. derivative L, depends on the rolling moment due to side slip

and can be made large and positive by an upward dihedral angle to
the wings or by vertical fin surface above the center of gravity of the
aeroplane. At low speed and high angle of incidence we see that L,
is diminished. Thus, at 6' and 4. 6 miles, L,=3.44, while at 12' and

36.9 miles, L, 1.91. The drop in speed is only about 18 per cent.
Hence the drop in L, cannot be due to the lower speed, but must be
due to the greater angle of incidence.

Let i be the angle between the wind direction and the center line of
the wings where yaw q is zero. Let <p be the angle through which
each wing tip is raised, and let the angle between the wind direction
for a yaw q, and the plane of the chord of the up wind wing be i'.
Then it can easily be shown by geometry that approximately

when i, q, and / are small ' and expressed in circular measure.

"A. Fage, "The Aeroplane," p. 82, Griffin, London, 1915.
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In our case =1 '6, then for i=12 and I10, i'=12'3, while
for i=60, i'=6-3. This is an increase of incidence with 100 yaw of
but 2.5 per cent at low speed, and 5 per cent at intermediate speed.

Since a side slip is equivalent to a yaw, and since the rolling moment
due to side slip is largely caused by greater lift on the wing which is
toward the wind, it appears reasonable to conclude that this greater
lift is a consequence of the greater angle of incidence. But we see
above, by a rough calculation, that the relative increase in incidence
on a dihedral wing for given angle of yaw is much greater for the
6' attitude than for the 12' attitude. The falling off of L, observed
experimentally is, therefore, to be expected for an aeroplane with
raised wing tips.

A discussion might be opened here as to whether it would not be
preferable to use vertical fin surfaces above the center of gravity or
a swept back wing (" retreat ") to obtain the desired righting moment
L, on side slip, rather than the dihedral arrangement. Until further
experiments have been made, it is not profitable to speculate on this
question, but one would see no reason a priori to expect the coeffi-
cient Lo, given by vertical fins, to depend in any way upon the angle
of incidence of the normal flight attitude.

To preserve stability, we must make N, large also. This coeffi-
cient is a measure of the damping of angular velocity in yaw, and
can be made 'great by vertical surface forward and aft of the center
of gravity. A rectangular body with flat sides, vertical fin surface at
the tail (rudder), and the increased drift on the forward moving
wing all combine to resist or damp the spin in yaw. The designer can,
at his pleasure, increase both L, and Nr by proper fin disposition.
Note that Nr is not different at different speeds.

On the other hand, it is necessary to make N, or the yaw due to
side slip small. A preponderance of fin surface aft will make N,
large and is, therefore, dangerous. A machine that shows strong
" weather helm " or has great so-called directional stability is likely
to be unstable because the large N, may make E2 negative. The
vertical fin surface should be fairly well balanced fore and aft, and
directional restoring moments should not be great. Note that N,
does not vary much with different speeds.

The derivative Lr is characteristic of the rolling moment due to
velocity of yaw or spin and was shown to be caused by the greater
air speed on the outer wing in turning. It is not generally possible
for a designer to make Lr small, though a short span will help matters.
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Note that L, is greatest at low speed and high angle of incidence. It
should be unaffected by dihedral angle of wings.

The instability corresponding to E2 negative is, therefore, a ten-
dency on side slip to the right, for example, to head to the right
toward the relative wind on account of much fin surface aft. At the
same time, due to the -pin in yaw, the machine tends to overbank on
account of the greater lift on the left wing. The increased bank,
increases the side slip, the yaw becomes more rapid and in turn the
overbanking tendency is magnified. The aeroplane starts off on a
spiral dive and will spin with greater and greater angular velocity.
The term " spiral instability " has been given to this motion.

Spiral instability appears to be the most probable form of insta-
bility present in an ordinary aeroplane. It appears to be readily
corrected by modification of fin surface and there appears to be no
excuse for leaving it uncorrected. It is true that an alert pilot should
have no trouble in keeping an aeroplane out of a spiral dive, but in
case of breaking of a control wire disaster would be celain if the
machine were spirally unstable.

12. "ROLLING"

The second approximate factor

D+ B2 2- A2C2 -_A 2B2

when A 2 C 2 is small compared with B 2

2 , is seen to reduce to:

D+ B2  0,A 2
or

B L ND= =+YV+ + .
A2 KA1 K B2

Now Y,, L., and Nr may be expected to be always negative in
ordinary machines, and the radii of gyration KA and KB are essen-
tially positive. Hence this root*D will always be negative and the
motion a damped subsidence. It will be observed that Y, expresses
resistance to side slip, L, damping of an angular velocity in roll due
to the wings, and Nr damping of an angular spin in yaw. In magni-
tude Lv is usually so great that Y, and Nr may be neglected, giving
roughly

D 224 -- 8-3K A 2  
27

at low speed, or a subsidence damped 50 per cent in t =.o8 second.
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The more exact calculation made in ii showed t=.076 second.
In a machine of very short span and great moment of inertia in roll,

we might expect -"-to become small, but never positive so long as
KA12

forward speed is maintained.
When an aeroplane is at such an attitude that further increase in

angle of incidence produces no more lift (" stalled "), the damping of
a roll by the wings Lp may vanish. Then the downward moving wing,
although its angle of incidence be increased, has no additional lift
over the other and, hence, there is no resistance to rolling. In this
critical attitude, pilots have reported that the lateral control by
ailerons has no effect and the aeroplane is unmanageable.

In any reasonable attitude short of stalling, there appears to be no
reason to fear instability in " rolling " corresponding to this second
factor of the equation.

13. THE " DUTCH ROLL"

In the approximate solution of the biquadratic, the third factor,

D2+ ( 2 - )D B2 A C2 '

for most machines will have A 2C 2 small compared with B2

2 , and we
may write:

D2 + C-E 2  2 D D2_o
\B2 D2/ B2

Considering the usual magnitudes of the derivatives entering in
B2, C 2 , D 2, E2, we may write very approximately:

B2 = -Ke Lv,

C 2= (NrL- LrNV),
D2 =+gKC2 L,
E 2 =g(NrL, -LvNr).

The motion is damped and stable, provided C 2 _ 2 is positive, and
B2  D2

the period

p= :27r

j 4D2 /C2 E2\2'2 B (B 2 D ) 2

or approximately p 27r 4
Since B 2 is ordinarily of the order of I or 2 the period may be

f e D2
of the order of 6 or 12 seconds. This period is rapid compared with

7I
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that of the longitudinal motion and unless strongly damped, the
motion may become so violent as to be uncomfortable. Note that
since No, L,, N,, L, Nr, Lr are involved, the motion must consist of
a combination of side slipping, rolling, and yawing.

The motion is stable and the oscillation tends to damp out in time

and the aeroplane to return to her course if C2 - 2 is positive. ToB2  D2

damp to half amplitude requires t= 0.69 seconds.

B2 BD2

Substituting approximate expressions we have

C2 _E2 L, (N N
B2  DK-2 \LP L/

Since L, is positive, in order for the damping to be real, N,/L,
must be greater than ATp/L, and positive.

Stability of this motion is, therefore, assisted by:
I. Large negative yawing moment due to side slip (" weather

cock" stability) Xi,. This is incompatible with stability against a
" spiral dive."

2. Large damping of the rolling due to rolling L,.
3. Small positive rolling moment due to side slip L,. This is also

incompatible with stability against the " spiral dive."
4. Small yawing moment due to rolling N,.
5. Large rolling moment due to yawing velocity Lr; another re-

quirement incompatible with " spiral " stability.
-6. Small radius of gyration K, in yaw.
It does not appear practicable to make Np small on account of the

steepness of the drift curve at high angles of incidence. The drift of
the downward moving wing when the aeroplane rolls is increased
while the drift of the rising wing is decreased. The resultant yaw-
ing moment tends to swing the aeroplane away from her course. Note
that at slow speed, near stalling angles, Np becomes large. This is not
desirable, but is unavoidable.

The rolling is heavily damped by the wings and L, will always be
large and negative. This assists stability.

To avoid " spiral " instability, we saw above that it was necessary
to make the weather cock or " directional stability " small. That is,
N, was to be small and the preponderance of vertical fin surface aft
slight. In the motion now under discussion, we wish to make N.
large. The two conditions imposed are unfortunately conflicting.
We must compromise and make N, numerically not too great, but
still essentially negative.
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In a similar manner, the rolling moment, due to side slip, or restor-

ing moment, such as is given by high fins or raised wing tips, should
be large to avoid " spiral " instability. In the present case, however,
we wish to make L, small.

Likewise the natural banking due to spin in yaw we wish small

for " spiral " stability, but we now wish to have this coefficient large.

The conflicting nature of the requirements for stability is here
shown by the use of rather drastic simplifications in the more exact

formule. For the analysis of stability the exact formule are easily
applied, and the present approximate forms are deduced only in order
to trace the effect on the motion of such changes as the designer may
be tempted to make on a machine.

It is believed that an excessive dihedral angle upwards is nlot a
cure-all for stability problems. Indeed, in practice, aeroplanes with
a large dihedral angle for the wings have been found so violent in
their motion under certain circumstances that the average pilot has a
firm prejudice against the use of such a wing arrartement. That
this prejudice has some physical basis has been showir here. A
dihedral angle machine is not likely to run into a " spiral dive," but
it is very likely to be unstable on what we may term a " Dutch roll,"
from analogy to a well-known figure of fancy skating.

We may imagine an aeroplane to yaw to the right accidentally.
Due to L. and L, the aeroplane banks in a manner proper for the
turn, but the roll is retarded by the large damping due to L.. The
turn is assisted by the increased drift on the lower wing due to AT,,
and were it not for the much discussed " weather helm " given by No,
the aeroplane would run off on a right turn. However, N, tends to
turn the aeroplane back to her course. If N, be sufficient, the machine
will swing back to her course and the bank will flatten out. But since
the moment of inertia in yaw is considerable, the machine will swing
past her course and start on a turn to the left. This swinging to right
and left of her course is accompanied by rolling outward and some
side slipping.

The analogy to a " Dutch roll " on skates is obvious.' If the skater
lean too far out he may fall, and if the aeroplane roll too far on the
side swings it may happen that the motion will become unstable. If
the air be gusty it is very likely that such an aeroplane may be caught
on the roll by a side gust and capsized.

The " Dutch roll " in ordinary aeroplanes (which are " spirally
unstable) is not likely to be present, since there is no dihedral and a
large rudder. The average pilot would much prefer to deal with a

73



74 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 62

machine which tended to swing down into a " spiral dive " if left to
itself because there is no oscillation of rapid period involved.

The production of a laterally stable aeroplane is attendant with
many compromises, and it cannot be too strongly insisted upon that a
freak type designed to be "very stable" is likely to be rapid and
violent in its motion, and even if stable against a " spiral dive " to be
frankly unstable against the " Dutch roll."

One may inquire whether a machine made directionally neutral can
be made stable. In the notation here used N, would be approximately
zero. The condition that " spiral " instability be not present is:

Lv/N,>L,/Nr.
But for N, zero, we need only make L. slightly positive to insure
stability in this motion. L, may be made positive by a very slight
preponderance of fin surface above the center of gravity, raised wing
tips, etc.

However, in the approximate criterion for stability in the " Dutch
roll," we have

- NV/LV>N/LV,
and for N, zero, the motion is clearly unstable unless the magnitude
of the neglected terms is greater than N,/Lv, which is unlikely.

Replacing neglected terms in C2, we obtain as a more nearly exact
expression:

C E L, (_y _ K 'N v2I -, ~2 = o \L_ ~ LA V~KiI U.

If we make N, very small as in the case under analysis, the last
term vanishes as well as the second, and we have as a condition for
C2 E
B 2  

D2 positive:

2

Substituting numerical values for the derivatives, for the slow-speed
condition, we find

- Yv= +.106,
and

Lr N _ 160 X 57 = -856.
K2 L, 48.6 X 224

The slow-speed motion would, therefore, be very unstable if N were
zero. Consideration of the magnitude of the derivatives leads us to
the conclusion that in any aeroplane, if N, be made very small, the

I.
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motion called " Dutch roll " will probably be unstable at low speeds
where N, becomes great.

For high speed, if both No, and N, are zero, the lateral motion should
be stable regardless of the magnitude of the other derivatives.

With the yawing moment due to rolling as measured by Np increas-
ing from zero at high speed to +57 at low speed, it would seem that,
at the maximum speed, any reasonable aeroplane will be stable so far
as the " Dutch roll " is concerned, but at low speed it may become un-
stable in this particular motion.

In general, for high speed, considering the two possible kinds of
lateral instability, it is believed that very slight modifications in fin
disposition will suffice to render any ordinary aeroplane laterally
stable. Likewise, at high speed, longitudinal stability is easily
secured. At low speed, the longitudinal motion tends to become un-
stable as well as one or the other kind of lateral motion.

14. COMPARISON WITH OTHER AEROPLANES

Any stability discussion is much more suggestive if several aero-
planes can be analyzed in parallel. The only published information
on lateral stability is Bairstow's investigation of the B16riot mono-
plane used above in connection with the longitudinal stability discus-
sion. This monoplane had only a very small rolling moment due to
side slip L =.83 as against L,=3.o6 for the Clark aeroplane for high

speed. The coefficient N,, yawing moment due to side slip, is not
greatly different in the two machines. The other coefficients are of
the same order of magnitude, except L,, the damping of a roll, which
is small in the monoplane on account of the small wings of short span.

Without further knowledge, we should expect the B16riot to be
stable on the " Dutch roll " on account of the small L,. Bairstow
finds a period of 6.5 seconds damped to half amplitude in 1.65 second.

On the other hand, the small L, would lead us to suspect the sta
bility of the spiral motion, especially as Lp is also small. In fact, the
coefficient E2 was found to be slightly negative and the aeroplane,
in consequence, spirally slightly unstable. The motion is a slow
divergence which doubles itself in 68 seconds. This is an extremely
slow change and should give no trouble to a pilot. Indeed, the well-
known steadiness in flight of this famous aeroplane is in full agree-
ment with the theoretical conclusions. The B16riot makes no claim to
lateral stability, but is essentially a steady aeroplane easily controlled.
In the " Dutch roll " the B16riot is very strongly damped and hence
very stable. The spiral motion is not damped, but is so slow that the
stability may be called neutral. The aim of the French school has
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always been a machine whose lateral stability is neutral so that it will
not be thrown about by the wind.

The Curtiss type military tractor tested by us in a manner identical
with that described in this paper, was found at high speed to have
resistance derivatives of the same order of magnitude as the Clark
tractor, except that a large rudder and deep rectangular body make
N, twice as large for the Curtiss, and there being no high fin surface
L, for the Curtiss is small. As would be expected the spiral motion
is slightly unstable, tending to double itself in 28 seconds. The
"Dutch roll " is very stable, having a period of 5.25 seconds and
damping to half amplitude in 1.77 seconds. The machine in flight at
high speed should then have the characteristics of the B16riot and be
steady and easily controlled. This is, in fact, the general reputation
of this type of aeroplane.

At low speed, matters are not so favorable. We have no data for
the Bl6riot at slow speed, but the Clark model is seen to become
spirally unstable to such an extent that an accidental deviation doubles
itself in 7.2 seconds.

The " Dutch roll " for the Clark model remains stable at low speed,
but is somewhat less strongly damped than at high speed. The period
is 12 seconds damped to half amplitude in 6 seconds. This motion
should be not uncomfortable.

The Curtiss, at low speed, due to falling off of N, and marked
increase in L, becomes spirally stable. The spiral motion is a sub-
sidence damped 50 per cent in 3.3 seconds. The wings had no
dihedral angle. A separate test' made on a single wing without
body or tails showed a small rolling moment for an oblique wind
indicating a small and positive L,. At large angles of incidence this
effect was considerably magnified. The decrease in N, (or in the
weather helm) at large angles of incidence cannot be laid to the
straight wings. Tests on a wing alone show a small negative N,
which is not changed at large angles of incidence.

The increase in L, and decrease in N, for the Curtiss aeroplane,
favorable to stability of the spiral motion, are unfavorable to stability
in the " Dutch roll." Furthermore, Np increases' from zero at high
speed to +38 at the low speed, and L, decreases from -314 to -78.
These changes are very unfavorable and, as we should expect, the
" Dutch roll " for the Curtiss is unstable. The natural period is
about 5.7 seconds and any initial amplitude is doubled in 7.66 seconds.

Smithsonian Misc. Coll., Vol. 62, No. 4. " Experiments on a Dihedral Angle
Wing," J. C. Hunsaker and D. W. Douglas.
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The motion is a swaying of the aeroplane of increasing amplitude and
intensity. However, we must always point out that an alert pilot
with powerful controls can check the natural motion of the aeroplane
before it has became violent and so maintain his equilibrium.

The increase in AT, at low speed or rather large angle of incidence
is due to the steeper drift curve for a wing at large angles. As the
aeroplane rolls, the downward moving wing has its drift relatively
more increased as the normal flight attitude requires a larger angle of
incidence.

The drop in L, is due to the less steep lift curve .at high angles of
incidence. As the aeroplane rolls, the increase in angle of incidence
of the downward moving wing gives very little increase in lift on
that wing if the wing be already near its angle of maximum lift. We
might imagine an aeroplane flying at an angle of incidence giving the
maximum lift. Any increase in incidence can produce no additional
lift. In most aeroplane wings, an increase in incidence beyond the
optimum angle causes the wing to lift less at the same air speed.
Now if the aeroplane in such an attitude roll, the increased angle of
incidence of the downward moving wing gives no more lift on that
wing and hence the rolling is unresisted. The damping of the roll
will be zero, or even negative. In the Curtiss aeroplane, the low speed
chosen required an incidence of 15'5, very near the " burble point,"
or angle of maximum lift for the wings. The small value -78 of L,
appears to be one of the principal causes of the instability. In the
Clark model, the wing loading is smaller and an equal speed about

44 miles per hour is obtained for an incidence of only 6', giving
Lv= -319. The lowest speed of the Clark model is taken as about

37 miles per hour where an incidence of but 120 is needed. L, at this
angle is -224.

It appears that lateral dynamical stability is incompatible with a
high wing loading which requires a large angle at landing speed.
The analysis of longitudinal stability led to a similar conclusion.

If we turn to practical aviation we observe that aeroplanes which
are noted for their steadiness at low speeds are the light Antoinette,
Farman, and the various German Taubes derived from the Etrich.
All these aeroplanes have large wing area and light loading, probably
between 3 and 4 pounds lift per square foot. The light loading
enables these aeroplanes to gain a safe low speed without having the
angle of incidence near the angle of maximum lift.

In the Clark model the loading is about 3.55 pounds per square
foot, while it is 5.2 in the Curtiss type discussed. More recently the
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Curtiss has been given greater wing area in order to reduce the
loading. It should be stated that the comparison is not quite fair,
since the total weight of the Clark aeroplane was taken as 1,600
pounds which includes only half the full 5.6 hours' gasolene supply.
However, the advantage of light wing loading is more clearly brought
out by the marked difference in weight per square foot wing area.

The following table summarizes all the information available and
may be used to make further comparisons if desired:

Clark Tractor
2

Wing area.........
Mean span...
Mean chord ......
Mean gap.........
Area, fixed tail....:
Area, elevators...
Area, rudder.
Length, body..
W eight, lbs.......
Rise of wing....
Lbs. per sq. ft....
Angle of incidence
V, miles, hour....
U, ft.-seconds..
i.................

KA, feet..........
Ku, feet..........
Yv.............

N V................-

C

464.0
40

5
6

16
16

9
24
16

3
00
76

112
50

5
6

3

.2

.77 -

.37
'.1.

.0

.35

.5
100

063
.55

.9

.5
'.0

.2.

.975:.

.204

.o6 +

.449i
Y)................ 0
L ................ - 631.0
N P ............... 0
Y , ............... . 0
Lr................+ 77.0
N r ............... - 39.4
A 2................ 1310.0
B2................31800.0
C2................32700.0
D. .............. 41780.0
E2................ 2770.0
Routh's discr. 37 X 10 2

Spiral Motion

Damp 50% in, sec. 10.4
Double in, sec..... .....

Rolling
Damp 50% in, sec. .03

" Dutch Roll"
Period, sec. 5.9
Damp 50% in, sec. 1.4
Double in, sec..........

i+I

13
163
59
54
13
12

6'o 12.0

14.6 36.9
55.3 54.0 :'-

.0878- .io6-
3.44 1-.91

-- 5- - .53
0 o

19.0 -224.0 1-3

33.5 i+ 57.0
0 0

32.5 l i6o.o ~
-6.o - 38.9 -

10.0 1310.0 25
50.0 12090.0 238
10.0 i1630. 0 18o
)0.0 3490.0 346
36.o -335.0 -8
X088 4X106 9

2.7

7.2'

urtiss Tractor 2 Monop e.r .... Monoplane

84.0 244.0

36.0 ...... I
5.3
5.3

23.0

19.0
7.8

26.0
1800
0

5.2
1.0

78.9
15.5
56.o
6. o6

8.4

.844+-

.894 -

105

43.6
63.8

.09
2.7

.451

,0 014 .0 - 78 .
0 1+ 37.7
0 0

55.2 +101.0
27.0 '- 30.4
90.0 2590.0
00.0 686o.o
00.0 209.0
00.0 5590.0
55.0 1175.0

X> 10" -7 X 1010

3.3
28.01

.o6 .076 .o8 .26

10.7 12.0 5.24 5.7
1.3 5.95 1.77 .....

..... ..... ..... 7.61

18oo

..

7.38
6.o

... 0
-95.4
56. o
5.0
6.o

- . io8
+ .70
- .44

0
-167.0
+ 24.0

0
+ 54.0
- 31.0

900.0
6780.0
558o.o
6640.0

- 68.o
21. 5X 10"

68.0'

.10

6.5
1.65

'Unstable.
2 Tested at Mass. Institute of Technology, Boston.
'Tested at Teddington, England.


