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Bohr's Atomic Model from the Standpoint of the
General Theory of Relativity and of the

Caglculus of Perturbations

Abstract

" I. In the first part of this thesis, Bohr's

‘atomic model is studied in detail from the stand-

point of the general theory of relativity. A)Lenard's
arguments: 1) that the theory of relativity stands
in n§ causal relaticnahip to Sommerfeld's theory of
fine structure, and 2) that it is not clear why the
restricted theory of relativity is sufficient to ac-

count for the motion of the electron in the ztom,

- whereas the general theory is reguired to explain the

anomaly of the perihelion of Mercury, are examined af
length. The former objection naturally ieads to an
examination of the more general question: Does the
métric of space-time stand in a causal relationship to
the advance of the perihelion of Mercury? - It is shown
that

d) The Newtoniazn equations of dynamics are ob-
tained from the geodesic equations in a four-dimensibn-
al continuum by cancellations which, gso flar as our an-
alysis can show, are purely arbitrarye.

$#) Complementing Le Roux's and Painleveé's objec~-

4,
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tions to the arbitrariness of Schwarzschild's so-

lution of Einstein's gravitational equations'GFv: ¢

in a static sphero-symmetrical gravitational field,

it is proved that Schwarzschila's result is arrived
of :
at by a series,suitable restrictive arbitrary assum-

ptions. There exist in fact an infinite number of so-

- lutions of the gravitational equation consistent with

the definitiorn of static, spherical and symmetrical

field and the choice of the Schwarzschildian form

must be regarded as purely arbitrary. It follows that
Einstein's equation is insufficient to fix gg;qggiy
the relativistic Keplerian orbite.

5?) Von Bleich's and Zaremba's analysis are dis-
cussed in detail and found to hold. The argument may
be summed up as follows: For motions in a central
field the dyrnemic equations of clessical mechanics must
be supplemented by a "relativisiic® equation, but this
last equation is arbitrary becaﬁse several forms of
this equation lead to the same formula for the peri-
helion advance. Hence it cannot be maintained that the

metric of space-time stands in a necesssry causal re-

- lationship to the anomaly of the perihelion. The gen-

eral conclusion is that Lenard's first objection holds.
2) Using NordstrBm's fundamental form in a static
sphero-Symmetrical material field and Weyl-Eddington's

equation of motion of the electron in this field it is

S,
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shown: & )that the motion is plane, p ) that the cur~

vature of the space-time in the region around the

i
e
=
&
&
o
s
&
o
P

nucleus almost vanishes (Laue's condition), Y ) that
the field of the nucleus is very neagﬁstatic, J)that
it ig justified to treat hydrogen of hydrogenic atoms
as a relativistic one-body problem, ¢ ) that our more
general eguation of the orbit reduces to Sommerfeld's
equation if conclusions («) to ( 5) are taken into ac-
count, @) that Einstein's equation for planetary mo-
tion folloﬁs from our equation of the orbit if the
terms depending on electric charges vanish, | ) that
conditicn (ﬁ) is not satisfied for planetary motion but
condition (Y) is. %) that the general relativistic
Keplerian orbit can be obtained by the familiar method
of the calculus of perturbatiéns and yields results in
accordance with rigorous analysise. In closing, the weak-
ness of»ﬁhe Weyl-Eddington.equation of motion is dis-
cussede

B. An attempt is made to bring the quanium theory‘
into relativity. Following on the work of Mecke, it isl
shown that the two fundamental posiulates of the gquantum
theory: minimal principle, and cbntinuity principle can
be ;brought in harmony with relativity and lead to the |
following results: & ) an explanation of the existence
of unmecheanical orbits in the atom, $) a unified inter-

retation of Bohr's second postulate (monochromatic radia-
1Y , v




tion) and his principle of correspondence. Mecke's
"integral pfinciplett (atomistic conception of action)
can also be brought into the body of the theory of
_reiétivity, but, if it is to have any usefulness, pri-
vVileged co8rdinate systems must be introduced. On the
author's view, this is due entirely to the arvificia-
lity of our present quentum conditions and shows no
weakness of the main argument. The fundamentsl mean-
ing of the relativistic two-body problem, in which
probably the periodic solutions are the natural quan-
~tized states, irrespective of any quantun rules,Ais
broﬁght out. It is shown next that ihe‘electron pro-
blem is not yet suffidently developed to warrant an
attack on the quantum problem from that sides In clos-
ing, Mohorovicic's objection that “different geometries

hold at the same spot of the universe™ (ex. atom in

$
gravitational field);examined and found to be unienable,

IT. A. 1In the second part of this investigation,
the applicability of the calculus of perturbations to
the Bohr atom with more than one electron is studied in
detail. The methods of quantization of Epstein, Bohr
and Born and Pauli are examined. It is shown that it
follows directly from the form of the integrals of the
equations of dynamics, as determined by the classical

theovems of Poincar & and Bruns, that neither of these

T

methods can converge. In Epstein's case nothing is known
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a8 to the remainder, and he disregards altogether a
possible libration of the momenta of the intermediate
orbit, a case which cannot be handled by Delaunay's
methdd, which he uses. The contention of Born and
Pauli, that the semi-convergency of the Newcomb-Lind-

stedt or Bohlin expansion of the perturbation function

'1s sufficient for practical atomic problems, is shown

to be untenable, Stress is laid on the fundamental
8ignificance of commensurabilities in periodic times in
those methods that utilize the Newcomb-Lindstedtvex-
pansion and the impossibility of introducing angle var-
iables in certain cases. For continuity réasons, it

is concluded that nedither the solution of Epstein nor
that of Born and Pauli are compatible with the adiabatic
hypothesis or the correspondence principle. The decisive
advantages of periodic solutions and the approovriateness
of Bohr's method as a first approximation, in those
cases to which it applies, is brought out clearly. The
general conclusions: For purely analytic reasons, the
calculus of perturbations is not in general applicable
to the atomic system with more than one elecirone.

B. Following Fermi, Poincaré's theorem is discussed
ffom a geometrical-statistical standpoint. We establish
the following theorem: Except for the dynamical System
of one degree of freedom, no continuous analytic hyper-

surface exists in phase-space, besides the energy-surface,
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which can wholly contain a dynamical trajectory is-
sued from one of its points. This holds under coh-
ditions which are explicitly stated.

C. An attempt is made to extend the adiabatic
theorem to non-conditioned-periodic syétems. The

method of attack is geometrical=-statistical and the

result is in the main negative., We establish the fol-

lowing theorems: o ) Any dynamical system admitting a
single integral, uniform and independent of time, ad-
mits an adiabatic transBormation leaving this charac-
teristic adiabatically invariant. As a particular cbr?
ollary we have the well-known theorem that the energy
of a guasi=-ergodic system is adiabatically invariant,
and the adiabatic invariant of harmonic motione. P )'If
a dynamical system admits more than ane integral uni;
form and independent of time, none of these integrals
is in general an adiabgtic invariant. An excepiion is,
for instance, the phase-integrals of a conditioned per-
i0dic system.

The results of Krutkow and Fock and Kneser are
analyzed and discussed. In closing, the difficulties
standing in the way of a generalization of the concept
of adiabatic invariance to systems of higher degree of
freedom are discussed, following Ehrenfest. It is

pointed out that the theorem of the conservation of dim-

ensions for the transformation from W, I-phase-space to



psq-phase=-space involves only differentiability con=-
ditions, which fbr physical reasons are satisfied in
all Yikelihood, but no rigorous proof is given., ZEhren-
fest and Breit's example of the rotating dipole is ex=~
plained from the standpoint of our general discussion.

D. A discussion is given of the separation of
variables in Hamiltnn-Jacobi's equation, embodying the
chdition of separability of Lewvi-Civita, the latter's
theorem on the separability of the variables in the
kineﬁic energy and Dall'Acqua's proof of the separable
forms of the potential.

E. For purposes of ready reference, Cauchy's ex-~
istence proof and its generalization by Poincard, Poin-
card's periodic solution, the convergency of the expan-
sioﬁ of the perturbation'function and the theorems of

. ot . .
Poincare and Bruns ars given at the end.

ITI. An appendix is added collecting certain class-
ical results of celestial dynamics which are made use

of in the text.



Part I, The Bohr-Sommerfeld Atomic Model from the

Standpoint of the General Theory of Relativity

1. General

The mathematical meaning of the restricted theory
of relativity,is contained in the Lorentz transforma-
tion. That more is implied in the Lorentz group than
was originally supposed in 1905 by Einstein is some-
thing which can be safely said.(l By arplying the re-

stricted theory of relativity to Bohr's model of the

~ hydrogen atom, Sommerfeld was able to give a complete

satisfactory theory of the fine structure of hydrogen
lines and, besides, important extensions to the theory
of the general systematization of Réntgen spectra. -

But scon Lenard(s) cast two grave doubts on Sommerfeld's
interpretation of the fine structure: Why is it that
zgﬁggggggg relativity is sufficient to account for the
advance of the perilelion of an electronic orbit in an
atom, whereas general relativity is mnecessary to explain

this ddvance in the case of the planetary system? Does

the theory of relativity stand in a causal relationship

to the theory of fine structure? The answer to the first

of these questions was quite apparent to the writer
early in 1923, while studying De Donder's *La gravifique

einsteinienne® (Paris, 1921)., That there are some very

il
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deep-seated reasons why the restricted theory is suf-
ficient to account for electronic motions, whereas

the general theory is necessary to calculate planetary
motions, will be shown in the sequence.

On the other hand, the correctness of Lenard's
contention that there exists no necessary causazal re-
‘lationship between relafivity and perihelién advance
must be recognized. Aside from arguments of a very
general kind which will be brought forth presently, it

should be quite carefully emphasized at the very start

- that Paschen's experimental verification of Sommer-

| (1a)
feld's theory of %ine structure cannot be taken to

be a proof of the restricted theory of relativity, but
of any theory which leads to & law of variation of elec-
tronic mass m = mq/ ( l- V;c‘?)l/: a5 clearly siown by
Lenard.(aa) Further, Paschen's figure for the funda-
mental hydrogen doublet Avo.-, C.365 cm‘_.l ?gs)been Ques_
tioned very recently by Gehrcke and Lau * » Who find
Av, = 0.292 cmflﬂin accor%znge.with Abraham's mass for-
mula for & rigid electron ? For the‘preaent, the
question rests altogether in the hands of the experimen-

tal physiciste.



A few Remarks on Relativistic qulerian Orbits.

One of the best known resulis of Einstein's
gravitational theory is the explanation of the advance
of the perihelion of planetary orbits; In this paper
we are largely concerned with the theory of electronic
orbits in hydrogenic atoms from the standpoint of gen-
eral relativity. The discussion of specific phases of
the problem is left for later sections, but at the
very outset of the inveétigation a question of funda-
mentél importance presents itself for consideraﬁiqp:
is it 2 fact that the metric properties of space-time
stend in a causal relationship to the advance bf the
perihelion in a.relativisticheplerian orbit? bn ac-
count of the obvioué fact that all future dedugtions are
based upon the answer to this query, it might be pro~
perly taken up here.

The problem has been discussed from di?iirenp angles
b& a number of writers, notably by Zaremba. ) After ay
rrefound ezzmination of the postulates of the theory of |
relativity he arrives at the important conclusion that
"Gans tous les cas oU les relativistes ont cri avow dem-
ontre qu'une proposition, confirmée par l}observation,
est une conséquence de la théorie de la rélativité, ils
}ont appuyé leur thése par des considerations basdes non

: R4 .
seulement sur les hypothéses de la relativite, mais en-




core sur guelgue affirmation gratuite o0l sur des hy-
pothbses logiquement incompatibles avec celles de la
relativité”. Further, he states that the postulaﬁes
of the tﬁeory of relativity are insufficient to es-
tablish a correspondence between measurements and the
numerical values of the symbols entering into the for-
‘mulae of the theory: YAvant de parier de l'acdord ou
du desaccord de la théorie de la relativité avec les
_&a&ts observés, il faudrait la completer au moyen.
d'hypotheses additionnelles",. However, he is careful

’ . Ve . . )
to add that "les resultats precedentis ne constituent

cependant nullement une réfutation de la théorie de la
relativité® because it has not been shown that it is
impossible so to complete the postulatss of the theory -
of relativity as to transform it into a theory in which
we may actually speak of a confirmation of theory by ex-
'periment. All this seems to point out that a re-exam-
ination of the problem is not only opportune, dbut neces-
sary and unavoidable.

We are not concerned at all here with the n?merous

5

attacks which, for metaphysical or other reasons, ) have
been made from time to time against the theory of re-
lativity. We approacli the cguestion, with due reverence
to the formidable creative work of Einstein and Weyl,

from the point of view of the mathematical physicist only.

The theory of the geodesics, which had already yield-




ed such beautiful results in clasesical dynamics, led

(6) w
Einstein to the following problem: What is the rela-

tion between the equations of the geodesics

: ,
d=x. b ax, ax . _
k, 2 1 Zo (i,5.x=1,2,54 ()

as® . xJ  as ds

and the eqguaticns of motion of classical mechanics
S
2

w2 03

In this last equation U is the gravitational potential,

0 (k :1’213) (2)

It may also be written in the well-known form:

- - o,
dtg r3
; 2 2 2 X is G ' | tant k2 | 1“128;3
Here T __?; x is Gauss' constant, - /1+ﬂh
if n ¢ 2 /T is the mean angular velocity, T the

periodic time, a the semi-major axis in astronomiczal
tnits, m the ratio of the mass of the planet to the mass

of the sun. Since m is very small compared to 1, the
. X . . 2 2.3
above relation is usually written k*© =z n"a

‘

In the relativity theory, Xz ct, where t is the
relativistic time, which of course is not independent of
space codrdinates. The above equation (2a) is therefore

written in terms of the variable x4:

dgxk kz e ,

—£4 — = -0 k= 1,2,3 ..., (3)
2 2 3 |

dx4' c r

If by t we mean the independent variavle of the problen,

i.e. the 0ld "absolute" time, then in clagsical mechanies

we obviously have i; = 0. ¥Not sa in relativity, for-



the relativistic time Xy is no more the'independent
variable, because it is connected %o the space cofirdi-
nates_ﬁy the postulate that the square of the linesar
element in four-dimensinnal space-time is an invar-

iant with respect to affine transformations, i.e. by

b}

the condition equation ds = 3Pude ag¥= ix avariant .. .. (4)
From this it follows immediately that (%) and (&) can
never be rigorously identifiable, but only with greater
or less approximation, The necessity of a metric based

o

on a quadratic fundamental gorm has veen discussed by
(7

Weyl and proved by Cartan.

¥ = 1,2,3, in eguation (1). Otherwise this is justi~
fied because the planetary velocity is negligible com-

pared with the ¥elocity of light. From (1) Hinstein gets

2]

a"x 24

Tk 4 =0 k= 1,2,3,
dtz : k

nd assuming that and the remaining
ana 35 o 344) 911’ 322, 3'23 G < I lg
gP“'S differ from 1, =1, 0, respectively, by small quan-
tities of the first order, we have, from the definiftion
of the Christoffel sywbols of the first and second kind
Pk[xu]_ {)”}
oURIE
a

ifferent components of the covariant funda-

[
(@]

of the

16.
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mental tensor Qv only four remain in a first approx-
imation, one for each of the four equaticns (1). We

then get 4 x, / 4t = 0, as in classical mechanics

and the remaining equations (1) give
< - (5]

d%&k [441

at2 ¥

i~

1:2,3.

Here the wiiich involve space and time are rather

: Icd : £ —_— _
unwieldy, so Einstein sets them simply ecual to zero.
The writer 1s unable to see that there is any other

reason for this excepnt the desire to obtain equation (2)

and must therefore regard this as purely arbitrary. But

the advantage gained is great, for nocw we have simply
B vE

and we need only ﬁetc - 9544 /0 X, = gaU‘/a Kk to ob-
tain the desired identification. But we cannot con-
clude from this arbtitrary »nrocedure that the relativis-

1

tic equations of motion ( i.e. the geodesic equatisas)
reduce" to the Newtonian equaticns as a first approxi-
mation., For as showm above, setting 2(U= 1 - G4 1S

the result of purely arbitrary cancellations, which, as

A

=

-
o

o
o

-

one can see, are exclusively born of the wish to

1 {44} t L 26 If our standpoint i
requce 0 -5 . I our canapolnt 18
J T Bx. . e

LN
correct, the statement of Einstein "Das Merkwhrdige

an diesem Resultat ist, dass nur die Komponente 544 des
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Fundementaltensors allein in erster N8herung die Be=
wegung des materiellen Punktes bestimmt" is difficult
to undersﬁand. |

Let us now examine the advance of the perihelion
of a planét more closely. In a recent arficle, G. von
Gleich(g) hés show that any law of attraction gives

results for the advance of the perihelion of a planet

(Mercury in his example) which differ from the general

relativity formula only by a 'xwmzﬁzcn_} fact?r.) Thus,
10

- the latter gives the well-known exnression

(e = eccentricity) (43" per century)

. . (11) .
while restricted relativity gives

2
- 4T g~
Ap= ~ (7" per century)
72¢2(1-¢2)
Weber's theory which assumes a law of attraction
‘ 2 1 P2 (12)
Fro-X _,1_(91_3;) + 2r .el._z__]
r2 ce \ 4t c2 dtz

and Neumannt's, which sets

- (13)
Fe K1 o1 93)
1‘:?. c2. at
o A "8 3g°
give . A - 2ﬂé»i (14% per century)

T<c%(1 - &%)
(12a)

Riemann's law with a potential

2,1 1 ix , dy , d=z
k¥ { = - filx,v,z, = -
(3 z Tl at 4t  dt )

C



16 T° a®
T2c2(1 - &%)

cives A? - (28" per century)

and the same result is obtained from Gauss's law which

2 » (14)
F=- .15_2..[1+l§ (2u2 -3 (-d-%)
r c : g

Finally, the much-discussed paper of P. Gerber

‘which assumes a potential

2,1 ar)® Qs
T ‘T e dt
leads eXactly the Einstein formula, However, it has

beenAshown by Laue that Gerber's justification of the
exvression for his potential is untenablegéaéesides,
it is evident a priori that all these expressions for
the gravitaticnal force or potential are purely em-
pirical, Other empirical expressiocns, as for example
Seeliger's - %E efP:r also give the required pre-
cession, if P ig suitably chosen. In general for &ll
such empirical laws we may write,

4WT332
Ad=n—
? 22 (1-e?)

A being an integer, having the following values

23

Einstein and Gerber: N = 6
Riemann and Gauss : N

Weber and Neumann :

(34

= S
1] Vi
H M

Lenard and Lorentz

19,
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i ‘ (159
' Similar consideraticns Have led Gehrcke to

the conclusion that this expression for the advance cf
the perihelion is a dimensional propgrty, i.es it must
occur in-all gravitational theories and hohorov101c

has extended the reasoning +o show that it also plays

a fundamental part in all other consequencew of
graﬁ1tat¢0 12] theory, a2s for instance, displacement of
spectral lines, deviation of a light-ray, radius of
curvature of the universe, etc. But in view of the
well-knewn objecticns which c#n be mede 1o so-cgiled
“dimensioﬁal" theory, too @uch.wplglt cannot bhe w’rtached_

(1¢)

to such conclusions.,
We may sum up the above evidence as follows: For
moticns in a central field, the dvnamic ecuations of

clasgical meghanics - J (x = 1,2,3) with

their well-known integrals r2 @ = const. (intesral of en-
5] Y &
y
‘{.2 10:\“!515 nntesrqI]
o 7 A 8Te

gular momentiun) +

only & first agproximation to the facts, They wust be

6]
o
hj.
f..J
0]
=
O
3
ct
bl
[o7}

by a "relativistic® conditisn ecuation

' . RN . . .
F(x,x)t)c), put the form of this eguation is as yet arhi=~

w

trary in the sense that several forms of this eguation will

lexd to the same expression Tor the rerinelion advance.

In other words, it cannot be maintained that the metric
of space=-time stands in & necessary causal relationahip

to the motion of the perihelion.

The argument may still be presented from another aﬁgle.




As is well=known,

are the geodesics in a static-symmer

gravitational field. The solution o

gravitetional eguation G,
(17)
by Schwarzschild.

rn

By reasons of

chooses polar colirdinates, --

strictly

Ay
3
Q
o
o]
<t
U
(-*
o
o
O
o)
2
[
=
(4
ey

system

ady brought out clear

(9)

but specially by Painleve

irst fundamenial

azsuming for the f

-¢s? - Bdr®+ R'a¢® - R"4t®; R,R'.R"

of ¥ only, d8¢* the line-element on

radiue sndtthe relativistic "time®.

‘17

o

ed out here that there

son Tor identifying

time, a8 po with extreme

and Le Roux pressed in syrmst

and we may write

- 4dx dy
(s+y0“

ation,

der
-3.8

in which £
€117 S22

2§ (xq)
(x5+x4}

the

Torm

may alwags change the varisble X, so0

a)

: 2X
to the form g = —r N
34 (3. % 3 2
X %)

ten Einstein ecuations GH’= C, we [

them vanish identically and the rema

the relativistic Keplerian

- ¢ for this case was gi

choosin

form

are functions of x5 only and g _

. If ¢(xl) is

Thits
rical spherical
f the Einstein

iven
symmetry, he

12 the co8rdinate

h-&

an
being functicns
2 sphere of unit

It might be point-

rlCﬁl coBrdinates

, making an cbvious

o

not & constant we

to bring hack g

)
o

34

now we Iform the

ind that seven of

ining three give:

is of
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Introducing these in C3q- 0 gives e¢' = 1 and we have

obtained Schwargzscnild's solution

Iy 2 2 Lo
as® - Ar- 4 (a6 +sin"e a¢*) - (1 - &) a¢?
1-8 )

T

But, it shculd be carefully noted fhat we have arrived

ot this result by a series of suiltable restirictive as=-

gumptions,. In fact shere is an infinite number of so-
(22)
lutions , and hewnce the choice of Schwarrschild's

form to define the motion of a gravitating nariticle is
< o -

wholly arbitrary. For instance, Painlevé (l.c.) shows

that the form
o Ny
as” = (1 - <) c‘.tz? Rdrdt \l z4 ar™ r*(de¢ sin2$ aéh

advaudce i -
sgiv@See the game Pef:;hekhfm,. as the Schwarzschild f 0Tl »

The general concliusicn is: Finstein's ecuations .of the

v * i :
gravitational field are insufficient to fix uniguely the
- i

relativistic Yep“erlar orbits. AS we shall see later

the same objections apply to Fordstrdm's soluticn for th

field of an electrically charged heavy particle, which

Liesg ot the basigs of our further work.
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The RelatiV1bt1C Keplerian Orbit in the EHydrogen Atom

We ccneider from the standboint of general re-

1ativity the motion of a "small" particle (elcctron)

W
1
©
+3
)
@

of mass m and charge -e in the field of
particle {nucleus)} of mass I and charge &, hc ving
spherical symmetry sbout its midpoint 0. If oertal_

relations, t v discusged loter, exist between e, m

and B, M, so that the field of the Large particle is

not apprecizbly disturbed by the field of the small

o3

nerticle, the material field of the system, assuming
mo other electro-mazgnetic action in its space-time, can
be also considered to have soherical syrmetry about the

Cs

i'l)

riter of the large pazrticle, TFollewing more or less
arbitrary consideraticns of +the nature outlined in
dealing with Schwarzschild's solution of the static sym=-

. . v ﬁl‘\d
metrical gravitational field, croosing the center of the

large particle as the origin of & system of spatial polar
T ] (1) (2) (3)
cofirdinates v, @ s , ordstrdn , Jeffery and others

have found tlie metric fundemental from of thie material

o h o I E 2 d 2 -
as” = ¢ (- X4+ L) at* - T A SRS - A ;
= ( r+.f2) at 1_3{/3.*'5/1‘2 (a6 +sin"pag)...(1)

where y - 2X¥, § = liE. and X is the gravitational

constant divided Yy the square of the velocity of light,

Am29 L . ‘
Xz 7.42 % 10 ©7 in ordinary c.g.s. units. By the gen-

¢val theory of relativ1ty,-the eguations of motion, are,
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(4)

in the case considered,

g v i
= CLIRTAS BT _P_qu vk -1,2,3,2)  (2)
.r..k o] B -

ault _
P( és

vl

P and f oelrg the mass and cha rge densgity, resncctive
1y, of the electron, f ) the generalized ve-
locity (Eddington) or,; more groperly perhaps, the world-

irection K (Weyl); ij :-;g;— - %E% iz the elec-
:.j -—-k

Qf
[

tromagnetic tensor and ¢‘ the compronents of the elec-
tromazrietic potentié}.. In our case ?1 :ﬂ:‘% ﬂ- B
We def:re, following Weyl, the mass and charge of
electron by the relaticns?i

mds = I.Ld.:{ -eds ;})dx (ax = ax dxldx;dxﬁ,)

=

and pultiplying (1) by dx/ds obtain Bddington's eguatiou:

das 2 7=x

our assumptions, the motion takes place in a plane. This
can be seen just as in the case of planetary motiocn in

a static sphero-symmetrical gravitational field as fol-
lows: Consider VordsirBm's fundamental form(i) suovVe,
which determines the material Tield of *the nucleus. By
our assumntions, the trajectory of the msving clectron in
2+1 space-time is determined by equatisn (3) above.

In our case the on.y F. ' ® vhich do not vanish are, co-

variantly, A : .
Fi = . 'bpd y P = a¢“
. ¢ FE; —ﬁil_
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hence the eguation corresnonding to XL 2 © is in-
bdeyendeﬁt of the electric field, beccause the corres-
ponding cemponents of the electromagnetic tensor vanish.
Therefore it depends only on the gravitaticnal field
and by following exactly the same nrocess given in de-

(5) (6)

tail in Bddington y 1s found to he

= E‘,ﬁ-sine cos P (9%31: Cy
r ds ds as

taken as the orbitsl plene. Since on it ag=20

The equations (3) corresponding to the index k = 4

,\
o
w
=
=
Y
e
l..J
[

t) and It :v2 (variadle ¢ ) are

At db dt 2 1, 2 o &F dr

S e == ewnn o

- 2 s
ds® de ds  ¥r meR=r ds.

2

mcd

£>+2m° e &8 -
as” ‘

which integrated yield the energ

tegral of angulzr monentun, resnechtively:

Rz at

C and p are integration constants. Ye set for C the

vell-known energy expression of relativistic dynawics.



Although the eguation (3) corresponding to the
index k¥ = 1, {varisble r) is not needed in what fol-

lows, it has consgiderakly shysic ,% 3 rest, as first
7
. /\ ‘.
pointed out (nub¢¢ca*lv) by Jaffe . It is:
z. )2 : T : :
2 < 'dsg 3r s 0.8
as
4 . ) .
e (gg) 9 1oz R® - eEc_ _dt (7)
2 ds 2 . a.s
From (4) we have:
R - . e (2)
dg =r 2 TV T 5.2 [-—S/aB\L .2/ |4
%2 ~(28) 1R %[ (qE )+ (5 "
at L
where 4C-is the positive definite quadratic form of
the space variables T, ? . This jis a mseful ecustion
which permits changing from derivatives with reSﬁuc to

s (?ﬂapw time) t® derivatives with respect to t (uni-

time), Using (8) in (6) and (7},

we may write:

zr%( wR .o gl Koo . [l (i)i +
- 1 & 53 .
: ‘{csz -(@i}]‘ ¢ x [czRE.@;ﬂ cer?\dt

T

2 d 2
Xe™ 1 ar mer (—24 35 (g
¥ AR | Mt G| | iy T S
r3 e‘*pff-(dr‘]‘* R R
1 d
d. mne 24
at - 1
| T (&) % at = ° (20)
e "(r:s.t :
the left-hahd member of the former equation is essen-
tially = rate of change of momentun -- 1.e. force --
"2 ile coefficient of dre

which, since it contains R 7, in

the fundamental form Likewise,

29,
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; . 2 .
the latter ecuation which contains 7, IR the coef-

ficient of d.?l, is a tangential force. If we now
consider the right-hand member of (¢), we see that

the radial force is made up of the following componentss:

1) The Newtonian attractive force, = KI‘%‘- )

r
which, corrected for finite velocity of propagation,

gives the first term on the right-hand member of (2)

2) The repulsive gravitational force between the
electric charge E and the mass m, which, except for
terms in ¢, varies as the cube of the distance and gives
the second term.

. LAk
3) The centrifugal force mr¢ (third term)
&) The attractive Coulombisn force. (fourth term)

We come back now to the equation of the orbit. The

fundamental Torm {4) above may obviously be writien
2 2
2.2 (dat ] o1 e\” _ 2 fap)?
72 | & i (& -r -1 = O

Introducing in tihis equation the energy-integral (5)

and the integral of angular momentum (6), we hafe,

writing as usual u -l/§ , the equation of the corpit:

-

2 - y 2 .
d W 2uW | 2mel g it
( 1;) -_ W - B zg..i (1+.__,r v+m—; N N

0 " & 2 2
d cﬁ‘p o 5 mz el
- Ly 2. - &F oyl - KB y- |
(‘ 3 2- 2 u + 1\H u 2 u (ll}

o) ¢ » c
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whose integral

‘(r,.
S S
it
o
o

L]
wn
e

=

0

(0]
B 3
—
j
g
'.-l

[ #2]

an entire. " polynomial of the fourth degree in u,

the integration can be carried out by means of ellip=-
()
tic Tunctions. It will be noticed that the orbit of

the latter cace hos been
didcusgion of the correspornding problem in the former
cage has beon gilven hy Wevl « The complete study

LY, . 3 xS - - -~ Eal -’ 5 S
of Thesgse orbhits iz, as shown bhelow, of scant intsreai

and can be left for ancther occasion.

atom, the above eguation of the corbit reduces 4o trhe one

obtained by Sommerfeld throucsh the dynamics of restrict-

du--.leE( W - {1 -eB = “
d¢1 = 5 1 o=z \ R T oaass 12
i M e

Yow, differentiating equation (11), we obiain
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means the case. It might be argued that our own pro-
cedure is based upon just such an assumption, dbut it

must be remarked that our method gives thie necessary

information ag to just how much the orbit devends upon

the gravitational and the electrical magnltuaes which

fix the field as well as the factors introduced by re-

stricted relativity. To be sure, it is o“¢y an approx-
imation, but an approxiﬁatiom which reasonably can tell
how far it is from the facts.

In this connection, ancther important remerk must
algso be made here. We have taken no account of. the

modification of the field due to the moving particle.

A measure of this neglected influence is given by the

ratioc of the gquantities Y" i1 , whi ix the curvature
of the space-time, to the guotient t)/ which
measures thie rate at which tA field singularity due to

the electron itself moves aoout in the pure nuclear

field. We require that

e AT <<
(&2
(15)
. |
and 27. 21 gzﬂ < < 1
(dt

In order to prove these relations and show that

~our equation (13) reduces to Sommerfeld's equation (12),

we must now con51de* the numerlcal relations in the hy-




drogen atom. Assume that the electron is in the in-

{14)
nermnost path (n¢ - l)n(:O).We have
-10 N -
e = 4,774 x 10 statcoulombs (Mu hKan's vq|ue,)
v -10
% - 4,774 x 10710 "

-28
m = 8,99 x 10 grams

-24
¥ 2 1.649 x 10 "
(dc v /9.2 - 7.29 x 107° (Sommerfeld's constant)
dt
r = 0.532 x 10 2 cn.
-29 -24 _
, 2 x 7.42 x 10 X l.649 x 10 ' -4.6
Y, = ' = . = 4.61.x% 10
0,532 x 10
o
. —_— -2 .
¢ - 7.42 x 1072% x T79F x 10770 -53
' ~ ) = = 6,62 x 10
s 20 " 10‘..1.6
9 x 107" x B3 X
It follows from this that Laue's conditions (14) are

satigfied with exirserdinary accuracy and to all intents
and purposes the space irn whieh the mOV1nm e¢lectron moves

is Minkowskian. Let us see now how our conditions (15),

wailcn measure the departure of our cne-body problem from

the true two-body problem, are satisfied.
2

By above R” w1, hence, Y,: Helxio* 0.634x 1074
7.29 X0~
-§8
- 6.6 0 =50
and g = é.61 x 1 = 0.923 x 10
7.29 x 1079

and to all intents and purposes, the hydrogen atom can
purp

be treated as a one-body problem. Further a plus forte

raison, the material field of the hydrogen atom is

spherical, symmetrical and static: The material field
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+ %

of the nucleus is almost non-affected by the moving
electron. These conclusions hold, for still stronger
obvious reasons, in all hydrogenic ions of the type

et , nit*, Bet*, etc; but they do not hold at all for

other ionic or atomic tvmes on account of the inter -

pengt ration of the different electronic orbits. It is

passible then that different orbits mey come close to=
: (13)
sether over certain intervals and as a result the

o

=
[\

terial field of atoms and ions of non-hydrogenic type
‘ (16)
juelitatively shown to be neitlier static nor

v

e
4]
W

‘sphero-symmetrical. This conclusiorn is of paramount im-
portance for what follows.
We co“clnde further, that all the terms depending

on the curvature of space-time -- 1.e. all the terms

orhit {13). The latter then obviously reduces to Sommer-

feld's equation: Lenard's objection is now completely

answered.
With regard to electronic orbits of any azimuthal
and radial guantun number, nf and Nys Sommerfeld's
(17}
discussion shows that the sreatsst departure of

relgtivistic from the classical Keplerian orbit -- great=-

egst precession of the nerilhelion -- occurs for large ec-

3

centricities, i.e. when n¢ = 1 and n is a large number.

But even for the highest values of n. which can occur
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practically=sn atomic theory, our fundamental quan-

tities_yl,YL ,i! ’iz' stay of the ssme order of mag-
nitude and all our conclusions hold, as an elenmentary
computation readily shows.

The planetary orbits in a pure gravitational
‘field are a particular case of our eguation (13) and
are obtained Trom it by placing e = E = 0, that is by

&rspping-the curvatufe terms wkich depend on electric:
charges in the fundamentai form (1). Simultaneously, of .

course, the electromagnetic tensor vanishes in (3). But

w

in this case our conditions corresponding to (15) are
satisfied for a2ll planets in the solzr system, while the

Taue conditions (14) are not. We have here the reason

why restricted relativity is unable %o account for planet-

ary motions. In fact, if we place e = 0, E = 0, we

obtain, from (11)

LR . . D 1r [ 2 2 2 3
_d_.'l_i - . 'f - 2my + 2 XKc“m M u -1 -+ BK Mu (16)
df o0 2 2 2
Pec s P ’
2 2 g .

or 4 u 2Ke m"u 2 .

oo BemE L wesnm (a6e)

2
which are the wellsknown eq%at%ons of a planetery orbit
18

in the theory of Relativity . The last ternm castises

v

the departure of the Einstein orbit from the Newtonian
' 8.

orbit. Suppose now we treat this departure asﬁsmall

orbital perturbaticn would be accounted for in classical

mechanics and write the solution of (16) in the usual form:




. 2
u = u0+u,.KE{+ ug(KM) I (17)

If now we subsztitute (17) fn (16) and eguate coeffi-

cients of 1, we obtain a system of linear differential

‘equations with constant coefficients. The first of these
eguatiocns v
d“u 2X e®n?u
G = - u
d¢1 pe
(19)
gives the KNewtonian orbits
oy A2 R
© B
‘ analegy to

vrhe;e, Py ‘W Wewtonian dynamics (cu mcraduccel here ohly
5-{ the units we are “mi)

6% - W(1+ 2mczl ( 4
4

¢ 2 X 1me

c
and we have agsumed that = 0 is the azimuth of the
periheliorn.
The term of the first order in X gives,

d2u1 »k 2 2 2
dP’_+u1:3.( (l+icosy5 )

whose integral is

w, = ¢y cos ?-I-C Slp ( c m )"[j_‘f'zecosf.}i’fsinfF;At

&
The integration constants are determined by the condi-

tions that durﬂif.vanishes for ¢ = 0 and that

~.

- a :‘uthKM uq giges the correct value of the term Whlch



does not contain u in (16). We get

u:uB+KMul

1"

> 2 . o
Nefm ¥ |14 zxmm (14 Lo 1+f,[1+xm(l- -3%) cong |t
‘ 2 2 551- 2

. .

+ 3XMS, sz sin¢ - X we 32 cos".f '
, 2

Wnat mizht be called the "Einstein orbit of the
first order" differs therefore from the Newtonian orbit:
1) By.the valué of the constant which determineg the
gemi-latus rectum of the Newtonian orbit, (lst‘term)
2) By the precession of the perihelion, 1t can be easily
shown that the second term (3K ME,RgtF siny{))' gives ex-

actly the Hinstein formula, already cquoted before,

3) by & éeparture from the ellintic form. This is in

(\8a)

agreement with the rigorous analysis given by de Jans,

-3

of the radius vector is, at the

ny

e maximum lenotheniy

£7
— o

s
3

o

2

T
-

Ar ot - K Tﬂi;
2(1- 2032

and even for Mercury remains far beyond experimental ob-
servation.

From the féct that, as pointed out before, the in~
tegration of the differential equatiocn of the orbit can
ve effected by ellintic (doubly-periodic) functicns, we
see at onCe_that all orbits in the hyd¥ogen atom are very

nearly strictly vperiodic. The qualification arises here
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grom the fact that the material field is not rigorbuslyA
static nor sphero-synmetrical. 3But thevelevctrohic
orbits in other atomic systems need not be periodic be-
causé the field is neither stztic nor spheroc-symmetrical.
It may be that this corresponds to the radistion of
energy by gravitational and elect:omagnetic WaVes, as
:suggested by Jefferyv. But i1f we admit that the atom is
quanﬁized in the Bolir sense, it ﬁust follow that the
guantum postulates govern not only electromagnetic but

v

also gravitaticnal radiation and the possibility sub-

sists that, satisfactory aypproximations in the stationary
1§ not exact Tulusions,
state%Amay be obtained by periodie solutions of the
types discussed elsewhere i? this thesis, as already
(&

pointed cut by the writer. Jeffery has made the very
interesting suggestion that the sclution of the relati-
vistic two-body problem may under certain conditions beé
come periodic, these reriodic orbits then would be the
quantized paths. The fundamental imporfance of the two-
body problem for the quantuﬁ theory thus becomes eﬁident»
Ve shall now attempi to develop as far as oui resources
vermit, a different relativistic interpretation of the
guantum theory of statiocnary orbits, which a2t least brings
to light in an extraordinarily clear manner the why of

some of it® obscure points. It must be admitted that cur
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the real solution of the problem of the cuantized
erbits must.bé indevendent of any such arbitrary rules.
The paramount importance of Jeffery's suggesticn should
not, therefore, be cverlooked.

A ciaSing remark which concerns our method of de-
termining the equation of the electronic path must be -
made hefe. Our fundaﬁental equation of motion (2) is -
based on empirical facts without any theoretical in-
terpretation and the path of the electron is not a geo-
desic in the space-itime described. by Tordstrém's funda-
“mental form. This is pecause the electric force dee
acribes a Wor;d-condition which is totally different from
mechanic force. All that we heve done is to write the
tensor equation

2.
m-d-”—}-"""{dﬁ’ u® ufl = & 7 ut
as” @ G pe

v R

which corresponds to the elementary equation of electro-
statics o
m QE% -Xe.
at :

S %E Frqur would then represent the "deviation! of

the actual path from the geodesic path. The problem is
then to explain why the electron geviates from the geo-
desic path. Whether such an interpretation can be worked

out from the generalizations of the Einstein theory given

4@&




(20) ' (21)
by Weyl:s and Eddington is, so far as the writer

is aﬁare, unknown. The most satisfactory interpreta-
tion with which the writer is acquainted is De Donder's,

5
who, on the basis of his »?héoréme du tenseur asymétriqégﬁ)
ig able to give what appeérs to be the most satisfactory
extant unification of electromagnetic and gravitational
theories.,

Another difficulty presents itszlf here which may

1

o

o'

30 e

(@]

arefully noted. We have assumed that the only

o

effects to be dealt with in the atomic system =are -those

" due to the nucleus and the electron. How is our reason-
ing to be altered if the atom is immersed in apother field,
ssy the gravitational field of the carth? The most

v

ohvious answer is that the aftonm

H
D
wn

elies only on the pro-
perties "im Kleinen™ of the surrounding sgace. But im
 Kleinen the gravitational field of the earth, for instance,

is Buclidean and we a 1 to the difficulty, ‘pointed out

. re lec
(23)
already by Mohoroviciec , of having to assume different

geometries for different regions of thne world. Thus in

our case, if we have a nucleus in the egrth's field, im
space 1is )
Kleinenbﬁuclidean with respect to the earth and non-Huclid-

‘ean with respect to the nucleus. This would obviously
e a contradiction. But he has overlooked that we are

dealing with different degrees of smallness. To speak

= <«
in very rough terms, take fhe following xample: the

-
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earth, a mountain, a square foot &n that mountain.
Within o curved surface (earﬁh) we have a space of
different curvature {(mountain, ‘our atom) and in this
mountain (i.e, in this atom) the im Kleinem Buclidean

therefore ‘
space. Mohorovicic's objection,does not seem to be

valid.
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The Relativistic Interpretation of the Quantum Theory

Bohr's first postulate is that closed electronic
orbits are possible without the simuitaneous occurr-
ence of irreversible radiation. That non-radiating
gggg orbits are indeed possible in classical electro-
dynamics was pointed out as early as 1911 by Bornfl)
then discussed by S. R. Milner and G. A. Schott,(g}
who showed that the only class of motions unaffected
by irreversible radiation is that in which the path
of the eiectron is a hyperbola descrived with a con-
.stant velocity componen%agarallel to the conjugate
axis of the orbit. vMie,‘ in his remarkable article
on the field of an electron rotating around a mass
cehtre, has shown that Bohr's postulate is not only by
any means the fbundation ofAthe modern quantum ﬁheory

of the atom, but rather the essential hypothesis of any

electric theory of matter which is built up on the as-

45,

sumption of the existence of electrons. He has further

ghown that a rigorous reasoning starting from the prin-
ciple of the relativity of gravitation (ggg of the gen-
eral principle of relativity) leads to the startling
conclusion that an inertial electron rotating around an
uncharged gravitational center does not radiate. The
hope of finding a quified Maxwellian theory which is in

-

accordance with the existence of non-radiating orbits
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" need not, therefore, be given up as yet. Huch light

may be thrown on this point if we attempt a relativis-

Unterbretation of the quantum
tic)theory. One possible answer, depending on the

solution of the relativistic two=-body problem, has
already been mentioned. It has also been suggested
that the puzzlss on the quantum theory are to be
traced to an unsatisfactory cpnception of the nature
and properties of the electron. It is apparent that
such an alternative offers possibilities which cannot
- be disregarded a priori. It thus becomes neceséary to
consider the problem of the electron somewhat more
ciosely.

Consider again WordstrSm's fundamental form in the

material field of the electron

2 2 2 .. 2 iy L 2
ds® = - dr® - 2 (a6*+ sin®6d¢*)+ (1 - ¥ £ lat
Y.t f T

T rz
(4)
As pointed out by Eddington ;& can be identified

with the gravitational mass of the electron and iﬂnwith

its electric charge. As we approach the électron from

infinity R2 = 1 - 1_ + g decresases continuously
T 2 '
v T o
to a minimum at 1 = 28° - _e” , if m is the elec-

Y‘ dgm
tronic mass, then increases and reaches the value plus

infinity at r = O. Thus, there is no singularity in the




material field of the electron except at r = 9. 1In

e

the relativity theory it is therefore possible to have

an electron which is rigorously a point-singularity

but has finite mass and finite charge. In the old
theories of electromagnetic mass, we could not have
a point-singularity, because the mass and charge would
become infinite£5) The difference between the nature
of the singularity in the case of the material field
and the gravitational field might also be emphasized;
at the same time, the notion of radius of the electron
loses all precise meaning.

The edectron, which in the older electromagnetic
theorics is looked upon as a substantial aggregate'in
a non-substantial field, appears in the relativity
theory as a region which is not at all sharply bounded
with respect to its field. In his epoch-making "Grund-
lage einer Theorie der Materie"(?) lie has investigated
how such'energy knots" move about in space-time just as
a wave moves over the surface of the ocean; this con-
ception,'it is seen, means that there is no unicity of
the substance of the electron. His theory, which has
been furthe: investigated'by Weyl(7) is based upon the
postulate, Which‘indeed pervades the whole theory of re-
lativity and is one of its most beautiful consequenceé.

that not only the field is a consequence of matter, but

conversely matter is generated by the field. The most

47,
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important consequence of this view is that the protons
. (8)
and electrons are not the last constituents of matter.

The pfoblem of matter is thus to explain why the field
admits just such aggregates of 'energy-knots" as the
profons and electrons and no others. In other words

the prbblem of matter is solved when we find the ans-
wer to the query: Why do the field laws admit just the
solutions that correspond to the proton and the electron.
Whether the anéwer to this question involves also the
~explanation of the existence of non-radiating qrbits;

we do not essentially know, but it musf be admitted that
we are yewv far‘from this answer.

An attempt from the converse standpoint is that of
Tetrode(gz He looks upon the observable electrons and
protons as the primary entities, assumes that the ac~-
celeration of any electron is conditioned by other elec-
trons and looks upon the electromagnetic'field as a pure
mathematical entity,'which serves a purpose only so 1oﬁg
as the qﬁantum phenomena can be neglected. The essential
neW‘conception of his theory is that the inétantaneous
state of an atom is conditioned not only by its past but
by the "arithmetische Mitte der ndchsten Vergangenheit
uhd Zukunft®. The absorption of energy is predetermined
by its emission. ﬁis speculation is interesting in that

it allows an explanation »f the mechanism of radiation,
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but has not been worked through sufficiently so far.
All that we have done so far is to find a sub-
stitute fof the main difficulty of the older electronic
theories: why is it that the electron does not explode
following the Coulombian repulsion between neighbor-
ing parts? An unsafisfactory answer, now discarded,
was for example Abraham's: the electron is a rigid
sphere and the charge is rigidly bound to its surface.
This view is of course untenable in Relativity. '
lAnother well-knovm attempt is that of Poincaréslo
His electron is deformable but is prevented from‘ex-
ploding by applying a suitable pressure, of hypotheti;
cal origin, on the electronic surface. The Poincaré
electron nas been re-examined from the standpoint of
gravitational theory by van den Berg, de Donder and
Vanderlinden(lf) but the arbitrary introduction of the
| applied Poincarg tensor brings into their theory an
element completely foreign to the spirit of Relativity.
We may therefore sum up the present‘status of the ques-
tion in the statement: The relativistic interpretation
of the electron problem is itself not yet sufficiently

developed to enable the gquantum postulates to be referred
to the problem of the electron's constitution,.

Of course, more or less hold speculations are al-
lowed in the electron problem, provided not too much is

claimed for them. One of the most interesting is that
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(12) (13) .
of Mohorovicic, with Lenard the foremost expo-

nent of the modern reversion to the theory of a sub-
stantial'ether. Starting from the hypothesis of a
discontinuous gaseous ether, "die wir zals eine etwas
Kompressible Fltissigkeit auffassen werden", Mohorovicic
shows, by combining it with his theory of gravitation,(l4)
that the pressure and density in this ether decrease

with decreasing distance from matter. Changes in either.
of these propagate with finite velocity, and, carrying

out the analogy with a gas still further, finds that

" the “"temperature" of the ether is proportional to the
gravitational potential, a speculation which originally

is due to Frické%5) He is further led to consider two
kinds of mass-=-baric and antibaric =-- a conception due

to 0. Wienerfls) It should be'remarked in this connection
that, as already noted by Herglotz, Wiener's equatiocns

are insufficient to determine his "Grundgesetz der Br-
haltung der Athergeschwindigkeit™, for the simple reason
that there are more unknowns than equations. lMohorovicic,
as all his predeeessors who adhered to the ether theory, |
finds entirely inadmissible values for the ether pres-
sure and density at the proton and electron

(po = 8.,28 x 1043 g/cm?, fo: 9.2 x 1022 g/cm3 for theléroton;
P, = 716 x 100 g/bm? ' Pos 7.96 x-lO9 g/cm; for the elec-

tron) so concludes that the electron and proton are not

the last constituents of matter. He thus revives the old



51,

nineteenth century conception of the atom as an aggre-
gate of static tension centeré and confronted with the
same old difficulties:why do such centers exist? How
did they arise? He promises to answer these questions
at another occasion. Aside from this, his generaliza-
tion of the fundamental equations of electrodynamics is
 quite’objectionab1e, but this point is outside the
scope of this paper. Let us now look at the problem
from another entirely different standpoint.

-Let us postulate, as in the general relativity
theory, that all natural phenomena are manifestations
of the four-dimensional meiric properties of space. The
atomistic concept, which is the essential idea in the
I ~ quantum theory, thus far refused to find a place in re=-
lativity, but, as far asjthe writer is aware, it has not
been shown that any contradiction exists bvetween the
postulate of relativity and the hypothesis of the quan-
+tum theory. To be sure, certain consequences of the re-
stricted theory, especially the inertia of energy, is
difficult to interpret from the atomistic standpoint.(lv)
e now consider the following problems: What are the
necessary theoretical principles of any atomistic theory
and can these principles be brought into the body of the
relativity theory? :

(18)
In the Mie-Weyl theory, mass-density is a tensor

mass itself a vector; since neither a tensor nor a vector
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éan conceivably hafe an atomistic structure, mass-
density and mass cannot be interpreted atomisticallye.
This, it must be carefully gmphasized, is perfectly in
accordance with the fielld theory of matter, as Reich-
enblcher has shownflg)and also in aécordance with the
facts, for obviously no other interpretation except
the statistical one is possible for the mass-effects
which are interpreted in the relativity theory. The
only physical entities which conserve their scalar

character in the general theory of relativity are en-

tropy, electric charge and actione The last is just

the one to which the quantum theory ascribes an atom-
istic structure. The conception of an atomistic action
in z three-dimensional continuum leads, we believe, to
the well-known difficulties of the quantum theory, which
finds its worst expression in the concept of the emis-
sion of lizht quanta.

From a relativistic standpoint, the quantum theory
of the atom is based upon three principles: the minimal
principle, the integral principle and the continuity
principle. Let a and b be two universal constants,
K the Gaussian curvature of'the metric fundamental form

) Y
as? - gkvaxﬁkdx”—- K = gk R,,» if R is the contracted

K
he world-function of the

<

t&

Riemann-Christoffelwtensor?-

7

field, which in general is a function of the covariant
fundamental tensors and their derivatives and of the

variables defining the material field. Then the most

g
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general form of the Hamilton minimal principle is

written (De Donder)

JS ;JS‘ (a +bK+t A ) dw= 0
- R

; where dw is the element of volume, dw = J:gdxldxzdxsdx4

and the variation is taken with respect to the fundamen- .
tal tensors and their derivatives, within the region R
of space-time considered. On the boundaries of R, all
the variations vanishsz) We postulate that SS =90
is satisfied over every finite region of space-time,

For our purposes, a more restricted formulafion of .
the Hamilton p éggiple ig sufficient. We formulate it,

following Weyl as follows: The total action is the

sum of the substance-action of mass

L%

(s,) = S‘ dmg\l-g,rwdx"dx

plus the substance-action of electricity

(Se) = _,,Jd-e f ¢n ax,

and the field-action of electromagnetic energy

< ik
(s;) :-.%‘,YFH: Fraw .

In the first two eguations, the outer integration is to
be taken over all substance elements, the inner over
that part of the world-line of an arbitrary substance

element which lies inside the world-region considered.

In the last expression, the integration is to be taken
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over the world-region considered. dm is the mass
element, de the element of charge, %% , as above, the
electrodynamic potential, ‘Fik; the electromagnetic
tensor. We shall enuneiate the integral principle

as follows: The line integral of the total action S
over any closéd world-line is an integral multiple of
Planck's element of action h, i.e. §;Sds = nh. In
this form, the integralrprinciple was first stated,
but not used, by Eeckefzz) The conservation principle
will be stated and taken up later,

We return now to the minimal principle and.some of
its interesting consequences. In the case of an elec-
tron, i.e. a single point-singularity, the outher in-
tegrations can be carried out at once, giving,

S f(mo_cv Euv dx"dx”-r-ecp“uk)ds :fL(xk,uk)ds (1)

and Hamilton's principle gives at once the Lagrangian

equations,

ds ? ok 5xk - (2)
'Now; we have, since grvuruv = 1, identically,
'y k o (=8)
D - — - -
3 '()ui z-me g, W He ?b‘ (3)

Pi being the impulse vector. Further

) - ki i |
Lixgu™) = - me gy w ul e ?iu =pu (4)

and, as shown in De Donder, l.c.,

g™ (p; - efi) (b = ¢4 = - m o ()
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where, however, it ig to be noticed that our mis

written cm in De Donder. From (3)

k .
moe g,ik u = pi - & ¢‘

whence by multiplying by glk, and contracting,

‘ ik |
mee u z-g (p; ~eq) (6)

from which we get the "Hamiltonian" function

ik
H(Kk.Pk) S Py ﬁl;é- (Pk - & ?K) (7)
o
and, from (4) and (7)
P S S AN D S (8)
ds. ?P; Py mS

We now establish the fundamental result that only

for static fields do the above equations in space=-time

reduce to the Hamiltonian canonic equations in space and
time, By this last expression: "space and time", we

mean that we privilegze the coordinate x, relatively to

| (24)%
the other three coordinates xl,xz.xs. In the case of
‘a static field ¢z =%, =0, so
- k - -
P, T "mOC g, Wte ;;54 = -H (9)
‘where -mcC g u;k"~mcz+-§'-‘-7-E can be interpreted
o° S4k = T+ 2 e

28 the Kinetic and e ¢4 as the potential energy.

Now, from (5)
? 2,

gik(p,4 - efy)

g4k(pﬂk -ef)

(10)



therefore, one of the two triplets of Hamiltonian e-

guations is

ax, - 0my (11)
dx, EFE;

which, it will be noted, follows directly from the de-
finition of the impulse vector (3) and hence does not
involve the minimal principle. On the other hand, the
renmaining Hamilton triplet, follows directly from the
minimal principle, through equations (2). but can be
reduced to the Hamilton form only if the field is static

(independent of time). We have

d.pk - '3 Pk : uk+ 994_ u4 (12)
ds T x D X,
J J
but by (50:
P R ?p u
4 = 4 - k : (13)
- - x X. ’ g
0% iy %%
hence the Hamiltonian system is now
dp, ) 0Py
dx, = | ¢ x,
4 Bl (14)
dp4 _ /91)4)
d'x4 \ ax4 FJ

Now, if the field is staiic, p4 does not contain x4 and
the second of (14) vanishes identically. Under this
restriction we may piace

56,
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and (11) and (14) give, in classical notation,

. . [ - Qw
P, = - 2% X, =
k [4 Xk‘ k apk ‘

!

It is therefore seen that from a relativistic stand-
point, the Hamiltonian equations hold only if thﬁ

field is static. It has been pointed out before that,
'if Bohr's views of interpenetrating orbits aré cor-
rect, the field of thevelectron in an atomig‘system

of more than one electron cannot in general be static,
hence the motion of the electrons, particularly.vlet.it
be emphasized, the optical electrons, need not be gov-
erned by the canonic equations. We have hére a theo-
retical reason for the existence of unmechanical orbits

25
"in the atom i.e. orbits not governed by the canonic

equations and not obtainable through the Hamilton-
Jacobi equation -- which,havé been so often emphasized
by Bohr and othérs. |

The minimal Hamilton principle, to whichim the last
analysis all problems in physics can be reduced, yields
thus four Lagrangiaﬁ equations (2) in space-time, Whéreasth&
integrals contain in general eight integration constants.
Of these eight parameters, four are fixed by the initial
conditinns, and four remain arbitrary. Here is un-
doubtedly a weaknéss of our present reasoning, to be

traced back to the fact that, in order to bring the problem



‘within the limits of our ability, we have considered the
field of a single electron only. These arbitrary con-
stants must now be determined quantum-theoretically,

and hence the introduction of the integral principle.

But just as the presence of our arbitrary constants
is very likely a result of the limitations in our reason-
ing, so is the introduction of the integral principle.

purely arbitrarye. There is no doubt whatever in the

writer's mind that, as brought out before, the true

solution of the guantum problem lies in the relativistic

-~ gsolution of the two-body problem. In other words, it

is the opinion of the writer that the periodic solu-

tions of the two-body problem contain no arbitrary con-

stants. These then are the natural quantized orbits,
which, on account of the limitations in our reasoning;
we have now to fix by introducing arbitrary additional
conditions.

To cover the weakness of our previous treatment and
fix, then, the remaining four arbitrary constants, we
assurme with Mecke that the integral principle &Lds = nh,
cén be split up by separation of variables into four

conditions '
Ty =§Pk. Ay = 1y B

For X = 1, £, 3 (space coBrdinates), these are the well-

knowm Sommerfeld-Wilson phase-integrals, while the rela-

038.
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tion corresponding to k = 4 (time coBrdinateé) contains
something new, which we shall discuss later. Since now .
we are using a specific colrdinate system (éeparable
systeﬁ). we have given up the general relativistic in-
variance of iALds‘ and introducf®d; a restriction in
the choice of variables which is wholly foreign to the
principle of relativity; merely another reflection of
the weakness of our reasoning. The arbitrariness and
purely heuristic faiue of the Sommerfeld-Wiison condi-
tions, is, we believe, thrown thereby into an extremely
clear light. On the other hand, if we believe tﬁat a

privileged system of coordinates is implied in the

guantum theory, then it cannot be expected that gquanti-
zation in a system of coordinates chosen at random will
lead to correct values for the energy terms, as already
pointed out by the writer.(zs)

From the orbital equations, the frequency of the
emitted radiation is determined in Bohr's theory by the
prinpiple of correspondence. Under Mecke's separability
aésumption, it is of course always'possible, as siown
exhaustively in Part II, to find a contact-transforma-
tion from separable variables to angle variables, which
is a fundaméntal step in the application of the corres-

pondence principle. We now consider the following problem:

How is the correspondence principle to be interpreted in
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the relativistic four-dimensional metric space? Let
us introduce now the continuity principle, which ﬁe.
shall enunsiate again somewhat artificially, as fol-

lows: The total. action remains unchanged for any change

of the partial actions I,, i.e. 48 -8, -8 =0.

8q is a function of four quantum numbers ny and 8, the

same function of four different quantum numbers ni .
ASsuming, ag always, that an introduction of angle varia-
bles is possible, we may write, for each of the cobrdi=-

nates Xk

LS (52-8)

) = v 'h“ Z bnny SR

i, Wy == oP
- where, as usual, the coefficients in the Fourier expan-
sion are given by
‘ k &
v "1—1[(30‘5)
A ooz || flxoxl) popt e’ B2 My ax
nn, - Ao Fy) Py Py © k k
and, by the continuity principle,

4 4 Xk k
32 —Sl-.:ZSl-ZSz, |
q 4 4
T (st -8

: J — s )
k h 2 1
whence f(xl 5 5) - E E Bnkﬁ£ e

P N
where the coefficients B ~are products or sums of pro=-

ducts of the coefficients A This however, is nothing

else than Bohr's freguency postulate, for, again under

the assumption of a static field

4 _ P .
S, -~ 8] = (p4- 94)%4

.
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and the frequencies of the harmonics in the above

equation are Bohr's frequenciles,
yz (e -p,) = £ (@ -8B
-~ h "4 4’ T h !

and the correspondence principle appears therefore

as the natural generalization of the frequency pestu-

late. The'meaning-ofvthe fourth phase integral and the
corresponding quantumdu is thus»sqen at once.

We see, therefore, inaconclusion,'that at least
in a semi-formal way.‘the quantum postulates can_be
" brought into a four-dimensional metric without too
much forcing, even though with a good deal of artifici-
ality. Whether now the atomicity of action entails the
atomicity of electricity and, if so, how one is to be
bfought into the realm of .the dther are questions which
for the present we cannot answer.

In its generél formulation, the integral principle
states merely that the wofld-line of any cuantized

system must lie within a closed region of space-time.

A cobrdinate transformation which, be it again noted,
lesves the above formulation invariant, can be interpret-
ed then, in the sense of Einstein's equivalence principle,

as the effect of an external field. Thus, the Zeeman

effect introduces the Coriolismcentrifugal field, which,

from & relativistic standpoint can be identified with a
| (27) |
rotating colrdinate systiem; the Stark effect trans-
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forms cartesian to parabolic co8rdinates, etc. No such

interpretation is apparent in Mecke's restricted form.
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Part IT. The Application of the Calculus of Per-
turbations to Bohr's Atomic Model.

General

In Part I of-this investigation we have come
to the conclusion that ig general the equations of
classical dynamics do not govern the motions of the
electrons in an atomic system of more than one elec-
trone We now investigate the following probiems:

- Consider an atomic system with more than one elec=- .
tron and assume that the motions of the electrons in
the stationary states can be described by the equa-
tions of classical dynamics, is it possible to de-
termine these motioﬁs by the methods of the calculus
of perturbations? Are there any limitations ahd. if
g0, how far can they be éo determined? Can such a
system be quantized by our present gquantum rules? If
not, how are our present conditions for quantization

to be.altefed?
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The Methods of Quantization of Bohr, Epstein and Born

and Pauli

ﬁethods for the appliéation of the caleulus of

pérturbations to the guantum-theory of stétinnary orbits
in non-conditioned-periodic atomic systems have been

proposed by a number of writers. Perhaps the first at-
temot in this direction was made by Burgers in 1917 and
Bohr's fundamental in¥e§tigatian a year later has be-
come almost a.classid.l However, the two most com-(r>
plete attempts in this direction are those of Epsteih -

-

(3)
and of Born and Pauli , Wnich we proceed to examine.

Thé  earliést investigations to find the general in-
tegrais of the three-body problem gave the result, al-
ready pointed out elsewhergf that terms -- go -called
"gecular" terms -- occur in the eccentricities and incli-
nations of the planets which increase linearly with time.
The "stability theoren" of Laplace and Lagrangé showed
that these terms are the constant terms of a trigommetric
series and so the possibility of finding purely_trigono-
metric expressions for the colrdinates of the moving plan-
ets was opened up. The importance of this.t;igonometric
expansion is this: BSuppose that any co8rdinate Qe can be.

expressed as a trigonometric series
) _ .
» o e,] (mlwl+ s e fﬁ'msws)
qk - v %1; s o3 ) o ”
/ B S i c
M\-.-.W\s'- -b . .

"_ See Aﬂ:ondii.




where the w's are linear functions of time., If

A . A
:zj my.e-Wy 55 Finite, then the upper and lower bounds

of the corresponding'coﬁrdinates can be readily found,
whereby the stability qUestion is solved once for all;
next, the above series, if it existis and is absolutély and
uniformly convergent, gives the valug of the correspond-
ing co8rdinate for all values of the time. If on the
othef hand, the convergence is not zbsolute and uniform,
no such conelusions can be dravwn, and 1t will not be
legitimaﬁe to apply this expansion outside of thé domain
of convergéﬁcy. The form of the expansion will be always
the same, but the coefficients will not be the same over
each separate region.

The first to study wuch triaonometric expressions
systematically and thoroughly was Gylden, who, unfortuna-
tely for science, died before he could complete his in-
vestigations. Long before him, Deléxnay had given . a
particular instance where the co8rdinates can be expressed
in this form without giving any attention to the conver-
gency of his method: I? ?is celebrated "Endorie du Mouve-

4
ment ds la lune® (1860) he established thie Fourier ex-
pansion of the cod#dinates of the moon and showed that its‘
motion can be thus satisfactorily described over given
finite intervals. In this particular case, the perturbing
vody (sun) is far removed from the perturbed (moon) and

therefore it is questionable a priori whether Delaunay's
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method can be appliéd ﬁo more general cases; on the
other hand, it points the way to formal processes lead-
ing to pure tfigonometric integrals of the three or n-
body éroblem. This was first explicitly carried out by
Tisgerand » Let us illustrate the process:involved
by a simple example.

Suppose it is required to find an integral of the

canonic equations of a system of two degrees of freedom.

5. = 2F s _2F .= 2F 3 Yoo
- — qz - ) - w— eemmcbea p - = F PR l

~of the form F = Z Aij cos ('i_ pl-\—j p2) + [

where Aij and @ are assumed to be analytic functionSFOf
Qy and qé. From the perturbing function we select any one
term A, cos(-i1 pﬂ-{-jlpl) and wtite

w

F, = 7+ Aii ii.cos(ii P, + J, Q)
If now we consider the canonic system

» g » bF [ ] ’ . . .
q_‘z —'B—Eil N q :—-—-l > P :;_D,_E_’_ "p‘ - .bF LI ] 11(2)
1Ty 27 0 Py 1 29, 2 0 Qg

we may look»upon the co8rdinates thereby determined as the -

co¥rdinates of an intermediate orbit 01 and by suitable

variation of constanis of ¢ . the equations of the actual

» 1
path Q, which is determined by (1), can be satisfied. This
introduction of intermediate paths is the characteristic
trait of Delaunay's method.

More in general, the process is conceived as follows:-

s
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The Hamiltonién function of the dyramical system
unaer consideratibn is split irnto two parts
| F:Fl+ Rl
of which Fl describés'a system which is conditioned per-
icdie, and is so chosen that Rl-- the perturbing function --
is Yas small as possible"; the motion O given by the
function F, is then called the “first intermediate orbit".
This first intermediqte motidn 0y, since 1t is cbnditbned
periodic, can be described by means of angle variables
Wy :'vkﬁ4+&: and their cenonically conjugate momenta I%
(Bpstein, l.c., shows that these are canocnic variables «
not only with respect to Fl, but also with respect to F).
Next it is assumed that the perturbing functicn is per-
iodic and reguiar everywnere within the domein considered.
If so, Rl can he expanded in an absolutely and uniforily

ccnvergent Fourier series

W
da -
' 42 my
Rl = Z Aml...mn e
Vﬂ‘ - W\“'a-a A

the A's being functions of the momenta I . Suppose now
that A is the numerically largest coefficient of this

~2

series. We consider the system
iZmw
B, =F (1) + A(T) e Xk

It is easy to see that P, again describes a conditioned
2 53

eriodic motion which we shall call the "second inter-
P v
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mediate motion"., We write then,

R, btanding for that part of the Fourier series which
does not contain the term A. If we now introduce new
angle variables W; to describe the moticn determined
by Fo» Fg becomesva function of the sanonically conju-
gate momenta I' and the process may be repeated on the
next largest coefficient of the Fourier expansion until
formally the desired approximation is obtained.

Epstein does not say a word with regard to how far
‘the process can be legifimately carried out;y in fact it
would seem that he is of the opinion that nothing'is
knowvn as to whether it is or not convergent. Dut, as was
first pointed out by Sﬁekal(63 it follows directly from
the theorems of Poincare and Bruns that the method can-

not in gmeneral converge. He further points out that ex-
-——fi...—.-___—- g g

amples can be given in which those particular solutions

of dynamic problems, which are conditioned periocdic, have
at most n=-s independent periods, so that Epstein's ex-
pression for Fl need not be convergent in any finite re-
gion of a continuous n-dimensional manifold. ZXEven as-
guming that the expansion were ccnvergent, it does not
give an approximation to the motion, but only to the en-
ergy of this motion, which of course is all that is wanted

in the quantization.



Tl

Two asyécts of the question, both of fundamental
importance, are left entirely untbuchéd in Epstein's
paper: First, the relaticn of his solution to the
adiabatic hypothesis and second, the connection be-
tween his method and the essential features of the
principle of correspondence. Letlus again examine this
question from the standpoint of the guantum-theory of
periodic systems. -

Periodic properties of the motion of an atomic sys-

tem, play, as known, a fundamental rart in all the in-

vestigations of Bohr and his collazborators. He tikes

the view that, the solution of the canonie equations of

a system with n-degrees of freedom being, in general, too

complicated Yscarcel offers sufficient basis for fixing
g

and describing discrete stationary states of the system®,
therefore tha%vgnly such periodic nroperties need be taken
into account. ~He further points out that in those
cases where it has been possible to fix fhe stationary
states, the general solutions of the canonic equations is
of simply or multiply periodic character, but is careful
to explain that in more complicated cases "we must be pre-
pared for the fact that the (canonic) equations will not
prove sufficient for the description of the motion in the
stationary states". Let us review briefly Bohr's methiod

Tor the determination of the stationary states in periodic

svstems: An s-periodic nom~degenerate system is fixed by
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s-coaditions Ik -=nh (k - 1,2...3), where the I's
' k
are canonic vari%b%es conjugate to the angle variables
8
w, of the system and for a separable system coincide
5 :

with the phase—integrals § P qu . Since the energy
of the system is a function of the I's only, it is clear
that Bohr's conditions are necessary and sufficient for
the quéntization of the system. During the motion of'the
system, the Its remain constant ancd only the w's increase
linearly with time.

Fext consider the case where & "perturbation”, i.e.
an external force which ig small compared with thé in-
ternal forceslof the system, is acting on the system. Ac~
cording to the usual procedure of celestial mechanics,
described at length elsewhere in this paper, this per-
turhation is described by éonsidering at each instant the
osculating motion of the system, i.e. the motion which
would take place if the perturbation at that instant van-
ished. Let AL () z perturbing parameter) be the po-
tential of the applied forces and assume, of course, the
unperturbed motion to be periodice. Then the ogculating
‘moticnvis also periodic, the rate of change of the canonic

variables describing this osculating motion is

—)\ ———— 5 ] K +%——k - b} ‘I'..\—
AL S ) EPK Pﬂ ’)\ 'b ]

LEYCRY “Z%..n‘(i‘dn(ﬂ cos 2 (mywy+ +ot mt (40 d)




and the nature of the perturbation is essentially dif=

ferent according as to whetheriladepends on the action
variables I;...I, or contains in addition the var-
iables 84 and ﬁ which will be so in general of s < n.
If s = n the perturbations are always of multiply per-
iodic character and the quantum conditions are suffi-
cient fo specify the stationary states. For this case

a.contact-transformation,

' 0 ?S . -’ Ds.
I]L-I ) :(’aﬂ+)_ k:lgo.on
b(gx 4
Wﬁ_: Wi;_,%,ljf ﬁ;::ﬁ; ¥ — 28
0 Ik ) dy
where : el
- —l—. ml--.mv\ 3 [ .
S = e oWt VI sin 21T (mlwl+ ...+mswa)

and the energy of the perturbed motion is given by

E, =B (I 11) F ) 1"" 14)

but if £}, depends on the 4 and B's, the above process
bréaks down. In the latter case, a contzct-transforma-
~tion such as the one above does indeed remove all coordi-

hates from B, but not from {L + We find in fact
: 1 i
L =B T A (e o, ﬁ“ B )

' o and(% being functions of t. The secular perturbations

of the first order are given by

o _y Db - -
°(«' )__. ﬁ _} ’aot.( kz1,2 ...suf

0
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Assume now thaf the solutions of these equations
are again multiple periodic of perodicify U Then
the system is quantized, from Bohr's stendpoint, by in-
troducing besides the s conditions Iy = nh , u new
conditions If‘

J
batically invariant follows at once from Burgers proof .,

= nih. That thewme conditions are adia-

The logical development of Bohr's met%od)is the

10)
investigation of M. Born and W. Pauli, Jr. . It is
seen, from our summsry preSentation of Bohr's method,
that his guantization is limited to the perturbation of
the‘first order, which evidently canrot be always suffi-
cient.

We have already preseﬁtéd the methodslused in Celeg~-
tial Mechanics to obtain formal solutions of the dynami-
cal equafions as a power expansiocn in the perﬁurbing para-
meter. Born and Pauli seem to be thé only writers work- |
ing on the problem of the quantization of general atomic

systems who have paid any attention to the fundamentzl

question of the convergency of the processes they use.

They also draw attention to the distinction that must be
established in the treatment according as to whether the
unperturbed system is or not degenerate. Just as in Pohr's

method, given the Bamilton function H_ of the unper-

o
turbed system in terms of the sction variables I; ; the

o
k

are canonically conjugate and have the same properties

problem is to find functions I, W, of IC and w§ , which -
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with respect to the perturbed system as the vériables

I; » wﬁ with mspect to the unperturbed system. We

shall not zo into the detail of Born-Pauli's reasoning,
for in the non-degenerate case, it is identicai with the
Newcomb-Lindstedt metnod that is common in Celestisl
Mechanics and has already been expounded at length
elsewhere. With respect to the general character of

the perturbéd orbits, it is to be noted that only periodic
chanées can take place in the constant orbital elements

of the unperturbed motion on account of the fact that

these, by hypothesis, can be described by anzle variables,

In other words, gecular perturbaticons are altogether ex-
cluded, if the system is non-degenerate. If the system
is degenerate, the method must be essentially modified,
and this is the most important contribution of Born and

Pauli.

If the unperturbed system is degenerate, Born and
Pauli have shown that the problem depends on a solution
of a partial differential equation of Hamilton-Jacobi
type: if this egquation can be integrated by separation
of variables, no further difficulties stand in the way
of the soluiion. It is then readily shown that the se-
cular terms can be expanded in Fourier series, but while

in the case of periodic terms, the amplitudes are propor-

tional to the perturbing force and the frequencies are

finite and constant, in the case of secular tarms, the

—
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amplitudes are finite and the freguencies proporticnal

to the perturbing force. But if the Hamilton= Jacobi
equation is not integrable by separation of variables,
the méthodfbreaks’down. Bohr then has suggested that

in this case we are not reaily'dealing with insufficient
analytical resources, but that inherently it is no lon:-
‘er possible to assign mechanically a discrete set of
stationary‘orﬁits; in othér words, that "sharp"® quanti-
zation 1is no'longer possible and that Ei??rp“ spectral
lines must give way to "diffuse® lines . Whether
this is or is not the case cannot be decided on fhe basis
of pres@at experimental evidence.

Let us consider the point a little closer. We are
again dealing here with the so-called "higher" and "lower"
éommensurabilities, which play, as knowm, a preponderant
part in Celestial Mechanics. If the mean motions of two

electrons in an atom is approximately commensurable, SO

that, ~
' no:ng oz P q nearly

(p,q prime integers), we have already seen that large
terms may érise in the perturbation function. Commensur-
avilities are»closely’connected with degeneracy and cause
librations or oscillations of the orbital elemenis and,
most important of all, the cofirdinates are no longer
single-valued functions of the integration constanis,

Uncer such conditions "sharp® guantization is obviously
q ‘ 3
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impossible, for the rules I =nMh aduit more than
one interpretation; Indeed, it is conceivable that
uniform continuous manifolds do exist, for sufficiently
close "packinB" of the singularities of these functions
where no single finite set of rules of the type chosen
by Sommerfeld and Wilson would yield a discrete set of
Stationary orbits. The outlook seems slightly better
in the case of "higher" commensurgbilities, for then
‘large terms can occur in the perturbing function and the
Zeneral character of the motion remains essentially ﬁn-
altered. The following points should however be'hoted:“
1) A term of the form A, cos (ml?1+-m2W2+ eotm W ) in
the perturbing function can mly cause small periodie
variations witich in the vicinity of the commensurahility
is of the order of magnitude of G '2) The angle-z:mkwk
increases indefinitely with time, but if the Jacobi co-
ordinates of the perturbed poini lie at any time within
~a small continuous region,‘nothing but libration about
fixed angles can take place. 3) If the Jacobi coordi-
nates do not lie ﬁithin any such region, then the mean
anomaly can undergo only continuous changes. From Rohr's
standpoint, therefore, lower commensurabilities must give
rise to diffuse lines, wnile bigher commensurabilities can
8till be more or less adequately handled by his metiod of
reriodic solutions.,

In any case, whatever be the nature of these commen-
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surabilities, it follows immediately from the theorems
of Bruns and Poincare that it is in general impossible
to describe the motion of a perturbed motion by mefans
of multiple Fourier series whose degree of periodicity

is squal to the nurbe* of degrees of freedom of the

(12)
.system.(general solutions) . Hence it is in general
impossible to describe an atomic system of more than

one electron by angle variables aad therefore to intro-
duce constant-in-time action variables Ik which can be
used to quantize the system. In onﬂtqp words, ah atomic
system of more than one electron is in Egeneral non-guan=-
tizable by our available guantum rules, unless the motion
be described by particular periodic solutions of the
types we have considered at length elsewhere.
From an entirely different standpoint, the same con-
(13)
clugion is arrived at in a recent paper of Smekal,
which was recently discussed by the writer, Smekal points
out that, according to an unoubllshed theorem of Ferglotv
1f a continuous Zn=-dimensional region of 1n1tlal values
of coBrdlnates and momenta exist where n-;on Four exr
series converge everywhere uniformly, then a contact-trans-
formation can be alwavs found which nermlfs obtaining the
general solutions directly; but since then a&ll the codrdi-
natesg are cyclical, the system is separable'and con-

diticned-periodic. Hence the conclusion drawn by the



9.

writer. No general solution of a non-conditioned periodic

" system can be expressed as a uniformly convergent Fourier

series over any finite region of p,g. This is of course
closely allied with the fact, known since the days of

’ (14)
‘Poincare, that the "stable® solution of the n-body
provlem do not generate any continuous 2n-dimensicnal

manifold. One important point should not be overlooked

here: If the correspondence principle has at all anything

but a purely formal meaning, the Hamiltonian function must

be a continuous function of the action variables.Il "'In'
Hence the conclusion: The demands of the corresypondence
principle are in sharp contradiction with the yroperties

of the general solutions of the n-body problem. Otherwise

expressed, even after we neglect the radiation reaction,
the reguirements of dynamics and electrodynamics cannoct

be simultaneously satisfied.

Again, if the quantized stationary states are to be
looked for among the general solutions, then the stability
of the atom becomes shrouwded in darkness, for we cannot
bring any proof that the distances of the elcctrons from
each other and the nucleus stay alsays within finite
bounds . This seems to be a not inconsiderable argument
for the adoption of periodic solutions, in the absence of
anything better. |

The writer is as yet unable to state whether such

articular periodic scluticns will wvield satisfactory values
i ¥ -
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for the energy-terms, but at the same time is not in a
| (15)
position to agree with the remark of Rohr, that the
class of periodic solutions that he has discusse& in his
paper is the same as the class first proposed by Smekal
and_discussed by the writer. But the’ fall discussion of
this point must be left until later. |
In spite of the fact that the method of Born-Pauli
is not in general convergent,'-- except semi;convergent
(16)
over limited intervals of time, as shown by Poincare --
these two authors belisve that it is sufficient for the
calculation of energy levels, because, they gay ® Man
kamm die doch ziemlich spirlichen Glieder mit allzu
kleinen Hemnern einfach fortstréichiﬁﬁ” which, on their
view, is justified because the "diffuse® character of
the lines, caused by cormensurable relation, is negli-
.gible compared to other agencies, like Dopplef effect etc.
That, aside from any of tLhe purely theoretical arguments
which we have brought up, this zoint bf view is actually
(17}
untenable, ig best shown by Born and Heisenberg's at~-
tempt to apply the method in guestion to the qﬁantizatiom
of the excited helium atom, In this remarkable paper, the
first systematic investigation of all roseible orbits in
‘the excited helium atom is carried out, with a view to
obtaihing the values of the energy terms. The result is

regative: no values which are =t all corparable to ex~

q

periment are cbtained. How much the theoretical values

= e e ek —
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aiffer from the experimental ones is best shown by

the following table:

Table I
Azimuthal quantum number of outer electron
' 2 3 4
Calce. Obse Calc. Obs. Calc. Obs.

Orthohelium -0.,0625 -0.067 =0.0289 =0,0036 ~C.0L66 -0.001C3
Parhelium 0.0137 0.0103; 0.040 -0.,0025 0.0017 =0,0014

From the point of.view which has been developed in
the preceding pages, no other result could indeed be ex-
pected. It is, granted of course that Born ang Heisenberg's
proof that the calculus of perturbations can be apoplied
to the case on hand is correct, but agin it follows direct-
1y from the theorem of Bruns that, aside from the solu=-
tions found by Born znd Heisenberg, infinitely many other
soluticns of non-conditioned-pefiodic type exist in the
immediate neighborhood of their solutions, which may
be stable in a dynamical sense, and which cannot be obtained
by -their method. This, let it be noted, introduces con-
gsiderable difficﬁlties from the point of view of the adia-
batic principleland the corresnondence principle. If we

equire, according to the former, that any one staticnary

3

orbit may be adisbatically transformable into & correspond-
J D

£

ng orbit, we cannot carryﬁut the transformation for the

[N

simple reason that the initial orbit is not centinuously

~ connected with any other orbit: In other words, the first




82,

requirement of the adiabatic principle -- "infinitely
slow change of the parameters" has no sense whetever
here, because any infinitesimal] change of the orbital
paraméters will lead at once through an unallowable dis-

(18)
continuity to an entirely different orbit,

The difficulties are no less when we consider the
matter {'rom the saandpoint of the princiyle of corres-
pondence, Buppose We requlre that only such changes
between quantized orbits are allowable which can be con-
nected by a continuous manifold of conditioned periodic

solutions. By Bruns' theorem, no such manifold exists.

Wext, assume that the solutisns aré cenitinucus not in
an analytical sense but in the sense of the correspond-
ence principle. DBorn and Heisenverg tren find that other-

wise allowable orbits become unstable. Ve must conse-

guently alter our whole conception of stability in order
to keep this second hypothesis.

Epstein's methcd can mean anything only'if the De-
launay transformation from which the successive approxi-

mations are obtained, actuslly does result in decreasing

the perturbing function. This can only be the case if
there exists any definite reason for eliminating a given
Fourier term. The Pelaunay method assumes in fact that

. | o (19)
none of the intermediate orbits has a libration in the p's,
It this is not the case, we must take into account the

possibility that by a variation of the elements of such

an intermediate orbit we are led alternately within and
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without the orbit in queétion. How the trigonometric
integrals are to be derived in this case is totally un-
known, so far as the writer is aware. Such a fadt is
entirely disregarded in Epstein's method. It is just

for this reason that his quantization of the crossed
electric and magnetic fields ,cannot be looked upon as
free from objection, for it is clear that, if nothing

is known as to how large the perturbiﬁg function mas
become after the asoroximating »nrocess has been consid-
ered ended, the possibiliﬁy is always extant that that
part which has been neglected may be actﬁally of the
order of magnitude, or greater, than the part which has
been taken into account.

| Befoye closing this paragracvh, a general fundamental
difficulty in the application of the methods of the
calculus of perturbations to guantum-theoretical problems,
~wnich has already been emnphasized several times Tvefore,
might properly be discussed here: We refer to the pres-
ence of commensurabilities in the moticns of electrons in
quantizéd atomic systems. The difiiculty has already been

. (20)
discussed by Born and Heisenberg , but neither ex~-
hausted nor cleared up, in the writer's opinicon.
The difficulty in question may be concisely expressed

as Tollows: In the applications of the calaulus of per-
turbations in celestial mechgniCS, the case where commen-

surable periodic times exist among the planets can be re=~
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@

arded as infinitely improbable, i.e. it is reasonably
assumed that no exact commensurabilities can occur. It
. - (21)
is on this fact that Poisson's stability proof is based.
On the other hand, such commensurabilities must be
present in the motion of electrons in atomic systems,
for that is just what the quantum conditions require of
the unverturbed motiosn, as already pointed out by Born

, (22)
and Heisenberg themselves. It h=s heen shown ex=-

‘haustively in this paper that when such commensurabie
ratios do exist, the Wewcomb-Lindstedt method, Wﬂlch lLie
at the basis of the developments of Born and .Pauli, breaks

dovm at the outset. Hence the important couclusion:

If our quantuam conditiocns are correct, the Fewcomb-Lind-

[

L’l

edt perturbation metihiod is not anplicable in general to

B S hytenrely

[l

atomic systems. In other words, if our quantum condi-
tions are correct all atomic systems are inherentiy de-
generate, which may serve ag another argument for the ad-

option of periodic solutions of lower periodicity than the

Hy
Hh
L]
>
D
[aF
O
B

number of degrees of
It is true that in sueh a cdase of degeneration we may
stlll evade the difficulty by utilizing the Bohlin ex-

pansion () in powers of PLE instead of the Newcomb-Linde

stedt exonnsian in cowe of F T again herc the ex-
pansion is not convergent (p4). Hen the following con-

.

clusion: For purely analytical reasons, the methods of the
calculus of perturbations are rnot in general applicable to

atomic systems with more than one electron.



BIBLIOGRAPHY,

1) Bohr. uuantentheorle der Linienspektren, pp. 58/88
Braunschweig, 1923.

2) Epstein, Zeitschrift fur Phy31k 'Vol.8,p.211,1921.

3) Born and Pauli, Aeltschrift fur Physik, Vol.10,p.137,

4) P01ncare "Les méthodes nouvelles de la mécanique
celeste" Vol.2,p.315, Paris 1893.

5) Tisserand, Amnales de l'observatoire de Paris, Vol.
18, 1885.

6) In a reference to Epstein’'s paper, Note (2), in Phy-
sikalische Serichte, Vol.3,p. 1109, 1922,

7) Bohr, ieitschrift fur Physik, Vol.13,p.117,1922: also
Aannalen der FPhysik, Vol. 71 ,0.228,1923.

8) Bohr, l.c. Hote (1), p.39, foothote.

9) Burgers, Amnalen der Physik, Vol. 52,p.202, foot-
note, 1916.

10) Born and Pauli, l.c. Note (3), p.l4l.

11) Bohr, Ref.(1l) p».134/140,especially footnote on
P.140.

12) Vallarta, Journal of isthematics and Physics,
Vol.3, p 108,1924.

13) Smekal, Zeitschrift fur Ehysik, Vol.11,p.294,1922.
14) Poinearé, l.c. Hef.(4), Vol.3 Ch.XXVI,Paris,1899.
15) L.c.Hef.(7), p.134, footnote.

16) Poincaré, l.c. =ef.(4), Chap.VIII.

17) Born and Heisenberg, Zeitschrift fur Physik, Vol.16,
D.229, 1923, —

18) Cf. on this point the discussion glven by Léon Brill-
' ouin, "La théorie des cuanta et l'atome de Zohr”
Ve 162, Paris, 1922.

'19) C¢f. Charlier, lechanik des Himmels, Vol.2, D.446,
Leipzig, 1907. '

' 20) Gorn and Heisenberg, zeitsehrift fur hy51k Vol.
- 14, p. 44, 1923.

21) Poincare, l.c. ef, (14) Vol. 3, p.141.

85



86,

22) Born and dHeisenberg, l.c. Zef.(20), p.46.

2%) Poincaré, l.c. Ref.(21), Chapter XIX, XX.




87,

Ihe Form of the Integrals of the Equations of Dynamics

Discussion of Poincare's Theorem

(1)

In 1887 Bruns showed that the three-body pro-
blem admits no algebraic integrals other’}han those
already knoﬁn. Two years later Poincaré proved
that not only dm there no other algebraic integrals but
even thau no uniform Lransoendental integral over any
finite bounded domain can exist. While Poincéré eg-
tablished his theorem only for sufficiently small mass-
es, Bruns proved his fo“ any system of masses.
| We have been led elsewhere in this thesis to the
stﬁdy'of conservative dynanical systems for which the
energy F, vesides depending on the coordinates and mo-
menta, is an analytie function of a parameter *L, which,
for suff1clentlv small values of F can be ez {panded in
a power series in '..& ¢t F= Fc+ pF,+ ]-t.'Fz-l— s+e+ In the
case of a reriodic system, the configuration -f the SyS=
tem -- and hence all the Fk's except F -- depend perio-
a;cm¢ly upon the a's. ‘Eo'ls a function of momenta only
(px). The canonic equations of such & system are called,
as known, normal eguations. All perturbation problems

studied in celedtial mechanics are, as we have shown elge-

-

(3) .
care proved that gsuch systems do not admit any other

where,Areducible to npemal canonical equations and Poin-
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first integral, analytic everywhére and independent
of time, besides the energy integralI Geometrically

£
this means, as pointed out by Fermi(*) that in 2n-
phase space [ it is impossible to find any family of
hypersurfaces, other than that for wﬁich F = coust.,
such that the trajectory of the representative point in
" lies wholly on one of theseAhypersurfaces.l We shall
now proceed to discuss the geometrical significance of
Poincaré's theorem and show that for n > 2 no continuous
analytic hypersurface exists, besides the energy-surface,
Which'can wholly ccecntain a dynamical trajectory issued
from one of its points. Analytically formulated: No
continuous analytic function 2 (q,p,f&) satisfying the
normal canonic equations exists such that if ¢ 2 0 ini-
tially, & = 0 always, unless from & = 0 follows identi-
cally F = const. ‘

Suppose the surface SV =9 (0,0, ) = O has the above
property; it is required to show that in general SP coin-
cides with one'surface of the family F = const. Expand
€ in a power series in p and let g -3+ b 'I;+,,7-§L+--~.
here'EK, except 59, are functions of p and g. We see
@t once that if 8, is known for 21l values of 4 , the Z,'s
are not completely determined, for EL is assumed to vanish
on Sc,'but otherwise is arbitrany,iﬁ. is determined on
So by the condition that for sufficiently small k the

two surfaces SV and B,+ - I} = C differ by quantities of

e RN | TR e st ERE - § —R-  syemare— e e .
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the order of F}’ but otherwise is arbitrary cutside of

S0 and so on for all other § 's. We proceed to slhow o
(5)

now that §° can be chosen independently of p. Ana-

iytically, the proof has already been given before.
Geometrically it is necessary to show that all points
having a coBrdinate p which belong to a point on 8 are

, . o
on 8 and nowhere else. But if P is & point on So’
o

s}
So contains the entire trajectory of the phase-point of
the unperturbed system which starts at Po. If then Fo
does not involve the p's, the points of this trajectory
are such that for them p = const., while the q's-are
linear functions of time, i.e. Qe = Vk£»+ x* In n-space
(g) this trajectory is a straight line. Since F is per-
iodiec by hypothesis, we may transform all points on |
these lines to points within a hypercube of side 21rland
#ertex at the origin, Which will be filled everywhete
densely by the transform TO, providedﬁiommensurabilities
exist among the VY 's. In this case all the points within
the unit cube are the transforms of points on So. Ifr

on the o%ther hand relations of the form Dmvgz 0

(mk integers) exist on So then we may always assume that

such a relation does not hold identicallyAthroughdut space
and that 8 =0 «Sm % 0 is tke equation of S , for
§° is wholly arbitrary. Hence in every case,é; is inde-

pendent of g, which was to be shown.

Analytically, the proverty that Sh contains the tra-
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and we must have,
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are Periodic: in the
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from which follews that if, exceptlona 1y, on a point

OF
orn 8§ we have w, - 0, we also have 2 g -0
: O . Zm-kK - : K mk apk
becauée.in general B, 7E 0. In the system of two

m,lo.

degrees of freedom (n;g.a) it may happen that S, nas for
its equation ﬁ;/ﬁ|=<&dbeing an irrational number. As
known, it is then impossible to find two integers mj,

m, such that for a point on 8 my? + myv, = 0. In

this case we have

| . _ B g,
fem T a4 gpk B
and, formally at least, all the § 's may be determined.
It remains to discuss the convergency of the series; but
in this case it is always{pqssible so to chocsedo that
the series does converge‘qz For the system with 2 de-
grees of freedom we thus have that besides the family of
hypersurfaces F = ccnst., an infinite nunber of families
of'hyﬁersurfaces g = const., exist having the property
above .

On the other hand, if n >>2, matters are consider-
ably altered. Let for simplicity, but Withoutioss of
generality n = 3. We may then have the following cases.
1) Of the three ratios 4 /%, , %W /%, % /% , one of them

is rational, but neigher of the other two are constant.

"Then, on S0 a dense set of points existes for all points




on which, say 7V /v, is rational. For any one of the
points forming this set, two integers m,, By can be
- found such that ml*Ji + mzv.,_ = Q. And then by the

equation (1):
PEAN T S
29, 2 3p, =°

2 Eo : M’a

> Py 2R,

m.

- and hence ‘()l/-s)l:

and since the points for which this holds from a dense

set on S’o’ the latter must be identically satisfied.

28,

Likewise we may show that 7)3 /Y =
. 1

Hence on 8 we have
0

‘vi: v}_ :.ub - 9§o . 35‘: . 9I

o OF, F
and since 'Ui : 179_ : Y - BFQ; . "o 4 2 & Dby the

canonic eguations therefore the derivatives of §a and P
with respect to coreesponding p's are proporticnal.
Therefore §, - O coincides with one of F, = const., for

example, with F z-¢ . On S, we have now J = F_+ c,

and since I, is arbitrary outside of S,: We may take

I - FQ+ ¢, throughout space. S, being thus determined

0
' an igh identi .y 1 ' '
) m, V. cannot vanish identically on S, unless all the

m's vanish. Eliminating 4this case, we may divide through
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both sides of (1) by T m VY, = T m :‘gk nd
find Aml'“mn = Bmli"’mn , except A‘o...a% B,...0°

ieé.ding to I4 :'Fi + :E':L (pl-an)' We thus have shown
E, - F0+ co (2)
£, =9,+%, (p).--p))

Lastly suppose that for a certain T we have shown

I" - Eo+ co §r.4 - Fr.-l+ °r.1 ‘
Iﬂ - Fl+ cl y = Fr+ fr(pl- Q’p,n)

- - e w - o=

the c's being constuatsk. We want to prove now that ana-
logous equations hold for r+ 1. For r = 1, (3) and (2)
ere identical, so for any r &, - F_  z const. and hence
Sl" coincides with oune of the surfaces of the‘family

F = const. From (3) we see that the first (r+1) terms

of the expansion of 2 = 0 vanish identically throughout

space and that the coefficient of W r+l is
(Fé 1§r+1) * (Fl‘fr)+ (-Fr.,.l’Fo) = (Fo’ z r+l-Fr+1) *
' + (Ff,) = F.
taken on S . On Sa we must therefore have
(EQ, € .1- B ) FFLT) =0 (4)

and reasoning on this equation exactly as above, it is
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found that on So the partial derivatives of Fo énd
fr with respect to all the p's are proportional and
since on Se’ F0 is a constant, fr must alsc be a éogstant,
but since f. is arbitrary outside of S,, we may put

fr = conste.e = C. throughout space K e (4) then re-

: z -7 - 3 i
duces to (FQ, o+l Fr+l} = ¢ and letting
— © -
7 ilmygyt .o+ mpag)
r-l-l Fr+l - Z cmla o o1 € '
) W, My
(4) vecomes,
=0 L&
. i(Z ma,)
ij e € ...m Zi m Vy 20
o R
Won Wy, ze 0 K

Therefore on S_ lef"mn bl W g, BUSt vanish and for

all C's except C_ nust vanish on 8 . Let us write.

et e°Q

GO-..Q = fr.‘,l (Pl"'ph_.) on SQ ;

since & pey 18 aTbitrary outside S_, we may extend this

-

equation throughout space. Our proof is now completes

The sufficient, but not necessary, conditions for the

validity of this proof are:
1) n>2.
2) No linear relations exist between the fundamental
frequencies Y, of the unperturbed éystem.
3) None of the relations 7&/ ?ﬁ": conste fdllowS
from another similar relatinn 1)k/ Vi = cornste. ‘
4) 2“_‘:‘11;1{7]: does not vanish on any of the surfaces |

Fo = const. except for m g 0 (k =1,2 «oe n).




5) None of the coefficients B vanish on -
Z v ml L I mn
Fo = const. for n Y = 0.

If commensurable relations exist between the periods,

gome of the terms of the perturbation function are no
not
longer periodic and become secular. This case Willﬂbe

)
exanined here.

95,
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The Adiabatic Invariance of Quantized Orbits

It=i?,§e11-known that the adiabatic theorem of
1
Ehrenfest states that if a dynamical system is at

a certain instant in a guantized state and its "mechén-
ism" E;)in the larger sense given to fhis term by'P;
Hertz -- is altered by an infinitely slow adiabatic
process, this system stays gquantized in the same state
throughout and at the end of the adiabatic transforma-
tione

In order that the adiabatic theorem may have a de-
finite meaning it is required tkat the final configura-
tion be independent of the way in wbich the transforma-
tion from the initial state is carried out, i.e. inde-
pendent of any one of the intermediate states. Tha£ this
is so for non-degenerate systems wnich admit a separation
of variables, more generallyt fgr systems which can be

2a

described by angle variables » in the initial and 211

()
intermediate states, was shown by Burgers » How im-

»

portent this last clause i?i)is pointed out very clearly
in an example due to Fermi « Degenerate systems have
also been discussed by Burgers who has shown that the
energy of such systems is adiabatically invariant.

The simpler cases of atomic theory which belong to

the conditioned-periodic type having been studied with
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greater or less thoroughness -- Stark and Zeeman ef-
fects, fine structure, etc. -- the problems which are

Nnow prgsenting themselves for consideration belong to the
class which is non-separable so far as known, and does
not admit of an expression in terms of angle variabhles,
abcvé 2ll the helium atom, an example of a three-body
problem, and the hydrogen moleculéfa;n example of the
“reduced"lfour-body problem. All attempts to reduce the
treatment of such systems to that of conditioned-periodic
systems may be now 1ooked‘upon as failures. The object

of the present part of this paper is thenﬁ How can the
a&iabatic theorem be extended to non-conditioned-periodic
systems? +t is clear that the answer to the guestion may
lead to information as to what quantum conditions fix the
stationary orbits in this more general type of dynamical |
systene. |

The system is assumed to be holonomic and conserva-

tive, of n degrees of freedom. As usual, its phase 1is
‘fixed ﬁy the coBrdinates of a point P -~ the phase-point --
in 2n-phase-space [ . Through every point of M we can
pass,a hypersurface E, characterized by the fact that for
all points on it, the energy of the evolving system is &
constant. If we set this energy equal to the energy-con-
stant of our conservative system, its whole trajectory will fhen
~ be upon this hypersurface. Quasi-ergodic systems, for ex-

arple, are such that their trajectory on E passes infinitely
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(5)

near every point on E . Our system may, in.certain

cases, admit; besides the eﬁérgy-integral,‘other inte-
grals which are independent of time, in which dase the -
trajectory in phasé-space will fill up a manifoeld of lower
dimensionality. Let @K(p,q) :_ck (Kf: 1,2 ...8; ° )

be s of these integrals,lthe c's being arbitrary constants.
Through every point of M passes a manifold of 2n - s
dimensions G, which s theintersection. of the s hypersur-

faces @ consty, and the trajectory through a gi#en point

K =
must be all contained in G. In the same way as for guasi-
'ergodic systems, the trajectory on G passes infinitely
near every point on G. Geometrically, the statistical
character of the trajectory is determined when the hyper-

surfaces §K = const. are known. These hﬁpersurfaces w1l
6

be called, following Fernl and others, the characteristics

of the system. A quasi-ergodic system has therefore, but
a single characteristice.

A éonservative syster which admits a separation of
variables (conditiened-periodic system) has as many charac-
teristics as degrees of freedomn, corre3ponding to the n
constants(d) of(g?e complefe integral of the Hamilton-
Jacobi equation; a greater number can only exist when
the system is degenerate, i.e. when linear relations with
integral coefficients exist between the fundamental fre-

quencies. In the classical example of the two-dimensional

anisotropic oscillator, the phase-space [ is four-dimen=-
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sional and the trajectory lies on a twordimensienai.
surface G: the system ﬂas therefore iwo characteristics.
If,on the other hand, the binding is isotropic, the sys-
‘tem is simple=-periodic and G is éne-dimensianal, which
corresponds to three characteristics.

Let the co8rdinates of the point P in phase-space
x

1°"*"2n’ |
Qyeoely 5 Py <eePpe» We investigate the following

be x instead of the more conventicnal
problem: What is the probability that, at a given instant,

L) .’ - 3 HoN I and + a
Xy ese X5, o bave values between x, %1 dX; «ee Xgyog
and x +d wnile the s remaining ='s have

Zn-g xan-_-s ’ g

values such that they correspond to points on G. Now
it is shown in statistical mechanics that, in order that
a distribution in [ be stationary, i.e. in statistical
equilibriuvm, it is necessary that the statistic%l)density
be constant on each one of the hypersurfaces G. Let j

be the Jacobian

(... &)

9(x2n,s+i..¢x2n)

then the element of volume in [ is

—

av - -].; de.-l XX dxzn-s dgloso.d E_,

which, since during the motion of the systemnm dfﬁ ..;,dis

are constants, may be written:
1
. d(r : -j— dj%- *s e dx2n-s

whence the required prbbability is
| P - 1l dr

T ggg.,

d
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the limits of integration being taken so as to include
all values of xl' ere X5 o TVhich belong to the points

on Ge.

| For quasi—ei'godic sysvtems the only characterist.ic

is the energy W. The probability that the representative
point of such a system in phé.se-.':‘npace M be within a
Space element of angle dw is measured by the product of
the hypervolume between W and W+dW and the elément aw
‘This probability is, hence

r2n-1 d w

P - -
2 JH J' con-t deo

or » H

———

2T
the integral being taken throughout the unit reference
hypersyphere,

The problem is now the following: Let the system
depend on m parameters X .... \.: When are the final values
of the characteristics independent of the way in which
an adiabatic transformaticn of the system is carried out,
thiough adiabatic variation of the parameters ) ... M. %

relation betweenw she former andthe latter
By above, th.‘ghis_ given by the system of differential e~

quations
35& dc
d_ix_-f‘gg R K=1,2 ... 8
dy -
.d_-!'__ i - 1;2 see n
J

and if the values of 3, are known for MMe--r = O, the ine
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tegra’]{of this system gives the desired variation be-

tween the 's and the A's. In order that the final
values of the characteristics be independent of the ;way
in which these parameters are altered -- provided only |
'thatb the change is adiabatic -=- the condition of unlimite.d

integrability of this system must be satisfied.

It can be easily shown that for a guasi-ergodic
systém the condition of unlimited integrability is satis-
fied. For in this case the above system reduces to the

single equation, corresponding to the only characteristic W
d W :

o
hd
X

I,21:1.-1 dew

»
=

. (added on k - l 2...111-
e 2e0.m)

2t

pi o o
H = H

Assuming m = 2, and denoting the coefficients of
d)i #AL by I‘l" Lg, the condition of unlimited integra-

bility is;

2L ? L Bh» YL
1 1 o 2

—_— L, — = + L, ——

2 A 2w o)y L ow

and we obtain after a somewhat long computation:

-a_\%l _ 1 .r2n-l aw (2-1) r2n-2 ‘a_'W d
L e 2% i LN
r cw 3T (ﬂ 2
5 H
2T .
-1 - roN
. 20 )W do om-1 oW 9 I

2 3'w) 3
2T

W
(5%
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oW
3 G
. OW
_ r2n 1 W dw
N
(7= |
2n-2 2y °W
2n-1 oW %W
L _ 1 - Ei___@,‘*’_ _ (2n-1) i Ih Ok aw 4
bh' : rzn-ldw . ¥ . __‘a_E) 2
(g 2 | : | B
o w3y
r2n-.; sw alW MI a - )
et PINUM 2W
K3 i
2n-1 W dw . X'y
- r _5: dew 0 W - a)” b r2 -
2W|R DA 0 ;
33 i
Zn-i
- F DW 2n=-2 2w
r
aw r
J B2 (201) T 49,
ﬂ oW 2
¥ (W)
o~ dy o'W
=7 * G Nw oM ——3 12
(aW-Z ),0F r
r E¥3

and likewise for _3_112 + Ll -D—Lz « It is seen that
\ Al
)~, and ),' are symmetrical, so that the above inte-

grability condition is satisfied. Hence the theorem: The
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energy of a quasi-erogdic system is an adiabatie invar-
iant. Otherwise expressed: Any dynamical system having

a single characteristic admits an adiabatic transformation
leéving this charactéfistic adiabatically invariant,

For dynamical systems with more than one characteristic

it is seen, by carrying through a similar computation,
which of necessity is more complicated, that the condition

of unlimited integrability is not in general satisfied. .

- This can be ?eit seen by the following physical example
9 .
due to Fermi : Suppose that a point p is moving in-

) side -the polygon APBDQCA under the
8 . P(Aw/

action of no forces, but in such a

J ] lQ“J} " menner that a perfecily elastic im-

C A | vact takes place every time it

strikes against one of the sides of the‘polygon.v-Under such
conditions it is obvious that the absolute values of the
components w,V of the velocity along the two axes siay
constaat during the motion, so that the system has two_
characteristics. Let (a,b) be the coSrdinates of the fixed
point Q, (N p ) those of the variable point P. We thus
have a physical system having two characteristics and de-
pending on two parameters A oo If now the position of

P varies adiabatically, u and v are gi#en by the equations:

—& logu= 2K, d 155v = _2)
d ) _ a2b -)‘f"' ‘ dry ab _)"*

neither of which satisfies -he conditions of integrabiiity.
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Hence the characteristics depend on thebway the trans-

formation of P ié carried out, and we have the theorem:
If a dynamical syétem has more than one integral inde-

pencent of time -- i.e. more than one charascteristic --
none of these integrals is in general an adiabatic in-
variant.

Certain exceptions exist in wnich the system does

admit adiabatic invariants. The most important is that
studied by Burgers, characterized by the fact +that the
system can be described by angle variables., In this case
there ars n adiabatic invariants, i.e. the n phase inte-~
grals. Another particular casewvhich is also important,
first poiated out by Fermi (l.c.), is that in which the
energy only depends explicitly on the varameters of the
system. For the former is an adiabatic invariant, a8 al=-
ready shown above, while the other chafacteristics are such
that, by hypothesis,
il

AL
We thus arrive at the following important conclusions

22, _ ,

‘The adiabatic theorem is in general applicable to systems
in which only one characteristic'dep nds explicitly on the
parameters of the system.

(109

Kru Lkow and Fock have proved the adiabatic in-

variance of the phase integral of a pendulum -- system of
one degree of freedom -~ for the particular case that the
length of the string is a linear function of the time. Very

(11)
recently H. Xneserx has proved the same theoren for

any syetem of one. degree of freedom, by methods Which'dif-
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fer considerably from those employed here. The follow=-
ing remarks may throw some light upon this questioﬁ:

vEdrenfest and Burgers showed that the average change of
the phase=-integrals during a slow transformation for
all the phasés of 2 multiple periodic motion vanishes,
provided the system does not become degeneraté duriug the
transformation. Sommeffeld pointed out, however, that
this condition of slow transformation is not enought the
time variation of the parameter determining the mechanism
of the system -- in the general sense gziven to this ex-

pression above -=- must be "unsystematic®, that is, such

that the time average)can be s symptotically substituted by
(42 :

the phase averaze. That this condition is not satis-

fied with sufficient accuracy for pendular motion was
pointed out by Krutkow and Fock who then proceedéd to es-
tablish the zdiabatic invariance of the phase integral by
asguning the linear law, 28 pointed out above.

Kneser, on the other hand, eﬁumeiates his theorem as
follows: Let the time variation of the parameter be
given by )\ = f(t) for 0 < t < T, then the total varia-
tion of the phase integral I/ -i/o approaches the limit
0 as T inceeases indefinitely. His proof is carfied out
quite rigbrously. - Bhe fundamental geometrical-statistical
bearing of the guestion is not touched upon in his paper.
That tais is(igsﬁntial is cléarly brought out in the papers

a

of Threnfest . It seems therefore that the treatment

adopted in this paper'is to be preferred. The ex-~
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treme generality of the methods involved is again em-
phasized. '

Some other difficulties which occur in the genera-
lization of the concept of adiabatic invariance to sys-
tems of higher degree of freedom may be discussed hére.
Consider again a'system,of n degress of freedom_specified
By colirdinates ql...qnvand their.conjugate momenta PyeeeP,
and the Hamiltonian function H(v,q). Its pahse-path in
2n-phase space comes 1in general as near as d651red to any
point in an s-dimensional manifold Gs’ which is contalned
" of course in the (2n-1) bypersurface H(p,q) = E. If the
motion is simple-periodic s =z 13 ‘s has its maximum value
s = 2n - 1 if the motién is quasi-ergodic., Thus s can
have all integral values within 1 and 2n-l. Now, suppose
that the motion can be described by angle varlab;es, that
] and ts derivatives

is, that g and p,can be expanded in an r-fold Fourier

series (1 €r < 2n-1)

Z Ay om ©

M - Vd(--ao

in which there are no "degenerate® terms, that is no re-=

[211' (m Y.tesw m.rvr),t + d‘,'#---&&}

l

lations of the form valgkwk = Q. DNow consider an

r-dimensional region”(%v..ﬁ) and in it the lines ;r=14f
(k = 1,2 ...r). By means of the Fourier serises above, a
§orrespondence is established between‘points of %;..4. and

points on Gy in phase-snace (p q). Suppose we divide the
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§ -space into unit‘“cubes“; then each line %  pierces
our first cube and an infinite number of othér cubes; we
take for the intercepted segments in the 2nd, 3rd ......
cmbe hOJologous segments within the first cube; on ac-
count of the absence of relatlons of the form Z'mk” =(gé)
these segments form within the first cube a dense set;
hence the ; -paths come as ?izg as desired to every point
in an r-dimensicnal region, while the corresponding‘
point in Gsbdescribes a certain phase path coming as near
as desired to every point on Gé. Were the correspondence
between %-spa—.ce and s-space unique (one-to-one) and con;-
tinuous, then r = s, because this transformation is such
as to leave the number of dimensions invariant (Brouwer's
theorem(lB)). But it has not been shown that our corres-
pondence 1is uniQue and continuous, hence we cannot yet
maintain that a system of n degrees of freedom must have
less than 2n-1 independent periods. |

However, it should be noted that the unicity and
continuousness of the transformation from g to p,gq in-
volves differentiability conditions only, whichvih all pro-
bability are satisfied by our relations, at least within
the domain considered, 9n1d@ly-%r obvious physical reasens.

The’significance of these considerations for the
guantum theory w111 be readlly agprec1ated Tor the guanti-

zation rules.(Sommerfeld-Wilsqu hold only for systems for

which the degree of periodicity u is less or at most equal
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to the number of degrees of freedom. In any case the.
possibility of constructing periodic systems with more
than n independent periods is already disturbing enough.

This difficulty is discussed and beautifully illustrated

: (16)
in a recentvnote of P. %hr3nfest » As an example,
‘ RO ) ‘
consider the following: A rigid electric dipole

with moment of inertia I rotates freely in the xy-plane
about its midpoint 0, in such a way that as soon as the
angle ¢ which its axis makes with the x-axis,'exceeds
the limits - 27 n £ ¢.427’n, the dipole suffers a per-
fectly elastic reflection.n is a large irrationai number .

The dipole has then a “"doubly"=-periodiec motion, one of

discontinuous period T = #7n/g , in which it rotates

2n times in one direcfion and 2Zn times in the opposite
Girection, the other harmonic of period 27r/ﬁ' due to its
rotatiocn about its axis. Ehrenfest and Breit point oﬁt
that in this case the single‘quantum condition for a sys-
tem of one degree of freedom é;pdq vk leads to entirely
absurd values of the energy, in fact to no quantization if
n is chosen sufficiently greate Thig result is due altof
gether, in the light of the preceding discussion, to the
fact that our quantum conditions cannoct be applied to sys-
tems where the degree of periodicity is greater than the
nuwber of degrees of freedom. In this case we would ha#e
to begin by investigating the adiabatic invariants of the

problem. It should zlso be carefully emphasized that we




are not dealing here with an example where u >2n - 1,
because one period is that of a harmonic function (Ytrue
period 2v/p), the other that of a discontinuity ("dis-

coutiﬁuous" period &nny{¢ ){

Qur general theory of adiabatic invariants leads
to another important conclusion: Bohr's fundamentsl
principle of the existence and permanence of guantum
numbers demandg the existence of adiabatic invariants

and, since we have shown that such adiabatic invariants

exist ﬁith certsinty only for periodic systems, it must
be conciuded that atomic sysﬁems 2dmit periodic solu-
tions, of the types already discussed. nis agsin seems
to the writer to he a not inconsiderable argument for
the adoption of particular overiodic solutions, of the

| (1)
type he has already advocated, in the dynamic desScrip-

tion of atoms with more than one electron.

110.
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The Separation of Variables in Hamilton-Jacobi's Equatian

It is well~known that for dynamical systems of n
degrees of freedom, for which the motions correspond=-
ing to the several degrees of freedom are independent --
separable: or conditioned-periodic systems -- the set of
Sommerfeld~Wilson ru.leé Ik - § dok - nkh, k =z 1,2...n,
furnish the necessary and ?ugficient comditions for the

]
quantization of the system. The hquSulc nature of

these rules is snfxlclentlv well-known to require any

’\
\.J

o -

further comment. It thus becomes of interest to dls-
cuss the following problem: Which types of the Hamilgon-

integrzied by separation of

(0]

Jacobi eguation can b
variables? This is known in the literature 23 Stlckelts
problem, by whom it was first propounded in 1891 in his

celebrated “Habilitationssohrift": "Uoer die Integra-

gave these conditions in explicit form and first pointed
~out clearly the part played by the potential function in
the problem; Both StHckel and Levi-Civita zave the com-
plete solution of the problem; so far ag the kinetic en=-

Tzy alone is concerned, for the system with two degrees

(5) (6)
of freedom, and Dzil? Aﬁona for the system with three
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(7)

degrees of freedom. In 1911, Burgatti gave n+41
tyﬁes of solutions for systems of n variasbles, without
showvng that those af,e grpot possible, but his conclusions
are nore based on a genial intuition than on any logi- |

cal reasoning.

At the bvasis of the present discussion, lies the

Hy -

ollowing fundamental theorem established by Levi- o
Civita (l.c.) and which forms the startiag point of the

‘ (2)

important investigations of Dall'Accua  which we now
vative holonomic dymamical system is integrable by se-
paration of variables, the eguation defining the geo-
desics on the surface specified by the first fundamental
form d&g - :E -leAldﬁd » corresponding to the kinetic
nergy T of the system, obtained from its Hamiltonian
(or Lagrangian) function by letting the potential vanish,
is also'integrable by separatidn of variables. Such
dynamical systems are called geodesic. It is well=-known

that the converse theorem is not in general true, i.e.

if the geodesic case is separable it does not always
fellow that the dynamic problem is senarable, exceni in

9
the case where the potential is essentiallvy zero., To

thie type helong the cases studied by Levi-Civita.

 Let H(qfﬁgg} = h, Ye our Hamiltonian-Jacobi egqua-

tion. The condition that it.be integrable by separation
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of wvariables is expressed by saying that =% =

£l ) k
where fk depends

on qk only. Writing, following
Dall'Acqua, or |
o
a-k
g - o dp
the condition of gseparability is expressed by E:..k.'.: “f%
v q
or by the condition : k
2 Px 2Pr :
 =p =L - 0 :

(1)

which Zust be

1 values of k and j from .
(10)
1 to n.

As shown by Levi-Civita these conditions

e

= 2

» o
are necessary an sufficient. ILet T &, g g {(the
r s

summation convention is adopted throughout this article)
be the kinetic energy, U the potential of the forces
acting on the system.

If at® are the contravariant
fundamental tensors of the first fundame

ntal form, then
-1 aT®, and the Hamiltonian function, is H= X+ U
EA N ¥ _‘_rpa, na o alil ar 4 wll LLULi, i8 - -.:..+ 'S
By the canonic eguations
§ =2H [B:s , TS
r T3S = = 3z T
. ? -
whence - LE / a4 » Ve now note that
FT Y4 Tr
» r 4 A . .
q? 221 , & 3£f > 4 P (not summed)} are inte-
rie 2 r/s |
ki .

I

n the p's or q's. There-




fore equation (1) multiplied by Ap G_» ive.
5

‘§S( bpr ) - q af' ) (g /OS) =0 (2)

is an eﬁtiie-function, which must be saulsfle for all
values of p; we may therefore set each @oefficient egual
to Zero. The‘terms not 1nvolv1ng U are those of tne
fourth degree in p, while Uhose of lower degree in p
involve both K and U. If we consider only the geodesic
problem ( U = 0) all these terms vanish. ¥e thus have
Levi-Civita's theorem given above.

In {2), the left-hand sid i; an entire function in

the
D or q. The first term is obviously davisible by, q!

UJ
L4

-

The second may or may not. We thus have two pessibvle
cages in the indices s:
o L - . . e o .
1 The function 4 F1 is divisivle by 4, or zero,
k

fk is non-vanishing and non-divisible

is an entire function in v, we shall

have f%: LS, or by above,

g 2K e ,
— - 0 —= - g L 3]
>, = 9 va, = %% (3)

¥

and it becomes quite evident that Ls is linear in the p's.

Case 2. If s belongs to this case (és ﬁs is not di=-
. the '

visible by 4 ) then 4t ﬁ is dqvisivle by, q's. If
e 2P

,_l

we denote by I an entire function in p, we shall have:

. %
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.tf .

Q - g M rE<s

R  (v#s)

wnich, by above, Ssenarating the coefficients of the 4if-

ferent powers, becomes:

s 9y

H

- | s
T i L W C T RS

&)

and, from tihe last equation, the M's are linear homo-

geneous functions in p. Substituting in (2), we may

R A - - — - 0 (5\
~ K - ¥
2994, r a, 292D, D4y rs

o’
e
n'
L ]
)
e
D
rl
-
H
4
fﬂ:
H]
O
o
o
St

g 0 aPo F a -
"
. 5
qQ _oiB (6}

he ¥M's are easily found as follows: Differventisting

{42) with respect to p we have:



118,

Differentiating again,

g& ‘ '
’gg 2" -2 ™% _a_;‘&.s ' (r#—s) (7)
r ? Ps
whence
N | a>> g8 . rs o |
s T 3(as)2 9D, (2277 4, = a7 a;) (r#£s) (8)

Thelm‘s heving been determined, the rest of the
proof 15 only a matter of straight-forward calculation.
In this way Dall'Accua proves that the necessary and
suffieient condition that a'dynamioal system wiiich is

separable in the kinetic energy be integrable by separa-

tion of variables, is that its ropotential depend on a

certain number of arbitrarv functicns each of 2 single

variaple and this number characterizes the different
cases.

To show thisg last part of the theorerm, we note that
the Hamilton-=Jdacobi equation may be written in the Jacobi
expreséion:

st
a”" pg p, = 2(U+h )

If now we place all the q's equal to zero with the ex-

, th
ception of the v Q, O

- remains unaltered since by
hypothesis it is a function of Ay onlys. Suppose we pick
out the terms in the swumation which contain Pp o Indi-

cating the arbitrary initial values of p, by ¢, the

above eguation becomes under the specified conditions




llg.

2
ﬁr = ‘*‘Pr f&r] + ¢[r' - U&T] -2 ho =90

rs
where %4 S X .
5t

= a ‘e ¢
%d" er] s
the indices in parenthesis indicating that the corres-
ponding term is taken with respect to Ay only. The
problem is now to sp@cify the functions f and ? .
Denoting by fa\(&)-a linear form in the constants of
the first group, which depends on the variable 9. only,
Dall'Acqua shows that a necessary and sufficient con-
dition to be satisfied by the potential of systems of the
first class is,
and for problems of the second class,
\ -! 1

_ ?ﬂ =A¢&)(d} + Qul(ﬁ’ _
a' ( ) being a linear form of = a®% £c24-235t c_ ¢

e F “E @ I Ch ﬁ- s 0 dﬁ t
with coefficients that depend on g only. The Energy-

r

constant hQ is then determined to be,

\

1 I
ny =i ¢ (4)+ 2 (p)]
We thus have, for the potential U,
Py = SRS (
p&} - ﬂd (d} jfi;(d)+ ¢",(F)+‘Ur (r of 2na class?

SN ACRS 1)

0-.

>

which solve the problem, provided the discriminants of
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the two forms f and.? are both n0ﬂ-vanishing.

The ellmination of the constants of thed andtﬁ
groups -among these three equations zives 2 Hamilton-
Jacobi eguation which is integrable by separation of

variables, For details, reference must be made directly

to DalllAcgua's papers,
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Cauchy's existence proof and its generalization

-,
by Poincare. Poincare's periodic solutionse.

Consider a differential equation

£ 2 ¢ (x) | (1)
“and lét the function ¢ be such that it can be expané-
ded in a power series in t in the vicinity of a point
te, xa; AThe integral of this equation can then be written
x zx 4c(t - t o)t ey(t - ta)a + ool (2)
which converges within the circle of convergence. The
coefficients cl,'cz etc. are then unique and (2) is the
~only analytic intggral whichi has the value x = xb for
t = t@. This is Cauchyfs well-known c}fifical "existence
theorem". It was extended by Poincaréi ! who deduced
from_this extension certain theorems of the greatest im-

portance in the general theory of orbitse.

Consider the system of differential equations

ez Preligzg 0p) X=lz..n (3)
and let
x = B, (6, k) W@

be those solutions of the above equations such that the
values of X, Xp ...xnhvanish for t z C. Assume new that
for a certain system of values of Xy Xp ...xn,‘t,r

one of the functions Gk:ceases to be holomorphic. We

then say that this system of values corresponds to a
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singular point of equations (3). Poincaré's extension
of Cauchy's theorem is then to the effect that:

For any non-singular point of the system of equations

ik - ¢k(xl"'xn!tlr~) k - 1,2....11',

Bi(t,?-) ces en(t.fk) can be expanded in a power series

in P. (not in t and P )» for all values of t between O

and to' provided ”}l is sufficiently small, and ¢p" ¢u
can be expanded in positive powers of xl-@(t.o) ceee

x = @, (t,0) for all values of t between zero
n _

and T.

From tnis it follows that if the expansion of

in powers of CPK and X ” Bk converges for all real

values of t, the expansion of the integral also converges
for any value of t,provided % is sufficiently small.

We may therefore write

2 O« i - 2B«
e 28x(tfi e pup) 2B (6,004 Sp—[ﬁ‘*"'{' %a:[d"-i- AT

If in particular this integral is a periodic function
of t, then it is convergent for all values of t, also for
t-0 In this case it is therefore enough to find in-
tegrals that converge in the interval 0 ~-» T. We have
therefore, to determine the conditions under which the
motion defineéd by (3) is periodic. Poincare procceeds as

follows:

We have assumed that the function ¢ depends on a para-

meter v -~ the so-called "perturbing" parameter . Let us
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further suppose that the equations (3) have been in-
tegrated for H = 0 and that in this case certain periodic
solutions have been found, under what conditions can we
state that periodic solutions also exist for small P ?
The sﬁmplesf case that we can think of is that for which
the coordinates Xy have the same values at t = 0 and
t = T. The derivatives of the coordinates at these two
epochs must then have the same values and the motion is
thennecessarily periodic. This, however, is not by any
means a necessary condition for the existence of periodic
goluticns. For if we are dealing with the motion of mass-
- points, a periodic solution exists whenever the configura-
tions of the mass-points, charges, etc, and their instan-
taneous changes are the same at t = 0 and t = T. We consider
now the foraercase.

If the difference in the initial values fe = g k°°'f" ) -
- ek(o,o) is taken into account, the integrals of (1) may
be written

x, =0 k(t, By ...Pn)h )

For k = 0, the motion is periodic of period T, by hypo-
thesis, so that ©,(7,0) = & (0,0) (k = 1,2...n)

When does a periodic motion exist for F# 02 Evidently

such is the case when § k(t.lﬁ) - Gk(T,,;)
h .
? X,
LP“ - 2 [ bPLk )

AL -_Dik) |
S egh, -2l o

which by (4) may be written as

or whén by (4)

) x
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T
0 ) By

T aek S ng |
Zpgj dt +'§ rxo-ar dt+...  (6)

Lnst
5 which may be written
b

*J Z Aik ﬁH’Z Akor& 4 ...h.ighef power in /Raudr‘ (7)

Lesd fe!

The n equations %( = Q solved for /B x &ive /81-' . /Jh.
as a power series in 1». : (3" = P ( 'A- ) (x = 1,2...n)

provided the determinant

L.I.l seseraa Lln

4

#

- D“ sececroscscsaaece
-

Anl e o & v 0@ Ann

does not vanish.

4 In dynamics, equations h{/ k= 0 are not in general
e independent. Assuming that an integral F(xl..xn.vt) -c

of equations (3) exist, which is periodic in t with period

T, we have,

F[ 6, (T, p ), T‘] = F [QK (0. ), o] :F[SK(T.rL). OJ
or, since 9« (T.‘.\-) - 9'( (0, },g ) + ;I)K

iSK(o. }*)4'%1 °] "F:

The left-hand side can be expanded in powers of

Bc (0, k )1.0] =0

\?‘ --s Y, and vanishes when L‘J,( - O. Hence if n = 1

+‘5 vanish, the nth kP also vanishes. In particular,
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if %G =0 (k=1....n-1), q/ = 0 if % 7£’ 0.
h . 9 x
n
, The second important case in which periodic solu-

tions can exist, characterized by the fact that the mass-

points hav¥e the same configuration at t,
\

Qand t =T,
%)

LI -

. . . / '
are investigated by Poincare as follows Consider

the canonic equations:

D Vi . 0 E

where F is a function of xl.....xn. Yyeeoo¥, and f,(. having
- the following properties:

1) For all real values of Yy (k =1 ...8), F can be ex~-
panded in a power series of

v
F=FD+FFI+ P‘-F,L+ooo--

2) F depends only on X, ... x

3) F is periodic in yi s+ ¥, with period 2

For y.g 0, equations (7) can be easily integrated. We

have in fact, for r,«. =0,

which give xk o . yk = Tk X

where o, V¢ and JK are constants. If Y Kf is a
multipde of 2T , the motion is obviously periedic of

period T. The problem is now: when do periodic solutions

of the same period exist when }A‘:# 0?




!
.
3
‘
3
|
:
bl
!

Let, in this case, for t = 0:
N I I L A PR A
ﬂvhJ ¢/r

and instead of x , yk introduce new variables %
k'

defined by
X, = ak+(% k+¢k ’ yk b ﬁkt-rfk-i-\]/k-i-yﬂk

and obtain the set of equations:

y . O F ; D) F

AR vl G o S
If ¢k (o)‘ - ¢m‘ (T) and %ﬁ (0) = y% (T) the motion
is again evidently periodic with period T. Since these
equations are not independent (see avove), %- (T) =0
fol-ows from the other egquations.

We have therefore s - 1 equations

%WT)go k21,2 cove 8 =1

and, letting one of the para.meters/a X be equal to zero

(ﬁs = C), we obtain
$-1 1

T
V' FE & F
L}/K (T) :Z -FN( o d_t+z 1 4t -+ (aigher
) ‘ Hi8
Leed Y 1 *x L:d.yv v aa'j.
powers of ﬂ4 """'ﬁs.l andj ) =0 (8)
v
_ F
Since ~ an. - const, we have, dividing by 