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Abstract

This thesis contains two of my projects. Chapter 1 and 2 describe the behavior of
1-dimensional A-self shrinkers, which are also known as A-curves in other literature.
Chapter 3 and 4 focus on the estimation of the asymptotic behavior of the nodal set
of biharmonic Steklov problems.

Chapter 1 gives the background of mean curvature flow and the importance of
self-shrinkers as solitons of the flow equation. We also introduce the background of
the A-hypersurface and explain how this is related to the self shrinkers. In chapter 2,
we examine the solutions of 1-dimensional A-self shrinkers and show that for certain
A < 0, there are some closed, embedded solutions other than circles. For negative A
near zero, there are embedded solutions with 2-symmetry. For negative A with large
absolute value, there are embedded solutions with m-symmetry, where m is greater
than 2.

Chapter 3 focuses on the background of spectral geometry. Several eigenvalue
problems are introduced. We have a brief survey of some of the important problems
such as the asymptotic distribution of the eigenvalues, the shape optimization problem
and the bound of nodal sets. This project focuses on establishing a lower bound of
the measure of the nodal set. In chapter 4, we use layer potential to establish that
the boundary biharmonic Steklov operators are elliptic pseudo-differential operators.
Thus we are able to establish lower bounds on both the measure of boundary nodal
sets and interior nodal sets for biharmonic Steklov eigenfunctions.

Thesis Supervisor: William P. Minicozzi II
Title: Professor of Mathematics
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Chapter 1

Background of mean curvature flow

1.1 Mean curvature flow

We start with the variation of a surface in Euclidean space. Let E" c Rn+l be a

closed hypersurface. Let F : E x (-E, E) - Rn+l be a smooth map and F(x, 0) = x

for all x E E. Therefore, Et, the image of F(E, t), is a one-parameter family of

hypersurfaces. When the surface changes with respect to t, the area, which is a

function of the surface, also changes with respect to t. We can differentiate the area

with respect to time at t = 0 and get the following first variation formula:

df-- I Area(Et) = f(OtF(x, 0), HN)do-(x),(..)
dt t=o E

where N is the unit normal vector on E and H is the mean curvature of E. Note

that if {ej} is a local orthonormal frame of E, the mean curvature H is defined as

EZ(VeN, e1), which changes sign if the unit normal vector points in the opposite

direction.

From the first variation formula, in order to have the most rapid descent of the

area at any time, the variation vector field OtF should be proportional to -HN. A

family of hypersurfaces Et in Rn+1 satisfies the mean curvature flow(MCF) if

Otx = -HN, (1.1.2)

11



where N(t) is the unit normal vector and H(t) is the mean curvature of the hyper-

surface Et at x. This is the negative gradient flow of the area functional.

Example 1.1.1. The following are some examples of MCF:

1. If E is a minimal surface in Rn+1, i.e. the mean curvature H = 0. The flow

is given by Et = E. The surface does not move at all. This is the most trivial

example.

2. The generalized cylinder and the sphere: Et = Sk(V-2kt) x Rn-k in Rn+1 with

1 < k < n and t ranges from -oo to 0. The surface shrinks to {0} x Rn-k at

time t = 0 and becomes extinct.

3. The curves Et = (s, - log cos s + t) in R2 , s E (-, , t c R. This curve

moves by translating upward in R2 . We can generalize this example to higher

dimension and find rotationally symmetric solution which move by translating

along the x.+1 direction in Rn+1.

For the examples given above, the shape of the surface is the same along the flow.

Unfortunately, in the general case, the behavior is complicated. Usually, we cannot

express the solution explicitly and singulatities may occur due to the nonlinearity of

the differential equation.

1.1.1 Properties of mean curvature flow

For the one dimensional curve in R2 , the mean curvature flow is also called the curve

shortening flow. Grayson[28 proves the following:

Theorem 1.1.2 (Grayson[28]). Let C(., 0) : S' -+ R2 be a smooth embedded curve in

the plane. Then C : S1 x [0, T) exists, satisfying

64C = kN, (1.1.3)

where k is the curvature of C, and N its unit inward normal vector. C(-, t) is smooth

for all t, it converges to a point as t -+ T, and its limiting shape as t -+ T is a round

12



circle, with convergence in the C"O norm.

The result is established by showing that embedded curves will first become convex

at some time. According to Gage and Hamilton[261, they then will become round and

extinct at a point. This completely characterizes the behavior of the 1-dimensional

closed embedded case.

For the higher dimensional case, the behavior of the flow is more complicated.

Since the flow equation is a nonlinear heat equation, one of the most important tools

for the study of MCF is the parabolic maximum principle. There are some properties

which are preserved under the flow. The reader may refer to [21]:

1. If two surfaces are disjoint, they remain disjoint under the flow.

2. If the original surface is embedded, the surface remains embedded.

3. If the original surface is mean convex, i.e. H > 0, the surface remains mean

convex.

4. If the original surface is convex, it remains convex.

For the last case, the behavior of the flow is similar to the one dimensional case.

Huisken[341 generalizes the result of Gage and Hamilton[26] to the higher dimension.

Theorem 1.1.3 (Huisken[34J). If E', n > 2, is smooth, convex and compact without

boundary, then the mean curvature flow Et exists on a maximal finite time interval

[0, T) and Et converges to a single point as t -+ T. The surfaces Et converge to a

round sphere after appropriate rescaling.

For general non-convex hypersurfaces, even though the surface is embedded, the

singularities may occur before the flow becomes extinct. The topology may change

when a singularity occurs. Therefore, the study of the singularity is important in

MCF.

13



1.1.2 Huisken's monotonicity formula

Huisken's monotonicity formula is a powerful tool to study what happens before the

singularity. Define 4 on Rn+1 x (-oo, 0) by

<P(x, t) = (-47rt) ~e! . (1.1.4)

<b is the backward heat kernel defined on R' and extended to R1'+. Huisken proves

the following theorem

Theorem 1.1.4 (Huisken[33]). If Et satisfies the mean curvature flow, then we have

the formula

4)(x, t) d-t (x) = D - b(x ,t)|IH N + | d-t (x). (1.1.5)

where do-t(x) is the surface element on Et.

Note that if Et is flowing by MCF, for all constant y > 0, the parabolic scaling

pE -2t is also a solution of MCF. This quantity f <b(x, t)dut(x) is invariant under

the parabolic scaling, that is, f, <b(x, t)do-t(x) = f <)(x, pit)do-(x).

The first corollary we can get from this theorem is that the quantity fr 4(x, t)dut(x)

is non-increasing in time. As the time goes on, the surface will have less and less

f <b(x, t)d-t(x) value. Therefore, the bound of the initial integration gives a restric-

tion of the first singularity.

Without loss of generality, we can translate the first singularity to the origin of

Rn+1 x R. According to Huisken's monotonicity formula, all the parabolic scaling

with p > 1 will give us a mean curvature flow with less fj2 <D(x, t)d-t(x) value and

with the first singularity occurring at the origin of the product space. Together with

Brakke's weak compactness theorem for MCF, there exists a sequence of pi -+ 00

such that tiZpI2, will converge to a limiting flow E'. This flow is called a tangent

flow at the origin and the integration of the backward heat kernel is constant on the

flow. This gives us information about the singularity.

14



Remark 1.1.5. If we take a different sequence of # -+ o0, the problem whether they

will converges to the same tangent flow is still open. This is the uniqueness of the

tangent flow problem.

1.2 Self-shrinkers

For a tangent flow at a singularity at the origin, the integration of the backward heat

kernel is constant. From Huisken's formula, we can conclude that

HN+-=O (1.2.1)
2t

everywhere. At any time, note that t < 0, the flow Otx = -HN = x is moving by2t

scaling inward with respect to the origin and reparametrization on the surface.

If we consider the flow which moves by scaling with respect to the origin and has a

singularity at the origin of the product space, it should be of the form f(t)E. For this

type of solution, the space and the time variable in the mean curvature flow equation

can be separated and solved independently. Put this into the flow equation, we have

f'(t)x'(to) - - -HN = -H(to)f (t)-'N(to). (1.2.2)
at

Therefore, the scaling function satisfies

f'(t) f(to)

f'(to) f(t)

If we want to find solutions with a singularity at t = 0, the solution will be f = VCt

for some C. When C > 0, the solution is defined for t > 0. It expands as time goes

on. We are more interested in the case C < 0. In this case, the solution is defined for

t < 0 and can be expressed as

Et = V'-E- 1. (1.2.4)

Since the scaling factor in time is fixed for all solutions, we only need the infor-

15



maiton of E-1 to describe the flow. The hypersurface E_1 satisfies

H =X .N) (1.2.5)
2

This equation is called the self-shrinker equation, which express the t -1 surface

of a solution which shrinks with respect to the origin and becomes extinct at time

t = 0. If we consider the equation satisfied by the tangent flow, we will see the

tangent flow at a singularity is a self-shrinker. Therefore, self-shrinkers are models of

the singularities.

In the previous examples of mean curvature flow, generalized cylinders and the

sphere flow by scaling with respect to the origin. The plane R' which passes through

the origin is minimal and thus it is fixed in the mean curvature flow. It is also a

cone which is invariant under the scaling with respect to the origin. Therefore, the

minimality and invariance under scaling make it satisfies the self-shrinker equation.

1.2.1 Classification of self-shrinkers

For 1-dimensional self-shrinkers in R2, Abresch and Langer[2 completely character-

ized the closed solutions in the following theorem.

Theorem 1.2.1 ([21). Let y : S' -+ R 2 be a unit speed closed curve representing a

homothetic solution of the curve shortening flow. Then y is an n-covered circle Y,,

or -y is a member of the family of transcendental curves {1,n} having the following

description: if n and m are positive integers satisfying 1 < n < ", there is (up to

congruence) a unique unit speed curve -yn, : S' -+ R2 having rotation index n and

closing up in m periods of its curvature function k > 0, a solution to the equations

B" + 2w2 (eB - 1) = 0, B= 2109k (1.2.6)

for some constant w.

If (r, 0) are polar coordinates with origin at the center of mass of then k and

r are related by k - Ce-wi' for some constant C.

16



Since the rotation index n is always greater than 1, the curves Ynm are not em-

bedded. As a result, circles are the only closed, embedded solutions.

It is worth mentioning that Halldorssen[30 classifies all the curves which move by

scaling(shrinking or expanding), rotation or a combination of scaling and rotation.

The same author[31] also classifies the self-similar solution for the curve shortening

flow in the Minkowski plane R1,1 .

For higher dimensional cases, in R1, Angenent[3] discovered a well-known solution,

"the Angenent's doughnuts", which is an embedded rotationally symmetric solution

with the topology of a torus. This example can be generalized to any higher dimen-

sions as an embedding of S" x S1 into Rn+1 with rotational symmetry in the first n

coordinate. Moller[44] constructs more closed embedded solutions. For noncompact

examples, the reader can refer to Kleen and Msller[36. These examples have different

topology and make the complete classification of self-shrinkers almost impossible.

In what follows, we list some of the most important literature concerning the

classification of the self-shrinkers. First, Huisken[341 classifies the self-shrinkers under

the condition of nonnegative mean curvature, bounded second fundamental form and

polynomial volume growth.

Theorem 1.2.2 (Huisken[34J). If E is a smooth self shrinker in R'+1 , with nonneg-

ative mean curvature H > 0, then E is one of the following:

1. Sn,

2. Sn-' x R'"

3. x R

where y is one of the homothetically shrinking curves in R 2 found by Abresch and

Langer in Theorem 1.2.1.

We include the proof of the compact case here. This illustrates the most basic

idea in the classification. First, we introduce the drift Laplacian L, which is defined

as

,Cf = e 4div(e- 1f) = Af - X 1 z,7f). (1.2.7)
2

17



This operator is self-adjoint in the Gaussian weighted space. For functions u, v which

are controlled at infinity such that we can do the integration by parts, we have

Ju(v)e- = - j(Vu, Vv)e-4do = (Lu)ve-4do, (1.2.8)

The following proof is adapted from [341, [331.

Proof. On the compact surface E, let el, e2 , -- , e,, be an orthonormal frame on E.

Let A = (hij) be the second fundamental form. We can differentiate the equation

(1.2.5) and get the following

1
LH= -H - HA 2,

21 (1.2.9)
hijViVjH = IA|2 - Htr(A3 ) + 1(x,ei)hjjVihi3 .2 2

From Simon's identity, we have

LIA1 2 = -21A 4 + JA1 2 + 21VA1 2. (1.2.10)

Since H > 0 we can compute the drift Laplacian of .

H 2  A H H2

Move all the terms with to the same side, multiply the equation by H2 e- 4 and

integrate. We have

2V |2H2e- d= [C(A )2 VH A) H2e-+d-
H j H 2  H H2  (1.2.12)

= Jdiv[H2 e-V(-)]d- = 0.

Therefore, we can conclude V-A 0, the tensor Ais parallel. We have IhjjViH -

VjhjjH1 2 
= 0. From the Codazzi equation and the curvature tensor vanishes iden-

tically in R+ 1 , IhjjVjH - hjjVjH12 = 0. Now, choose the orthonormal frame such

18



that el is parallel to VH. In this case, VjH = 0 for all j > 1. Therefore,

n

0 = hi 3V1H - haV3H1 2 = 21VH 2(1A1 2 - h). (1.2.13)

We have either IVH = 0 or JA1 2  h 2g.. For the case that IVH = 0, the mean

curvature is constant and therefore it can only be a sphere in the compact case. If

A1 2 = En h~i, it is only possible when hi = 0 except (i, j) = (1, 1). We can deduce

that JA1 2 = H2 . Integrating equation (1.2.9) on E, we have

H 3do- = -- H + (xT V H)do-

1 Hdo- - j Hdo- + 2 ) H 2 do- (1.2.14)

1JHdo - n Hdo + jH3 do.

Therefore, we have - fE Hd- = 0, which is impossible for compact E when n > 1

and H > 0.

For the noncompact case, there are more technical details involved to do the

integration by parts. In that case, it is possible for the mean curvature H not to be

a constant. This corresponds to the case 3 in the classification. In Huisken's proof

for noncompact manifold, some bounds of the growth rate of the second fundamental

form and the volume are assumed. Later, Colding and Minicozzi[21 remove the

requirement of the second fundamental form bound for the classification result. They

also show that the generalized cylinders are generic solutions in the sense that one

can perturb a flow to make all the singularities of this type.

If a self-shrinker is also an entire graph over Rn, Ecker and Huisken prove the

following:

Proposition 1.2.3 (Ecker and Huisken[24J). If E is an entire graph of at most poly-

nomial growth satisfying the self-shrinker equation (1.2.5), then E is a plane.

Later, Wang[531 removes the assumption of growth rate.
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For the genus 0 surfaces in R', Simon Brendle establishes the following theorem

for the compact case.

Theorem 1.2.4 (Brendle[8J). Let E be a compact embedded self-shrinker in R' of

genus 0. Then E is a round sphere.

And the following for the non-compact case

Theorem 1.2.5 (Brendle[8]). Suppose that E is a properly embedded self-shrinker in

R' with the property that any two loops in E have vanishing intersection number mod

2. Then E is a round sphere or a cylinder or a plane.

1.3 A-hypersurfaces

Now, we consider the A-hypersurface equation. Let En c Rn+' be a hypersurface

satisfying

H = (X +A, (1.3.1)
2

where N is the normal vector on the surface, H is the mean curvature and A is a

constant. Our goal is to describe the behavior of the 1-dimension solutions in R2

1.3.1 Gaussian isoperimetric problem

The equation (1.3.1) is first studied by McGonagle and Ross[431 and is named as A-

hypersurface in the work of Cheng and Wei[17. The equation arises in the Gaussian

isoperimetric problem: In Rn+1, the weighted Gaussian volume element is given by

dV, = exp(- 1 x1 )dV, where dV is the volume element induced by the Euclidean

metric. For the case that E is closed and E = 9Q for some bounded region Q C R+ 1 ,

let the r-neighborhood of Q, Q, {x E R n+1Idist(x, Q) < r}. The boundary measure

is defined by
Vti(Qr) -Vji(Q)

PM lim inf .(1.3.2)r-+O r

This measures the relative rate of change of Gaussian volume for small change from Q

to Qr. When E is smooth, the boundary measure P,(Q) = A4,(E) = f, don, where do-
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is the weighted Gaussian area element defined by do, = exp(- k!if)du. The Gaussian

isoperimetric problem asks: Among all regions with the same weighted volume Vo,

which one has the least weighted boundary area? The answer to this problem is

given by Borel[71, Sudakov and Tsirel'son[51: The half space minimizes the weighted

boundary area.

The problem above can be considered locally as follows. Let F : E x (-E, c) -+ Rn+1

be a smooth, normal variation which fixed the weighted volume, OtF(x, 0) = uN when

t = 0. We have

dV(Q)|t=o = ue do-,

H (, N) ~(1.3.3)d (x N
-P(E)-t=O =U(H - 2 )e- 4 d-.

dt 2

Let E be a surface minimizing the weighted boundary area among all surfaces enclos-

ing the same weighted volume. Because of the minimality, the surface is a critical

point for all variations that fix the enclosed weighted volume. We can deduce the

equation (1.3.1). This equation is defined on E locally and it can be studied even if

E does not enclose a region. The solutions can be thought of as the critical points

to the weighted area functional. In McGonagle and Ross' work[431 they show the

hyperplane is the only stable smooth solution to the Gaussian isoperimetric problem

in terms of the second derivative of the weighted Gaussian area functional.

Remark 1.3.1. In the special case A = 0, the equation becomes the original shrinker

equation (1.2.5). This comes from the fact that the self-shrinkers are also the crit-

ical points of the weighted area functional under any variation, not only the volume

preserving ones, in Gaussian space. Therefore, we call equation (1.3.1) the A-self

shrinker equation in my work.

Remark 1.3.2. A-hypersurface also arises in other studies. For example, it plays

an important role in the study of weighted volume-preserving mean curvature flow by

Cheng and Wei[17].

Example 1.3.3. The following are A-hypersurfaces in R n+:1
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1. The hyperplane Rn which is A away from the origin in the normal direction.

2. The cylinder Sk( A2 + 2k - A) x Rn-k

3. The sphere Rn(vV 2 +2n - A).

The examples above admit properties such as polynomial volume growth and con-

stant mean curvature. They also admit good symmetry. It is important to investigate

under which assumption we can deduce that a A-hypersurface is one of the above.

Some rigidity results can be found in [161, [18], [291 and 143].

1.3.2 Classification of A-hypersurfaces

The problem of classification of A-hypersurfaces can be regarded as a generalization

of the case of self-shrinkers. The H > 0 case in self-shrinkers is now replaced by

H - A > 0 and discussed in the work of Cheng and Wei[171. However, this is not

enough to guarantee the round solution. Further quantities arise in the differentiation,

and we also need the condition about the following quantities:

1A12 
-2h~

(1.3.4)
trA3 = >hihkhki,

i,j,k

where hij is the second fundamental form corresponding to an orthonormal frame.

Now, the result of the classification is

Theorem 1.3.4 (Cheng, Wei[17J). Let E be an n-dimensional embedded A-hypersurface

in Rn+1, either compact or complete with polynomial area growth. If H - A > 0 and

A(2trA 3 (H -A) - Al 2 ) > 0, then E is one of the standard round solutions in example

1.3.3.

The proof is similar to the self-shrinker case. In the A-hypersurface case, the drift
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Laplacian of the curvature terms are given by

1
LH= -H +A 1A - H),

2

L1A1 2 = 1A12 - 21A1 4 + 21VA1 2 + 2AtrA3, (1.3.5)

1 6 V(H - A)1 2  21A1 2 (H - A) - H
- 6 +.

(H - A)2  (H - A) 4  (H - A) 3

The proof is established by replacing 1 in the proof of the self-shrinker case by

A 2 . There will be an extra term involving A(2trA3(H - A) - IA!2), therefore, we

need a further condition to control the sign of this term.

Remark 1.3.5. We cannot remove the condition A(2trA3 (H - A) - Al 2 ) > 0. My

work, which will be introduced in the next section, shows that when A < 0 there are

1-dimensional solutions in R 2 which are not the standard circle.

1.4 My results

My work focuses on the behavior of the equation (1.3.1) in R 2. In what follows, to

simplify the equation, we scale the curve by a factor of v/2 to make the constant 1

become 1 and use the 1-dimensional curvature k in place of mean curvature H. The

equation becomes

k = -(x, N) + A. (1.4.1)

Generally, the behavior of the solution is described by the following theorem. We

state the theorem in a way similar to the theorem given by Abresch and Langer so

that the reader can make a comparison.

Theorem 1.4.1. The curvature function k > 0 of the A-curves satisfies

B" = 2(1 + Ae2 - eB), B = 2logk. (1.4.2)

1r2

Also, let r be the distance to the origin. Then k and r are related by k = Ce2

for some constant C.
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If n and m are positive integers satisfying

1v' A n 1V' A
min{ + 1} < - < max{ + 1}, (1.4.3)

2' 2 A2 +4 + M 2' 2 A2 +4

then there is a closed curve -yn, : S' -+ R2 having rotation index n and closing up in

m periods of its curvature function k > 0, which is a solution to the equation (1.4.1).

Remark 1.4.2. In the theorem above, we give a sufficient condition of existence of

solutions. The condition may not be a necessary condition. Therefore, in each of the

following results, further work is needed.

Remark 1.4.3. For the case k < 0, we can choose the normal vector N to be the

opposite. In that case, it would correspond to a solution with the curvature replaced

with -k and the A replaced with -A. More details will be given in section 2.1.

1.4.1 The case for A < 0

From this theorem, for A < -, there are solutions with n = 1 and therefore embed-

ded.

Theorem 1.4.4. For A < 7, there exists an embedded solution. The embedded

solution admit m-symmetry for some m > 2.

Remark 1.4.5. From the behavior of the differential equation, we are able to extend

the range for A. Actually, there exist 6 > 0 such that there is such embedded solution

for A < 7 + .

For the embedded solution with 2-symmetry, it is subtle because 'is either the

lower bound or the upper bound of ", so the theorem 1.4.1 cannot guarantee the

existence of an embedded solution with change of angle exactly 7r in a period. Further

detail for the behavior of the differential equation when energy is near infinity is

needed to establish the existence of solution with 2-symmetry.

Theorem 1.4.6. For I < A < 0, there exists an embedded solution with 2-symmetry.

24



Therefore, for certain negative A, there exists embedded solutions other than the

circle.

Unlike the result of Abresch and Langer[2 that for the A = 0 case, the circle is

the only closed embedded solution, we surprisingly find other embedded solutions.

This affects the understanding of the rigidity problem about the classification of A-

hypersurfaces. If we product the curve with R"4, we obtain a A-hypersurface in Rn+1

which is topologically S' x R 7 with non-vanishing mean curvature and polynomial

area growth. However, this is not the standard round cylinder as in example 1.3.3.

This is the A-hypersurface analogue of the case 3 in theorem 1.2.2.

We can also compare the result with the isoperimetric problem in Euclidean space,

where the critical surface to the area functional should admit constant mean curva-

ture. Thus the only 1-dimensional solutions of the isoperimetric problem in R2 are

circles. However, the embedded solutions, which are the critical surface in the Gaus-

sian isoperimetric problem, can be other than circles.

1.4.2 The case for A > 0

For positive A, the behavior is similar to the self-shrinking curves. Since the theorem

1.4.1 gives only a sufficient condition, we need to compare the change of angle with

the self-shrinkers and use Abresch and Langer's result to rule out the possibility of

embedded solutions.

Theorem 1.4.7. When A > 0, there are no embedded solutions to the equation (1.4.1)

with k > 0.

Remark 1.4.8. It is worth mentioning that Guang[29] establishes the same result as

in theorem 1.4.7 with a different proof. He considers the part of the curve where the

curvature decreases from the maximum to the minimum.
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Chapter 2

1-dimensional A-self shrinkers

In this chapter, we are going to establish the result of 1-dimensional A-self shrinkers.

This chapter will be structured as follows:

In section 1, starting from the defining equation, we derive an ODE system for the

1-dimensional A-self shrinkers. The approach used here is similar to that in the work

of Halldorsson[301. This is a powerful tool to study the curves in R2, which describe

the curve by its tangent component and normal component.

In section 2, we define the energy qj for a solution and analyze the behavior of

the solution for the extreme cases: The energy is near the minimum and the energy

is near infinity. We first get the change of angle at the both extreme case and use

continuity to establish the theorem 1.4.1. As mentioned before, we need more detail

when the energy is near the minimum and near infinity to establish theorem 1.4.6

and 1.4.4.

In section 3, we fix the relative energy and find the relation between AO and A.

We can compare the change of angle with the case of self-shrinker in the work of

Abresch and Langer[2] and establish theorem 1.4.7.

In section 4, we use Matlab to get numerical solutions which approximately solve

the equation. Some pictures of the curves are provided for better understandings of

the behavior for each of the different cases in the main theorems. We also give some

conjectures about the behavior of the solution here.

27



2.1 Setting up the ODE system

For a curve x(s) E R2 parametrized by arc length s, we have

d
-X = T7
ds (2.1.1)ds
-T= kN,
ds

where T and N are the tangent vector and the normal vector of the curve, respectively.

Note that for any curve in R 2, we have two possible choices of N: either rotate T

clockwise by E or -. If we let N- = -N, k = -k, we have kN =k~N.

Therefore, we have

k~ = -k = (x, N) - A = -(x, N-) - A. (2.1.2)

This tells us that selecting the opposite normal vector will change the sign of k and

result in a solution corresponding to -A.

Using the method as in Halldorsson's work[30], we decompose the position vector

x into the tangent part and the normal part. The curve can be reconstructed by these

data up to a rotation. Let T = (x, T), v = (x, N). We can obtain the ODE system

{ 8 =1+kv= 1v , (2.1.3

sdv -kT - AT.(2.1.3)

The equilibrium is the point where r = v = 0. They are given by (0, vz),

where

0 A v/A 2 +4
A A 4(2.1.4)

2

are the positive and the negative solutions of the equation v2 - Av -1 = 0, respectively.

At the equilibrium, the curvature is a nonzero constant. It corresponds to the

circle centered at the origin. For (0, i ), it is a circle of radius vj with the normal

pointed outward and k < 0. For (0, V'), it is a circle of radius -v = jv | with the

normal pointed inward and k > 0. Also, note that (T, v) = (s, A) is a solution which
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corresponds to a line with the minimum distance to the origin equal to A. From now

on, without loss of generality, we only consider solutions with k > 0. They are the

solutions with the trajectory contained in the half plane {v < A} of T - v space. -For

the solutions with k < 0, choose the opposite normal vector and study them as the

solutions corresponding to -A with positive k.

2.1.1 Periodicity of the solution

For a solution to the system, the function

F(, v)= (A - v) exp( 2 (2.1.5)

is positive in the {v < A} half plane. Differentiating it with respect to s, we have

d d d d V 2 +T2
F = - (A-v)(V d +d ))exp( 2 )

ds Tk dsd ds2
V2 + 2

(v - A)+ (v - A)(v(v -A)r+ T(1- v(v - A)))) exp(- 2

-0.

(2.1.6)

The trajectory of each solution lies in a level set of F. Since each level set of F is

a simple closed curve except the level set {F = 0}, which corresponds to the line

mentioned before, we have a uniform lower bound of the speed of (T(s), V(s)) curve

away from 0 on each level set. Therefore, the solution (r(s), v(s)) should be periodic

in s.

Remark 2.1.1. Note that if x(s) is periodic, then T, v are periodic. But the converse

may not be true. Starting from a periodic solution of (T(s), v(s)), the resulting x(s)

is periodic only when the change of angle in a period can be expressed as 2, where

n, m are positive integers. In this case, the period of x(s) is m times the period of

(T(s),v(s)), and it will be a closed solution.
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2.1.2 Change of angle in a period

Now, since k is more directly related to the geometric behavior than v, we use (r, k)

as the variable instead of (r, v). Plugging v = A - k into the previous ODE system,

it becomes

{ r - I + Ak - k2

and {v < A} becomes {k > 0} in r - k plane. Note that after the change of variable,

we still have the equilibrium at (0, k'), where k' = vj because they satisfy exactly

the same equation. However, (0, k') correspond to (0, v ), respectively. The v = A

line in T - V space now becomes k = 0 line in r - k space. Also, the function F

becomes

F = ke 2 (2.1.8)

From now on, we will work in the {k > 0} half space. For simplicity, write k = k+

and we will not use k' anymore. Let B = 2 log k. We have 4 = 2- and

d 2B d7- Bd =2 2- =-2+2k(A-k)=2+2Ae -2e (2.1.9)
ds2  ds

Remark 2.1.2. This equation can also be derived from the A-hypersurface analogue

of equation (1.2.9). If we apply the Laplacian to the scaled equation

H = (x,N) - A, (2.1.10)

the result would be

AH = H + (xT, VH) - HIA1 2 - AH 2. (2.1.11)

In 1-dimensional case, together with the knowledge of xT = TT we can get the same

second order equation. We derive the equation from the 1-dimensional frame T, v to

emphasise the geometric structure of a curve.
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Multiplying both sides by L and integrating with respect to s, we get

( dB + 2eB - 4Ae" - 2B = -4logF - 2A2 . (2.1.12)

If we define FA = F -exp A2, V(B) = eB 2Ae - B, the equation becomes

--(--)2+ 2V(B) = -4 log F\. (2.1.13)
2 d s

B B

The minimum of V(B) is attained when d'(B) = 0. e - Ae -1= 0. e k. This

corresponds to the equilibrium at (0, k) and min V(B) = -Ak - 2 log k' + 1. Now,

since the value (4AB) 2 is always nonnegative, the maximum value V(B) can attain is

-2 log F.

Now, define the energy q7 of the curve by 'q = -2 log FA. The range of the energy is

from min V(B) to infinity. For any r in this range, we can find the solutions B,- < B7

of V(B) = rq. Considering the differential equation of B, we get

1( )2 + 2V(B) = 27,
2 ds (2.1.14)

dB_
d = k2V2-V(B).ds

Therefore, the length of the curve in a period is given by

,B dB "
ds = 2 j (d ) dB =( dB, (2.1.15)

B ds B 1 (B)

and the change of the angle in a period is given by

B B

AO= kds = dB. (2.1.16)
J JB; Vq - V(B)

In order to simplify the calculation, we can switch the variable back to k. Let k -

B 2

e- , respectively. V(k) = k2 - 2Ak - 2 log k after the change of variable. The change
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of angle in a period of curvature, AO, is given by

A =. (2.1.17)

2.2 The behavior of the solutions

Now, we will focus on the behavior of AO when the energy q varies from min V to oo.

2.2.1 The behavior of the solution when r is near minV

The following focuses on the behavior of AO. When the energy is near the minimum,

the behavior is closed to a simple harmonic oscillator.

Lemma 2.2.1. For any potential function V C C2 , at a local minimum k' with

positive second derivative, let k7 be the largest solution of V(k) = 77 which is below

k' and let k+ be the smallest solution of V(k) =,q which is above ko. We have

lim A 7r (2.2.1)
Jk / -V(k) V"(k)

where ' denotes d

Proof. First, note that for the case in which the potential is quadratic, V(k) = V(k )+

V"(k)( kk*)2 a simple calculation shows that

Sk+
dk 2 (2.2.2)

k -V(k) V"(k1)

for any q > V(k0 ) and is independent of r.

For arbitrary potential function V E C2 and E > 0, there is 6 > 0 such that for

all V(k0 ) < q < V(k0 ) + 6, we have IV"(k) - V"(k0 )j < E for k E [k+, kj]. Let V

be the quadratic functions which pass through (k-, y), (kj, I) with V" = V"(k0 ) T-E-
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We have V_ < V < V+ in (k-, u+,). Therefore,

+i dk

J7 -V_(k)

< jk" 
dk

~k~ 7 7-V+(k)

ki dk
7 -V(k)

V"(ko) - C

Letting E goes to 0 yields the desired result. L

Proposition 2.2.2. When q -+ min V+, AO approaches 7r- 2 + 1. Moreover,

AO is decreasing in a neighborhood of min V.

Proof. Let q -+ min V+. The derivatives of V(k) with respect to k at the minimum

point are

V(2) (k) = 2 + 2(k -2

V(3) (k ) = -4(k) )-3,

V(4)(k = 12(ko - 4 .

Therefore, from the lemma above and recall that k = A+ , we have

(2.2.4)

lim AO
ij-+min V+

li k17 2dk
=lim/
,q-minV+ Jkg 77- V(k)

-2 2(k )2

2(kO) 2 + 2

A
A +4

From the result of Chicone[191, since

5(V(3))2 - 4V(2)( 4 ) = 80(ko)- 6 - 96((ko)~ 6 + (ko)- 4 )

= -16(ko)- 6 - 96(ko)- 4 < 0,

the function AG is decreasing near min V with respect to q7.

(2.2.6)

F-1

Remark 2.2.3. For the case of self shrinkers, we have A = 0. The proposition above

gives AG -+ vti2r, as the result in Abresch and Langer[2]. This function is strictly
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V"l(k) + e
(2.2.3)

(2.2.5)



increasing with respect to A. When A approaches oc, AO approaches 27r. When A

approaches -oo, AO approaches 0.

2.2.2 The behavior of the solution when r, is near infinity

Now, we turn our attention to the behavior of AO when the energy approaches infinity.

An upperbound of AO is given by the following proposition.

Proposition 2.2.4. For any L > 1,

L 1 1
_O r+2 A-1+ '-+ o(-) (2.2.7)

VL - 1) V/ij- \/

as q goes to infinity.

Proof. In order to get an upper bound of AO, separate the integration into two terms.

(kl? k 77ggk

AO ________+ + 2dk (2.2.8)J ) 7 -V(k) Ik V(k) 1 i -V(kT

When 1 < k < k, we want to construct a quadratic function which is larger than

V(k) in this interval such that the integration can be computed explicitly. Let I.+ be

the positive solution of 77 = k - 2Ak. Note that Ij < kg. The function k 2 - 2Ak is

quadratic and passes (1, 1 - 2A), we want to modify this function so that it passes

(k4, y). Using scaling, let V(k) = ( (k - 1) + 1)2 - 2A(K 1 (k - 1) + 1). At

k = k+, V(k) = V(k) =. At k = 1, V(k) = V(k) = 1 - 2A. The second derivative

of V(k) - V(k) is

(V(k) - V(k)) 2(k+ _ 1) 2 - (2 + 2k) <0. (2.2.9)

We can conclude

V(k) - V(k) > 0 (2.2.10)
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for any 1 < k < k+. Therefore, we have

l k + 
k+ g1 j 2dk) j1 2dk

V V~) J, r- V-(k)

k - 1 f4

k+ - 1 1

2dv

7) - V 2 + 2Av
-1r 1 - A

= 2 (- - sin-' )
Ik+ -1 2 -V7 + A2

We need an upper bound for Starting from k~+
77 1 '7

A + V/A 2 + TV(kn) =

7 - 2 log kc, V(k) = 7 and V'(k) > 2k+j - 2A - 2 for k+ < k < k+, we have

- 2log kc+
k7- k -n 2+- 2A- 21e g.

for 77 large enough. Hence,

log k+

k1+ _ A .-_

C log 7)

2

k+l _ 1 k+ - k+
-=1+ 1I+ 1O(i log 7).

k+ -1 k - 1

Therfore,

k 1

2dk

V'7 7 -V(k)-

k+ - 7r
2-

I,+ 2
1- A- sin~ 1 )

V77 +A 2
7r + 2

Now, we are going to estimate the other term. For all L > 1, let k = exp(-- +

+ JAI). Note that when y is large enough, kL d L

Ih s 2dk -) = , 2k )d < " w

k~7-V(k) V ) V(k)+0~ V M)

For the first term, since V(k-) 7,V(k-) < ~,V" > 0, we have

L L- 1 k-~

L L k- k-

(2.2.15)

(2.2.16)
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1
= O(q- log ?I) (2.2.12)

(2.2.13)

1
+ 0(- -.

V7
(2.2.14)



for k- < k < k.-4 and

2dk fk L

-V (k)< Jk

< 2dv L 4
k-7,LJ _ - krL L -1 j

L 

O7VV7

The second term can be bounded by the following,

Ik

2dk
17 - (k)

Therefore, we get

Sl 2dk
k VT - -

Combine the estimation of both terms, we have

AO < r + 2 A
-+ L 1+L =- /

After establishing an upper bound of AO, a lower bound is given by the following:

Proposition 2.2.5. We have

A -k- A -k'-
A ;> 7r + 2sin-1 / = 7r + 2 sin- 1 A-

V/ + 2 log k + A 2 k+ - A
(2.2.21)
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=(k- -k )

L-l (k--k ,
L 1 7 o--k

I l2dv

'T-l

(2.2.17)

2dk<

k L -

L 2
L -1 *

(2.2.18)

L 2
L - 1 yVi j

1
(2.2.19)

1
+ o( 1)

vlij
(2.2.20)
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Proof. To get a lower bound of AO, use log k < log k+ when k,, < k < k+.

Ik+AO- 2dk
1 k7- r- V(k)

k 77+2dk

kg V+-k2 +2Ak+2logkg

2dk (2.2.22)
k ( + 2logk + A2) _ (k _ A)2

= 7r + 2 sin-1  A-
77+ 2log k,+ A2

A+ - A=ir + 2sin 1 k

Note that in this proposition, we do not require the energy to go to infinity. From

this lower bound, we can get a partial proof for the theorem 1.4.7 for the case A > .

Proof. Separate into 2 cases: k,-, < and k-> 1

For the case k, < , applying proposition 2.2.5 yields the result AO > r.

For the case k- > , we have V"(u) > 8 in the interval (k-, k,). Let V be the

quadratic curve passing through (kg, 7) and (kg, 77) with second derivative equals 8.

From the maximum principle, we have V > V in (k'-, k,). Therefore,

AG fkn 2dk
- V (k) (2.2.23)

77 2dk 2L2 -r =~k =2 W r.

Combining both the upper bound and the lower bound, we can get the limit of

AG when the energy 7 goes to infinity.
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Proposition 2.2.6. For any A, when the energy q goes to infinity,

lim AG = 7r.
?7-+0O

(2.2.24)

Proof. As rq goes to infinity, k+ goes to infinity and k,- goes to zero. Therefore, the

upper bound and the lower bound established above both approach 7r as 71 goes to

infinity. 11

2.2.3 Existence of closed solutions and embedded solutions

The proof of the theorem 1.4.1 is given by this proposition together with the behavior

when 77 is near 0.

Proof of Theorem 1.4.4. For any A < 7, when r, -+ min V+, the limit of AO is less

than 2. When rq is large enough, AO approaches 7r. From continuity, there exist q7

such that AO is exactly Z for some integer m > 2.

A0 is decreasing when rq is near min V. When A = , min, AG0 < g. From the

continuity, the range for A can be extend a little higher than -. F
2VW El

Furthermore, from the upper bound, we can get more information for the case

A < 0 and r7 large.

Corollary 2.2.7. When A < 0, AO < r for r7 large enough.

Proof. Since

L ch< 7+2 A- 1+ g+ s( 1
~-L 

- I ,F5 ,y
for arbitrary L > 1, choose L large enough so that A - 1 + < 0.

(2.2.25)

With the knowledge of the behavior of AG for small energy and large energy, we

can proof the theorem concerning the case A < 0.

Proof of theorem 1.4.6. For ' < A,

lim AO > ir. (2.2.26)
r)-3min V8
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For A < 0, A <r when q is large enough. From continuity, there exists q such that

AO is exactly 7r. l

2.3 Relation between A and AO

For the case A > 0, the behavior is similar to the original case for self shrinking curve

in Abresch and Langer's paper. We want to compare the change of angle with the

case A = 0.

Recall k is a function of A. Translate the minimum point of V\(k) to the origin,

define V\(u) = Vx(u+ k0) - min 1V, where min V = VA(k) = (k) 2 - 2Ak - 2 log k0 .

Let ' =7 - min V be the energy relative to the minimum. We have the following

theorem:

Theorem 2.3.1. With the setting above, for a fixed O, is increasing with respect

to A.

Proof. Note that in this setting,

AO=J 2du , (2.3.1)

where u are the positive and negative solution of f7 = V,(u), respectively.

Now, for a fixed iy, we want to know the relation between A and u when VA = A(u).

Differentiate the equation with respect to A, we have

0=2((u+ko)-A (kI) + () 2(u+k)-2(k -A- ) + 2k

S _ +k -1 dudk0 T2
=2( )2 -Au+k)-1(--u+ )-'2u

u+ko dA d
U2 + 2k'u - Au du dk'

= 2-_ (- +7- )-2u
u+k dO dA

ru+2k0 -A du dk 1

u2+k3 d2 d

(2.3.2)
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Therefore,
du dk' u + kO-- + .(23.3)
dA dA u+2ko - A (2.

Since k = + , -+4 we have 2

dkV 1+ 4 2+4+A k
dA 2 2 vA 2 +4 2k - A' (2.3.4)

and
du u + k' ko (k' - A)u (2.3.5)
dA u+ 2k - A 2k - A (u +2k - A)(2k - A)

Since k - A, 2k0 - A, u + ko are all positive, L has the same sign as u, i.e. > 0,

2 < 0.

Starting from /(u) = 2(u + k' - A - ),for any i < i, we want to know the

change of the slope of V( at u with respect to A. Differentiating the equation with

respect to A, we have

- (^ (u)) = 2 (1 + )(-- + ) -)
dA V (u + k )2) dA dA

(2 + ui) (2.3.6)
(u + ko )2 u + 2ko - A

2(A - k )u

(u + ko)(u+ 2k - A)

Note that A - ko < 0 and therefore d (VA((u)) and u have the opposite sign.

Now, fix i, A, < A 2 . Since L and u has the same sign, we have U- < u <

0 < u+ < u. Consider the function V, (u) and +A(a + uU - A ), Both ofqIA1  fIA2V\(U+rj,A 2 the -

them have the same value i at u = u . Now, for all fixed i c (0,9), d(0)(u)) and

u have the opposite sign, we have

&ZL< = 09 A2  (2.3.7)

Therefore, for any i E (0, i), UtA > UA - (f/ - t), i.e. the graph of (aq7, 6)

lies on the right of the graph of (u - ( U+ - 4A), ). Since V((u+A) > 0, it
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implies that V\ (u) < PA\,(u + u+A, - u+,,) for u E (0,u+). We can employ the

same argument for the negative part and obtain V\ (u) < u( - u ) for

uE (U 0).

Therefore,

AO(#7, A,)
2du 2du

< 
2du

t7A1'X V 2( + Ufiho 2 - l UA

2du

+~~~ ~ _of.( - +

=1-
fnJ+ A2

/U ' 2

_U1 f)

2I - k F 
4',\ 2  ~i),A1

2du J + 2du

VW - x2(u) "l,2 fl,"A1 #7 - A2 (u)

2du = AO(#, A 2).

7\V 2 (U)

(2.3.8)

Now, compare the case A > 0 with the self shrinker case.

Proof of theorem 1.4.7. Use the result in Abresch and Langer[2 that when A = 0,

AO(, 0) is a decreasing function of 4, lim.qo AO(r, 0) = V2-7r, limq, AO(r, 0) = ir.

Hence for all #7, AO(r, 0) > 7r. Plugging A= 0, A2 = A in the previous theorem, we

get A9(4, A) > AO(, 0) > 7r for A > 0.

2.3.1 Alternative proof of theorem 1.4.7 given by Guang

Here, we also include the proof given by Guang for a better understanding.

Alternative proof of theorem 1.4.7 in [29]. Define 0 = arg N, this 0 describe the polar

angle of the normal vector and the change of angle in a period is AO as introduced
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before. In this proof, we use 0 as a variable instead of a function. We have

dO-- k. (2.3.9)
ds

Therefore,

dk ds

ds d 1 (2.3.10)
koo - + A - k.

ds dO k

Multiply both side by 2ko and integrate with respect to 0, we have

k + k - 2Ak - 2logk =,r. (2.3.11)

Note that this equation is equivalent to the equation (2.1.13).

If r7 is at the minimum, k must be constant and the solution is a circle. To study

the solution which is not a round circle, we have 7r is greater than the minimum.

Now, rotate the solution such that 9 = 0 corresponds to a point with maximum

k on the curve. Let 6 be the smallest positive 0 which attains the minimum k. The

function k is periodic with period T = 29. For an embedded solution, we have T < -r.

Now, compute the third differentiation of k. We have

(k 2)00 0 + 4(k2)o = 4- + 6Ako. (2.3.12)
k

Multiply by sin 20 and integrate from 0 to T.

j sin 20-d9 = j sin 20((k 2 )000 + 4(k 2 )o - 6Ako)dO
S k

T

= (k2 )09 sin 201j + sin 20(4(k2 )o - 6Ako) - 2 cos 20(k2 )ood
0

T IT 2

= (k 2 )oo sin 201 ' - 2(k2 )o cos 20|T - 6A sin 20kodO.

(2.3.13)
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Using T < 7r, k attains minimum at T and k is decreasing from 0 to I, we have

2 2

(kioo(-j0() 2i(T

0 > 41 sin2 dO = (k sin(T) - 6A sin 20kodG > 0. (2.3.14)

The equality must hold, therefore we have ko =- 0, which is a contradiction. L

Remark 2.3.2. Guang's proof states explicitly why A > 0 is needed. My proof, even

it depends on the work of Abresch and Langer, describes the geometric behavior A and

gives us further information of the solutions.

2.4 Simulation of the curves

By using Matlab program to solve the ODE system, we can obtain numerical solutions

which approximately solve the ODE. The following are the curves of the numerical

solutions. The curves behave as what expected from the theorem. 1.4.7, theorem 1.4.6

and theorem 1.4.4. We put the pictures of the curves here to give the reader better

idea of what the actual solution will behave. From the simulation, we can observe

some behavior of AO with respect to r. Some conjectures about the behavior are

posed here.

2.4.1 A > 0 case

When A > 0, the range for AO contains (7r, 7rv/ \ + 1] and AO > 7r. There will

not be embedded solutions. The following are some of the closed solutions for the

case A = 0.19 and A = 0.726. The energy q increases from left to right. Note that for

certain 7, the solution passes through the origin. If we keep increasing 77, unlike the

case where A = 0, the origin will not be on the same side of the solution anymore.

Conjecture 2.4.1. When A > 0, AG is monotonically decreasing with respect to q

as in the case of Abresch and Langer[2].
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Figure 2 1: Solutions for A 0 19, L0 1- respectively.

Figure 2-2: Solutions for A= 0.726, A0 = respectively.

2.4.2 A < 0 case

The A < 0 cases are more interesting. For each - < A < 0, there exist an i such
V .3

that A0 = -r. The corresponding solution is embedded and have 2-symmetry. The

following are some of the examples. From left to right, A =-0.2, -0.3, -0.4, -0.5, -0.6,

-0.7, -0.8, -0.9, respectively.

a ~~~ a 4

Figure 2-3: Embedded solutions for different A's

Conjecture 2.4.2. There is a unique (5 > 0 such that for -+6 < A < , there are

no embedded solutions and there is a 3-symmetry embedded soLution when A < V+.

The following is the case A = -2. From the numerical solutions, the lowest

possible L0 is around IT and no embedded solution is found.
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Figure 2-4: Solutions for A = -2, AO = , l, g, , respectively.11 13 7 5 ) 6'7

For A <_ , we have no embedded solutions with 2-symmetry. However, as

A < 6, there are embedded solutions with n-symmetry for some m > 2. The

following are the cases where A = -3, -5. The energy r increases from left to right.

Unlike the case A > 0, when A < , even though AO should be decreasing near

inin V(B), it appears that after some tl, A6 is increasing while q is increasing.

Conjecture 2.4.3. When A < 0, there is a function r(iert(A) such that AO is decreas-

ing when q < er;, and AO is increasing when 71 > I,,it(A). Moreover, I(.,.Ut(A) goes to

infinity when A goes to zero, leri,it (A) - min V goes to zero when A goes to negative

infinity.

Figure 2-5: Solutions for A =-3, AO 1, 2w- respectively.53' '5

Figure 2-6: Solutions for A = -5, !O = 2, , 1, 2, respectively.5 12 7 13 --
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Chapter 3

Background of spectral geometry

3.1 Eigenvalue and eigenfunction of Laplace opera-

tor

Let M be a compact n-dimensional Riemannian manifold without boundary. In terms

of local coordinate (X 1 , x2 , - - , x.), the metric can be written as ds2 = gijdxidxj. The

Laplace-Beltrami operator is given by

1 a

-V-9 x3  09xi

where (gii) = (gij)- 1 and g = det(gij).

The Laplace operator is a self-adjoint operator on the function space H'(M).

From the theory developed to solve the Poisson equation, we know that the map

I - A : H1(M) -+ Hl(M)* (3.1.2)

is bijective. If we denote the inverse by T and restrict it to L2 (M), it will be a compact,

self-adjoint operator from L2 (M) to L2 (M). Now, we can apply the spectral theory

about compact, self-adjoint operators. The eigenspaces are finite dimensional and the

only accumulation point of the eigenvalues is 0.

Therefore, the eigenvalues of A are discrete with finite multiplicity. Together with
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the fact that -A is nonnegative, we have the sequence of eigenvalues 0 = A2 < A 2 <

A-.. and the corresponding eigenfunctions {e} which satisfy AeA = -A2 e .

The eigenvalues can also be considered using a max-min principle. The Rayleigh

quotient is

= ~ fM |Vu|2 dVA = SuP infM U 2 dV (3.1.3)k E (ucE fmUn2dV

where E ranges from all codimension k - 1 subspace in H1(M). This characteriza-

tion helps us to obtain bounds of the eigenvalue. For example, most of the shape

optimization problems are proved by using the Rayleigh quotient for appropriate test

functions.

Remark 3.1.1. In some of the literatures, the eigenvalue and eigenfunction are de-

fined as Ae = -AeA. We choose A2 instead of A to reflect that Laplacian is a second

order operator. It is easier to compare this result to other self-adjoint operators with

different differentiation order.

The study of the eigenfunctions and eigenvalues of Laplacian is closely related to

other partial differential equations such as the heat equation. The following theorem

concerns the relation between the heat kernel and the eigenfunctions.

Theorem 3.1.2. Let {ej be an orthonormal basis of L 2 (M) consisting of eigen-

functions, with AY be the corresponding eigenvalues, then

H(x, y, t) = eAj (x)eA (y). (3.1.4)

and

Trek = H(x, x, t)dx = e- . (3.1.5)

We have similar formulas for the wave equation and the Schr6dinger's equation.

The eigenfunctions give us special solutions so that we can separate the space and

the time variables in each of the partial differential equations.

The study of the spectral behavior focuses on two different directions. One focuses

on the geometric dependence of the lowest eigenvalues. The other focuses on the

asymptotic behavior of the eigenfunction as the eigenvalue goes to infinity.
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3.1.1 Asymptotic behavior of the eigenfunctions

We are interested in the behavior of the eigenfunction when the eigenvalue goes to

infinity. Using the heat kernel and Tauberian theorem, Weyl prove the asymptotic

formula concerning the distribution of eigenvalues on the real line:

Ak Cn(v)n (3-1-6)

as k goes to infinity, where c, = 27r( n n, Wn_ 1 = Vol(S" 1 ) and V = Vol(M).

As the eigenvalue goes to infinity, the corresponding eigenfunction may concen-

trate on a small region. The following LP estimate from [481, [471 describes such

phenomenon.

Theorem 3.1.3. Let e\ be an eigenfunction of the Laplace operator. For p ;> 2, we

have

|HeA|LP <-: CA0'(n"p lex||p2, (3.1.7)

where C is a constant independent of A and the power o(n, p) is given by

1 _ 1 2 (n+1) p<0
o-(n,p)= 2 P<p -1 - - (3.1.8)

n-1 (1 - 1 2(n+1)
2 2 p - - n-1

The bounds of LP norms given above are sharp. They can be attained by the

famous examples of the eigenfunctions on the standard sphere S f. The L' upper

bound is attained by the zonal harmonics on the sphere, with the property that the

maximal value is attained at the north pole and the south pole. On the other hand,

the LP, p < 2(n+1) upper bound is attained by the sectoral harmonics, with the

property that the mass of the eigenfunctions concentrate on a closed geodesic. The

different behaviors when eigenvalue goes to infinity are the main difficulty in the study

of the overall asymptotic behavior.

Jakobson and Nadirashvili[35 focus on the symmetry of the LP norm for the

positive part and the negative part of the eigenfunctions. If we defined the positive
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part and the negative part of the eigenfunction by

e+ = eA . x({e.\ > 0})A }(3.1.9)

eX = eA -x({eX < 0}).

We have the following theorem

Theorem 3.1.4 ([351). For any p 1, there exists C > 0, depending only on p and

the manifold M, such that for any nonconstant eigenfunction e\ of the Laplacian,

1 < e-AeIILP
C - IeIILP

3.1.2 Nodal set and nodal domains

The nodal set is the set on which the eigenfunction vanishes and the nodal domains

are the connected components of the complement of the nodal set. The study of nodal

patterns is first posed by the German physicist Chladni. He visualized the nodal lines

of a vibrating metal plate covered with sand and recorded the resulting patterns. The

nodal set can be thought of as the equilibrium points in a vibrating mode. This idea

can be generalized to higher dimensional manifolds.

First, the following theorem concerns the local structure of nodal sets.

Theorem 3.1.5 (S.Y. Cheng). Let M be an n-dimensional smooth Riemannian man-

ifold. If a smooth function f satisfies (A + h(x))f = 0 for a smooth function h. Then

f-1 (0) forms an (n - 1)-dimensional manifold, except on a closed set of lower dimen-

sion.

For the 2-dimensional case, we have further understanding of the nodal lines.

Theorem 3.1.6. If M is a compact Riemannian surface, e\ is an eigenfunction, then

1. The nodal set of f consists of a finite number of C2 -immersed circles.

2. The critical points on the nodal set are isolated.

3. At each critical point, the nodal lines divide the whole angle 2,r equally.
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The nodal set behaves like an (n - 1)-dimensional manifold almost everywhere.

We can use (n - 1)-dimensional Hausdorff measure to describe how large the nodal

set is.

Intuitively, when the eigenvalue goes to infinity, the function will oscillate more

frequently. We expect there should be more zero crossing points and more nodal

domains due to more frequent oscillation. One of the earliest theorem is given by

Courant, which gives an upper bound of the number of nodal domains.

Theorem 3.1.7 (Courant). The n-th eigenfunction can have at most n nodal do-

mains.

Remark 3.1.8. One immediate corollary of this theorem is about the eigenfunctions

corresponding to the lowest eigenvalues. The lowest eigenvalue of the Laplacian on

a compact manifold is A, = 0 which corresponds to the constant eigenfunction. This

eigenspace have multiplicity 1. The eigenfunction which corresponds to the second

lowest eigenvalue has exactly 2 nodal domains.

Even though we might expect the number of nodal domains should grow with

respect to the eigenvalue A, this is not true. For arbitrary large k, we can create a

manifold such that there exists 1 > k such that the l-th eigenfunction only admits

two nodal domains.

Let us consider the problem on the circle S'. The Laplacian eigenvalues are non-

negative integers. The eigenspace which corresponds to positive integer k is spanned

by cos(kx) and sin(kx). There are exactly 2k zeroes of the eigenfunction corresponds

to A = k. Therefore, the size of the nodal set, which is the vanishing set of the

eigenfunction, should have growth rate of order A. For the higher dimensional case,

Yau[571, [11 proposes the following:

Conjecture 3.1.9. Let e, be an eigenfunction of the Laplace-Beltrami operator on a

closed smooth manifold M. For the nodal set Z, = {ex = 0},

cA < IZAl < CA (3.1.11)
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for some constant c, C which only depend on M.

The lower bound in the conjecture 3.1.9 is established by Briining[10] and Yau for

the 2-dimensional case. Donnelly and Fefferman[22] prove both bounds for analytic

manifolds. However, for n-dimensional smooth manifolds, the conjecture remains

open. In the smooth case, some weaker bounds are established for the nodal sets.

Colding and Minicozzi[20 give the currently best lower bound.

Theorem 3.1.10 (Colding, Minicozzi[20J). Given a closed smooth n-dimensional

Riemannian manifold M, there exists c so that

JZJ > cAY. (3.1.12)

For alternative proofs, see Hezari and Sogge[32 and Sogge and Zelditch[50. The

lower bounds for the eigenfunction problem on smooth manifolds are summarized in

1421. We sketch the proofs in [201 and [321 here for comparison.

Sketch of the proof in [20]. Step 1. There exists a > 0 which depends on M such

that e, has a zero in any ball of radius a.

Step 2. Cover the manifold with balls {Bi} with radius aA- 1 such that each point

is contained in at most Cvl of the balls {2Bi}.

Step 3. Define a ball B to be a dm-good ball if

L/ e 2dMje2 (3.113)
2B A - B

n+1

There exist dm which only depends on C,, such that there are at least CA 2 dm-good

balls.

Step 4. Since the L 2 norm of the doubling of a dm-good ball is controlled, the

ratio of the measure of the positive domain and the negative domain is uniformly

bounded away from zero. We can use the isoperimetric inequality to conclude the

nodal set in a dm-good ball, which separate the positive and negative domain, must

admit measure bounded below by cAl-". Combining all the estimation on the good

balls yields the result. l
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Remark 3.1.11. In the step 1, the fact that we can find a zero in any ball of radius

comparable to A is consistent with our intuition that as A goes to infinity, the

corresponding eigenfunction will oscillate more and more rapidly. It is an important

question to consider whether this property holds for other eigenfunction problems.

Sketch of the proof in [32]. Step 1. Use integration by parts on each nodal domain

to establish the equality

j eAj(A + A2 )fdV = 2 I|Ve\Ifdo. (3.1.14)

Step 2. Plug f = 1 in the equality to establish

A2j leAIdV = 2 (Vejjdo-. (3.1.15)

Step 3. Plug f = V/1 + Vel2 to establish

2 IVe12do- < CA3 e2dV. (3.1.16)

Step 4. From the estimations above, together with Holder's inequality and the L'

lower bound of the eigenfunction, we can obtain the desired result. El

Remark 3.1.12. The two proofs above is quite different. For the first proof, the idea

of covering the manifold with small balls is employed and we get an estimate in the

balls with good behavior. For the second proof, a global integration formula on the

nodal sets is used. Both of the proofs use the I? estimates in theorem 3.1.3, which is

known to be optimal. Therefore, in order to get a better lower bound, we need some

methods other then the LP estimates.

There are some other interesting results concerning the asymptotic behavior of

the nodal sets and nodal domains. Mangoubi[411 focuses on the local asymmetry of

nodal domains and establishes the following,
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Theorem 3.1.13 (Mangoubi[411).

Vo1({eA >O} F B) C1Vo f x on )> C,(3.1.17)
Vol(B) - An-(

for all geodesic balls B C M such that {e,\ =O} n B $ 0. Here 'B is a concentric

ball of half radius of B, and C1 is a constant which depends only on M.

There is a result focusing on only one nodal domain.

Theorem 3.1.14 ([141, [221). Let M be a closed Riemannian manifold of dimension

n. Let DA be a A-nodal domain. Then

Vol(DA > 0 > 
B) C2

Vol(B) -A 6 2 , (3.1.18)

for all geodesic balls B C M such that D, n 1B z 0.

Unlike the uniform bound in [351 about the ratio of the LP norms between the

positive part and the negative part of the eigenfunctions, this tells us that the eigen-

functions may be mostly positive or mostly negative on a small ball as the eigenvalues

go to infinity.

3.2 General setting of spectral problems

In spectral theory, the relationships between the geometric structure and spectra

of canonically defined differential operators are considered. Even though they may

be defined in different context, we can usually use the PDE and the function space

theory to relate the operators with compact operators and proceed as in the case of

Laplacian.

The other operators we are interested in, such as the Laplace-Beltrami operator

on a compact manifold with boundary or the Dirichlet-to-Neumann operator on the

boundary of a compact manifold, may share similar spectral behaviors. Some of the

most common properties are the following:

1. There is an orthonormal basis in L 2(M) consisting of eigenfunctions.
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2. The eigenvalues are discrete.

3. The only accumulation point of the eigenvalues is infinity.

4. Each eigenspace is finite dimensional.

The eigenvalues and the eigenfunctions are important in the study of the geometry

analysis. They can be used in the study of other PDEs which involve evolution in

time. If we arrange the eigenvalues to form a nondecreasing sequence, this sequence,

the spectrum, carries information about the original manifold. For example, we can

recover the volume, the integral of the scalar curvature and the dimension of a mani-

fold from the spectrum of the Laplace-Beltrami operator. On the other hand, each of

the eigenfunctions represents a steady state of the system. For example, in quantum

mechanics, each eigenfunction corresponds to a particular state of the wave equation

which can be interpreted as the probability density function of the particle in that

state.

The lowest eigenvalue depends on the geometry. An important problem is to get an

a priori estimate of the lowest eigenvalue, which is related to the best Sobolev constant

in the case of the Laplace-Beltrami operator. The shape optimization problem asks:

Which manifold attains the bound for the lowest eigenvalue? The answer usually

poses some symmetry conditions or curvature conditions for the manifold.

On the other hand, the behavior of the spectra induced from different manifolds

are similar near infinity. For example, the distribution of the eigenvalues on the real

line is given by Weyl's formula below. The asymptotic distribution of eigenvalues

only depends on the dimension n.

One of the most powerful tool is the pseudo-differential operator theory. On

a compact manifold, the theory of elliptic, self-adjoint pseudo-differential operators

establishes important results about the spectral behavior. In [481, Weyl's formula

which concerns the number of eigenvalues below A, is stated as follows.

Theorem 3.2.1 (Weyl's formula). Let P be an elliptic, self-adjoint classical pseudo-

differential operator of order 1 and p(x, ) be its principle symbol. If N(A) denotes the
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number of eigenvalues of P which are less than A (counted with respect to multiplicity),

as A goes to infinity,

N(A) = cA" + O(A-1) (3.2.1)

where

c = (27)~" Ij dxdx. (3.2.2)

If we apply Weyl's formula to the spectra of the Laplace-Beltrami eigenfunction

problem or the harmonic Steklov eigenfunction problem, we can see that the di-

mension n and the volume of the manifold determine the asymptotic behavior of

eigenvalues.

Another important result from pseudo-differential operator theory is the following

LP bound for the eigenfunctions for an order 1 self-adjoint elliptic operator in [481,

[471. By comparing the LP norm, we can understand how much the mass of* an

eigenfunction concentrates.

Theorem 3.2.2. Let P be as in the theorem above. Assume further that for each

x E M the cospheres {jp(x, )} = 1 have non-vanishing curvature. Let eA be an

eigenfunciton corresponding to A. We have the same LP estimates as in theorem

3.1.3.

In the following sections, other eigenfunction problems will be introduced. There

are some problems we will focus on:

1. Courant's nodal domain theorem.

2. Shape optimization problem.

3. Bounds of the measure of nodal sets.

3.3 Spectral problems on a compact manifold with

boundary

In this section, we explore some spectral problems on a compact manifold with bound-

ary. The difference between the problem defined on manifolds with boundary and
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the problem defined on manifolds without boundary is that we need to pose certain

boundary condition to make the operator self-adjoint.

3.3.1 Laplacian spectral problems

On a manifold with boundary. There are two famous laplacian eigenvalue problems:

{ Aex = -A 2 ex in M, (3.3.1)
e\ = 0 on 09M.

{ Aex = -A'eA in M, (3.3.2)
9,e\ = 0 on OM.

They are called the Dirichlet and the Neumann eigenvalue problem, respectively. The

corresponding Rayleigh quotients are given by

A2 =suP inf fmI VUdV (3.3.3)
k E UEE fm usdV

where E ranges from all codimension k - 1 subspace in Hd (M) for Dirichlet problem

and H1 (M) for the Neumann problem. The different function spaces are used to

describe different boundary conditions: fixed boundary condition for the Dirichlet

problem and free boundary condition for the Neumann problem.

These problems are similar to the eigenvalue problem on a compact manifold

without boundary. Some results of the compact case have analogues in the noncom-

pact case. For example, the Courant's theorem concerning the upper bound of the

number of nodal domains is also established for the Dirichlet problem and the Neu-

mann problem. From this, the first eigenfunction should be positive and therefore

the eigenspace is 1-dimensional. This is interesting in the Dirichlet problem since the

lowest eigenfunction is not a constant in this case.

For the study of the lowest eigenvalues and eigenfunctions, one important problem

is the shape optimization problem: Finding an Euclidean domain which attains the

extremal value of A1. We expect a domain should admit some symmetry to attain
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the extremal value. For Dirichlet problem, the result is given by the Faber-Krahn

theorem.

Theorem 3.3.1 (Faber-Krahn). Let M C R" be a domain, B(R) a ball in Rn of

radius R such that Vol(M) = Vol(B(R)), then for the Dirichlet eigenvalue problem,

we have the inequality

A 1(M) > A 1(B(R)), (3.3.4)

with equality if and only is M is a ball.

Since the Laplacian operator is studied extensively with different boundary con-

ditions, we also include the Robin eigenvalue problem, which can be think of as the

intermediate problem between the Dirichlet problem and the Neumann problem. This

problem is defined as

{ AeA -A 2 eA in M, (3.3.5)
aex + (1 - a)dOeX = 0 on 0M,

where 0 < a < 1 is a parameter. The cases a = 0, 1 correspond to the Neumann and

the Dirichlet boundary condition, respectively. The Rayleigh quotient is given by

2fA1 1 V12dV + ' foM u2do-
Ag = -SUP inf .- (3.3.6)

E uEE fl u2dV

For this problem, Bossel and Daners establish the following:

Theorem 3.3.2 (Bossel-Daners). The ball minimizes the first eigenvalue of the Robin

problem among open sets with a given volume for every value of a E (0, 1].

For the case a = 0, the boundary condition becomes the Neumann boundary

condition. The first eigenvalue is always zero in this problem. There is a shape

optimization result concerning the second eigenvalue A 2 , which is proven by Szeg6 for

the 2-dimensional case and is completed by Weinberger for Euclidean domain in all

dimensions.

Theorem 3.3.3 (Szeg6-Weinberger). Let M C Rn be a domain, B(R) a ball in R" of

radius R such that Vol(AM ) = Vol(B(R)), then for the Neumann eigenvalue problem,
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we have the inequality

A 2(M) A2(B(R)), (3.3.7)

with equality if and only is M is a ball.

The reader can refer to [5] for the proof.

Remark 3.3.4. In some of the literatures, A, is used to call the first nonzero eigen-

value. We always use A, to refer to the lowest eigenvalue to make the comparison

between different problems easier.

Now, let's turn to the asymptotic behavior of nodal sets. For the Dirichlet and

the Neumann problems, Donnelly and Fefferman[23 establish Yau's conjecture for

analytic manifolds. Ariturk[4l establishes lower bounds for the Neumann problem

and the Dirichlet problem on smooth manifolds.

Theorem 3.3.5 (Ariturk[4J). If ex is a Neumann eigenfunction, then

IZal CA . (3.3.8)

If eA is a Dirichlet eigenfunction and n < 3, then

IZA > CA . (3.3.9)

If the boundary is strictly geodesically concave and e, is a Dirichlet eigenfunction,

then for n < 4,

ZI 2 CA . (3.3.10)

The idea of the proof is making another copy of manifold M and then glueing it

with the original manifold along the boundary. By doing so, we obtain a compact

manifold. The metric is only Lipschitz on the glueing of the boundaries. By odd

or even extension, any Dirichlet or Neumann eigenfunction can be extended as an

eigenfunction on the new manifold. Using the IP estimates for low regularity metrics,

we can get the desired bound.
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3.3.2 Bilaplacian spectral problems

Let M be an Euclidean domain. We have the following bilaplacian eigenvalue prob-

lems:

O AeA - TAeA = A'eA in M, (3.3.11){ eA = T0veA - divaf(Pam[(D2 eA)v]) - OvAeA = 0 on 0M,

SA2 eA - TAeA = A4 eA in M, (3.3.12)
&2eA = eA 0 on 0M,

AeA - TAeA = A4eA in M, (3.3.13)

OveA = eA = 0 on WA,

where T is the tension on the plate. They are called the free plate problem, the

hinged plate problem, the clamped plate problem, respectively. These problems arise

from the study of the vibration of an elastic plates subjected to different bound-

ary conditions. The boundary conditions are obtained by considering the Rayleigh

quotient,

1 | , 2+TVU12d
A4 = sup inf fI + TIudV (3.3.14)

k E (UCZE fluU2d

This time, E ranges from all codimension k -1 subspace in H2 (M), H2 n HJA(M) and

H02(M), respectively. These are different degrees of freedom of boundary conditions.

From the regularity theorems, the critical functions of the Rayleigh quotients should

be smooth and admit the respective boundary conditions.

We also have the buckling plate problem given as below

{ e2 = -A'AeA in M, (3.3.15)
veA= eA= 0 on OM,

and the corresponding Rayleigh quotient given by

= sp if | V2 uI2 dV\
A 2 = sup inf ,~ V2 2d (3.3.16)E ( uEE f41 IVuI 2dV
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where E ranges from all codimension k - 1 subspace in HO(M).

Remark 3.3.6. We require the domain M to be Euclidean in order to make the

operator self-adjoint. However, for the boundary condition of clamped plate problem

and the buckling plate problem, we have

j V 2uI2 dV j (A)2dV (3.3.17)
JMJM

in Euclidean domain. We can generalize the problem to arbitrary Riemannian mani-

fold. In that case, the |V 2 ut2 term in the Rayleigh quotient is replaced by (A1) 2 .

In the biharmonic problems, Courant's theorem concerning the number of nodal

domains fails to hold. For example, in the clamped plate problem and the buckling

problem, the eigenfunction corresponding to the lowest eigenvalue may not have fixed

sign. There is an important problem of finding conditions which guarantee the first

eigenfunction to admit fixed sign.

As in the Laplacian case, we can consider the shape optimization problem. For

the free plate problem, the behavior is similar to the Neumann problem, Chasman[15

establishes the following,

Theorem 3.3.7. For all smoothly bounded regions of a fixed volume, the fundamental

tone, A2 of the free plate with a given positive tension is maximal for a ball. That is, if

M c Rn be a domain, B(R) a ball in Rn of radius R such that Vol(M) = Vol(B(R)).

The fundamental tone A2 satisfies

A 2(M) < A2(B(R)), (3.3.18)

with equality if and only is M is a ball.

Remark 3.3.8. In this theorem, we need the tension T > 0. For the case T = 0,

the constant function and the coordinate functions are eigenfunctions corresponding

to A = 0. The lowest eigenspace is n + 1 dimensional and the fundamental tone is
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For the clamped plate problem with T = 0, it is conjectured that

/\(M) > A(B(R)), (3.3.19)

for any Euclidean domain M and the ball with the same volume. This is established

for n < 3 by Ashbaugh and Benguria. Szeg6 also prove this under the assumption

the eigenfunction corresponds to the lowest eigenvalue is of fixed sign. For n > 4, the

best result is given by Laugesen that

A(M) > d.nA,(B(R)) (3.3.20)

for some constant d, which only depends on the dimension n. Also, the conjecture

holds asymptotically in the sense that dn goes to 1 as n goes to infinity.

Buoso and Lamberti[12l consider the shape optimization problem for the hinged

plate problem with T = 0. They show that balls are critical domains for the first

eigenvalue of the hinged plate problem by the domain perturbation method.

The buckling problem is closely related to the clamped plate problem with T = 0.

The conjecture is also proven under the assumption the eigenfunction corresponds to

the lowest eigenvalue is of fixed sign. For the general case, the best result is

AI(M) c.a,\(B(R)) (3.3.21)

for some constant c, and c, also goes to 1 as n goes to infinity.

For the asymptotic distribution of eigenvalues, even though extra work is needed

to take care the boundary condition, the same Weyl's formula that Ak is asymptotic

to c,( ) as in the previous section is established in this case. The reader may

refer to [461 as a good reference. There are some work comparing different spectrum

for the different problems on the same compact manifold. Liu[39 compare the k-

th eigenvalue for the Neumann problem, the Dirichlet problem, the clamped plate

problem with T = 0 and the buckling plate problem.

Theorem 3.3.9. Let A, A , AC and AB be the k-th eigenvalue of the problem,
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respectively. The following inequality holds

k< k' <k A <A . (3.3.22)

This is established by constructing k-dimensional space spanned by the first k

eigenfunctions of one problem and put it into the Rayleigh quotient as a test space

of another problem.

3.4 Spectral problem of boundary Steklov problems

Now, we turn our attention to the Steklov eigenvalue problems. To be consistent with

the language above, let Q be a compact n-dimensional smooth manifold with smooth

boundary M = OQ. Notice that M has dimension n - 1.

3.4.1 Harmonic Steklov problem

For the harmonic Steklov eigenfunction problem, eA is defined as the solution of

{ AeA = 0 in Q, (3.4.1)
&aeA= AeA on M,

and the corresponding Rayleigh quotient is given by

Ak inf , IVUdV (3.4.2)
E 

SUP UE fm u2dv

where E ranges from all codimension k - 1 subspace in H1 (Q). From this charac-

terization, this problem can also be realized as the weighted Neumann eigenfunction

problem with mass uniformly distributed on the boundary. Therefore, these two

problems admit some common properties.

If we restrict ex to the boundary, it satisfies the eigenvalue problem

AeA= AeA, (3.4.3)
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where A is the Dirichlet-to-Neumann operator on the boundary.

The shape optimization problem in this case is more complicated. We have two

different constraints: fixing the area of the boundary or fixing the volume of the

domain. For the case that the boundary area is fixed, Weinstock[55 proof that for

simply-connected domains in R',

A210QI < 27r, (3.4.4)

with the equality if and only if Q is a disk. However, this does not hold for general

domain. For example, there are plannar annulus which make the Weinstock inequality

fails. This counterexample can be generalized to higher dimensional Euclidean spaces.

Therefore, further condition such as convexity or simply-connectedness may be needed

for higher dimensional domains.

For the case that the volume of the domain is fixed, the problem behaves like the

Neumann problem in the Euclidean domain. Brock[9 proves the following stronger

result:

Theorem 3.4.1. The ball minimizes the following sum of inverse Steklov eigenvalues:

n+11
n 1 (3.4.5)

among open sets Q of given volume in R'. Here Aj(Q) denotes the i-th Steklov eigen-

value.

Note that in the n-dimensional Euclidean ball BR centered at the origin, we have

1
A2-= A3 = A,+, = - (3.4.6)

R

and the corresponding eigenspace is spanned by the coordinate functions. Therefore,

it is an easy corollary that the ball maximize A 2 among all domain with the same

volume.

In the setting of Steklov eigenvalue problems, there are two nodal sets we are
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concerned: The interior nodal set and the boundary nodal set. These nodal sets may

behave differently. For the interior nodal set, some of the behaviors are similar to the

Dirichlet problem. For example, the Courant's theorem concerning the upper bounds

of the number of interior nodal domains can be established. The lowest eigenfunction

is constant which admits only one nodal domain, and the second lowest eigenfunciton

must have exactly two nodal domains. This is not true for the boundary nodal

domains. It is hard to consider the number of boundary nodal domains since the

boundary M may not even be connected.

Concerning the nodal set for the harmonic Steklov problem, Bellova and Lin[61

first establish an upper bound CA' for the boundary nodal set on analytic domains in

R n by using the frequency function. Later, Zelditch[58] gives the sharp upper bound

CA on analytic manifolds with an analytic boundary. For the study of lower bounds

on the boundary of a smooth manifold, Wang and Zhu[54 establish a lower bound

cA 42. Notice that this is the same order as in the Laplace-Beltrami eigenfunction

problem since the dimension of M is n - 1. For the interior nodal set in Q, Sogge,

Wang and Zhu[491 establish a lower bound cA . All the current best lower bounds

on smooth manifolds employ the theory of pseudo-differential operators to obtain L

estimates of the eigenfunctions.

3.4.2 Biharmonic Steklov problems

We have the following three biharmonic Steklov eigenfunction problems:

A 2e,\ 0 0 in Q (3.4.7)
AeA = 0,Ae\ + A eA = 0 on M;

A 2 eA = 0 in Q (3.4.8)
eA= AeA - ADeA = 0 on M;

SA2 eA = 0 in Q (3.4.9)
e = O2ex - A&OeA =0 on M.
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and the corresponding Rayleigh quotient given by

A = sup inf L , (3.4.10)
E u CE fA u2dV

I i Isu|2dV'
Ak = sup inf L (3.4.11)

E (uEE fAI Ou2 dV'

where E ranges from all codimension k - 1 subspace in H2 (Q) for the first two

problems.

The problems arise in elastic mechanics. When the weight of the body M is

the only body force, the stress function must be biharmonic in M. In addition,

the problem (3.4.8) is referred to as the Dirichlet eigenvalue problem in [45 and

it is related to the study of Poisson ratio in theory of elasticity, see [251. Kutter

and Sigillito[37, Payne[451, Wang and Xia[56] focus on giving bounds for the first

eigenvalues, which are closely related to the geometry of the manifold.

All the Steklov problems above are also important in the inverse problem. The

inverse problem was initially studied by Calder6n[13]. The boundary operators for bi-

harmonic Steklov problems are defined similarly as in the harmonic Steklov problem.

We can obtain the well-known "Dirichlet to Neumann Laplacian" map and the "Neu-

mann to Laplacian" map for biharmonic equation, respectively. These maps concern

the relation between different boundary data.

Unlike the Laplace-Beltrami eigenfunction problems, the Steklov eigenfunction

problems are not defined locally on the boundary. Therefore, most of the standard

local results for elliptic PDEs such as the maximum principle fail in this problem.

For example, in the Laplace-Beltrami eigenfunction problem, there is a constant R

such that there is a zero of eA in any geodesic ball of radius RA-'. But whether the

Steklov eigenfunction problem admits this property is still unknown, either on the

boundary or inside M.

Just as the harmonic Steklov problem, the biharmonic Steklov problems don't

admit a shape optimization property in general. For example, Bucur, Ferrero and

Gazzola[11] find a sequence of annulus in R2 with the first eigenvalue A, of problem
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(3.4.8) goes to zero. Therefore, we can only hope the shape optimization property

holds for simply-connected domains or even only for convex domains.

By using the theory of pseudo-differential operators on the boundary, the spectrum

is discrete and the only accumulation points of eigenvalues is infinity in each problem.

In view of the important applications, one is interested in finding the asymptotic

behavior for eigenvalues and corresponding eigenfunctions. Weyl's theorem that Ak

is asymptotic to c' ( ) is a direct application of the theory of pseodo-differential

operators. This is given by Liu in [381, [401.

In my work, the biharmonic Steklov problems are studied. Polynomial lower

bounds are established for size of the boundary nodal sets, the vanishing sets of Ae,\

and the interior nodal sets for (3.4.7), (3.4.8) and (3.4.9).

Theorem 3.4.2. If 0 is a regular value of eA on M for (3.4.7) case, or 0 is a regular

value of ODeA on M for (3.4.8), (3.4.9) case, we have

IZI > cA42. (3.4.12)

where

Z { = x c Mlex = 0} for problem (3.4.7),
(3.4.13)

ZA = {x E MI&eA = 0} for problems(3.4.8).(3.4.9).

Theorem 3.4.3. For eA satisfying (3.4.7), (3.4.8) or (3.4.9), if 0 is a regular value

of AeA, we have

Z12A I>CA , (3.4.14)

where

ZA= {x E QAeA = 0}. (3.4.15)

Theorem 3.4.4. For eA satisfying (3.4.8) or (3.4.9), if 0 is a regular value of eA, we

have

IZAI > cA 2-2. (3.4.16)
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For eA satisfying (3.4.7), if 0 is a regular value of e,, we have

IZAI ! cA 2, (3.4.17)

where

Z x= {x E Q jeA = 01. (3.4.18)

Remark 3.4.5. The reader may compare theorem 3.4.4 to the lower bound of interior

Steklov nodal sets given in [49], which is of the same order except the bound for |ZA|
in (3.4.7) case. Also, the reader may compare theorem 3.4.2 to the lower bound of

boundary Steklov nodal sets given in [54]. Again, we get a lower bound with the same

order.
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Chapter 4

Nodal sets for biharmonic Steklov

problems

This chapter is organized as follows.

In section 1, we introduce related boundary operators and establish important

equations for biharmonic functions. We also recalls the Green's formula for bihar-

monic functions in terms of the boundary data.

In section 2, using the method of layer potentials as in [521, we show that the

boundary operators are elliptic pseudo-differential operators on 0M, which is different

from the proof given in [40]. By the pseudo-differential operator theory, we establish

the LP estimates from the theorem in [48]. From this, L', L 2 , L1 bounds for IVexI

is given on the sets which we want to find a lower bound as in [54] and [321.

In section 3, 4 we focus on the vanishing set of Aea, ZA, and the interior nodal

set, Z\. The estimation is similar as in the harmonic Steklov problem. We need to

do the biharmonic version of estimation.

In section 5, we use the theory of pseudo-differential operator to argue generally

of the boundary nodal set, ZA, for all the eigenfunction problems.
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4.1 Some basic properties for the biharmonic Steklov

problem

The biharmonic Steklov problems are related to the boundary operators. The eigen-

functions eA in (3.4.7), (3.4.8) and (3.4.9) satisfy the eigenvalue problems

~OeA = A'e\

,-OeA= A 0eA, (4.1.1)

HO,eA = Ao9ee,

on M, respectively, for the Dirichlet-to-Neumann-Laplacian operator 0, Neumann-to-

Laplacian operator E, Neumann-to-double-Neumann operator H, which are defined

below. For f E C'(M), define

8f = -OvA(K'f)A,

Bf = A(K2f)A, (4.1.2)

,f = (K2f)|M,

where Kif = u is the unique biharmonic function in Q with ulm = f, & M = 0 and

K 2f = v is the unique biharmonic function in Q with vIm = 0, Ovl = f.
First, let us show the operator H is well defined and establish the relation between

B and H.

Theorem 4.1.1. The 0, in the definition of H is well defined. We have Bf =

Hlf + Hf, where H is the mean curvature of M.

Proof. Let F be a smooth function on Al with FIA = 0. Let N be any unit vector

field defined in a neighborhood of M in Q with NIm = 0,. We have

NNF = N(dF(N)) = V 2 F(N, N) + dF(VNN). (4.1.3)

Since VNN I N, VNNIm is tangent to M. Using FIM = 0, we have dF(VNN) = 0.

Therefore, NNF = V 2 F(N, N) is tensorial and only depends on NIA, = Ov.
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Now, let {e}Q nU{N} be an orthonormal frame in a neighborhood of the boundary

M. We have

n1 n1-1

AF = V 2 F(N, N)+Z V 2F(ej, ej) = V 2F(N, N)+ (ejeiF-dF(Veez)). (4.1.4)
i=1 i=1

Given that FIM = 0, eilm is tangent to M, we have ejejF = 0.

n-1 n-1

AFm =02F - E dF(Vejez) = OF - dF(Z V ei) = 0,F + H&VF.
i=1 1

Plug in F = K 2f and we can get the desired result.

Next, let us recall the Green's formula for biharmonic function:

Theorem 4.1.2. Let u, v be biharmonic functions defined on Q, we have

0 = j &.Auv - Anuv + &auAv - u(9Avda,
M

/n(AU)2 = fmauhu - uoando-.
(4.1.6)

Proof. Integrate the equation

A 2 UV - UA 2v = V (VAuv - AuVv + VuAv - uVAv),

(AU) 2
- UA 2 U = V (VuAu - uVAu).

(4.1.7)

in Q and use divergence theorem. 0

From the equation above, we can deduce that e, -, II are self-adjoint, E and B

are positive.

Now, let E(x, y) be a symmetric fundamental solution to the biharmonic equation:

AE(x, y) = S,(x). (4.1.8)

From the symmetry, we also have A E(x, y) = Sx(y). We have the following Green's

formula for the biharmonic functions.
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Theorem 4.1.3. If u is a biharmonic function on Q, we have

U(X) lu - 0,Z YE(X, y) - O'U - AY (X, y)(419

+ Au.- E(x, y) - O&Au - (x, y)] do(y).

4.2 Layer potentials

Now, to establish the result, we need some technical results for biharmonic boundary

Steklov operators. Let Q as above, we can extend the manifold across the boundary

such that Q c Q, where Q is a smooth n-dimensional manifold. Let 0 c f be a

precompact open neighborhood of (. Start with a symmetric fundamental solution

E0 (x, y) of the Laplacian operator,

AxE0 (x, y) = J,(x), (4.2.1)

where E0 (x, y) is the Schwartz kernel of the operator E0 (x, D) E OPS2(n). Now,

let q E CO (n) be a cutoff function which is identically 1 in 0 and E(x, y) =

n(x),q(y)E0(x, y) be the Schwartz kernel of the compactly supported operator E(x, D) E

OPS2 (Q). We can construct the following fundamental solution for the biharmonic

equation:

E(x, y) = E(x, z)E(z, y)dV(z), (4.2.2)

which satisfies

A2 E(x, y) = 6"(x), A (x, y) = jX(y) (4.2.3)

in 0. E(x, y) is the Schwartz kernel of a compactly supported operator E(x, D),

where E(x, D) = E(x, D)E(x, D) E OPS-4 (n). The Schwartz kernel E(x, y) is
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smooth off the diagonal. As x -+ y, we have the following expansion:

R(x, y)+d(x, y) 2 log(d(x, y)) +- n = 2,

) R(x, y)+d(x, y) + --- = 23,
E(x, y) = c. (4.2.4)

log(d(x, y)) +- n = 4,

d(x, y)4-" + --- n > 5,

where R(x, y) is smooth, in dimension n = 2, 3, they are more significant than the part

contribute to A2k(x, y) = Jy(x), but they only contribute to a smoothing operator.

The function d(x, y) is the distance on the manifold, and the constant

n =2,

cn= = 4, (4.2.5)

2(44)( 2)._1n =3, n > 5,

with Wn = Vol(Sn). For a function f on M, follow the same approach as in [521, we

define the following potentials in 0.

Lif(x) = f (y)E(x, y)do(y),

L2 f(x) = f (y)&u, E(x, y)do-(y),
(4.2.6)

L3f(x) = f(y)AyE(x, y)do-(y),

L4 f(x) = f(y)a,,yAyE(x, y)d-(y).

Given a function u on Q\M. For x E M, define u+(x) and u_(x) be the limit of

u(z) as z -+ x, from z E Q and z E Q\Q, respectively. Now, we can find the limit of

the above layer potentials on M.

Proposition 4.2.1. For x E M, we have

Lif+(x) = Lifr(x) = S3f(x), (4.2.7)

L 2f+(x) = L2 f-(x) = S2 f(x), (4.2.8)
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L3f+(x) =Lf-x) = f(x), (4.2.

1
L 4f (x) = f(x) + Nf(x), (4.2.10)

2

where, for x E M,

Saf (X) = ff(y) - (x, y) do- (y), (4.2.11)

S2f (X) = ff(y) Ov,y - (x, y) du-(y), (4.2.12)

Sif(x) = f(y)A'E(x, y)do-(y), (4.2.13)

and

Nf(x) = f(y)Ov,,,AyE(x, y)do-(y). (4.2.14)

Furthermore, for the operators defined above, we have S2, S3 E OPS-3 (M), S1,

N E OPS-1(M). S1 and S3 are elliptic. The principle symbols of S1 and S3 are the

1 -3
same as that of 1 v-AAI 1 and 4v-AN , respectively, where AAj is the Laplacian

operator on the boundary &Q = M.

Proof. Following [521, if o- E '(Q) is the surface measure on M, f E D'(M), we have

f o E E'(Q). Now, let p(x, D) E OPSr(A), define

v = p(x, D)(for). (4.2.15)

When m < -1, v is continuous even across M and

VIM = Qf, Q E OPS+1(M). (4.2.16)

We need to compute the principle symbols of them. At any point on M, choose the

coordinates such that {xi}j7 are normal coordinates on M and x-, is the normal

direction pointing into Q. The symbol of Q(x, D) is given by

q(x,,, , ', ') = 1 x P ( , ( e " dn.(4.2.17)
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In this coordinate, put p3(x,D) = (x,D), p2(x,D) = E(x,D)X*, pi(xD) =

E(x, D)A respectively, where X is any vector field on Q which equals the outer

normal v on M and X* its formal adjoint. The corresponding principle symbols are

p 3 (xj) = |~ 4, p1 2 (X7) - k6KL 4 , p1 (x,() = -|1 2 . Use this, we can get

q3(Xn, i' X ' |(1- 4ei"nGd<n = ( + n )e-lx"C'1,27 4zK~~x~d 1 1 1 k'1J

q2 (xn, x', ') = " jd = X-O (4.2.18)

q 1(X n , X ' ' X ) = \ -2 eixn gn <- = ~ 2| '
21rJ0  2I 1I

Taking the limit as x,, goes to 0. For | > 1 the right hand side uniformly converge.

Therefore, after restricting on M, the principle symbol of S3, S1 are ' -3_'I-

respectively. For q2, since the right side converge to 0, and the term with O(I(I-4) only

contribute to OPS- 3 (M), we can conclude the resulting operator S2 E OPS- 3(M).

We can establish (4.2.7), (4.2.8), (4.2.9) and the properties of S3, S2, S1.

Now, let us turn out attention to (4.2.10). Put p(xn, ', n) = -inj(j-2+p'(Xn,

where p'(x, D) E OPS-2(n). Since

1 e--nol > 0,

i=nj - <-n 2 (4.2.19)27 _-000 -e " x, < 0.

Let x, goes to 0, the contribution of p' will converge to the same limit from both

positive and negative direction. Therefore, v+ = Qif, where Q E OPS0 (M).

Q+= I + Q', with Q' E OPS-1 (M). Now, for 9,,,AyE(x, y), the expansion when

x is near y is given by

V1A E(x, y) = - d(x, y)1-V,, +- - - , (4.2.20)

where V,, denotes the unit vector at y in the direction of the geodesic from x to y.

Therefore,
1

),zA E(x, y) = - d(x, y) 1-- (V,,, uy) + - . (4.2.21)
Wn-1
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Since (1V,, vy) is Lipschitz on M x AM and vanishes on the diagonal, ,a, AE(x, y)

is integrable on M x M. Q has Schwartz kernels equal to &,,,AyE(x, y) on the

compliment of the diagonal in M x M, together with the knowledge of the principle

symbol of Q , we establish (4.2.10). I

Now, we investigate the relation between the boundary biharmonic Steklov oper-

ators and the operators defined above.

Theorem 4.2.2. For the biharmonic Steklov operators, 0, - and H, we have B,

U C OPS'(M), E E OPS3 (M). All of them are elliptic. The principle symbol of e
is equal to the principle symbol of 2 - A3. The principle symbols of B, H are equal

to the principle symbol of 2 -A.

Proof. For f E C O(M), let t = Kif E C (O). Define operator 6 on M to be

Of = AulM. Since A(Au) = 0, we have AOf = -8f, where A is the Dirichlet to

Neumann operator for the harmonic Steklov problem. From the Green's formula,

u(x) = ua,,,AyE(x, y) - 9,uAyE(x, y) + AuayE (x, y) - aAuE(x, y)do-(y)

f j v A$(x, y) + Of&,E(x, y) - AOf E(x, y)do-(y)

= L4f(x) + L2Of(x) - LiAOf(x).

(4.2.22)

for x E Q. Taking the limit, let x goes to a boundary point, we have

1 1
f = -f + -Nf + S20f - S3AOf (4.2.23)

2 2

on M, which can be written as

1 1
(- -N)f = (S2 - S3A)Of. (4.2.24)
2 2

Note that S2, S3 E OPS- 3(M), A c OPS1 (AI), the principle symbols of S3 and A

are given by |1'l-3, |('j respectively, we can conclude that 0 E OPS 2 (M) and the
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corresponding principle symbol is -2 '12 . Therefore, E = -AO E OPS3 (M) with

principle symbol 2I 'I1.

Now, we deal the operators E and H in a similar way. For f E C (M), let

v = K2f E C'((). Using Green's formula,

v(x) = JvO,,AE(xy) - D9v AE(x, y) + AvO,E(x, y) - & AvE(x, y)do-(y)

-=j -f,(x, y) + f&O, (, y) - A-f (x, y)do-(y)

-L 3 f(x) + L2 Bf(X) - LiAEf(x)

(4.2.25)

for x E Q. Taking the limit as x goes to a boundary point, we have

0 = -Sif + S2 Bf - S3A-f, (4.2.26)

on M, which is the same as

Sif = (S 2 - S3A)Bf. (4.2.27)

Use the argument as above, we can conclude that E E OPS1 (M) with the principle

symbol 2|('I. Finally, recall that 1 = E+ H on M, we have H E OPS1 (M) with the

same principle symbol.

Remark 4.2.3. The operator 6 defined in the proof above may not be self-adjoint. In

the proof, we only need the ellipticity of the operator.

4.2.1 L estimates

One of the most important ingredients for the proof is the LP estimates for eigenfunc-

tions. For simplicity, in the following, we use A ,< B to mean there exist constant C

independent of A such that A < CB when A large enough. A ~ B means A < B and

B ,< A.

We have that #0, B and H are classical order 1 pseudo-differential operators
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with principle symbol equal to some nonzero constants times the principle symbol of

-AM. From the theory of pseudo-differential operators in the previous chapter, we

have the following:

Theorem 4.2.4. For the Steklov eigenfunctions ex satisfying (3.4.7) and p > 2, we

have

(4.2.28)

For the Steklov eigenfunctions ex satisfying (3.4.8) or (3.4.9), p > 2, we have

(4.2.29)

where

o-(n, p) = (n - 1)(- ) 12 P 2'

2(1 ),

(4.2.30)

Use this theorem for p -- and the Holder inequality, we have
n~-2

(4.2.31)

for eA satisfying (3.4.7) and

||0meAJI|I(M) > A-4' |,e|L2(M) (4.2.32)

for eX satisfying (3.4.8), (3.4.9).

Now, we establish bounds of LP estimates when applying pseudo-differential op-

erators to the eigenfunctions.

Lemma 4.2.5. Fix p E (1, oo), for any P E OPSk(M), we have

for (3.4.7) and

IIPeAJILP(M) < AkIje\IILP(A )

I|POXe-AiLP(Ar) < AIIDveA IILP(M)
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(4.2-33)

(4.2-34)

||0vex||LP(M) '< A (n-pjye,\I L2(M).-

2n < P < )Ogn-2 - -

2 < p < 2'.

eX I LP (M) < 'npje,\IL2(M)-

||ex||D1(M) - n2IeAJL2o(M)



for (3.4.8), (3.4.9).

Proof. Let e,\ satisfies (3.4.7). Since the inverse of I + N exist, we have P(I +

E)--k c OPSO(M). Therefore,

II~AILP(I)= IIp(I + /-)-k(j + _V/-5)keI,~zI
||Pes||jLP(M) k kexULP(M)

= (1 + A)kIjp(I + .- )-ke ILP(M)

W g AexLP(M)-

We can get the similar result for e,\ satisfying (3.4.8), (3.4.9).

(4.2.35)

lI

For the case that p = 1, we need to take extra care.

Lemma 4.2.6. Let P E OPSk(M). Fix e > 0, e\ satisfying (3.4.7), we have

(4.2.36)

If eA satisfying (3.4.8), (3.4.9), similarly,

||POveAI|I(M) I< A k+, IveA iIL1(M)- (4.2.37)

Proof. We proof the case for k = 0 first. If ex satisfies (3.4.7), let 6 > 0. By Holder's

inequality,

I IPexIILI(M) IeX IL1+&(M) <je,\ L1+-5(M)

26 1-6
1+eAI AIIT (4.2.38)

e<-0 1+0|ex||Li(M)-

Choose J such that "(-1 < 6, we can get the desired result. For general k, P(I +4(1+5)

,Y-)- OPS0 (M). We can use the same argument as in the lemma above. The

case for (3.4.8), (3.4.9) can be done in a similar manner.

It's convenient to write the LP norms in terms of that of AeA.

following corollary

F-1

We have the
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Corollary 4.2.7. Fix any p c [1, oo). For (3.4.7), we have

jIjCeAxLP(M) ~ A2IjeAxILP(M). (4.2.39)

For (3.4.9), we have

IIAeAIILP(M) * AII&veAIILP(M) - (4.2.40)

Proof. Choose e = .. For (3.4.7), we have AeIAm = OeA. Using 0 + V2E2= P C

OPS1 (M), we have

0ex = (-j + Pj)eA= (-A 2 + Pj)eA (4.2.41)

on M. Therefore,

C2 A2IleII -I IIeAIILP(M)

(4.2.42)

S LP(M) + IPeCALP(M).

Since IIPfeAIILP(M) 2 leA I ILP(M), we can get the desired result. The case for (3.4.9)

is similar. L

4.3 Lower bound for the vanishing set of AeA

For (3.4.8), we can think Ae as the extension of the boundary data into Q. Thus

it would be interesting to get a lower bound of its vanishing set.

QlAeA = a} be the a-level set of AeA. Define

1 X > a

0 x = a

-1 x < a.

We have the following equation.
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Theorem 4.3.1. For any f E C (A), any regular value a of Aex, we have

/ fo-a(AeA),Aedor - jo-a(AeA)(Vf, VAeA)dV = 2 ffVAeAldo-. (4.3.2)

Proof. Let {b"'}k be the collection of connected components of the

a} n Q, Z' = aDb+'n Q, I' = Obh+' n M. We have

set {AeA >

- fA2  exdV - f lVAeAdo +

/ IVAeAdu f 0 A eAda.
= -k|o xd-+ fu ed-

fOAeed-

(4.3.3)

Similarly, from the set

a similar equation:

{Aex < a} n Q, we can define bk~k, Z ik" together with

- Jfy~(Vf, VAex)dV
kk

f IVAeAdo- -

Summing over all the equation above and notice that almost every point on Z0
will appear once for some Z'+a and once for some Zk'", we can get the desired

equation.

Plug in f = 1 in the theorem, we get the following:

Corollary 4.3.2. There exists a constant c such that for any biharmonic Steklov

eigenfunciton e.\ satisfying (3.4.7), (3.4.8), (3.4.9), any regular value a of AeA satis-

fying Ia I < cA 4n11AeAIIL2(MA), we have

IVAe,\Id- > AIIAeAIIL(M)-. (4.3.5)

81

+o(Vf, Vne,\)dV
kts

fOAeAdo-. (4.3.4)



Proof. For the eigenfunction satisfying (3.4.8), we have

2 f Voexjdo- = j -(Aex)vAexd(.

= j a(AeA)AAeAdJ.

Since 2A - E = P E OPS0 (M), we have AAeA = j(E + P)AeA = IAAeA + 'PAeA.

Thus

2J IVAeAdo- =- J a (Aex)(A + P)AeAda

A IM or(AeA)AeAda + . a U(AeA)PAeAdu (437/ 1

> AIAe.\IIu(M) - 2aMI) 2 1- IIPdeAII1(M)
2 \ ' / 2
A C
2IlAeAIILM) - AaIMI - -A'11AeXIIL1(M)2 2

Choose c which only depend on Q such that for any jai < cA4 |AeAIL2(.I), A'| <

}IIAeA 11 (AI). We can get the desired result when A is large.

For the eigenfunction satisfying (3.4.9), use AeA = fl0eA + H&1 ex, A&VeA +

HOyeA and 2A - 171 P' E OPS0 (M). We have

1 12 A 1
AAeA = -( + P')(A9eA + HOYeA) = -A 2VeA + -P'OeA + 1AHyeA2 2 2 2

1 A 1
= -A(Ae - HOaeA) + -P'OBe + -AH,eA (4.3.8)

2 2 2
A 1

= Ae + -(HH + P'fl + AH)aveA.
2 2

Notice that 2(HH + P'TI + AH) E OPS1 (M). Therefore

(HII + P'H + AH)OveAIIL1(M) < Al EIIOveAtILl(M)
2 rld(4.3.9)

< AEI|AeIILA(M)-

We can use the same approach as in (4.3.7) to get the estimation for (3.4.9).

For the eigenfunction satisfying (3.4.7), we have AeA = OeA and (9,Ae, = (eA =
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-A 3ex. E2 + 6 = Pj E OPS1 (M). We have

AAeA -- A 3e,\ = -AVE)eA\

AO AP1
= e, - e\ (4.3.10)

A AP'
- AeA - e

also,

A ||<( - A leAIIL1(M) < A'IlAeAlIL1(M)- (4-3-11)

II IL (M l

Again, we can use the same approach as in (4.3.7) to get the estimation for (3.4.7)

when A is sufficiently large.

Remark 4.3.3. For the operator e, H, the eigenfunctions are eA Im, OveA respectively.

It's more nature to write the norm in terms of the eigenfunctions. We choose AeAIA

to make the result for all the cases look similar.

Next, we can plug in f = 1 + IVAeI 2 and get the following proposition.

Proposition 4.3.4. For the eigenfunctions satisfying (3.4.7), (3.4.8), (3.4.9), we

have the following estimation when A is large enough:

iVAe\| 2do- < A 2 1 AeA12(I). (4.3.12)

Proof. Plug in f 1I + IVAeA2, we have

2 1 IVAeAI2d- <2 IVAeAIV1 +|VAeA| 2 du

< f 1 + IVAeAI 2 lOAeAjd- (4.3.13)

+ j (V 1 + iVAe| 2 , VAex)|dV.

We need to estimate both terms on the right hand side. First, let e,\ satisfies (3.4.8).

IVAeA1 2 = (0,AeA) 2 + IVTAe,\1 2 on M, where VT denotes the gradient on M. Since

83



AM E OPS 2(M),

IIAMAeAIIL2(M) =IAMveAIIL2(M)

< A3II&veAlIL2(M) $ A2 11AeAIIL2(M).

We can get the following:

IVT AeA2d = - J AexAAMAeAdo

< jjAe,\IL2(M)j AMAe,\ L2(M)

< A 2 AeA 1rly unA2 (M)

when A is large enough. Similarly, using A E OPS'(M), we have

110 IAeAI22(M) < A2 11AeAI12(K),

and therefore

1 + JVAeA1 2da = 1 + (&uAeA) 2 + IVTAe 2dU $ A2 A 2
LI

The estimation of the first term is given as

j 1 + VAex2I AeA\du < 1 + IVAe\ 2 IIL2(M) jjvAexI|L2(M)

< A2 ||AeA|12( ).

Now, let us estimate the second term.

(VI 1 +Ve I |VA \2, V Iedv = ill V2 AeA (VAeA, VAeA)I dV
V1 + IVAeAI 2

< IIV 2 AeAjL2( )IIVAeAIIL2(Q) VAeA L
V1 + I VA eA A.

< I1IV2A2eAIIL2(QIIVAeAIL2(Q).
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IM
(4.3.15)

/

(4.3.16)

(4.3.17)

(4.3.18)

I

(4.3.19)



The L2 norm of VAeA and V2Aex on Q is needed. We have

IVLe| 2 dV = - il AeAA edV + J Ae,\aAexdo-
JM (4.3.20)

Therefore, IIVAe-AIIL2(Q) '< VXII AeXIIL2(M).

To estimate IIV 2 LeAIIL2(), let us recall the Reilly's formula: for any smooth

function f on Q, we have

IV 2 f 2+Ric(Vf, Vf) - (Af) 2dV

= 1

(4.3.21)
A(VTf, VTf) - 2DfAMf + H(f)2do-,

where A is the second fundamental form and H is the mean curvature of M.

Use this formula for Le\, we have

IV2 Ae,
2 _ _ J Ric(VAexA, VAeA)dV

+ j A(VT AeA, VT Aex) - 219AexAMAeA + H(OAe\)2 do-

I IIRicjL-(I ) IIVAe122(Q) IIAIIL(M) 11VTdeA A 2,(\ )

+ 2IIOvAeAIIL2(M) IAmAAeA IIL2(M) + IHIILOO(M) &vAeA L2(M)

;< (|RicLoo(o) ' A + (IIAIL(M) + 2A) ' A2  2 IHIILO(M)) IAeA 112()

fA1|AeA 1L2(M).

The estimation of the second term is given by

(V /1 + I VAe 2 , VAe,)dVI 1 IIV2 AeAIIL2(QioIVAeAIIL2(Q)

< L '|IeA II2(M) =A2 AeA2(M)-

Combine the estimations together, we have

ZA
IVAeI2 dJ- ;< A2I 2(A) + A2 |Aex2() 2A 2 (M).
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For the eigenfunction satisfying (3.4.9), just replace the operator E to H and we

can get the desired result.

For the eigenfunction satisfying (3.4.7), use similar method, we can get the fol-

lowing estimation on the boundary. For the first order derivatives, we have

IlveAIIL2(M) =0, (4.3.25)
IIV)IAL2(M)=~ A le>, I 2(M)-

The second order derivatives are

IIAeAlIL2(M) $ A2 leA IL(M), (3.6(4.3.26)
IIAMeAIL2(M) A2 A L(M)-

The third order derivatives are

IIVTAeAIL2(M) < A3 IjeAIIL2(M), (..7
rI_4 (4.3.27)

IIOVAeAI IL2(M) = A'ICAIIL2(M).

The fourth order derivatives needed is

AA~iAeA L2(M) - A' cA llL2(M)- (4.3.28)

The estimations needed on Q are:

IlAexl|L2(Q) = A IleAIL2(M),
IIVAeAIIL2(Q) $ A2lejlL2(M), (4.3.29)

IVAexIL2(Q) $AeAllL2(M),

From these, using lIAeAllL2(M) A2 eAIlL2(M) when A is large, we can get the desired

estimation. l

Finally, we can establish a lower bound of IZI.
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Theorem 4.3.5. For e. satisfying (3.4.7), (3.4.8) or (3.4.9), for la| < cA IAeIIL2 (Q)

we have

Z > .2" (4.3.30)

Proof. We have

AjjAeA1IL1(A) C A,\da

eIVAe,2 d)I 2 (4.3.31)

< AlIZ\I2I!IAeAI IL2(M).

Recall that when A is large, p = 1,2, IlAeAIILP(M) ~-1AIIeVILP(M) for (3.4.9),

IIAeAIILP(M) A2 eAIILP(M) for (3.4.7). Using the IP estimate (4.2.4) for the eigen-

functions, we have

IIAeA IIL(M) >- A-T4IIAeAIL2(Ai). (4.3.32)

Therefore,

15 12Z (4.3.33)

which is the desired result. El

Plug in a = 0, we have the lower bound for the vanishing set of Aex as in theorem

3.4.3.

4.4 Lower bound for the interior nodal set

In this section, we get an lower bound for the interior nodal set, ZA. For problem

(3.4.8), (3.4.9), the a-level set is unstable near the boundary, since eA vanishes on

the boundary. For simplicity, we only consider the nodal set in this section. Let

ZA {x E QIeA = 0} and u(x) = c-o(x).

We have the following equations.

Theorem 4.4.1. For the problem (3.4.7), let f E CY(Q), if 0 is a regular value of
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e,, we have

fc-(e), AeAdo - jo(eA)(Vf, VAeA)dV = 2 j f(VAeA, N)d-. (4.4.1)

For the problem (3.4.8), (3.4.9), if 0 is a regular value of eA, we have

f or(&eA)&Aexd- - a(eA) (Vf, VAeA)dV = 2 j f (VAe, N)do,,

where N on Z\ is defined to be the unit normal VA

Proof. The result follows by replacing {D'"}k to be the collection of connected com-

ponents of the set {AeA > 0} in the Theorem 4.3.1. El

Plug in f = 1 in the theorem, we get the following:

Corollary 4.4.2. There exists a constant c such that for any biharmonic Steklov

eigenfunciton ex satisfying (3.4.7), with 0 as a regular value, we have

A3

1(VILeA, N) Ido- > |le,\Ilu(M). (4.4.3)

For any eigenfunction satisfying (3.4.9) or (3.4.8), with 0 as a regular value, we have

(4.4.4)
LZ

Proof. For the eigenfunction satisfying (3.4.7), we have

I(VAeA, N)Ido- > -2L (VAe\, N)d-
J )Z A

1Ii c-(ex)A3eAdo-

= A3 jleAda = A3IALALI(M)-
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For the eigenfunction of satisfying (3.4.8) or (3.4.9), we have

2 (VAeA, N)Ido- > -2 L (VAeA, N)do (4.4.6)

= j o(,eA),AeAdo- > A211,eA IIL1(M)-

4.4.1 Upper bound for IVAeAI

Now, we need to get an upper bound for IVAeAI. The approach is the same as that

in Proposition 3.1 of [49]: Applying the gradient estimates of elliptic equation in the

interior and near the boundary separately and combine the results.

Proposition 4.4.3. If eA satisfies (3.4.8) or (3.4.9), d = d(x) be the distance from

x E Q to oQ = M, we have

1(A-' d)VAeAIILo(Q-) 2 AiI&ove.IIL1(M). (4.4.7)

Proof. On the boundary, AeA = AOaex for problem (3.4.8) and Ae , ADeA + Hae\

for problem (3.4.9). We can argue as in [491, see also [50] that

A-kl (DT)kAeA IILOO(M) < A' IIOveA IIL1(M), (4.4-8)

where (DT)k denotes k boundary derivatives.

For the interior estimate, start with

IAeA2L-(M) AaIOveAIL(M), (4.4.9)

since AeA is harmonic, from the gradient estimate, see corollary 6.3 of [27J, for a fixed

6>0,

I|dVAeCxIILo({d>6A-1}) < C vAflIVLeA IIL(M). (4.4.10)

The constant 03 depends on 6 and Q, but not on A.
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Now, for the boundary estimate for any x0 E M, use a local coordinate in a

neighborhood of x0 which map x0 to 0, M to {x, = 0}, and the neighborhood of xo

into the upper half space. For simplicity, we also us eA to denote the function induced

on the coordinate. Consider the ball of radius 26A- 1 around 0 and define

UA(X) = A~i aQeA(xA-'), (4.4.11)

which is defined in the upper half of the ball of radius 26, B+(0). We have the

estimate

11(D T)ku, IILc(Rf--lB+(O)) Ck IIvex IL'(M)- (4.4.12)

The partial differential equation satisfied by u has uniformly bounded coefficients.

We can also find OA in this coordinate which agree with uA on the boundary and is

bounded in C2 ,a(B+(0)) by some constant times IIOveAIIL(M). Use Corollary 8.36 in

[27J, the C~a'(B+(0)) norm of UX is bounded by C,QIIvexIIL1(Ar), with C independent

of A. Thus, we have

ijDu,\IIL-(B(+(o)) Ca IIveAIILl(M), (4.4.13)

which is the desired result.

Proposition 4.4.4. If eA satisfies (3.4.7), we have

II(A- 1 + d)VAeAIIL(Q) 4 jIeAIIL1(M)- (4.4.14)

Proof. On the boundary, OvAeA = -A 3 eA for problem (3.4.7), we have that

A-II (DT) OvAexLo-(M) < L 4.4.15)

where (DT)a denotes a boundary derivatives.

For the interior estimate, us the L" estimate of a harmonic function in terms of

its Neumann data together with fQ /eAdV = 0, we have

IlAeA IIL-(M) < CII~v~eAIIL-(M) < A (M) (4.4.16)
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and therefore for any given 6 > 0,

IdVAexIILoo({Qd 6A-1}) C6A 2IeA IIL1(M)- (4.4.17)

Now, for the boundary estimate, for any xO E M, use the same approach as above,

define

UA(x) =- 2 AeA(xA- 1 ), (4.4.18)

which is defined in B+(0). We have the estimate

II(DT) \ UAIIL-oo(M) Ck1IeAIIL1(M)- (4.4.19)

From lemma 6.29 in [271, we have the following bound:

IIUAIIC2,- K C(IJuAIIL + jIIvUAIICi,). (4.4.20)

Thus, we have

and therefore

(4.4.21)

(4.4.22)

F1

Now, we can estimate the interior set in each case.

Proof of Theorem 3.4.4. For problem (3.4.8), (3.4.9), we have (4.4.4) and (4.4.7).

Therefore

A2 IOveAlIL(M) '- JZA I (VAe, N)Ido-

A 2'2 IIOveAIIL1(M)IZAI

Cancelling |jo|eAI|L1(M) from both side yields the desired result.
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For problem (3.4.7), we can use a similar argument.

Remark 4.4.5. For problem (3.4.7), we can not get the L' bound of Aex on the

boundary. We use the L' bound of aAex instead, thus losing a factor of A.

4.5 Lower bound for the boundary nodal set

Let us turn our attention to the boundary, M, and get the estimations of the nodal

sets for the operators E, E and I. Since all we need is the property of the operator

on M, we can argue in an abstract way. Let T c OPS1 (M) be classical and with

the principle symbol equal to some nonzero constant times the principle symbol of

r-AA. Let #A be an eigenfunction of T corresponds to A. Note that the case we

want is given by T = V-, E, 1I and ,\ = ex~l, aex, &aex respectively.

The proof is given in [541 to establish the lower bound of boundary nodal sets of

harmonic Steklov eigenfunctions. From now on, all the argument are on M and all

the LP norm are LP(M). Let Z = {x E Mlx = a} be the a-level set of #X. We

have the following equation.

Theorem 4.5.1. For any f E C'(Q), any regular value a of OA, we have

o-a(x) (VT., VT(Ox) + fAMOA dV = 2 J fIVTAido. (4.5.1)

Proof. Let {Df'"}, be the collection of connected components of the set {q5 > a},

Z+' = a7'j. we have

- (VTf, VTX) + f/AxbxdV f+VT, OIxd-. (4.5.2)

Similarly, from the set {# < a}, we can define a Z-'" together with a similar

equation:

J VTf, VTOx) + f AMOxdV f IVTxId-. (4.5.3)

Summing over all the equations and we can get the desired equation. El
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Choosing f = 1 gives the following:

Corollary 4.5.2. There exists a constant c such that for any regular value a of 0#\

satisfying |ai < cA 4II||IIL2(IM), we have

14 (4.5.4)VTOAIdo- > A2 I0AIIL1(M)-

Proof. Put f = 1 yields

IVT $&Ida= --
JM

C7a (#bA)AMqxdV

Since V--A aF + Po, for some a 74 0, PO E OPS(M),

AMO, = -a 2' 2 #$ - (a'Po + aPo'1 + P) (4.56)

-a 2A2q _ (aT Po + aPoQ P2)#x.

Using axIPO + aPO'J + P2 E OPS1(M), we can bound the second term by

Il(aIPo + aPo' + Po)AIL(M) AlIIAII(M)- (4.5.7)

Proceed as in (4.3.7), and choose the constant c as before, we can get the desired

result. E

Next, choosing f = V/1 +-IVTA 12 gives the following proposition.

Proposition 4.5.3. We have the following estimation when A large enough:

|VT fj2 dor < A ||\1||2(M). (4.5.8)
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Proof. Plug in f = 0 +IVTX12,

IVT LeA 2d- <2 IV TO I VI1 +JV T|2do-

V1 + IVTOAI 2 IAMOAI

+ (VT 1 + IVTo,2 VT)IdV.

Since AM E OPS2 (M), we can use the lemma for 1P bounds to get

lIAMOAI|L2(M) A 2$ 1 O L2(M)

(4.5.9)

(4-5.10)

IVT OA1 2dV
M 1

= - # OAMOA
M

< 0bAxlL2(M)IA M'\MO11L2(M) A 2L 2(M) 

(4.5.11)

Therefore, the first term is bounded by

j 1 + VTO2 AMOxldV < 11 1 + VTO lL2(M)

< A 310AI2(
(4.5.12)

For the the second term,

(VT 1I I VTO~A,VT~)d - \jVT2 (VTOf,V/\) I~1+|V 2VTO4) dV =+ I VTO dV

< 11M 1V0 vT 2

S|( V )% IL2 (M) IIVT OA IL2(M) IIL(M)
1V+ IVTA 2

(4.5.13)

r'..;2 1AL2(M)IIOAIIL(M)-

Since M is compact without boundary, for any smooth function f on M, we can

apply the Reilly's formula and obtain

I(VT) 2f 1 2 dV = iLI -RicM(V T f, vTf) + (AMf) 2dV.
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Use this formula on 0,

I(VT) 2 AI 2 dV _< IRicM IILo(M) IIV L2(M) MAL2(M)

< A' 11012()

second term is bounded by

(VT 9/1 +|IVT~A|2,VTrx)IdV < All(VT) 2 AIL2(M)#IkAIIL2(M)

rll AL~|2 (M) -

Combining the estimation, we can get the desired bound for f1 VT~I2 d-.

Finally, we can estimate the size of boundary nodal sets.

Theorem 4.5.4. For 0#\, a as above, we have

ZQA >

Proof. From the bounds above,

Using the LP estimate (4.2.4) for the ~

IIAIIL(M) A l(M).

T h erefore, ( Z .h
IIOIIL(M $ A-j2 IJO~I. (

(4.5.15)

(4.5.16)

11

(4.5.17)

(4.5.18)

(4.5.19)

(4.5.20)

El
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Thus the

i4f



We can get the theorem 3.4.2 by plugging in a = 0.
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