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Abstract

The Mod P game is a generalization of the famous CHSH game [6] to a field of order
p. The CHSH game corresponds to the Mod P game for the value of p = 2. The
CHSH game was one of the earliest and most important results in quantum mechanics
because it predicted a clear and experimentally verifiable separation between classical
and quantum physics in the form of a Bell’s inequality violation. In this thesis,
we study the maximum winning probability for the Mod P game over the set of
quantum strategies. For p = 2, an early result by Tsirelson [15] showed that the
maximum winning probability by a quantum strategy is ≈ 0.854. This result is
also tight in that it is achievable. Here we are interested in studying the game for
values of p > 2 which has seen little progress over the years. This research thesis
serves two purposes. The first is to create a self contained reference for some of the
most important results in the area. Among these results, a prominent work is the
NPA hierarchy [13] of semidefinite programs for testing whether a given bipartite
correlation corresponds to a valid quantum mechanical experiment. The second part
of this thesis is an implementation of this hierarchy for the Mod P game. In the first
level of the hierarchy, we obtain numerical results that match analytic upper bounds
by Bavarian and Shor [2]. We also find that the Bavarian and Shor bound is tighter
than the first level NPA hierarchy value for a prime power p. In a collaborative work
with Matthew Coudron we also present an approach for a semidefinite relaxation of
the Mod P game using unitary operators. This approach brings us closer to achieving
an exact analytic solution for the winning probability of the Mod P game.

Thesis Supervisor: Peter Shor
Title: Morss Professor of Applied Mathematics

3



4



Acknowledgments

I am tremendously grateful to Matthew Coudron, not only for his close oversight and

collaboration on this work, but also for proposing this research project to me in the

first place. This thesis would not have been possible without him. I also want to

thank my thesis supervisor Peter Shor for his guidance and helpful discussions about

the project.

I want to thank the folks at CSAIL and the Lincoln Laboratory Supercomputing

Center for giving me access to their systems which allowed me to run some of the

most memory intensive optimization programs I have ever worked with.

I also want to thank the open source convex optimization community who have

been greatly helpful in finding the right tools for efficiently solving semidefinite pro-

grams, as well as debugging several issues that came up during the implementation

of the optimization programs in this thesis.

5



6



Dedicated to the memory of my beloved mother, Berhan Mekonnen.

7



8



Contents

1 Introduction 13

1.1 Quantum Nonlocality . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Bell’s Inequality and the CHSH Game . . . . . . . . . . . . . . . . . 15

1.2.1 The CHSH Game . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2 The Classical Value of the CHSH Game . . . . . . . . . . . . 16

1.2.3 The Quantum Value of the CHSH Game . . . . . . . . . . . . 18

1.3 The Mod P Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Recent Results in Nonlocal Games 25

2.1 Two Player One Round Games . . . . . . . . . . . . . . . . . . . . . 26

2.2 Semidefinite Approximation of Unique Games . . . . . . . . . . . . . 27

2.3 The Bavarian-Shor Bound . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Quantum Correlations and the NPA Hierarchy . . . . . . . . . . . . . 34

3 Semidefinite Relaxations for the Mod P Game 39

3.1 Projector Relaxations . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Projector Relaxation for the Mod 2 Game . . . . . . . . . . . 41

3.1.2 Projector Relaxation for the Mod P Game . . . . . . . . . . . 43

3.1.3 Understanding the Constraints . . . . . . . . . . . . . . . . . 45

3.1.4 The Size of the SDP . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Unitary Operators for the Mod P Game . . . . . . . . . . . . . . . . 49

3.2.1 Unitary Relaxation for the Mod P Game . . . . . . . . . . . . 53

3.2.2 Understanding the Constraints . . . . . . . . . . . . . . . . . 55

9



3.2.3 The Size of the SDP . . . . . . . . . . . . . . . . . . . . . . . 56

4 Numerical Results for the SDP Relaxations 59

4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Mapping Symbols to Index Numbers . . . . . . . . . . . . . . 60

4.1.2 The Unitary Relaxation . . . . . . . . . . . . . . . . . . . . . 61

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A Semidefinite Programming 65

10



List of Tables

2.1 (Kempe, Regev, Toner) Unique Games SDP Relaxation . . . . . . . . 28

3.1 Projector SDP Relaxation for the Mod 2 Game . . . . . . . . . . . . 42

3.2 Projector SDP Relaxation for the Mod P Game . . . . . . . . . . . . 44

3.3 Number of Constraints for SDP 3.2 . . . . . . . . . . . . . . . . . . . 47

3.4 Number of Variables and Constrains for the Projector Relaxation of

the Mod P game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Unitary SDP Relaxation for the Mod P Game . . . . . . . . . . . . . 55

3.6 Number of Constraints for SDP 3.5 . . . . . . . . . . . . . . . . . . . 57

3.7 Sizes of Unitary and Projector Relaxations for the Mod P Game . . . 58

4.1 Level 1 Numerical Results for the Projector Relaxation of the Mod P

Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Mod 3 Level 1 and 2 Numerical Results for the Unitary Relaxation of

The Mod P Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

11



12



Chapter 1

Introduction

1.1 Quantum Nonlocality

Until as recently as the early 20th century, physicists strongly held two fundamental

beliefs about the natural universe. These are the notions of locality and realism.

Locality is the proposition that the outcomes of two sufficiently spatially separated

physical events cannot possibly be correlated. That is, as long as two physical events

are sufficiently far apart in space, they cannot affect one another. Realism is the

proposition that the physical universe exists independent of observation.

With the discovery of quantum mechanics in the late 19th and early 20th century,

physicists have had to abandon both of these notions. Quantum mechanics dictates

that on a fundamental level in the natural universe, neither locality nor realism hold.

Thus, two spatially separated events can indeed be correlated. In this sense quantum

mechanics predicts that the universe is nonlocal. Furthermore, quantum mechanics

shows that physical quantities may be left undetermined until the moment of obser-

vation. In this sense, the universe is non-real. In this thesis we explore the limits of

quantum nonlocality.

Throughout the development of quantum mechanics, Einstein notably remained

a critic of its physical implications. In 1935, Einstein along with Boris Podolsky and

Nathan Rosen published a paper in which they derive a seemingly paradoxical pre-

diction of quantum mechanics, which has come to be known as the EPR paradox.

13



This was the case of quantum nonlocality and nonrealism. Einstein was bothered

that a theory of the universe predicts that the outcome of an event could instanta-

neously affect that of another which is spatially separated. This happens because of a

phenomenon predicted by quantum mechanics known as quantum entanglement. He

famously referred to this effect as “spooky action at a distance.” His central objection

to the the theory can be summarized as follows. Instantaneous action at a distance

cannot be possible because information cannot travel faster than the speed of light.

Therefore, there must be some hidden local variables which we do not yet understand

that can explain this phenomenon.
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1.2 Bell’s Inequality and the CHSH Game

In 1964, John S. Bell proposed an experiment which would definitively decide whether

or not certain physical effects of quantum entanglement could be reproduced by local

hidden variables [3]. His result, known as Bell’s inequality, is a condition that any

physical experiment had to satisfy if nature could be faithfully described by a classical

local hidden variable theory. But it would have to be violated if nature was really

quantum mechanical. Subsequently, several experiments have been designed that

have violated Bell’s inequality, proving that no hidden variable theory can describe

certain physical phenomena such as quantum entanglement.

1.2.1 The CHSH Game

The CHSH game is an experiment in the form of a two player, one round nonlocal

game which imposes a type of Bell’s inequality. It was proposed in 1969 by Clauser,

Horne, Shimony and Holt [6].

The game is cooperatively played by two players, Alice and Bob, against a referee.

The game proceeds as follows. First, the referee selects two “question” bits s and t

uniformly at random from {0, 1} and sends s to Alice and t to Bob. Alice and Bob

are physically separated from each other and cannot communicate during the game.

After receiving her question s, Alice picks her answer a ∈ {0, 1} and sends it back

to the verifier. Similarly, after receiving t, Bob responds with his answer b ∈ {0, 1}.

The verifier then compares the values (a XOR b) with (s AND t). Alice and Bob win

the game if a⊕ b = s ∧ t and lose otherwise.

Since Alice and Bob are not allowed to communicate during the game, they must

agree on a strategy beforehand. We call a strategy quantum if Alice and Bob are

allowed to share a quantum state |ψ〉 ∈ Cd⊗Cd and can perform quantum measure-

ments on their share of the state. Analogously, we call a strategy classical if they

are not allowed to share a quantum state. Ultimately, we want to compare the best

classical strategy with the best quantum strategy for the CHSH game. For any given

15



strategy that Alice and Bob choose, they have some probability of winning the game.

Thus we are interested in the maximum probability with which Alice and Bob can

win the game.

We define the classical value of the game as the maximum winning probability

over all classical strategies. Similarly, the quantum value of the game is the maximum

probability with which Alice and Bob can win using a quantum strategy.

In the following sections we show that the classical value of the CHSH game is

3
4

= 0.25, however the quantum value is 1
2

+ 2
√

2
8
≈ 0.85. In other words, Alice and

Bob can win the game with higher probability if they are allowed to use quantum

mechanics. In this specific game, the classical value defines a Bell’s inequality which

any classical strategy is bounded by. Thus if experiments show that Alice and Bob

win the game with probability > 3
4
, then this inequality is violated and nature must

truly be quantum mechanical.

1.2.2 The Classical Value of the CHSH Game

Before giving an upper bound on the classical value of CHSH game, consider the

following, somewhat obvious, classical strategy that achieves a winning probability of

3/4.

Lemma 1.2.1. The fixed strategy where Alice always answers with a = 0 and Bob

always answers with b = 0 achieves a winning probability of 3/4.

Proof. Since the verifier picks s and t uniformly at random, Pr
s,t

[s ∧ t = 1] = 1
4
.

Therefore, with probability 3/4, s ∧ t = 0. Because Alice and Bob always return 0

and 0⊕ 0 = 0, they win the game with probability 3/4.

We now show that this simple strategy is actually optimal for any classical strat-

egy. That is, we show that the classical value of the CHSH game is at most 3/4.

Theorem 1.2.2. Any classical strategy for the CHSH game has a winning probability

of at most 3/4.

16



Proof. We can characterize any classical strategy for Alice as a pair of probability

distribution functions F0 : {0, 1} → [0, 1] and F1 : {0, 1} → [0, 1] such that on

question s, Alice responds with answer a with probability Fs(a).

Similarly Bob has probability distribution functions G0 and G1 such that on ques-

tion t, Bob returns answer b with probability Gt(b).

Pr[a|s] = Fs(a)

Pr[b|t] = Gt(b)

Because each Fs and Gt define probabilities, we must have that for any s and t,

Fs(0) + Fs(1) = 1

Gt(0) +Gt(1) = 1

Note that our simple fixed strategy example in lemma 1.2.1 corresponds to setting

Fs(0) = 1 and Gt(0) = 1 so that Alice and Bob always respond with 0.

We can now define the joint probability that Alice and Bob respond with answers

(a, b) on questions (s, t) as follows.

Pr
a,b

[a, b|s, t] = Fs(a) ·Gt(b)

It is easy to verify that indeed
∑
a,b

Pr[a, b|s, t] = 1. Let V (a, b|s, t) be the verification

function such that V (a, b|s, t) = 1 if a⊕ b = s ∧ t and 0 otherwise. Let P (Fs, Gt) be

the probability that Alice and Bob win the CHSH game, using strategies Fs for Alice

and Gt for Alice and Bob. We can write the probability as follows.

P (Fs, Gt) =
∑
s,t

Pr[(s, t)]
∑
a,b

Pr[a, b|s, t]V (a, b|s, t)

=
1

4

∑
a,b,s,t

Fs(a)Gt(b)V (a, b|s, t)

17



We can further simplify this equation by writing V (a, b|s, t) more explicitly as follows.

V (a, b|s, t) = (−1)a⊕b
(

(−1)a⊕b + (−1)s∧t

2

)

It is easy to verify that V (a, b|s, t) = 1 if and only if a⊕ b = s∧ t. Plugging this into

our expression for P (Fs, Gt), we get the following.

P (Fs, Gt) =
1

4

∑
a,b,s,t

Fs(a)Gt(b)(−1)a⊕b
(

(−1)a⊕b + (−1)s∧t

2

)
=

1

8

∑
a,b,s,t

Fs(a)Gt(b) +
1

8

∑
a,b,s,t

Fs(a)Gt(b)(−1)a⊕b(−1)s∧t

=
1

2
+

1

8

∑
s,t

(−1)s∧t
∑
a,b

Fs(a)Gt(b)(−1)a⊕b

≤ 1

2
+

1

8

∑
s,t

(−1)s∧t

=
1

2
+

1

4
=

3

4

Thus, for any pair of classical strategies Fs for Alice and Gt for Bob, the probability

of winning the game, P (Fs, Gt), is at most 3
4
. In fact, because we gave a simple

strategy that achieves this upper bound, the classical value of the CHSH game is

exactly 3/4.

1.2.3 The Quantum Value of the CHSH Game

Recall that for a quantum strategy, Alice and Bob are allowed to share a quantum

state |ψ〉 ∈ Cd ⊗ Cd in any fixed dimension d ≥ 1. Alice and Bob can then make

local measurements on their share of the state as part of their strategy.

Before we give an upper bound on the quantum value of the CHSH game, consider

the following quantum strategy. Alice and Bob share the maximally entangled state

in 2 dimensions |ψ〉 = 1√
2
(|00〉 + |11〉), where the first qubit corresponds to Alice’s

share and the second qubit is Bob’s. Their strategy is then as follows.

Upon receiving question s = 0, Alice measures her qubit in the standard basis

18



{
|0〉 , |1〉

}
and returns her measurement result. And upon receiving s = 1, Alice

measures her qubit in the basis
{

cos(π
4
) (|0〉+ |1〉) , cos(π

4
) (|0〉 − |1〉)

}
.

Similarly, upon receiving question t = 0, Bob measures his qubit in the basis{
cos(π

8
) |0〉+ sin(π

8
) |1〉 , sin(π

8
) |0〉 − cos(π

8
) |1〉

}
and returns his measurement result.

And finally, upon receiving t = 1, Bob measures his qubit in the basis
{

cos(π
8
) |0〉 −

sin(π
8
) |1〉 ,− sin(π

8
) |0〉 − cos(π

8
) |1〉

}
and returns his measurement result.

Lemma 1.2.3. With the quantum strategy described above, Alice and Bob win the

CHSH game with probability cos2(π
8
) = 1

2
+
√

2
4
≈ 0.854.

Proof. The proof is quite straightforward. For each pair of questions (s, t), we com-

pute the probability that Alice and Bob win the game. We can then add these

probabilities up to get the total probability of winning the game. In all cases, with-

out loss of generality, we may assume Alice performs her measurement first, and then

Bob performs his measurement. Indeed the order in which Alice and Bob make their

measurements does not affect the probabilities of their final outcomes, since their

measurement operators commute.

For clarity, we explicitly give the first case, which is when s = 0 and t = 0. In

this case, s∧ t = 0. We are therefore interested in the probability that Alice and Bob

respond with the same value so that a⊕b = 0. When alice performs her measurement

in the
{
|0〉 , |1〉

}
basis, she gets 0 or 1 with equal probability and Bob is left with

the state |0〉 or |1〉 respectively. In the first case, writing |0〉 in Bob’s measurement

basis for the t = 0 case gives a probability of cos2(π
8
) of obtaining an outcome of 0.

Similarly, in the second case, writing |1〉 in Bob’s basis for t = 0 gives a probability of

cos2(π
8
) of obtaining an outcome of 1. Therfore, Alice and Bob win with probability

cos2(π
8
) in the first case.

The same result can be shown for cases 2, 3 and 4 where (s = 0, t = 1), (s = 1, t =

0) and (s = 1, t = 1) respectively. In each case, Alice and Bob win with probability

cos2(π
8
). Therefore, because each case occurs with probability 1

4
, Alice and Bob win

the game with total probability
4 cos2(π

8
)

4
= cos2(π

8
) = 1

2
+
√

2
4
≈ 0.854.

It turns out that the strategy given in lemma 1.2.3 is optimal. In the 1980s, Boris
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Tsirelson showed a series of results in the theory of nonlocal games, one of which was

the quantum value of the CHSH game[15]. Here we present a proof for the following

theorem.

Theorem 1.2.4 (Tsirelson). The quantum value of the CHSH game is at most 1
2

+
√

2
4
≈ 0.854.

Proof. The following proof was presented by Thomas Vidick in his article on Tsirelson’s

result [16]. We can describe any quantum strategy in the following standard and gen-

eralized form. Recall that Alice and Bob share the state ψ ∈ Cd ⊗Cd for some fixed

d ≥ 1. Upon receiving s Alice performs a measurement on her share of the state using

d-dimensional orthogonal projection operators {A0
s, A

1
s} such that A0

s+A1
s = 1d×d and

returns her measurement result. Similarly, upon receiving t, Bob measures his qubit

in orthogonal projections {B0
t , B

1
t } such that B0

t +B1
t = 1d×d. Note that orthogonality

means A0
sA

1
s = 0 and B0

tB
1
t = 0 for all s, t.

Now, the probability that upon receiving pairs (s, t), Alice and Bob respond with

(a, b) respectively is given by the following.

Pr[a, b|s, t] = 〈ψ|Aas ⊗Bb
t |ψ〉

We first need to ensure that this formulation yields a valid probability distribution

function. Since Aas and Bb
t are projection operators, i.e. (Aas)

2 = Aas and (Bb
t )

2 = Bb
t ,

they have eigenvalues 0 or 1. Therefore, Pr[a, b|s, t] ≥ 0 for all s, t, a, b. Furthermore

because A0
s+A1

s = 1d×d and B0
t +B1

t = 1d×d for all s, t, we have that
∑
a,b

P [a, b|s, t] = 1

for all s, t.

Let us define P (|ψ〉 , {Aas}, {Bb
t}) to be the total probability of Alice and Bob

winning the CHSH game using the shared state |ψ〉, and measurement operators

{Aas} for Alice and {Bb
t} for Bob. Throughout this thesis, will be using this notation

to represent the winning probability of any given strategy. We can write an expression

20



for this probability using the rule of total probability as follows.

P (|ψ〉 , {Aas}, {Bb
t}) =

∑
s,t

Pr[s, t]
∑
a,b

Pr[a, b|s, t]V (a, b|s, t)

=
1

4

∑
a,b,s,t

〈ψ|Aas ⊗Bb
t |ψ〉 (−1)a⊕b

(
(−1)a⊕b + (−1)s∧t

2

)
=

1

8

∑
a,b,s,t

〈ψ|Aas ⊗Bb
t |ψ〉+

1

8

∑
s,t

(−1)s∧t
∑
a,b

(−1)a⊕b 〈ψ|Aas ⊗Bb
t |ψ〉

=
1

2
+

1

8

∑
s,t

(−1)s∧t
∑
a,b

(−1)a⊕b 〈ψ|Aas ⊗Bb
t |ψ〉

Let us define the operators As = A0
s − A1

s and Bt = B0
t − B1

t . Immediately, we

can observe that A2
s = B2

t = 1 and have ±1 eigenvalues. We can now simplify our

expression further using As and Bt.

P (|ψ〉 , {Aas}, {Bb
t}) =

1

2
+

1

8

∑
s,t

(−1)s∧t
∑
a,b

(−1)a⊕b 〈ψ|Aas ⊗Bb
t |ψ〉

=
1

2
+

1

8

∑
s,t

(−1)s∧t 〈ψ|As ⊗Bt |ψ〉

Finally, it only remains to show that
∑
s,t

(−1)s∧t 〈Ψ|As ⊗ Bt |Ψ〉 ≤ 2
√

2. First, note

that we can take the summation inside to obtain,

∑
s,t

(−1)s∧t 〈Ψ|As ⊗Bt |Ψ〉 = 〈Ψ|

(∑
s,t

(−1)s∧tAs ⊗Bt

)
|Ψ〉

= 〈Ψ| (A0 ⊗B0 + A0 ⊗B1 + A1 ⊗B0 − A1 ⊗B1) |Ψ〉
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We can then bound the norm of the expanded operator as follows.

= (A0 ⊗B0 + A0 ⊗B1 + A1 ⊗B0 − A1 ⊗B1)2

= (A0 ⊗ (B0 +B1) + A1 ⊗ (B0 −B1))2

= 1⊗ (B0 +B1)2

+ 1⊗ (B0 −B1)2

+ A0A1 ⊗ (B0 +B1)(B0 −B1)

+ A1A0 ⊗ (B0 −B1)(B0 +B1)

= 41⊗ 1+ (A0A1 − A1A0)⊗ (B1B0 −B0B1)

≤OP 81⊗ 1

Where the last inequality bounds the operator norm of the expression by the fact that

all eigenvalues are ±1. Therefore, this implies that the square root of the original

expression is bounded by
√

8 = 2
√

2. We therefore get the following bound.

P (|ψ〉 , {Aas}, {Bb
t}) =

1

2
+

1

8

∑
s,t

(−1)s∧t 〈ψ|As ⊗Bt |ψ〉

≤ 1

2
+

√
2

4
≈ 0.854
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1.3 The Mod P Game

The Mod P game is a generalization of the CHSH game. It was first proposed by

Buhrman and Massar [5] in 2005. In the Mod P game, the verifier sends Alice and

Bob questions s, t chosen uniformly at random from {0, 1, 2, . . . , p − 1}. Alice and

Bob then respond with answers a, b ∈ {0, 1, 2, . . . , p−1}. Alice and Bob win the game

if a+ b ≡ s · t mod p. Note that for p = 2, this is exactly the CHSH game.

In this research, we are especially interested in the case p = 3 - the Mod 3 game.

Ultimately, we are interested in finding a tight upper bound for the quantum value

of the Mod 3 game. From here on out we shall simply refer to the quantum value of

a game simply as the value of the game.
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Chapter 2

Recent Results in Nonlocal Games

In this chapter we summarize some of the most important recent developments in

the theory of nonlocal games. First we review the work of Julia Kempe, Oded Regev

and Ben Toner [9] on finding an efficient algorithm using semidefinite programming

for approximating the winning probability of a unique game and finding a strategy

that achieves this approximate winning probability. We then review a result by

Mohammad Bavarian and Peter Shor [2] which gives the first analytic upper bound

for the winning probability of the Mod P game. They show a winning probability

upper bound of 1
p

+ p−1
p
√
p

for a prime or prime power p. For p = 2, this gives the

famous Tsirelson bound. It is known however that this bound is not tight for p > 2.

We finally present a summary of perhaps the most important result by Navascués,

Pironio and Aćın [13] which we will call the NPA hierarchy of semidefite programs.
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2.1 Two Player One Round Games

The Mod P game is a specific instance of a more general class of problems in the

form of two player one round games, simply known as nonlocal games. This class of

games are connected to the complexity class MIP∗ of interactive proofs with multiple

provers with entanglement[7]. Here we give the general formulation of the winning

probability for a general nonlocal game.

A nonlocal game is played by two players (known formally as provers), Alice

and Bob and a verifier. A game G = (π,Q, k, V ) is specified by a set Q and a

number k ≥ 1, a probability distribution π : Q × Q → [0, 1] and a predicate V :

[k] × [k] × Q × Q → {0, 1}. The verifier samples (s, t) ∈ Q × Q according to π and

sends question s to Alice and t to Bob. Alice replies with an answer a ∈ [k], and

Bob with an answer b ∈ [k]. Alice and Bob are not allowed to communicate during

the game, but are allowed to share a quantum state |ψ〉 ∈ Cd ⊗ Cd, and they are

allowed to perform projective local measurements on their share of state as part of

their strategy. Alice’s measurement is described by a set of orthogonal projectors

{Aas} for each s ∈ Q such that (Aas)
2 = Aas and

∑
aA

a
s = 1. Similarly, Bob has

measurement operators {Bb
t} which are orthogonal projectors.

Alice and Bob win the game if V (a, b|s, t) = 1. We will typically write this as

V (a, b|s, t) to distinguish the questions from the answers. We denote by ω∗(G) the

entangled value of the game G, which can be written as,

ω∗(G) = lim
d→∞

max
|ψ〉∈Cd⊗Cd

max
Aas ,B

b
t

∑
a,b,s,t

π(s, t)V (a, b|s, t) 〈ψ|Aas ⊗Bb
t |ψ〉 .

In general, we are interested in finding ω∗(G) for a nonlocal game G.
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2.2 Semidefinite Approximation of Unique Games

A nonlocal game G = (π, V ) on an alphabet of size k is unique if the verification

predicate V (a, b|s, t) only accepts answers of the form b = σ(a) for some permutation

σ of [1, 2, . . . k]. In other words, for every answer a that Alice sends to the verifier,

there is a unique answer b = σ(a) that Bob must send in order to win the game.

Lemma 2.2.1. The Mod P game is a unique game.

Proof. For a fixed s and t, and a given value of a, there is a unique solution for

a + b ≡ s · t mod p. The solution is b ≡ s · t− a mod p. Similarly, for any given b,

there is a unique solution for a as a ≡ s · t− b mod p.

In [9], Kempe, Regev and Toner give an efficient approximation algorithm for

the entangled value ω∗(G) of a unique game G. Their method defines a semidefinite

program over the set of unit vectors inCd and gives an algorithm to round the optimal

solution into a basis for Alice and Bob to measure their half of the shared quantum

state. We summarize their result here.

Theorem 2.2.2 (Kempe, Regev, Toner). Let G be a unique game with entangled value

ω∗(G) = 1−ε. There exists an efficient algorithm that outputs a value ε
6
≤ ε′ ≤ ε and

a description of an entangled strategy for Alice and Bob which has winning probability

at least 1− 6ε′.

While we do not present the proof of this theorem here, we sketch the construction

given in the paper. Recall that we are trying to approximate ω∗(G) which is given

by,

ω∗(G) = lim
d→∞

max
|ψ〉∈Cd⊗Cd

max
Aas ,B

b
t

∑
a,b,s,t

π(s, t)V (a, b|s, t) 〈ψ|Aas ⊗Bb
t |ψ〉 .

The authors present the following SDP relaxation over the real vectors {uas} and

{vbt} in n ≥ 1 dimensions.
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SDP 2.1: (Kempe, Regev, Toner) Unique Games SDP Relaxation

Maximize:
∑
a,b,s,t

π(s, t)V (a, b|s, t)〈uas , vbt 〉

Subject to: ∀s, t,
∑
a,b

〈uas , vbt 〉 = 1 and
∑
a

〈uas , uas 〉 =
∑
b

〈vbt , vbt 〉 = 1

∀s, t, ∀a 6= b, 〈uas , ubs〉 = 0 and 〈vat , vbt 〉 = 0

∀s, t, a, b 〈uas , vtb〉 ≥ 0

The first and last constraints ensure that for any s and t, 〈uas , vbt 〉 describes a

probability distribution over Alice’s and Bob’s answers a and b given questions s and

t respectively. The second constraint requires that for any fixed s Alice’s vectors {uas}

form an orthogonal basis for Ck. Similarly, for any fixed t, Bob’s vectors {vbt} are

orthogonal and form a basis. This constraint is called completeness.

For a given game G, let ωSDP (G) be the optimal value of SDP 2.1. It is not

difficult to show that ω∗(G) ≤ ωSDP (G). The proof is essentially the fact that any

entangled strategy for Alice and Bob that achieves a value of ω∗(G) can be converted

to a feasible set of {uas} and {vbt} for SDP 2.1 which achieves the same objective value

of ω∗(G).

The authors then give a clever algorithm for rounding an optimal solution for the

SDP into an entangled strategy for Alice and Bob. Given an optimal solution to SDP

2.1 with value 1 − ε, the main idea behind their rounding scheme is to extend the

set of orthonormal vectors for Alice and Bob into an orthonormal basis of Cn and

perform measurements on their share of the maximally entangled state in Cd ⊗ Cd,

|Ψ〉 = 1√
n

∑n
i=1 |i〉 ⊗ |i〉, in this basis.

This result has many interesting implications in the field of complexity theory.

Namely, it implies that the entangled version of the unique games conjecture [10, 11]

is false. Furthermore, it provides a method of finding lower bounds on the entangled

value of general unique games, which includes the Mod P game.
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2.3 The Bavarian-Shor Bound

In [2] Mohammad Bavarian and Peter Shor give the first general analytic upper bound

on the maximum entangled winning probability of the Mod P game. Prior to this

work, the only upper bound known for p > 2 was the value of 1
3

+ 2
3

1√
3

for p = 3 by

Buhrman and Massar [5]. Bavarian and Shor generalize this bound and prove the

following asymptotic upper bound.

Theorem 2.3.1 (Bavarian, Shor). Let Gp be the Mod P game for any prime or prime

power p. Then,

w∗(Gp) ≤
1

p
+
p− 1

p

1
√
p
.

In the same paper the authors also give a bound on the classical value of the

Mod P game, which we do not present here. The authors give two different proofs of

theorem 2.3.1. The first uses a reduction to a problem in information theory known

as Information Causality [14].

In the Information Causality problem, Alice and Bob share an entangled quantum

state. Alice is given a data set X = (X1, X2, · · · , XN) from a distribution π, and Bob

is given an index b ∈ [N ]. Alice then makes a measurement on her system and

sends some value α ∈ Σ to Bob. Bob then makes a measurement on his system

and outputs Z ∈ Λ, which is his guess for Xb. Alice and Bob want to maximize the

quantity IC(A,B) =
∑N

i=1 I(Xi;Z|b = i). This quantity can be thought of a measure

of how well Bob’s output can predict Alice’s data set in terms of their correlation.

In one extreme, the mutual information I(A;B) of two systems A and B is 0 if A

and B are completely independent (uncorrelated). On the other hand, if A and B

are fully correlated, i.e. have the same distribution, then their mutual information

I(A;B) = H(A) = H(B) is simply the entropy of A.

The principle of Information Causality states the following.

Theorem 2.3.2 (Information Causality). The Information Causality IC(A;B) be-
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tween Alice and Bob for the scenario described above is

N∑
i=1

I(Xi;Z|b = i) = O|Σ|,|Λ|(1)

Informally, the principle of Information Causality states that if Alice communi-

cates m classical bits of information to Bob, then Bob cannot learn any more than m

bits of information about Alice’s data set, even with shared quantum entanglement

and local measurements. For m = 0, this is simply the no-signaling principle which

states that information cannot travel faster than the speed of light. In [14], Pawowski

et al. generalize the no-signaling principle and argue for the principle of Information

Causality as a fundamental law governing information in the physical universe.

In the original setting of Information Causality, each of the elements in Alice’s data

set X = (X1, X2, · · · , XN) are drawn with full independence from some distribution

π. In order to give a reduction from the Mod P game to the Information Causality

game, Bavarian and Shor prove a stronger, more generalized result of Information

Causality for only a pairwise independent data set for Alice.

Theorem 2.3.3 (Pairwise Independent Information Causality). In the scenario de-

scribed for Information Causality, let Alice’s data set X = (X1, X2, · · · , XN) be drawn

from a known distribution π with only pairwise independence. Then,

N∑
i=1

I(Xi;Z|b = i) = O|Σ|,|Λ|(1)

Bavarian and Shor prove theorem 2.3.3 and give a reduction from the Mod P

game to the pairwise independent Information Causality problem. They do this by

choosing Alice’s input uniformly at random from a pairwise independent subset of the

generalized Hadamard code over Fp and ask Bob to guess one of Alice’s coordinates

uniformly at random. They show that in order to have theorem 2.3.3 hold for this

instance of the Information Causality problem, theorem 2.3.1 must also hold.

In order to give their reduction, Bavarian and Shor prove an important result

about the Mod P game which greatly simplified their analysis. This property is
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called the regularization lemma. The regularization lemma states that it is safe to

assume without loss of generality that any strategy for Alice and Bob makes all errors

uniformly at random.

More formally, let us denote by P a strategy for Alice and Bob for the Mod P

game as a collection of projector operators {Aas} and {Bb
t} and a shared quantum

state |ψ〉. We say that a strategy P is regular if for all 1 ≤ k ≤ p− 1 and some fixed

0 ≤ E ≤ 1 the following holds.

Pr
a,b←P

[a+ b = st+ k mod p|s, t] =
1

p
− E

p

This would imply that ω(P), the winning probability of the strategy P , can be

written as follows.

ω(P) = Pr
a,b←P

[a+ b = st mod p|s, t]

= 1−
p−1∑
k=1

Pr
a,b←P

[a+ b = st+ k mod p|s, t]

= 1−
p−1∑
k=1

1

p
− E

p

= 1−
(
p− 1

p
− p− 1

p
E

)
=

1

p
− p− 1

p
E

In this formulation, E is known as the bias of the strategy. It is a measure of how

much a strategy outperforms the trivial random guess which achieves 1
p
. So for E = 0,

the strategy has the same winning probability as random guessing. And for E = 1,

the strategy wins with the maximum probability of 1. In theorem 2.3.1, Bavarian

and Shor essentially prove an upper bound of E ≤ 1√
p

for the optimal strategy of the

Mod P game.

Bavarian and Shor prove the following regularization lemma.

Lemma 2.3.4 (Regularization Lemma). For any strategy P for the Mod P game with

winning probability ω(P), there exists a generic method to obtain a regular protocol
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P∗ from P such that ω(P∗) = ω(P).

Proof. The proof is constructive. We assume that Alice and Bob have a strategy P

which achieves a winning probability of ω(P). We describe the following protocol

which gives a regular strategy P∗ for Alice and Bob. On inputs s and t, Alice and

Bob first use shared randomness to agree on 1 ≤ α, β ≤ p − 1 uniformly at random

and 0 ≤ γ, δ ≤ p − 1 also uniformly at random. They then use their strategy P on

inputs s′ = αs+γ mod p and t′ = βt+δ mod p. Let a′ and b′ be their outputs using

their protocol P on s′ and t′. Alice’s final output will then be a = 1
αβ

(a′ − δαs− γδ)

and Bob’s final output is b = 1
αβ

(b′−βγt). Note that 1
αβ

in this notation refers to the

multiplicative inverse of αβ in F∗p. The following shows the overall process of strategy

P∗.

−−−→
input

s, t −−−−−→
transform

s′, t′ −−−→
use P

a′, b′ −−−−−→
transform

a, b −−−→
output

We first compute the winning probability of P∗ as follows.

ω(P∗) = Pr
a,b←P∗

[a+ b = st mod p|s, t]

= Pr
a′,b′←P

[
1

αβ
(a′ − δαs− γδ) +

1

αβ
(b′ − βγt) = st mod p|s, t

]
= Pr

a′,b′←P
[a′ + b′ = αβst+ δαs+ γδ + βγt mod p|s, t]

= Pr
a′,b′←P

[a′ + b′ = s′t′ mod p|s′, t′]

= ω(P)

The last inequality follows from the fact that by construction, s′t′ is uniformly dis-

tributed in {0, 1, · · · , p− 1}. Finally, we show that P∗ is regular. We can show that
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by following the same expansion for any 1 ≤ k, k′ ≤ p− 1, k 6= k′ as follows,

Pr
a,b←P∗

[a+ b = st+ k mod p|s, t] = Pr
a′,b′←P

[a′ + b′ = s′t′ + kαβ mod p|s′, t′]

= Pr
a′,b′←P

[a′ + b′ = s′t′ + k′αβ mod p|s′, t′]

= Pr
a,b←P∗

[a+ b = st+ k mod p|s, t]

Where the second step of replacing k with k′ follows form the fact that kαβ is

uniform over {1, 2, · · · , p−1} and s′t′ is uniform over {0, 1, · · · , p−1}. Thus s′t′+kαβ

has the same distribution as s′t′ + k′αβ.

This regularization result is very important. In section 3.2 we use this regular-

ization lemma to give a characterization of the Mod P game in terms of unitary

operators.
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2.4 Quantum Correlations and the NPA Hierarchy

A line of work by Navascués, Pironio and Aćın gives a characterization of the set

of quantum correlations as a hierarchy of SDPs [13]. This result lays down the

foundations of all our work in this thesis.

In this scenario, we are looking at a more general set of quantum correlations

than nonlocal games. Suppose Alice and Bob were spatially separated, and are not

allowed to communicate. Each output a of Alice is uniquely associated to a single

input X(a), which can be seen as disjoint subsets of A, all possible outputs of Alice.

Similarly, Bob’s inputs are disjoint subsets of B. A measurement scenario is then a

quadruple (A,B,X ,Y) where X and Y are disjoint subsets of A and B respectively.

We define a behavior P as a finite set of probabilities over A×B as P = {P (a, b) :

a ∈ A, b ∈ B}. In the quantum correlation problem, we are interested in knowing

whether P describes a quantum behavior.

The authors define a behavior P to be a quantum behavior if there exists a pure

state |ψ〉 in a Hilbert space H, a set of measurement operators {Ea : a ∈ A} for Alice,

and a set of measurement operators {Eb : b ∈ B} for Bob, such that for all a ∈ A

and b ∈ B,

P (a, b) = 〈ψ|EaEb |ψ〉 ,

where the measurement operators satisfy the following properties.

1. E†a = Ea and E†b = Eb (hermiticity)

2. EaEa′ = δaa′Ea if X(a) = X(a′) and EbEb′ = δbb′Eb if Y (b) = Y (b′) (orthogonal

projection)

3. ∀X ∈ X ,
∑
a∈X

Ea = 1 and ∀Y ∈ Y ,
∑
b∈Y

Eb = 1 (completeness)

4. [Ea, Eb] = 0 (commutativity)

LetQ be the set of all quantum behaviors, i.e. Q = {P : P is a quantum behavior}.

We are then interested in characterizing the set Q using semidefinite programming.
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The general outline of the hierarchy is as follows. Let E = {Ea : a ∈ A} ∪ {Eb :

b ∈ B} be the set of all projectors satisfying the properties outlined in the above

definition of a quantum behavior. Let O = {O1, O2, . . . On} be a finite subset of the

algebra generated by E . Define F(O) as the set of all independent equalities of the

form,

∑
i,j

(Fk)ij 〈ψ|O†iOj |ψ〉 = gk(P ) k = 1, 2, . . . ,m

which are satisfied by the operators Oi, where the coefficients gk(P ) are linear func-

tions of the probabilities P (a, b):

gk(P ) = (gk)0 +
∑
a,b

(gk)abP (a, b)

and where |ψ〉 is such that it satisfies P (a, b) = 〈ψ|EaEb |ψ〉 as defined for a quantum

behavior above. Note that all the constraints in the definition of the quantum behavior

are contained in F(O) as they are a specific instance of the general form given above.

Now, let a sequence S be a finite product of elements from E and let the length

|S| be the minimum number of projectors needed to generate it. By convention, we

define the length of the identity operator |1| = 0. Define Sn to be the set of sequences

of length smaller or equal to n. Thus we have,

S0 = {1}

S1 = S0 ∪ {Ea : a ∈ A} ∪ {Eb : b ∈ B}

S2 = S0 ∪ S1 ∪ {EaEa′ : a, a′ ∈ A} ∪ {EbEb′ : b, b′ ∈ B} ∪ {EaEb : a ∈ A, b ∈ B}

S3 = . . .

Note that in the original paper the authors define O, and subsequently S over the

set Ẽ that is an equivalent to E up to linear combinations. For the sake of keeping

this summary simple, we define the sets over E .

Clearly, we have that S1 ⊆ S2 ⊆ . . ., and that any operator Oi ∈ O can be written

35



as linear combinations of operators in Sn for sufficiently large n.

The authors then prove the following lemma.

Lemma 2.4.1. Let O be a set of operators and F(O) the set of equations of the form

(38) satisfied by operators in O. Then a necessary condition for a behavior P to be

quantum is that there exists a complex hermitian n × n positive semidefinite matrix

Γ � 0 whose entries Γij satisfy

∑
i,j

(Fk)ijΓij = gk(P ) k = 1, 2, . . .m

Moreover, if the coefficients Fk and gk in (38) are real, we can take Γ to be real as

well.

This lemma leads to a natural formulation of the problem of finding such a Γ for

a given behavior P as a semidefinite program. The program can be formulated as

follows.

max λ

Subject to: 〈FkΓ〉 = gk(P ) k = 1, 2, . . .m

Γ− λ1 � 0

A nonnegative solution λ ≥ 0 to the above problem implies that there exists a

positive semidefinite Γ � λ1 � 0 that satisfies (40). We call such a Γ a certificate

for P in the sense that it is a proof that P is indeed a quantum behavior. A strictly

negative solution λ < 0 for this SDP means that P does not represent a quantum

behavior.

Another important observation of this SDP formulation of a quantum behavior is

the invariance of a quantum behavior P under linear combinations of operators. The

authors prove the following lemma.

Lemma 2.4.2. Let O and O′ be two sets of operators such that every operator in

O′ is a linear combination of operators in O. Then, the existence of a certificate Γ
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associated to O (for a given P ) implies the existence of a certificate Γ′ associated to

O′.

Indeed this lemma is easy to see since all one needs to do is conjugate Γ with a

matrix C so that Γ′ = C†ΓC, where C is such that O′i =
∑

k CikOk for all O′i ∈ O′.

We can now define a certificate of order n, denoted Γn to be a |Sn| × |Sn| matrix

associated with the set of operators Sn. Informally, Γn is a certificate of whether

or not there exists a state |ψ〉 ∈ Cn and operators in Sn such that P describes a

quantum behavior which can be simulated using these operators and |ψ〉 as defined

in (38).

Using this definition, and the fact that S1 ⊆ S2 ⊆ . . . ⊆ Sn ⊆ . . ., the family of

certificate Γ1,Γ2, . . . ,Γn . . ., is a hierarchy of conditions satisfied by quantum proba-

bilities. Thus a strategy to verify whether P is a quantum behavior is to first check

if there exists a certificate of order 1, Γ1. If not, P is not a quantum behavior. If

so, then we check for a certificate of order 2, Γ2. Repeat the procedure in increasing

order as long as P satisfies the previous tests.

It is easy to see that as long as P is a quantum behavior, there must exist a

certificate Γn for any level of the hierarchy. Thus a natural question is whether for a

given non-quantum behavior P , there exists some finite n′ such that a certificate Γn
′

necessarily does not exist. Furthermore, is there a bound on n′ or the rate of conver-

gence for such a certificate of non-quantum-ness. The authors give a characterization

of the set Q and in fact prove that the hierarchy eventually converges, although the

rate of convergence is not known.

In chapter 3, we essentially construct the NPA hierarchy for the Mod P game and

obtain numerical values as upper bounds for the maximum winning probability. We

also give a modified version of the hierarchy for unitary (non-Hermitian) operators

based on the same principles as the NPA hierarchy.
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Chapter 3

Semidefinite Relaxations for the

Mod P Game

In this chapter we give two types of semidefinite relaxations for the Mod P game. The

first is based on a direct formalism of projector operators for Alice and Bob acting on

a shared quantum state. This SDP can be thought of as an implementation the NPA

hierarchy [13] for the Mod P game. We use the form of the SDP as given by Coudron

and Vidick in [7]. The second is a relaxation using an encoding of Alice’s and Bob’s

measurement operators as unitary operators. The unitary relaxation presented in

this chapter is a novel approach to this problem proposed by Matthew Coudron. The

work presented in this section was a collaborative effort with Coudron.

The primary idea of a semidefinite relaxation is to capture a substantial subset of

the constraints of a given optimization problem in a semidefinite program, in such a

way that the optimal solution to the original problem is feasible for the relaxation.

For the reader unfamiliar with semidefinite programming a brief overview is given in

appendix A.
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3.1 Projector Relaxations

Recall that in the Mod P game, we are looking for projector operators {Aas} for Alice

and {Bb
t} for Bob, for 0 ≤ a, b, s, t ≤ p− 1 and a shared state |ψ〉 ∈ Cd⊗Cd in some

dimension d ≥ 1 such that the following quantity, which is the winning probability

P (|ψ〉 , {Aas}, {Bb
t}), is maximized.

P (|ψ〉 , {Aas}, {Bb
t}) =

1

p2

∑
a,b,s,t

V (a, b|s, t) 〈ψ|AasBb
t |ψ〉

Here we assume that Aas ≡ Âas ⊗ 1 only acts on Alice’s side of the shared state.

And similarly Bb
t ≡ 1 ⊗ B̂b

t . Thus Alice’s and Bob’s measurement operators always

commute.

In order to form our relaxation, for a given operator Aas , we define the vector

|Aas〉 ≡ Aas |ψ〉. Similarly define the vector
∣∣Bb

t

〉
≡ Bb

t |ψ〉. Supposing we knew the

dimension d of the Hilbert space where the optimal choices for Alice’s and Bob’s

projectors and their shared quantum state |ψ〉 live, and we could enforce that the

vectors correspond to images of projector operators acting on a quantum state in d

dimensions, this relaxation would yield a tight solution by replacing our optimization

over projectors {Aas} ∪ {Bb
t} by the vectors {|Aas〉} and {

∣∣Bb
t

〉
} in dimension d. This

is because the inner product
〈
Aas
∣∣Bb

t

〉
represents 〈ψ|AasBb

t |ψ〉.

In general, for any given set of such relaxed vectors, we can write our maximization

objective problem over these vectors as follows.

P ({|Aas〉}, {
∣∣Bb

t

〉
}) =

1

p2

∑
a,b,s,t

V (a, b|s, t)
〈
Aas
∣∣Bb

t

〉

We observe that rather than the vectors themselves, we are interested in their inner

products
〈
Aas
∣∣Bb

t

〉
. Consider the matrix M formed by the vectors {Aas}∪{Bb

t} as its
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columns. The entries of the matrix C = M †M correspond to all the inner products

between these vectors. By construction, C is symmetric and positive semidefinite

(PSD). That is, all its eigenvalues are non-negative.

Thus, consider a matrix C of variables indexed by these vectors such that CAas ,Bbt ≡〈
Aas
∣∣Bb

t

〉
. We can think of our optimization problem as a maximization over a linear

function of the variables CAas ,Bbt subject to the constraint that C is PSD, denoted by

C � 0. While this relaxation is valid, in that it would only give an upper bound

on P ({|Aas〉}, {
∣∣Bb

t

〉
}), it is not necessarily tight, or even bounded for that matter.

Nevertheless, we use this as a starting point.

To make this into a good relaxation, we can add more constraints on the inner

products, which would force the relaxed vectors to satisfy more properties required

of images of orthogonal projectors acting on a quantum state. For instance, we need

to add constraints to ensure that the relaxed vectors satisfy that Alice’s and Bob’s

measurement operators commute.

As a warm up, in the following section we demonstrate this idea by giving a

semidefinite relaxation for the Mod 2 game.

3.1.1 Projector Relaxation for the Mod 2 Game

Recall that in the Mod 2 game, Alice and Bob are looking for 4 projectors each, {Aas}

and {Bb
t} for 0 ≤ a, b, s, t ≤ 1, such that they win the game with good probability.

As shown in theorem 1.2.4, we know the maximum winning probability for the Mod

2 game is ≈ 0.854, and we also know projectors for Alice and Bob which achieve this

value. However, for the sake of demonstration, we study the SDP relaxation for the

Mod 2 game.

From the 8 projectors, we get us a total of 8 vectors {|Aas〉} ∪ {
∣∣Bb

t

〉
} in the

projector relaxation. Let C be the 8 × 8 matrix of inner products of these vectors.

Note that this includes inner products of the form
〈
Aas
∣∣Aa′s′〉 and

〈
Bb
t

∣∣Bb′

t′

〉
. For

U, V ∈ {Aas}∪ {Bb
t}, CU,V denotes the entry in the matrix corresponding to the inner

product 〈U |V 〉.

Using this formalism, consider the following semidefinite program, SDP 3.1, for
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the Mod 2 game over the complex entries of C.

SDP 3.1: Projector SDP Relaxation for the Mod 2 Game

Maximize:
1

4

∑
a,b,s,t

V (a, b|s, t)CAas ,Bbt

Subject to: C � 0

(∀s), CA0
s,A

1
s

= 0

(∀t), CB0
t ,B

1
t

= 0

(∀s),
1∑

a=0

CAas ,Aas = 1

(∀t),
1∑
b=0

CBbt ,Bbt = 1

(∀s, t),
∑
a,b

CAas ,Bbt = 1

In this SDP, the first constraint forces C to be postive semidefinite. This constraint

implies that there exist a set of vectors {|Aas〉}∪{
∣∣Bb

t

〉
} whose inner products yield the

matrix C. The vectors can be obtained from C by taking the Cholesky decomposition

of the matrix. This decomposition is generally true for any positive semidefinite

matrix.

The next two constraints enforce that for any given input, the set of measurement

operators used by Alice and Bob are orthogonal. The next two constraints enforce

that the marginal probability distributions of Alice and Bob are valid. That is, for

any given input s, Alice’s measurement operators A0
s and A1

s, yield a valid probability

distribution. And similarly for Bob.

The last constraint enforces that for any given pair of inputs (s, t), Alice’s and

Bob’s measurements jointly form a valid probability distribution over their answers.

Note that this SDP is a valid relaxation for the Mod 2 game since any strategy for

the Mod 2 game yields a set of vectors which are feasible for the SDP. And therefore
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its optimal value is an upper bound on the actual maximum winning probability the

Mod 2 game. In this case, it turns out that SDP 3.1 is actually tight. That is, the

optimal value of the SDP is exactly equal to 1
2

+
√

2
4
≈ 0.854, which is the maximum

winning probability of the CHSH game. In general however, we only expect to get

upper bounds on the actual winning probability using the method of SDP relaxation.

In the context of the NPA hierarchy [13], SDP 3.1 corresponds to the first level

of the hierarchy for the Mod 2 game. Thus it is in fact known that this hierarchy

converges to the actual winning probability in the first level [17].

3.1.2 Projector Relaxation for the Mod P Game

Here we present the general SDP for the N th level of the NPA hierarchy for the Mod

P game for any value of p. The SDP follows the form given in [7].

We will refer to the set Σ = {Aas for 0 ≤ s, a ≤ p− 1} ∪ {Bb
t for 0 ≤ t, b ≤ p− 1}

as our alphabet for the program. Let Wm ≡ ∪mi=0Σi be the set of all words of length

at most m, where we define Σ0 = {1} representing the identity operator. The N th

level NPA hierarchy is now an optimization problem over the set of complex positive

semidefinite matrices C ∈ C|WN |×|WN |. Similar to [7], for a string U ∈ Wm we define

U † as the string U in reversed order. We then use the notation for strings U, V ∈ WN ,

CU†,V corresponds to the entry in the matrix representing the inner product 〈U |V 〉 =

(|U〉)† |V 〉. We use this convention to intuitively manipulate the string entries of the

matrix C as if we were working with operators.

The N th level SDP can now be written as given in SDP 3.2. This SDP has the

same form as given by Coudron and Vidick in [7].
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SDP 3.2: Projector SDP Relaxation for the Mod P Game

Maximize:
1

p2

∑
a,b,s,t

CAas ,B
b
t
V (a, b|s, t)

Subject to: C � 0 (0)

C1,1 = 1 (1)

(∀R ∈ Σ), (∀U, V ∈WN−1), CUR,V = CU,RV (2)

(∀Aas , Bbt ∈ Σ), (∀U, V ∈WN−1), CUAas ,B
b
tV

= CUBbt ,AasV
(3)

(for 0 ≤ s ≤ p− 1), (∀U ∈WN−1), (∀V ∈WN ),

p−1∑
a=0

CUAas ,V = CU,V (4)

(for 0 ≤ t ≤ p− 1), (∀U ∈WN−1), (∀V ∈WN ),

p−1∑
b=0

CUBbt ,V
= CU,V (4)

(for 0 ≤ s ≤ p− 1), (∀U, V ∈WN−1), (∀a 6= a′), C
UAas ,A

a′
s V

= 0 (5)

(for 0 ≤ t ≤ p− 1), (∀U, V ∈WN−1), (∀b 6= b′), C
UBbt ,B

b′
t V

= 0 (5)

Recall that we are relaxing an operator U acting on |ψ〉 as |U〉 ≡ V |ψ〉. Thus

we represent an operator acting on Alice’s and Bob’s shared quantum state as a

vector. For any two operators U, V our relaxation implies the following fundamental

relationship. Note that we overload notation to use U as an operator when written

without brackets, and corresponds to the string label of the operator when written

as |U〉.

〈ψ|UV |ψ〉 = (U † |ψ〉)†(V |ψ〉)

≡ (
∣∣U †〉)† |V 〉 apply relaxation

= 〈U |V 〉 by our string convention

Using this relationship between expectation values of operators and the inner

products of vectors, we can make sense of our constraints from the SDP.
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3.1.3 Understanding the Constraints

First note that a string entry U ∈ Wm corresponds to a sequence of symbols of length

at most m from the alphabet Σ. Hence U represents a sequence of operators con-

structed by putting together Alice’s and Bob’s measurement operators, and therefore

corresponds to a valid quantum operator.

The relationship between operators U, V ∈ Wm is therefore not arbitrary. Consider

for example the length 2 operator U = A0
0B

0
0 and V = B1

0A
1
0. We have that UV =

A0
0B

0
0B

1
0A

1
0 = 0 because B0

0B
1
0 = 0 by virtue of Bob’s measurement operators for a

fixed input being orthogonal. We therefore need to encode these constraints into the

SDP and enforce the relationships required of the relaxed vectors.

Constraint (0) simply requires that C is positive semidefinite (PSD). This is re-

quired so that C is a valid inner product matrix of a set of |WN | vectors corresponding

to the relaxations for each operator in WN . As discussed before, for a given PSD ma-

trix C, we can compute its Cholesky decomposition to obtain the |WN | vectors whose

matrix of inner products produces C.

Constraint (1) requires that Alice and Bob share a valid quantum state |ψ〉. C1,1 =

1 can be expanded using our relaxed vectors as 〈1 |1〉 = 1 where 1 corresponds to the

identity operator. Working backwards, this relaxation corresponds to the requirement

that 〈ψ|11 |ψ〉 = 1. Which is of course required because |ψ〉 has to be a valid quantum

state and therefore a unit vector.

Constraint (2) is an artifact of inner product notation. Expanding the constraint,

we have that 〈UR |V 〉 = 〈U |RV 〉 where R ∈ Σ is a length 1 symbol. This constraint

is necessary to ensure that the SDP treats each symbol as a sequence of individual

operators.

Constraint (3) enforces that Alice’s and Bob’s measurement operators commute.

Consider for instance the operator UAasB
b
tV . We know that it must be equal to

UBb
tA

a
sV . Therefore we have that 〈ψ|UAasBb

tV |ψ〉 = 〈ψ|UBb
tA

a
sV |ψ〉, and in our

relaxation, constraint (3) enforces this by setting
〈
UAas

∣∣Bb
tV
〉

=
〈
UBb

t

∣∣AasV 〉.
The two constraints labeled (4) enforce that Alice’s and Bob’s measurement op-

45



erators are complete. Recall that for a given in put s, in order to have a valid

probability distribution over the outputs a, Alice’s measurement operators have to

satisfy
∑

aA
a
s = 1. This is called completeness. Extending this requirement to

higher length operators, consider the operators UAasV . We can sum over a to get∑
a UA

a
sV = U(

∑
aA

a
s)V = UV . Thus in our relaxation language, we must have

that
∑

a 〈UAas |V 〉 = 〈U |V 〉.

Finally constraints (5) enforce that Alice’s and Bob’s measurement operators are

orthogonal projectors. That is, for any given input s, Alice’s measurements satisfy

AasA
a′
s = 0 for a 6= a′. Similarly Bob’s operators satisfy Bb

tB
b′
t = 0 for b 6= b′. Thus

if such a pair of operators appears at any point within a sequence of operators, that

entire operator must evaluate to 0. Thus applying this to our relaxations, we must

enforce that
〈
UAas

∣∣Aa′s V 〉 = 0, and similarly
〈
UBb

t

∣∣Bb′
t V
〉

= 0.

3.1.4 The Size of the SDP

The size of a semidefinite program is generally measured by the number of variables

and constraints that it contains. Since the SDP is optimizing over the matrix C

of size |WN | × |WN |, the number of variables in the SDP is O(|WN |2). Since C is

symmetric, the actual number of variables is really the number of entries on or above

the diagonal. Therefore more precisely, the number of variables is 1
2
|WN |(|WN |+ 1).

Thus we want to compute |WN | in terms of p and N .

Recall that WN = ∪Ni=0Σi. Since each Σi are disjoint, |WN | =
∑N

i=0 |Σi|. Recall

also that we have Σ0 = {1} and therefore |Σ0| = 1. Note that we also have |Σi| = |Σ|i.

Thus, we only need to compute |Σ| for the Mod P game.

Since Σ = {Aas}∪ {Bb
t} for 0 ≤ s, t, a, b ≤ p− 1, we have that |Σ| = 2p2. Plugging
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this back in, we obtain the size of WN as follows.

|WN | =
N∑
i=0

|Σ|i

=
N∑
i=0

(2p2)i

=
(2p2)N+1 − 1

2p2 − 1

Thus, the number of variables is O(|WN |2) = O
(
(2p2)2N

)
.

To compute the number of constraint, we simply need to add up the number of

constraints of each type. We ignore constraint (0) as it only enforces the domain of

the optimization to the positive semidefinite matrices. Therefore for each constraint

of type (1) - (5), we can count the total number of constraints of that type. Table

3.3 summarizes this count for each constraint.

Table 3.3: Number of Constraints for SDP 3.2

Constraint Factor 1 Factor 2 Factor 3 Multiplicity Total

(1) 1 1 1 1 1

(2) 2p2 |WN−1|2 1 1 2p2|WN−1|2

(3) p4 |WN−1|2 1 1 p4|WN−1|2

(4) p |WN−1| |WN | 2 2p|WN−1||WN |

(5) p |WN−1|2 p2 − p 2 2p(p2 − p)|WN−1|2

Plugging in for |WN−1| =
(2p2)N − 1

(2p2)− 1
and |WN | =

(2p2)N+1 − 1

(2p2)− 1
, we can add up

all the different types of constraints and get the total number of constraints to be

(3p2 + 2p4 − 2p3)

(
(2p2)N − 1

2p2 − 1

)2

+ 2p

(
(2p2)N − 1

2p2 − 1

)(
(2p2)N − 1

2p2 − 1

)
.

With some simplifications, it is easy to see that the number of constraints is also

O(|WN |2) = O((2p2)2N). Thus it is important to note that for a fixed p, the size of
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the SDP grows exponentially in N , the level of the SDP hierarchy.

Table 3.4 gives numerical values for the exact number of constraints and variables

for the first few values of p and N .

Table 3.4: Number of Variables and Constrains for the Projector Relaxation of the
Mod P game.

p N #Variables #Constraints

2 1 36 68

3 1 171 249

3 2 58,653 87,837

3 3 19,062,225 28,590,765

5 1 1,275 1,385

5 2 3,252,525 3,576,885

5 3 8,134,565,025 8,947,976,885

In chapter 4, we discuss in more detail the cost of running this semidefinite pro-

gram. However, it is already clear that there is almost no hope of running this SDP

beyond the 3rd level for any value of p.

In the following section, we describe a second approach for building a semidefinite

relaxation for the Mod 3 game, using unitary operators for Alice and Bob rather than

projectors. While this unitary relaxation will also have the same exponential rate of

growth in the level N , it would grow with a smaller base for the exponential.
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3.2 Unitary Operators for the Mod P Game

The representation of the Mod P game’s winning probability in terms of unitary

operators was an idea developed by Matthew Coudron1. All the work in this section

was done in collaboration and under the supervision of Coudron.

The unitary representation was motivated by the analysis of the original CHSH

game in Tsirelson’s theorem 1.2.4. In the proof of this theorem, we define unitary

operators As = A0
s − A1

s and Bt = B0
t − B1

t for s, t ∈ {0, 1}. We then find a tight

upper bound on the maximum winning probability by bounding the operator norm

of a linear combination of these unitary operators. In this section we analogously

define the unitary formulation for the Mod P game for a general value of p. In order

to achieve this, we will invoke the regularization lemma from in [2] by Bavarian and

Shor. In section 2.3, we restate this proposition in lemma 2.3.4 and give a proof.

We start by defining generalized unitary operators for the Mod P game and express

the maximum winning probability as a linear combination of the expectation values

of these operators. Recall that in the Mod P game, Alice has projector operators

{Aas |0 ≤ s, a ≤ p − 1} and Bob has projector operators {Bb
t |0 ≤ t, b ≤ p − 1}. For

all s, t ∈ {0, · · · , p − 1}, consider the following operators created by taking complex

linear combinations of their projector measurement operators.

As =

p−1∑
a=0

e
2πia
p Aas

Bt =

p−1∑
b=0

e
2πib
p Bb

t

Where e
2πi
p is the principal pth root of unity. Note that in the case where p = 2, this

directly corresponds to the definitions from the proof of theorem 1.2.4. Therefore in

a sense this definition is a generalization of this method.

1To our knowledge, this work was not part of any published results and is presented here for the
first time.
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We first observe that As and Bt are unitary operators. We can show this formally

as follows.

AsA
†
s =

(
p−1∑
a=0

e
2πia
p Aas

)(
p−1∑
a=0

e
2πia
p Aas

)†

=

p−1∑
a=0

p−1∑
a′=0

e
2πi(a−a′)

p AasA
a′

s

=

p−1∑
a=0

(Aas)
2

=

p−1∑
a=0

Aas

= 1

Now consider the following expectation value using the unitary operators for Alice

and Bob. We can express it in terms of the original projector operators to get a

relation with the winning probability of the game.

〈ψ|AsBt |ψ〉 = 〈ψ|
p−1∑
a=0

e
2πia
p Aas

p−1∑
b=0

e
2πib
p Bb

t |ψ〉

=

p−1∑
a=0

p−1∑
b=0

e
2πi(a+b)

p 〈ψ|AasBb
t |ψ〉

We can then perform a weighted sum over all s, t using the probability 1
p2

for a

pair of questions (s, t) and the complementary coefficient e
−2πist
p in order to get a

coefficient of 1 for the values of a, b, s, t which evaluate V (a, b|s, t) = 1.

1

p2

p−1∑
s=0

p−1∑
t=0

e
−2πist
p 〈ψ|AsBt |ψ〉 =

1

p2

p−1∑
s=0

p−1∑
t=0

e
−2πist
p

p−1∑
a=0

p−1∑
b=0

e
2πi(a+b)

p 〈ψ|AasBb
t |ψ〉

=
1

p2

∑
a,b,s,t

e
2πi(a+b−st)

p 〈ψ|AasBb
t |ψ〉

In this summation, note that for the values of a, b, s, t such that a+b = st mod p,

the complex coefficient becomes 1. Thus we can rewrite this summation to make the
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component of the sum corresponding to the winning probability of the Mod P game

more explicit.

1

p2

p−1∑
s=0

p−1∑
t=0

e
−2πist
p 〈ψ|AsBt |ψ〉 =

1

p2

∑
a,b,s,t

〈ψ|AasBb
t |ψ〉V (a, b|s, t)

+
1

p2

p−1∑
k=1

e
2πik
p

∑
a+b−st=k mod p

〈ψ|AasBb
t |ψ〉

(3.1)

To simplify notation, let us define the expectation on the left hand side of this

expression as Z.

Z :=
1

p2

p−1∑
s=0

p−1∑
t=0

e
−2πist
p 〈ψ|AsBt |ψ〉

Let us further define Vk as the probability that Alice’s and Bob’s answers satisfy

a+ b = st+ k mod p as follows.

Vk := Pr
|ψ〉,{Aas},{Bbt }

[a+ b = st+ k mod p]

=
1

p2

∑
a+b=st+k mod p

〈ψ|AasBb
t |ψ〉

Note that V0 is exactly the winning probability of the game given Alice’s and Bob’s

strategy. i.e. V0 ≡ P (|ψ〉 , {Aas}, {Bb
t}). We can now invoke the regularization lemma

2.3.4 and assume without loss of generalization that V1 = V2 = · · · = Vp−1
2. Using

these definitions, we can rewrite equation 3.1 more simply as follows.

Z = V0 +

p−1∑
k=1

e
2πik
p Vk

= V0 + V1

p−1∑
k=1

e
2πik
p

= V0 − V1

2In practice, this constraint must either be explicitly enforced in the SDP or we must use Re(Z)
as Z may be a complex number in general.
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Note that since
∑p−1

k=0 Vk = 1, we have that V1 =
(

1−V0
p−1

)
. Substituting this in, we can

solve for V0 as follows.

V0 =
p− 1

p
Z +

1

p

Note that since As and Bt are no longer Hermitian operators their expectation val-

ues will be complex. Therefore Z is generally complex value. Furthermore, Alice and

Bob are no longer performing valid quantum measurements because only Hermitian

operators are allowed as measurements in quantum mechanics. Nevertheless we can

still think of a unitary strategy as if Alice and Bob were using the unitary operators

to perform quantum measurements and obtaining complex expectation values as it

is a convenient way to describe the relaxation. Thus, for any Mod P game, given a

set of unitary operators {As} for Alice, {Bt} for Bob, where 0 ≤ s, t,≤ p− 1, and a

shared state |ψ〉, their winning probability P (|ψ〉 , {As}, {Bt}) ≡ V can be computed

as follows.

P (|ψ〉 , {As}, {Bt}) :=
p− 1

p
Re (Z) +

1

p

=
p− 1

p3
Re

(∑
s,t

e
−2πist
p 〈ψ|AsBt |ψ〉

)
+

1

p

By using Re(Z), we ensure that P (|ψ〉 , {As}, {Bt}) is a real valued linear function

of the expectation values. As we show in the next section, this is crucial because a

semidefinite program requires a real valued linear objective function. Furthermore,

we know by construction that there exists an optimal unitary strategy which achieves

a value of Z such that Im(Z) = 0. We could in fact enforce this as a constraint in

our semidefinite relaxatino in the next section.

Now that we know how to define the Mod P game in terms of unitary operators,

we can use the same semidefinite relaxation principles to generate its NPA hierarchy

[13].
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3.2.1 Unitary Relaxation for the Mod P Game

Before defining our relaxation, we need to define our alphabet of symbols. Orthogonal

projector operators were relatively simple to describe because any such operator O is

Hermitian. i.e. O† = O. And therefore no distinction needs to be made between O

and its adjoint O†.

Unitary operators, however, are more complex since they need not be Hermitian.

We therefore need a formal symbol O† for the adjoint of a unitary operator O. In

our specific case however, if we really wanted to, there is one way to possibly avoid

writing formal symbols for the adjoints of Alice’s and Bob’s unitary operators. For

any value of p, we first make the observation that (As)
p = 1. This is easy to see, but

for completeness we can prove it by expanding the definition for As as follows.

(As)
p =

(
p−1∑
a=0

e
2πia
p Aas

)p

=
∑

a1,a2,··· ,ap

e
2πi(a1+a2+···+ap)

p Aa1s A
a2
s · · ·Aaps

=
∑
a

(Aas)
p

=
∑
a

Aas

= 1

Using this identity, we can see that (As)
p−1As = 1 = A†sAs. Therefore we have that

A†s = (As)
p−1. Therefore, we can use p− 1 copies of As to represent A†s. However this

would require a symbol of length p−1 to define the adjoint of a single operator. This

would require running the NPA hierarchy for levels N ≥ p − 1 just to even capture

the unitary-ness constraints. But we are interested in capturing as many constraints

as possible in lower levels of the hierarchy as the size of the SDP grows exponentially

in the level. We therefore resort instead to defining formal symbols A†s and B†t for the

adjoint operators. This trade-off increases the base of the exponential for the size of

the SDP, but results in more meaningful values in the lower levels of the hierarchy.
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We can now begin by defining our alphabet as Σ = {As} ∪ {A†s} ∪ {Bt} ∪ {B†t }

for 0 ≤ s, t ≤ p − 1. Similarly as before, we define Wm ≡ Um
i=0Σi to be the set of all

words of length at most m on the alphabet Σ where we let Σ0 ≡ {1}, representing

the identity operator.

For any symbol U ∈ Wm, our relaxation is once again to use a vector |U〉 as a

relaxation for the operator described by U acting on Alice and Bob’s shared quantum

state. i.e. |U〉 ≡ U |ψ〉 represents the operator U acting on the state |ψ〉. The N th

level of the hierarchy is then an optimization over the set of positive semidefinite

matrices C ∈ C|WN |×|WN | where an entry CU,V for U, V ∈ WN corresponds to an

inner product. However, unlike the projector relaxation, recall that the entries of

CU,V are now complex and therefore C is a Hermitian PSD matrix (as opposed to

symmetric). This requirement implies that CU,V = C∗V,U . In order to satisfy this, we

must define CU,V ≡
〈
U †
∣∣V 〉, which corresponds to 〈ψ|U †V |ψ〉. This way, we have

that CV,U ≡
〈
V †
∣∣U〉 corresponding to 〈ψ|V †U |ψ〉 = (〈ψ|U †V |ψ〉)∗. Thus we have

that CU,V = C∗V,U .

However, to make our notation intuitive, instead of refering to the entries of the

matrix C itself, we define the map C over the entries of C as follows.

CU,V := CU†,V

Note that we can now think of C as representing the entries of the PSD matrix C, but

satisfies CU,V = CU†,V ≡ 〈U |V 〉 ≡ 〈ψ|UV |ψ〉. Furthermore, recall that since we have

formal symbols for the adjoint, the string for U † is no longer just the reverse string of

U , but also where each symbol is converted to its adjoint, i.e. (UAs)
† = A†sU

†, where

we define (U †)† = U for any symbol U ∈ WN and 1† = 1.

We can now use our map C to define our relaxed SDP as given in SDP 3.5. In the

following we assume p to be an odd prime or prime power, and we use the notation

Ux to refer to the string UUU · · ·U repeated x times.
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SDP 3.5: Unitary SDP Relaxation for the Mod P Game

Maximize:
p− 1

p3
Re

∑
s,t

e
−2πist
p CAs,Bt

+
1

p

Subject to: C � 0 (0)

C1,1 = 1 (1)

(∀R ∈ Σ), (∀U, V ∈WN−1), CUR,V = CU,RV (2)

(∀A ∈ {As} ∪ {A†s}, B ∈ {Bt} ∪ {B
†
t }), (∀U, V ∈WN−1), CUA,BV = CUB,AV (3)

(∀0 ≤ s ≤ p− 1), (∀U, V ∈WN−1), C
UA
†
s,AsV

= CU,V (4)

C
UAs,A

†
sV

= CU,V (4)

(∀0 ≤ t ≤ p− 1), (∀U, V ∈WN−1), C
UB
†
t ,BtV

= CU,V (4)

C
UBt,B

†
tV

= CU,V (4)

(∀0 ≤ s ≤ p− 1),

(
∀U, V ∈W

N−
(
p−1
2

)) , C
U(As)

p−1
2 ,(As)

p−1
2 V

= C
UA
†
s,V

(5)

C
U(A

†
s)
p−1
2 ,(A

†
s)
p−1
2 V

= CUAs,V (5)

(∀0 ≤ t ≤ p− 1),

(
∀U, V ∈W

N−
(
p−1
2

)) , C
U(Bt)

p−1
2 ,(Bt)

p−1
2 V

= C
UB
†
t ,V

(5)

C
U(B

†
t )
p−1
2 ,(B

†
t )
p−1
2 V

= CUBt,V (5)

3.2.2 Understanding the Constraints

Recall that an entry CU,V = CU†,V is the value of 〈U |V 〉 for our relaxed vectors |U〉

and |V 〉 for U, V ∈ WN corresponding to the expectation value of the corresponding

operators 〈ψ|UV |ψ〉. We write our constraints in SDP 3.5 using the map C to have

our constraints resemble the more familiar notation of the inner products.

As a fundamental component of a semidefinite program, constraint (0) requires

that C is a PSD matrix. And similarly to our projector relaxation, constraint (1)

enforces that Alice and Bob share a valid quantum state.

Once again, similarly to our projector relaxation, constraint (2) encodes that

there are multiple relaxations for the same expectation value. Expanding out this

constraint we get that 〈UR |V 〉 = 〈U |RV 〉. This is necessary to enforce since both

values represent 〈ψ|URV |ψ〉 in our original problem.
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So far, all the constraints were also present in the projector relaxation. Constraints

(4) is where the unitary relaxation begins to deviate. These constraints enforce that

Alice and Bob have unitary operators because we have that for a unitary operator As,

UA†sAsV = UV . Thus we must have that an inner product of the form
〈
UA†s

∣∣AsV 〉 =

〈U |V 〉.

The final constraints, constraints (5), encode that Alice’s and Bob’s unitary pth

power to the identity property. Recall that by construction we must have Aps = Bp
t =

1. A more succinct way of representing this constraint is Ap−1
s = A†s and similarly

Bp−1
t = B†t . This is because that would imply Aps = AsA

p−1
s = AsA

†
s = 1, where

the last equality is enforced in the SDP by constraint (4). Conversely, by the same

argument, we must also enforce that (A†s)
p−1 = As.

Therefore constraint (5) enforces that
〈
U(As)

p−1
2

∣∣∣ (As) p−1
2 V

〉
=
〈
UA†s

∣∣V 〉. By

constraint (3) this would also imply that
〈
U(As)

p−1
2

∣∣∣ (As) p−1
2 V

〉
=
〈
U
∣∣A†sV 〉. In

operator notation, this is enforcing that 〈ψ|U(As)
p−1
2 (As)

p−1
2 V |ψ〉 = 〈ψ|UA†sV |ψ〉.

Perhaps a most interesting observation about this unitary SDP relaxation is that

the pth power to unitary constraints, (constraints (5)) do not even exist until level

N ≥ p−1
2

. For instance, once p ≥ 5, we need the second level or more to get a tight

SDP constraint. For p = 3, we can still get meaningful values for N = 1, and therefore

we focus our attention on p = 3 for the remainder of this thesis.

3.2.3 The Size of the SDP

One of the primary motivations for the unitary relaxation is that it has a non-trivially

smaller size than that of the projector relaxation. While its size still grows exponen-

tially in the level N , it has a significantly smaller base due to the smaller sized

alphabet. Here we compute the size for a generic p and level N .

Recall that the alphabet for SDP 3.5 is Σ = {As} ∪ {A†s} ∪ {Bt} ∪ {B†t } for

0 ≤ s, t ≤ p − 1. Hence we have that |Σ| = 4p. Using the same definition for

WN = ∪Ni=0Σi, we have that |WN | =
∑N

i=0 4p = (4p)N+1−1
4p−1

.

Similarly as before, the number of variables is O(|WN |2). Since the matrix C is

Hermitian, it is still sufficient to keep track of the upper triangular entries, therefore

56



more precisely the number of variables is still 1
2
|WN |(|WN |+ 1).

We can similarly compute the number of constraints by counting up the number

of each type of constraints (1) - (5) and adding them all up. Table 3.6 gives the count

for each type of constraints.

Table 3.6: Number of Constraints for SDP 3.5

Constraint Factor 1 Factor 2 Multiplicity Total

(1) 1 1 1 1

(2) 4p |WN−1|2 1 4p|WN−1|2

(3) (2p)2 |WN−1|2 1 4p2|WN−1|2

(4) p |WN− p−1
2
|2 4 4p|WN− p−1

2
|2

(5) p |WN− p−1
2
|2 4 4p|WN− p−1

2
|2

We can add up all the constraints to get the following for the total number of

constraints.

# Constraints = (4p+ 4p2)|WN−1|2 + 8p|WN− p−1
2
|2

= (4p+ 4p2)

(
(4p)N − 1

4p− 1

)2

+ 8p

(
(4p)N−

p−3
2 − 1

4p− 1

)

Table 3.7 gives numerical values for the size of this SDP for the first few values N for

p = 3 and compares these values to the size of the corresponding projector relaxations

for p = 3.
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Table 3.7: Sizes of Unitary and Projector Relaxations for the Mod P Game

p N # Variables (U) # Constraints (U) # Variables (P) # Constraints (P)

3 1 91 72 171 249

3 2 12,403 12,168 58,653 87,837

3 3 1,777,555 1,774,728 19,062,225 28,590,765

As shown in table 3.7, the unitary relaxation is significantly smaller than its

respective projector relaxation. This is primarily due to its smaller alphabet size.

Another interesting observation is that the unitary relaxation has less constraints

than it has variables.
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Chapter 4

Numerical Results for the SDP

Relaxations

In this chapter we give our implementation and numerical results for the semidefinite

relaxation programs described in chapter 3. Our numerical work in this chapter makes

use of several optimization packages for solving SDPs including Mosek [1] and CVXPY

[8]. We also use several high level SDP modeling frameworks including primarily

YALMIP [12] for MATLAB and PICOS (available at picos.zib.de) for Python. All of

our code for this section is written in Python, but we also make use of the MATLAB

Engine API for Python to execute MATLAB code from Python.
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4.1 Implementation

In the practice of writing semidefinite programs, the process of systematically laying

out the variables and constraints is called modeling. In the following sections we

describe our approach for constructing an efficient and intuitive model for our SDP

relaxations. In the first part, we present a function which takes as input a value for

p and N and outputs a model for the projector SDP relaxation of the Mod P game

for the specified value of p and level N .

4.1.1 Mapping Symbols to Index Numbers

In order to make our SDP model readable and correspond more directly to the way

it is given in SDP 3.2, we begin by creating a function f : WN → [|WN |] which maps

a symbol U ∈ WN to a numerical index into our SDP matrix variable. We use the

symbol X to denote our |WN | × |WN | matrix variable of inner products for our SDP

model, where X[i, j] is the entry at the ith row and jth column. Thus, the entry CU,V

from SDP 3.2 corresponds to the actual entry X[f(U), f(V )]. Note that since Python

is 0-indexed, the entries of the matrix range from 0 ≤ i, j ≤ |WN | − 1. MATLAB on

the other hand is 1-indexed, and simply requires a shift f ′(U)← f(U) + 1.

We create the function f by defining an intuitive strict lexicographic ordering of

the symbols in WN according to the following rules, where for a string U ∈ WN , we

let |U | to be the length of the string (recall that |U | ≤ N for any U ∈ WN).

1. 1 is the first element.

2. For strings of length 1, A∗∗ < B∗∗ , A
∗
s < A∗s′ for s < s′, B∗t < B∗t′ for t < t′, and

finally Aas < Aa
′
s for a < a′ and similarly Bb

t < Bb′
t for b < b′.

3. For strings U, V ∈ WN where |U | < |V |, U < V .

4. For strings U, V ∈ WN where U 6= V and |U | = |V |, then U < V if U [i] < V [i]

where i is the first index from left to right where U [i] 6= V [i].
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As a simple example, these rules enforce that A0
0B

1
0 < A0

0B
0
1 . It is not difficult to

see that the above four rules define a strict ordering on all the entries of WN . We

then let f(U) be the rank of U in this ordering. Therefore we have that f(1) = 0,

f(A0
0) = 1, f(A1

0) = 2 etc. For a fixed value of p, note that the value of f(U) is

independent of the level N since it only depends on |U |.

In our modeling program, f can be defined as a simple recursive function.Note

that since f is a one to one mapping from symbol to index, it is an invertible function.

Hence, given an index j, there exists a unique U such that f(U) = j. We implement

the inverse map g = f−1 in our work, however the pseudocode for g is omitted. The

inverse map g allows to iterate through all symbols in WN by simply iterating through

the numbers 0 ≤ j ≤ |WN | and calling g(i) to get the corresponding symbol.

High level convex optimization modeling frameworks such as PICOS for Python

and YALMIP for MATLAB have convenient and intuitive ways of defining SDP vari-

ables and constraints. Using our symbol to index mapping function f and its inverse

g, we can directly encode the SDP constraints in 3.2. An entry CU,V corresponds

to X[f(U), f(V )] in our model. And iterating through U ∈ WN can be done effi-

ciently by iterating through the numbers from 0 to |WN | and using our inverse map

g. We can therefore encode a constraint such as CU,V = CU ′,V ′ by directly adding

X[f(U), f(V )] = X[f(U ′), f(V ′)] in our model.

4.1.2 The Unitary Relaxation

The modeling process for the unitary relaxation was not too different from the projec-

tor version. The first major difference is that the symbol to index mapping function

is assigned based on a different ordering of the symbols. The basic idea for the f and

g = f−1 remains the same. We assign a total ordering on the symbols in Wm using

the same rules as before with the addition that for any symbol As, we let As < A†s.

The constraints for the unitary relaxation can also be modeled in a straightforward

fashion by simply iterating through all symbols in Wm using g and adding each specific

type of constraint.
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4.2 Results

For the projector relaxation, we were able to run only the first level of the hierarchy,

obtaining values that match the Bavarian-Shor bound from theorem 2.3.1. Table 4.1

shows some numerical values of the implementation of the projector relaxation, SDP

3.2. The numerical value shown is the best result chosen among numerical values

obtained using five different modeling and solver settings. The five settings used to

solve the SDP are (1) PICOS (with solver Mosek), (2) Fusion (with solver Mosek),

(3) YALMIP (with solver Mosek), (4) CVXPY (with solver SCS) and (5) CVXPY

(with solver CVXOPT). We label the chosen best value in the table by the relevant

number which indicates the solver setting which achieves this value. The analytic

Bavarian-Shor bound given in the table has been truncated to match the precision

level of the numerical value.

Table 4.1: Level 1 Numerical Results for the Projector Relaxation of the Mod P Game

Mod 2 Mod 3 Mod 4

Bavarian-Shor 0.85355339059 0.718233512793 0.625

SDP 3.2 0.85355339121 (1) 0.718233512793 (2,3) 0.6767766952 (1,2,3)

Mod 5 Mod 7 Mod 8

Bavarian-Shor 0.557770876399 0.46682669115 0.434359216769114

SDP 3.2 0.557770876393 (1) 0.46682669115 (1,2,3) 0.51516504293 (2,3)

Mod 9

Bavarian-Shor 0.407407407407

SDP 3.2 0.461633393153 (1,2,3)

Perhaps a most interesting observation from the results in table 4.1 is that for

values of p of 4, 8 and 9, the Bavarian-Shor bound gives a noticeably tighter bound
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than the first level NPA hierarchy. This suggests that for a prime power value of p,

the Bavarian-Shor bound is in fact better than the NPA first level hierarchy, whereas

for a prime p, the Bavarian-Shor bound yields the same upper value as the first level

NPA hierarchy.

So far, we have been unable to run higher levels (N > 1) of the projector relax-

ation. Even running on rather large powerful machines, the solvers have not been

successful in finding the optimal value for higher levels. The most crucial constraint

for the SDP is memory. Simply writing out the variables and constraints could take

hundreds of Gigabytes of memory. We leave as future work running higher levels of

this SDP on more powerful and memory optimized machines.

For the unitary relaxation, we obtain results for the first and second levels of SDP

3.5. These values were obtianed using only YALMIP (with solver Mosek). Table 4.2

gives the values for both the first and second levels.

Table 4.2: Mod 3 Level 1 and 2 Numerical Results for the Unitary Relaxation of The
Mod P Game

Mod 3 Level 1 Mod 3 Level 2

Bavarian-Shor 0.718233512793 0.718233512793

SDP 3.5 0.718233512532 0.718231009506

As would be expected, the first level SDP value essentially matches the Bavarian-

Shor bound. We believe the mismatch in the last few decimal places of the value

comes from numerical precision issues with the solver. The second level value is

non-trivially lower than the first.

For similar resource limitation reasons, we have been unable to run the unitary

SDP beyond N = 2. For p = 3, we conjecture that obtaining the value for the third

level would yield a method for guessing the closed form tight upper bound for the

winning probability. We leave as future work to obtain the third level value as well

as the positive semidefinite matrix which achieves this value.
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Appendix A

Semidefinite Programming

Semidefinite Programming is a method of convex optimization of a linear objective

function over the cone of positive semidefinite matrices.

The variables of a semidefinite program are the entries of a matrix. Let X be

an n × n matrix and xi,j be the (i, j)-th entry of X. The variables of a semidefinite

program are then the xi,j. The objective function can therefore be any linear function

of the xi,j. The constraints of the optimization problem are inequalities and equalities

involving linear functions of the xi,j as well. A required constraint is that the matrix X

formed by the variables be positive semidefinite, denoted by X � 0. This requirement

is equivalent to having all eigenvalues of X be non-negative. Thus, the general form

of a semidefinite program is as follows.

Maximize: 〈C,X〉

Subject To: X � 0

〈Ak, X〉 ≤ bk for 1 ≤ k ≤ m

where C and AK are n × n matrices of coefficients and 〈·, ·〉 corresponds to the

Frobenius inner product. Thus this gives a general maximization semidefinite program

in n dimensions and m constraints. Of course the objective can easily be formed as

a minimization as well.

The intuitive significance of semidefinite programs can be seen by thinking about
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the Cholesky decomposition of positive semidefinite matrices.

Lemma A.0.1 (Cholesky decomposition). Given a real (or complex) n× n positive

semidefinite matrix X, there is an efficient way to get n vectors y1, y2, · · · , yn ∈ Rn

(or Cn) such that Xi,j = 〈yi, yj〉.

In the above lemma, 〈·, ·〉 refers to the inner product of the vectors. Using this

interpretation, a semidefinite program can equivalently be phrased as an optimization

over vectors y1, y2, · · · , yn as follows.

Maximize:
∑
i,j

ci,j 〈yi, yj〉

Subject To:
∑
i,j

aki,j 〈yi, yj〉 ≤ bk for 1 ≤ k ≤ m

where ci,j, a
k
i,j and bk are real (or complex) coefficients. Note that in the complex case,

it is necessary that the objective function be a real function of the inner products.

Similarly, a constraint only makes sense if both sides of the inequality are real valued

functions - except in the case of an equality constraint.

In general, there are efficient, polynomial time methods for solving a semidefinite

program. The most popular methods use a variation of the interior point method,

much like solving linear programs.

For a more detailed approach to semidefinite programming as well as general opti-

mization theory, we recommend “Convex Optimization” by Boyd and Vandenberghe

[4]. This book has been instrumental in helping design and understand the semidefi-

nite programs used in this thesis.
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