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Many ant species use distributed population density estimation in
applications ranging from quorum sensing, to task allocation, to
appraisal of enemy colony strength. It has been shown that ants
estimate local population density by tracking encounter rates: The
higher the density, the more often the ants bump into each other.
We study distributed density estimation from a theoretical per-
spective. We prove that a group of anonymous agents randomly
walking on a grid are able to estimate their density within a
small multiplicative error in few steps by measuring their rates
of encounter with other agents. Despite dependencies inherent
in the fact that nearby agents may collide repeatedly (and, worse,
cannot recognize when this happens), our bound nearly matches
what would be required to estimate density by independently
sampling grid locations. From a biological perspective, our work
helps shed light on how ants and other social insects can obtain
relatively accurate density estimates via encounter rates. From a
technical perspective, our analysis provides tools for understand-
ing complex dependencies in the collision probabilities of multi-
ple random walks. We bound the strength of these dependencies
using local mixing properties of the underlying graph. Our results
extend beyond the grid to more general graphs, and we discuss
applications to size estimation for social networks, density esti-
mation for robot swarms, and random walk-based sampling for
sensor networks.

population density estimation | random walk sampling | network
exploration | ant colony algorithms | biological distributed algorithms

The ability to sense local population density is an important
tool used by many ant species. When a colony of Temnotho-

rax ants must relocate to a new nest, scouts search for potential
nest sites, assess their quality, and recruit other scouts to high-
quality locations. A high enough density of scouts at a poten-
tial new nest (a quorum threshold) triggers those ants to decide
on the site and transport the rest of the colony there (2). When
neighboring colonies of Azteca ants compete for territory, a high
relative density of a colony’s ants in a contested area will cause
those ants to attack enemies in the area, while a low relative den-
sity will cause the colony to retreat (3). Varying densities of har-
vester ants successfully performing certain tasks such as foraging
or brood care can trigger other ants to switch tasks, maintaining
proper worker allocation in the colony (4, 5).

It has been shown that ants estimate density in a distributed
manner, by measuring encounter rates (2, 6). As ants randomly
walk around an area, if they bump into a larger number of
other ants, this indicates a higher population density. By track-
ing encounters with specific types of ants, for example, successful
foragers or enemies, ants can estimate more specific densities.
This strategy allows each ant to obtain an accurate density esti-
mate and requires very little communication: Ants must simply
detect when they collide and do not need to perform any higher-
level data aggregation.

Density Estimation on a Grid
We study distributed density estimation from a theoretical per-
spective. We model a colony of ants as a set of anonymous agents
randomly placed on a 2D grid. Computation proceeds in rounds,
with each agent stepping in a random direction in each round.

A collision occurs when two agents reach the same position in
the same round, and encounter rate is measured as the number
of collisions an agent is involved in during a sequence of rounds
divided by the number of rounds. Aside from collision detection,
the agents have no other means of communication.

The intuition that encounter rate tracks density is clear. It
is easy to show that, for a set of randomly walking agents, the
expected encounter rate measured by each agent is exactly the
density d—the number of agents divided by the grid size (see
Lemma 2). However, it is unclear if encounter rate actually gives
a good density estimate, that is, if the estimate is close to its
expectation with high probability.

Consider agents positioned not on the grid but on a complete
graph. In each round, each agent steps to a uniformly random
position, and, in expectation, the number of other agents it col-
lides with in this step is d . Since each agent chooses its new loca-
tion uniformly at random in each step, collisions are essentially
independent between rounds. The agents are effectively taking
independent Bernoulli samples with success probability d , and,
by a standard Chernoff bound, within O

(
log(1/δ)/dε2

)
rounds,

each obtains a (1± ε) multiplicative approximation to d with
probability 1− δ.

On the grid graph, the picture is significantly more complex.
If two agents are initially located near each other, they are more
likely to collide via random walking. After a first collision, due
to their proximity, they are likely to collide repeatedly in future
rounds. Since the agents are anonymous, they cannot recognize
repeat collisions, and, even if they could, it is unclear that it
would help. On average, compared with the complete graph,
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agents collide with fewer individuals and collide multiple times
with those individuals that they do encounter, making encounter
rates a less reliable estimate of population density.

Mathematically speaking, on a graph with a fast mixing time
(7), like the complete graph, each agent’s location is only weakly
correlated with its previous locations. This ensures that collisions
are also weakly correlated between rounds, and encounter rate
serves as a very accurate estimate of density. The grid graph, on
the other hand, is slow mixing: Agent positions and hence col-
lisions are highly correlated between rounds, lowering the accu-
racy of encounter-rate-based estimation.

Results
Surprisingly, despite the high correlation between collisions,
we show that encounter rate-based density estimation on the
grid is nearly as accurate as on the complete graph. After just
O
(
log(1/δ) log log(1/δ) log(1/dε)/dε2

)
rounds, each agent’s

encounter rate is a (1± ε) approximation to d with probability
1− δ (Theorem 1). This matches performance on the complete
graph up to a log log(1/δ) log(1/dε) factor.

Technically, to bound accuracy on the grid, we obtain moment
bounds on the number of times that two randomly walking agents
collide over a set of rounds (Lemma 5). These bounds also apply
to the number of equalizations (returns to origin) of a single
walk. While expected random walk hitting times, return times,
and collision rates are well studied for many graphs, including
grid graphs (7–9), higher moment bounds and high probability
results are much less common.

Our moment bounds show that, while the grid graph is slow
mixing, it has strong local mixing. That is, random walks tend
to spread quickly over a local area and not repeatedly cover
the same nodes, making random walk-based density estimation
accurate. Significant work has focused on showing that random
walk sampling is nearly as good as independent sampling for fast-
mixing expander graphs (10, 11). We extend this type of analysis
to slowly mixing graphs, showing that strong local mixing is suffi-
cient in many applications.

The key to the local mixing property of the grid is an upper
bound on the probability that two random walks starting from
the same position recollide (or that a single random walk equal-
izes) after a certain number of steps (Lemma 3). We show that
recollision probability bounds imply collision moment bounds on
general graphs, and apply this technique to extend our results to
d -dimensional grids, regular expanders, and hypercubes. We dis-
cuss applications of our bounds to the task of estimating the size
of a social network using random walks (12), obtaining improve-
ments over prior work for networks with relatively slow global
mixing times but strong local mixing. We also discuss connections
to density estimation by robot swarms and random walk-based
sensor network sampling (13, 14).

Theoretical Model for Density Estimation
We consider a set of agents populating a 2D torus with A nodes
(dimensions

√
A×
√
A). At each time step, each agent has an

associated ordered pair position , which gives its coordinates on
the torus. We assume that A is large—larger than the area agents
traverse over the runtimes of our algorithms. We believe the
torus model successfully captures the dynamics of density estima-
tion on a surface, while avoiding complicating factors of bound-
ary behavior on a finite grid.

Initially, each agent is placed independently at a uniform ran-
dom node in the torus. Computation proceeds in discrete, syn-
chronous rounds. Each agent updates its position with a step cho-
sen uniformly at random from {(0, 1), (0,−1), (1, 0), (−1, 0)} in
each round. Of course, in reality, ants do not move via pure ran-
dom walk; observed encounter rates seem to actually be lower
than predicted by a pure random walk model (6, 15). How-
ever, we feel that our model sufficiently captures the highly ran-

dom movement of ants while remaining tractable to analysis
and applicable to ant-inspired random walk-based algorithms.
Extending our work to more realistic models of ant movement
would be an interesting next direction.

Aside from the ability to move in each round, agents can
sense the number of agents other than themselves at their posi-
tion at the end of each round, formally through the function
count(position). We say that two agents collide in round r if they
have the same position at the end of the round. Outside of col-
lision counting, agents have no means of communication. They
are anonymous (cannot uniquely identify each other) and exe-
cute identical density estimation routines. A basic illustration of
our model is depicted in Fig. 1.

The Density Estimation Problem
Let (n + 1) be the number of agents, and define population den-

sity as d
def
= n/A. Each agent’s goal is to estimate d to (1± ε)

accuracy with probability at least 1− δ for ε, δ ∈ (0, 1), that is, to
return an estimate d̃ with P

[
d̃ ∈ [(1− ε)d , (1 + ε)d ]

]
≥ 1 − δ.

As a technicality, with n + 1 agents, we define d =n/A instead
of d = (n + 1)/A, for convenience of calculation. In the natural
case, when n is large, the distinction is unimportant.

Local vs. Global Density. The problem described above requires
estimating the global population density. We assume that agents
are initially distributed uniformly at random on the torus, which
is critical for fast global density estimation: When agents are uni-
formly distributed, the local density in a small radius around their
starting position reflects the global density with good probabil-
ity. Of course, in nature, ants are not typically uniformly dis-
tributed in the nest or surrounding areas. Additionally, they are
often interested in estimating local population densities, e.g., in a
new nest site when house-hunting (2) or around a nest entrance

Fig. 1. A basic illustration of our computational model. Each agent (ant)
may move to a random adjacent position on the 2D torus in each round
(illustrated by the red arrows). A collision occurs when two or more agents
are located at the same position. The agents detect collisions through the
count(position) function, which returns the number of other agents at their
current position. In this illustration, position is given as the (x, y) position,
with the bottom left corner corresponding to (1, 1). However, the precise
convention used is unimportant.
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when estimating the number of successful foragers for task
allocation (4).

We view our work as a first step toward a theoretical under-
standing of density estimation, and we focus on the global density
for simplicity. Removing our assumption of uniformly distributed
agents and understanding local density estimation are important
directions for future work.

Random Walk-Based Density Estimation on the 2D Torus
As discussed, the challenge in analyzing random walk-based den-
sity estimation on the torus arises from correlations between col-
lisions of nearby agents. If we do not restrict agents to random
walking, and instead allow each agent to take an arbitrary step
in each round, they can avoid collision correlations by splitting
into “stationary” and “mobile” groups and counting collisions
only between members of different groups. This allows them to
essentially simulate independent sampling of grid locations to
estimate density. This method is simple to analyze (SI Appendix,
section S1), but it is not “natural” in a biological sense or useful
for the applications we present. Further, independent sampling is
unnecessary! Algorithm 1 describes a simple random walk-based
approach that gives a nearly matching bound.

Our main theoretical result follows; its proof appears at the
end of this section, after a number of preliminary lemmas.
Throughout our analysis, we take the viewpoint of a single agent
executing Algorithm 1.

Theorem 1 (Random Walk Sampling Accuracy Bound). After run-
ning for t rounds, assuming t ≤A, an agent executing Algorithm 1
returns d̃ such that, for any δ > 0, with a probability of ≥1 − δ,
d̃ ∈ [(1 − ε)d , (1 + ε)d ] for ε= Θ

(√
log(1/δ) log(2t)/td

)
. In

other words, for any ε, δ ∈ (0, 1) if t = Θ
(

log(1/δ) log log(1/δ)

log(1/dε)/dε2
)
, d̃ is a (1± ε) multiplicative estimate of d with a

probability of ≥1− δ.
Theorem 1 focuses on the density estimate of a single agent

executing Algorithm 1. However, we note that, if we set δ=
δ′/n , then, by a union bound, all n agents will have d̃ ∈ [(1 −
ε)d , (1 + ε)d ] with probability δ′. The required running time t
will depend just logarithmically on δ′ and n .

Correctness of Encounter Rate in Expectation. The first step in
proving Theorem 1 is to show that the encounter rate d̃ is an
unbiased estimator of d . This result, in fact, holds for any ants
randomly walking on any regular graph.

Lemma 2 (Unbiased Estimator). Ed̃ = d .
Proof. We can decompose the collision bound c maintained

by each agent in Algorithm 1 as the sum of collisions with dif-
ferent agents over different rounds. Specifically, give the n other
agents arbitrary labels 1, 2, ...,n and let cj (r) equal 1 if the agent
collides with agent j in round r , and 0 otherwise. By linearity of
expectation, Ec =

∑n
j=1

∑t
r=1 Ecj (r).

Since each agent is initially at a uniform random location and,
after any number of steps, is still at a uniform random loca-

tion, for all j , r , Ecj (r) = 1/A. Thus, Ec =nt/A= dt and Ed̃ =
Ec/t = d .

We note that the torus is bipartite, and hence two agents ini-
tially located an odd number of steps away from each other will
never meet via random walking. However, this fact does not
change the expectation of d̃ computed above and, in fact, does
not affect any of our following proofs.

With Lemma 2 in place, it remains to show that the encounter
rate is close to its expectation with high probability and so pro-
vides a good estimate of density. To do this, we must bound
the strength of correlations between collisions of nearby agents
in successive rounds, which can decrease the accuracy of the
encounter rate-based estimate.

A Recollision Probability Bound. The key to bounding collision
correlations is bounding the probability of a recollision between
two agents in round r+m , assuming a collision in round r , which
we do in this section.

Let cj =
∑t

r=1 cj (r) be the total number of collisions with
agent j . Due to the initial uniform distribution of the agents, the
cj are all independent and identically distributed.

Each cj is the sum of highly correlated random variables;
due to the slow mixing of the grid, if two agents collide at
round r , they are much more likely to collide in successive
rounds. However, by bounding this recollision probability, we
are able to give strong moment bounds for the distribution of
each cj . We bound not only its variance but all higher moments.
This allows us to show that the average d̃ = 1/t

∑n
j=1 cj

falls close to its expectation d with high probability, giving
Theorem 1.

Lemma 3 (Recollision Probability Bound). Consider two agents a1

and a2 randomly walking on a 2D torus of dimensions
√
A×
√
A.

If a1 and a2 collide in round r , for any m ≥ 0, the probability that
a1 and a2 collide again in round r +m is Θ (1/m + 1)+O (1/A).

Fig. 2. A schematic of the proof of Lemma 3. We argue that the recollision
probability of two agents after m steps (shown in red and blue) is equivalent
to the probability that a length 2m random walk (shown in gray) returns to
its origin. We then argue that the random walk is likely to take roughly m
steps in both the x and y directions and hence has zero displacement in each
direction with probability Θ(1/

√
m).
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Proof sketch. The full proof of Lemma 3 is given in SI
Appendix, section S2. We sketch the main ideas here and illus-
trate them in Fig. 2.

We first show that the probability that a1 and a2 recollide in
round r + m is identical to the probability that a single 2m-step
random walk ends at its starting position.

The recollision probability is the probability that a1 and a2

have identical displacements after taking m steps each. By sym-
metry of the random walk steps, this is equal to the probability
that a1’s displacement vector is equal to the negative of a2’s. Fur-
thermore, this is just the probability that their 2m total random
walk steps have 0 overall displacement, which is the probability
that a 2m-step random walk ends at its origin.

One idea might be to bound this “equalization probability”
using the global mixing time of the torus (7). After Θ(A logA)
steps, a random walk is nearly as likely to be at any node in the
graph, including its origin. Thus, the equalization probability is
bounded by O(1/A) for 2m = Ω(A logA). Unfortunately, such a
bound says nothing about this probability for small m .

Thus, we must take a different approach. We first assume, for
simplicity, that the walk is on an infinite grid, and so there is no
possibility of returning to its origin by “wrapping around” the
torus. We later show that this only affects the equalization prob-
ability by an O (1/A) factor.

Considering a walk on the infinite grid, we condition on the
walk taking roughly m steps in both the x and y directions, which
occurs with high probability. We separately bound the probability
of zero displacement in each direction.

It is well known that an m-step random walk on the line has
roughly equal probability of ending at any point within radius
Θ(
√
m) of its origin. It thus has probability Θ (1/

√
m) of end-

ing at its origin. Fixing the number of steps in each direction, the
walk’s x and y displacements are independent. So, we can multi-
ply the probabilities for each direction, giving the final bound of
Θ (1/m + 1) (we write m + 1 in the denominator instead of m
so that the formula holds for m = 0.)

Since it may be of independent interest, in Corollary 15 in SI
Appendix, section S3, we restate the result of Lemma 3 explicitly
in terms of a bound on the probability that a single random walk
returns to its origin (equalizes) after m steps.

Collision Moment Bound. With Lemma 3 in hand, we can prove
our collision moment bound, which we use to show that the num-
ber of collisions an agent sees concentrates strongly around its
expectation. We first show that any agent is likely to collide with
many other agents during the execution of Algorithm 1, rather
than repeatedly colliding with just a few other agents. That is,
the probability that an agent collides at least once with any given
other agent is not too low.

Lemma 4 (First Collision Probability). Assuming t ≤A, for all
j ∈ [1, ...,n], P [cj ≥ 1] = Θ (t/A log 2t).

Proof sketch. By Lemma 3 and the assumption that t ≤ A, in t
rounds, an agent expects to recollide with any agent it encounters∑t−1

m=0 Θ (1/m + 1) = Θ(log 2t) times. By Lemma 2, an agent
expects to be involved in dt = nt/A total collisions. So, account-
ing for recollisions, it expects to collide with Θ (nt/A log 2t)
unique individuals. By symmetry, its collision probability with any
single individual is thus Θ (t/A log 2t). A formal proof is given in
SI Appendix, section S2.

Lemma 4 used that, by Lemma 3, an agent expects to collide
O(log 2t) times with any other agent it encounters. We can, in
fact, show that this bound is not just in expectation but extends
to the higher moments of the collision distribution.

Lemma 5 (Collision Moment Bound). For j ∈ [1, ...,n], let

c̄j
def
= cj −Ecj and assume t ≤ A. There is some fixed constant

w such that, for any integer k ≥ 2,

E
[
c̄kj

]
≤ twk

A
· k ! logk−1(2t).

When k = 2, Lemma 5 gives a bound on the variance of cj , which
can be used to show that cj falls close to its mean with good prob-
ability. By bounding the k th moment E[c̄kj ] for all k , we are able
to show even stronger concentration results.

Proof sketch. Very roughly, we separately consider the simple
case when cj = 0 and the case when cj ≥ 1, whose probability is
bounded in Lemma 4. In the latter case, we split cj over rounds
as cj =

∑t
r=1 cj (r) and expand out,

E[ckj ] =

t∑
r1=1

t∑
r2=1

...

t∑
rk=1

E [cj (r1)cj (r2)...cj (rk )]. [1]

E [cj (r1)cj (r2)...cj (rk )] is just the probability that two agents
collide in each of rounds r1, r2, ..., rk . Assuming that r1≤
r2≤ ...≤ rk and that there is a collision in round r1, we
can apply Lemma 3 to bound this probability as ≤wk/
(r2 − r1 + 1)...(rk − rk−1 + 1) for some constant w .

Obtaining the theorem requires combining this bound with
Eq. 1 and applying a number of careful rearrangements. How-
ever, the bound on E [cj (r1)cj (r2)...cj (rk )] is the crux of the
analysis. A full proof is in SI Appendix, section S2.

As with Lemma 3, the techniques used in Lemma 5 can be
applied to bounding the moments of the number of equalizations
of a single random walk. See Corollaries 16 and 17 in SI Appendix,
section S3.

Correctness of Encounter Rate with High Probability. Armed with
Lemma 5, we can finally show that

∑n
j=1 cj concentrates strongly

about its expectation. Since d̃ = 1/t
∑n

j=1 cj , this is enough
to prove the accuracy of encounter rate-based density estima-
tion (Algorithm 1). We first restate Lemma 5 using a standard
“Bernstein condition” on the sum

∑n
j=1 cj .

Corollary 6 (Bernstein Condition). Assuming t ≤A,

E

( n∑
j=1

cj − E

[
n∑

j=1

cj

])k
 ≤ 1

2
k !σ2bk−2

for all k ≥ 2 and some b = Θ(log 2t) and σ2 = Θ(td log 2t).
Proof. By Lemma 5, there exists some constant w such that,

for σ2 = wt log 2t/A and b = w log 2t , c̄j
def
= cj − Ecj satisfies

E
[
c̄kj

]
≤ 1

2
k !σ2bk−2.

Since each cj is independent,

E

( n∑
j=1

cj − E

[
n∑

j=1

cj

])k
 = E

( n∑
j=1

c̄j

)k


=

n∑
j=1

E[c̄kj ] ≤ n · k !σ2bk−2

2
.

The lemma follows after replacing σ2 with nσ2 = Θ(td log 2t).
We use the following concentration bound for random vari-

ables satisfying such a Bernstein condition.

Lemma 7. Suppose that X satisfies E[(X − EX )k ] ≤ 1/2k !σ2bk−2

for all k ≥ 3. Then, for any ∆ ≥ 0, P[|X − EX | ≥ ∆] ≤
2e−∆2/2(σ2+b∆).

We conclude this section by proving our main theorem on the
accuracy of random walk-based density estimation.
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Proof of Theorem 1. In Algorithm 1, d̃ is set to 1/t
∑n

j=1 cj .
So the probability that d̃ falls within an ε multiplicative factor of
its mean is the same as the probability that

∑n
j=1 cj falls within

an ε multiplicative factor of its mean, which is equal to tEd̃ = td
by Lemma 2. By Corollary 6 and Lemma 7,

δ
def
= P

[∣∣∣∣∣
n∑

j=1

cj − E

[
n∑

j=1

cj

]∣∣∣∣∣ ≥ εE
[

n∑
j=1

cj

]]

= P

[∣∣∣∣∣
n∑

j=1

cj − td

∣∣∣∣∣ ≥ εtd
]
≤ 2e

Θ

(
− ε2t2d2

2(td log 2t+εtd log 2t)

)
.

Restricting ε≤ 1 and rearranging gives ε2td/log 2t =

Θ (log(1/δ)) and so ε = Θ
(√

log(1/δ) log 2t/td
)

, yielding the
theorem.

Extensions to Other Topologies
We now discuss extensions of our results to a broader set of graph
topologies, demonstrating the generality of our local mixing anal-
ysis. We illustrate divergence between local and global mixing
properties, which can have significant effects on random walk-
based algorithms. Full proofs for all results in this section are
deferred to SI Appendix, section S4.

From Recollision Bounds to Accurate Density Estimation. Our
proofs for the 2D torus are largely independent of graph struc-
ture, using just a recollision probability bound (Lemma 3) and
the regularity (uniform node degrees) of the grid, so agents
remain uniformly distributed on the nodes in each round (see,
for example, Lemma 2). Hence, extending our results to other
regular graphs primarily involves obtaining recollision probabil-
ity bounds for these graphs.

We consider agents on a graph with A nodes that execute
analogously to Algorithm 1, stepping to a random neighbor in
each round. Again, we focus on the multiagent case, but similar
bounds (resembling Corollaries 16 and 17 in SI Appendix, section
S3) hold for a single random walk. We start with a lemma which
gives density estimation accuracy in terms of recollision proba-
bility. This is a direct generalization of our grid analysis.

Lemma 8 (Recollision Probability to Density Estimation Accuracy).
Consider a regular graph with A nodes such that, if two ran-
domly walking agents a1 and a2 collide in round r , for any
0 ≤ m ≤ t , the probability that they collide again in round
r + m is Θ (β(m)) for some nonincreasing function β(m). Let

B(t)
def
=
∑t

m=0 β(m). After running for t ≤ A steps, Algorithm 1
returns d̃ such that, for any δ > 0, with a probability of ≥1 − δ,
d̃ ∈ [(1− ε)d , (1 + ε)d ] for ε = O

(√
log(1/δ)B(t)/td

)
.

Note that, in the special case of the 2D torus, by Lemma 3, we
can set β(m) = 1/(m + 1) and hence B(t) = Θ(log 2t), recover-
ing Theorem 1.

Density Estimation on k-Dimensional Tori. We first consider
k -dimensional tori for general k . As k increases, local mixing
becomes stronger, fewer recollisions occur, and density estima-
tion becomes easier. In fact, for constant k ≥ 3, although the
torus still mixes slowly, density estimation is as accurate as on the
complete graph! Throughout this section, we assume that k is a
small constant and so hide multiplicative factors in f (k) for any
function f in our asymptotic notation. We subscript the notation
with k to make this clear. We begin with the case of k = 1.

Lemma 9 (Recollision Probability Bound: Ring). If two randomly
walking agents a1 and a2 are located on a 1D torus (a ring) with A
nodes, and collide in round r , for any m ≥ 0, the probability that a1

and a2 collide again in round r +m for k ≥ 1 is Θ
(
1/
√
m + 1

)
+

O (1/A).
Proof sketch. This bound can be shown similarly to Lemma 3

(and, in fact, its proof is fully contained in the proof of Lemma 3.)
A 2m-step random walk on a line ends at its origin with proba-
bility Θ(1/

√
m + 1). On a ring with A nodes, the slightly weaker

bound of Θ
(
1/
√
m + 1

)
+ O (1/A) holds.

For m ≤ A, the O (1/A) term is absorbed into the
Θ
(
1/
√
m + 1

)
, and one can show that

∑t
m=0 1/

√
m + 1 =

Θ(
√
t). Plugging into Lemma 8, on a ring, random walk-

based density estimation gives ε = O

(√
log(1/δ)

√
t/td

)
=

O

(√
log(1/δ)/

√
td

)
. Rearranging, t = Θ

((
log(1/δ)/ε2d

)2)
rounds are necessary to obtain a 1± ε approximation with a
probability of ≥1 − δ for any ε, δ ∈ (0, 1). Local mixing on the
ring is much worse than on the torus. Hence, density estimation
is much more difficult, requiring t to be quadratic rather than
linear in 1/d and 1/ε2.

We now cover k ≥ 3. While global mixing time is on the order
of A2/k , local mixing is so strong that our accuracy bounds nearly
match those of independent sampling.

Lemma 10 (Recollision Probability Bound: High-Dimensional
Torus). If two randomly walking agents a1 and a2 are located on
a k -dimensional torus with A nodes, and collide in round r , for any
constant k ≥ 3, m ≥ 0, the probability that a1 and a2 collide in
round r + m is Θk

(
1/(m + 1)k/2

)
+ O (1/A).

Proof sketch. The proof is similar to that of Lemma 3. To col-
lide in round r+m , the agents must have identical displacements
in each of the k dimensions after m steps. Since k is a small con-
stant, with high probability, the agents take Θ(m/k) steps in each
dimension. After conditioning on the step counts, the k collisions
are independent, each occurring with probability Θ

(
1/
√

m/k
)

via the argument of Lemma 3. The result follows by multiplying
these k probabilities together, noting that k dependence is hid-
den in the asymptotic notation.

To convert the above bound to a density estimation accu-
racy, we can use a slightly modified version of Lemma 8,
which applies to the case when our collision probability is
O(β(m)) but not neccesarily Θ(β(m)). For t ≤A and k ≥ 3,∑t

m=0(1/(m + 1)k/2 + 1/A)< 1+
∑∞

m=0 1/(m + 1)k/2 =O(1).

So we can set B(t) = Ok (1) and have ε=Ok

(√
log(1/δ)/td

)
.

Rearranging, we require t = Θk

(
log(1/δ)/ε2d

)
. This matches

independent sampling up to constants and multiplicative
factors in k .

Density Estimation on Regular Expanders. When a graph does
mix well globally, it mixes well locally. An obvious example is
the complete graph, on which random walk-based and inde-
pendent sampling-based density estimations are equivalent. We
extend this intuition to any regular expander. An expander is
a graph whose random walk matrix has its second eigenvalue
bounded away from 1, and so on which random walks mix
quickly. Expanders are “well-connected” graphs with many appli-
cations, including in the design of robust communication net-
works (16) and efficient sampling schemes (10).

Lemma 11 (Recollision Probability Bound: Regular Expander). Let
G be a k -regular expander with A nodes and adjacency matrix
M. Let W = 1/k · M be its random walk matrix, with eigenvalues
λ1 ≥ λ2≥ ...≥λA. Let λ= max{|λ2|, |λA|}< 1. If two randomly
walking agents a1 and a2 collide in round r , for anym ≥ 0, the prob-
ability that they collide again in round r +m is, at most, λm + 2/A.
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Proof sketch. The bound follows from noting that the stable
distribution on a regular expander is uniform, and the location
distribution of any agent after m steps converges exponentially
quickly to this distribution, with rate λ.

Again, we bound density estimation accuracy via a modifica-
tion of Lemma 8, which applies when we have collision probabil-
ity O(β(m)) but not necessarily Θ(β(m)). This modified lemma
gives a B(t)2 dependence. B(t) =

∑t
m=0 β(m) ≤ 1/1− λ +

2t/A. Assuming t = O(A), ε = O

(√
log(1/δ)/td(1− λ)2

)
.

Rearranging, t = Θ
(
log(1/δ)/ε2d(1− λ)2), matching indepen-

dent sampling up to a factor of O(1/(1− λ)2).

Density Estimation k-Dimensional Hypercubes. Finally, we give
bounds for a k -dimensional hypercube. Such a graph has A= 2k

vertices mapped to the elements of {±1}k , with an edge between
any two vertices that differ by Hamming distance 1. The hyper-
cube is relatively fast mixing. Its adjacency matrix eigenvalues
are [−k ,−k + 2, ..., k − 2, k ]. Since it is bipartite, we can ignore
the negative eigenvalues: To return to its origin, a random walk
must take an even number of steps, so we need only need to con-
sider the squared walk matrix W2, which has all positive eigenval-
ues. Applying Lemma 11 with λ= Θ(1− 2/k) = Θ(1− 1/ logA)

gives t = Θ
(
log (1/δ) log2(A)/ε2d

)
. However, it is possible to

remove the dependence on A via a more refined analysis: While
the global mixing time of the graph increases as A grows, local
mixing becomes stronger!

Lemma 12 (Recollision Probability Bound: k-Dimensional Hyper-
cube). If two randomly walking agents a1 and a2 are located on a
k -dimensional hypercube with A= 2k vertices and collide in round
r , for any m ≥ 0, the probability that a1 and a2 collide in round
r + m is O

(
(7/10)m + 1/

√
A
)

.

Converting to a density estimation bound, we have B(t) =∑t
m=0 β(m)≤ 10/3 + t/

√
A. If we assume t =O(

√
A), this

gives ε=O
(√

log(1/δ)/td
)

and so t = Θ
(
log(1/δ)/ε2d

)
,

matching independent sampling.

Applications
We conclude by discussing algorithmic applications of our
ant-inspired density estimation algorithm (Algorithm 1), varia-
tions on this algorithm, and the analysis techniques we have
developed.

Social Network Size Estimation. Random walk-based density esti-
mation is closely related to work on estimating the size of social
networks and other massive graphs using random walks (12,
17–19). In these applications, one does not have access to the
full graph (so cannot exactly count the nodes) but can simulate
random walks by following links between nodes (20, 21). One
approach is to run a single random walk and count repeat node
visits (17, 18). Alternatively, ref. 12 proposes running multiple
random walks and counting their collisions, which gives an esti-
mate of the walk’s density. Since the number of walks is known,
this yields an estimate for network size.

This approach can be significantly more efficient, since the
dominant cost is typically in link queries to the network. With
multiple, shorter random walks, this cost can be trivially dis-
tributed to multiple servers simulating walks independently. Visit
information can then be aggregated, and the collision count can
be computed in a centralized manner.
Random walk-based algorithm for network size estimation. Con-
sider an undirected, connected, nonbipartite graph G = (V ,E).
Let S be the set of vertices of G that are “known.” Initially,
S = {v}, where v is a seed vertex. We can access G by look-

ing up the neighborhood Γ(vi) of any vertex vi ∈S and adding
Γ(vi) to S .

To compute the network size |V |, we could scan S , looking up
the neighbors of each vertex and adding them to the set. Repeat-
ing this process until no new nodes are added ensures that S =V
and we know the network size. However, this method requires
|V | neighborhood queries. The goal is to use significantly fewer
queries using random walk-based sampling.

A number of challenges are introduced by this application.
While we can simulate many random walks on G , we can no
longer assume these random walks start at randomly chosen
nodes, as we do not have the ability to uniformly sample nodes
from the network. Instead, we must allow the random walks to
run for a burn-in phase of length proportional to the mixing time
of G . After this phase, the walks are distributed approximately
according to the stable distribution of G .

Further, in general, G is not regular. In the stable distribu-
tion, a random walk is located at a vertex with probability pro-
portional to its degree. Hence, collisions tend to occur more at
higher-degree vertices. To correct for this bias, we count a colli-
sion at vertex vi with weight 1/deg(vi).

Our results depend on a natural generalization of recollision
probability. For any i , j , let p(vi , vj ,m) be the probability that
an m-step random walk starting at vi ends at vj . Define

β(m)
def
=

maxi,jp(vi , vj ,m)

deg(vj )
.

Intuitively, β(m) is the maximum m-step collision probability,
weighted by degree since higher-degree vertices are visited more
in the stable distribution. Let B(t) =

∑t
m=1 β(m). Note that this

weighted B(t) is trivially upper bounded by the unweighted mea-
sure used in Lemma 8.

For simplicity, we initially ignore burn-in and assume
that our walks start distributed exactly by the stable dis-
tribution of G . A walk starts at vertex vi with probability
pi

def
= deg(vi)/

∑
i deg(vi) = deg(vi)/2|E |, and initial locations

are independent. We also assume knowledge of the average
degree deg = 2|E |/|V |. See SI Appendix, section S5 for a rig-
orous analysis of burn-in and average degree estimation.

Note that there are many ways to implement the count(·) func-
tion used in Algorithm 2. One possibility is to simulate the ran-
dom walks in parallel, recording their paths, and then to per-
form centralized postprocessing to count collisions. As queries
to the network are considered to dominate time cost, this colli-
sion counting step is relatively inexpensive.

We prove the following theorem in SI Appendix, section S5.

Theorem 13. If Algorithm 2 is run using n random walks for
t steps, as long as n2t = Θ

(
B(t) deg + 1/ε2δ · |V |

)
, then, with

probability at least 1− δ, it returns Ã ∈ [(1− ε)|V |, (1 + ε)|V |].
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Proof sketch. The proof is similar to that of Theorem 1. It is
not hard to see that, due to our reweighting of each collision by
1/ deg(wj ), EC = 1/|V |. The challenge is showing that C con-
centrates around its expectation and hence Ã= 1/C is close to
|V |. Due to the complicating factors of nonuniform degree, we
are unable to compute a general moment bound for each cj as
done in Lemma 5. However, we can give a variance bound on
C , and bound its deviation via Chebyshev’s inequality. This gives
a worse dependence on the failure probability: 1/δ instead of
log(1/δ). We note that this can be improved by running the algo-
rithm log(1/δ) times, each with success probability 1/3, and tak-
ing the median of the results.

Overall runtime and comparison to previous work. Let M denote
the burn-in time required before running Algorithm 2 (see SI
Appendix, section S5 for details). To obtain a (1 ± ε) estimate
of network size with probability 1− δ, we must run n random
walks for M + t steps, making n(M + t) link queries, where, by
Theorem 13 and our analysis of average degree estimation in SI
Appendix, section S5, we have

n = Θ

max

 deg
degminε

2δ
,

√
|V | · (B(t) deg + 1)

t · ε2δ


. [2]

Typically, the second term dominates, since deg<< |V |. Hence,
by increasing t , we are able to use fewer random walks, signifi-
cantly decreasing the number of link queries if M is large.

Ref. 12 uses a different approach, halting random walks and
counting collisions immediately after burn-in. For reasonable

node degrees, they require n = Θ
(
|V | · deg/ε2δ ·

√∑
deg(vi)

2
)
.

Assuming that
√∑

deg(vi)
2 <n , and setting t = 1, this is some-

what smaller than our bound, as
∑

deg(vi)
2≥ |V | · deg. How-

ever, Eq. 2 gives an important tradeoff: By increasing t , we can
increase the number of steps in our random walks, decreasing
the total number of walks.

As an illustrative example, consider a k -dimensional torus
graph for k ≥ 3 [for k = 2, mixing time is Θ(|V |), so we might
as well census the full graph]. The mixing time required for
Algorithm 2 (see SI Appendix, section S5 for details) is M =

Θ(log(|V |/δ)|V |2/k ). All nodes have degree 2k , and using the
bounds above, to obtain a (1± ε) estimate of |V |, the algorithm
of ref. 12 requires M · n = Θ

(
log(|V |/δ)/ε

√
d · |V |2/k+1/2

)
link queries to obtain a size estimate. In contrast, assuming
|V | is large, we require n = Θ

(√
|V |/t · ε2δ

)
, since, by Lemma

10, B(t) =O(1/k) and deg = degmin = k . If we set t = Θ(M ),
the total number of link queries needed is n(M + t) =

O
(√

log(|V |/δ)/ε
√
d · |V |(k+1)/2k

)
. This beats ref. 12 by

improving dependence on |V | and the logarithmic burn-in term.
Ignoring error dependences, if k = 3, ref. 12 requires Θ(n7/6)
queries, which is more expensive than fully censusing the graph.
We require O(n2/3) queries, which is sublinear in the graph size.

We leave open comparing our bounds with those of ref. 12 on
more natural classes of graphs. It would be interesting to deter-
mine typical values of B(t) in real work networks or popular
graph models, such as preferential attachment models and others
with power-law degree distributions.

Distributed Density Estimation by Robot Swarms. Algorithm 1 can
be directly applied as a simple and robust density estimation
algorithm for robot swarms moving on a 2D plane modeled as
a grid. Additionally, the algorithm can be used to estimate the
frequency of certain properties within the swarm. Let d be the

overall population density and dP be the density of agents with
some property P . Let fP = dP/d be the relative frequency of P .

Assuming that agents with property P are distributed uni-
formly in population and that agents can detect this property
(through direct communication or some other signal), then they
can separately track encounters with these agents. They can
compute an estimate d̃ of d and d̃P of dP . By Theorem 1,
after running for t = Θ

(
log(1/δ) log log(1/δ) log(1/dε)/dPε

2
)

steps, with probability 1− 2δ, d̃P/d̃ ∈ [(1− ε/1 + ε) fP ,
(1 + ε/1− ε) fP ] = [(1−O(ε))fP , (1 + O(ε))fP ] for small ε.

In an ant colony, properties may include whether an ant has
recently completed a successful foraging trip (4), or if an ant is
a nestmate or enemy (3). In a robotics setting, properties may
include whether a robot is part of a certain task group, whether it
has completed a certain task, or whether it has detected a certain
event or environmental property.

Random Walk-Based Sensor Network Sampling. Finally, we
believe our moment bounds for a single random walk (Corollaries
16 and 17 in SI Appendix, section S3) can be applied to random
walk-based distributed algorithms for sensor network sampling.
We leave obtaining rigorous bounds in this domain to future work.

Random walk-based sensor network sampling (13, 14) is a
technique in which a query message (a “token”) is initially sent
by a base station to some sensor. The token is relayed randomly
between sensors, which are connected via a grid network, and its
value is updated appropriately at each step to give an answer to
the query. This scheme is robust and efficient; it easily adapts to
node failures and does not require setting up or storing spanning
tree communication structures.

Random walk-based sampling could be used, for example, to
estimate the percentage of sensors that have recorded a specific
condition, or the average value of some measurement at each
sensor. However, as in density estimation, unless an effort is
made to record which sensors have been previously visited, addi-
tional error is added due to repeat visits. Recording previous vis-
its introduces computational burden: Either the token message
size must increase or nodes themselves must remember which
tokens they have seen. We are hopeful that our moment bounds
can be used to show that this is unnecessary: Due to strong local
mixing, the number of repeat sensor visits will be low, and the
performance reduction limited.

We remark that estimating the percentage of sensors in a
network or the density of robots in a swarm with a property
that is uniformly distributed is a special case of a more gen-
eral data aggregation problem: Each agent or sensor holds a
value vi drawn independently from some distribution D. The
goal is to estimate some statistic of D, such as its expectation.
In the case of density estimation, vi is simply an indicator ran-
dom variable which is 1 with probability d and 0 otherwise.
Extending our results to more general data aggregation problems
and showing that random walk sampling matches independent
sampling in some cases is an interesting future direction.

Discussion and Future Work
We have presented a theoretical analysis of random walk-based
density estimation by agents moving synchronously on a 2D torus
graph. We have also presented applications of our techniques to
density estimation on other simple graph topologies and to the
problems of social network size estimation and density estima-
tion on robot swarms.

Aside from using our bounds to study sensor network sampling
and giving improved theoretical and empirical understanding of
our social network size estimation algorithm, our work leaves
open a number of questions related to modeling random walk-
based density estimation in ant colonies.

We feel that our simple computational model well reflects
the behavior of ants estimating density via collision rates while
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moving around a 2D surface. However, extending our results to
more realistic models, e.g., with continuous movement along a
surface which is either bounded or extends out indefinitely, is an
interesting future direction.

As discussed, understanding how close actual ant movements
are to random walks, and how nonrandom behavior influences
density estimation via collision detection, is also important.
In conjunction with this issue, removing our uniform density
assumption and understanding how ants may estimate local pop-
ulation densities which may vary throughout the nest or sur-
rounding area is an important direction.

Finally, we note that the accuracy bound of Theorem 1 depends
on the density d . In many applications, such as in quorum sens-
ing, ants only need to detect when d is above some fixed thresh-
old. In this case, better bounds, where t can be determined inde-
pendently of the density, may be possible.
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