
MIT Open Access Articles

Task-structured probabilistic I/O automata

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: 10.1016/J.JCSS.2017.09.007

Publisher: Elsevier BV

Persistent URL: https://hdl.handle.net/1721.1/134969

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-NonCommercial-NoDerivs License

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/134969
http://creativecommons.org/licenses/by-nc-nd/4.0/


Task-Structured Probabilistic I/O Automata

Ran Canetti∗,,‡, Ling Cheung†, Dilsun Kaynar‡, Moses Liskov§,
Nancy Lynch‡, Olivier Pereira¶, Roberto Segala‖

∗IBM T.J. Watson Research Center, USA,†Radboud University of Nijmegen, the Netherlands,‡MIT CSAIL, USA,
§The College of William and Mary, USA,¶Universit́e Catholique de Louvain, Belgium,‖Universit̀a di Verona, Italy

Abstract— Modeling frameworks such as Probabilistic I/O
Automata (PIOA) and Markov Decision Processes permit both
probabilistic and nondeterministic choices. In order to use such
frameworks to express claims about probabilities of events, one
needs mechanisms for resolving the nondeterministic choices.
For PIOAs, nondeterministic choices have traditionally been
resolved by schedulers that have perfect information about the
past execution. However, such schedulers are too powerful for
certain settings, such as cryptographic protocol analysis, where
information must sometimes be hidden.

Here, we propose a new, less powerful nondeterminism-
resolution mechanism for PIOAs, consisting oftasksand local
schedulers. Tasks are equivalence classes of system actions
that are scheduled by oblivious, global task sequences. Local
schedulers resolve nondeterminism within system components,
based on local information only. The resulting task-PIOA
framework yields simple notions of external behavior and
implementation, and supports simple compositionality results.
We also define a new kind of simulation relation, and show
it to be sound for proving implementation. We illustrate the
potential of the task-PIOA framework by outlining its use in
verifying an Oblivious Transfer protocol.

I. I NTRODUCTION

The Probabilistic I/O Automata (PIOA)modeling frame-
work [Seg95], [SL95] is a simple combination of
I/O Automata [LT89] and Markov Decision Processes
(MDP) [Put94]. As demonstrated in [LSS94], [SV99],
[PSL00], PIOAs are well suited for modeling and analyzing
distributed algorithms that use randomness as a computa-
tional primitive. In this setting, distributed processes use
random choices to break symmetry, in solving problems
such as choice coordination [Rab82] and consensus [BO83],
[AH90]. Each process is modeled as an automaton with
random transitions, and an entire protocol is modeled as
the parallel composition of process automata and automata
representing communication channels.

This modeling paradigm combines nondeterministic and
probabilistic choices in a natural way. Nondeterminism is
used here for modeling uncertainties in the timing of events
in highly unpredictable distributed environments. It is also
used for modeling distributed algorithms at high levels
of abstraction, leaving many details unspecified. This in
turn facilitates algorithm verification, because results proved
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about nondeterministic algorithms apply automatically to
an entire family of algorithms, obtained by resolving the
nondeterministic choices in particular ways.

In order to formulate and prove probabilistic properties
of distributed algorithms, one needs mechanisms for re-
solving the nondeterministic choices. In the randomized
distributed setting, the most common mechanism is aperfect-
informationevent scheduler, which has access to local state
and history of all system components and has unlimited com-
putation power. Thus, probabilistic properties of distributed
algorithms are typically asserted with respect to worst-case,
adversarial schedulers who can choose the next event based
on complete knowledge of the past (e.g., [PSL00]).

One would expect that a similar modeling paradigm,
including both probabilistic and nondeterministic choices,
would be similarly useful for modelingcryptographic pro-
tocols. These are special kinds of distributed algorithms,
designed to protect sensitive data when it is transmitted
over unreliable channels. Their correctness typically relies on
computational assumptions, which say that certain problems
cannot be solved by an adversarial entity with bounded
computation resources [Gol01]. However, a major problem
with this extension is that the perfect-information scheduler
mechanism used for distributed algorithms is too powerful
for use in the cryptographic setting. A scheduler that could
see all information about the past would, in particular, see
“secret” information hidden in the states of non-corrupted
protocol participants, and be able to “divulge” this informa-
tion to corrupted participants, e.g., by encoding it in the order
in which it schedules events.

In this paper, we presenttask-PIOAs, an adaptation of
PIOAs, that has new, less powerful mechanisms for resolving
nondeterminism. Task-PIOAs are suitable for modeling and
analyzing cryptographic protocols; they may also be useful
for other kinds of distributed systems in which the perfect
information assumption is unrealistically strong.

Task-PIOAs: A task-PIOA is simply a PIOA augmented
with a partition of non-input actions into equivalence classes
called tasks. A task is typically a set of related actions, for
example, all the actions of a cryptographic protocol that
send a round 1 message. Tasks are units of scheduling;
they are scheduled by simple oblivious, globaltask schedule
sequences. We define notions ofexternal behaviorand
implementationfor task-PIOAs, based on the trace distri-
bution semantics proposed by Segala [Seg95]. We define
parallel composition in the obvious way and show that our
implementation relation is compositional.



We also define a new type ofsimulation relation, which
incorporates tasks, and prove that it is sound for prov-
ing implementation relationships between task-PIOAs. This
new relation differs from simulation relations studied ear-
lier [SL95], [LSV03], in that it relates probability measures
rather than states. In many cases, including our work on
cryptographic protocols (see below), tasks alone suffice for
resolving nondeterminism. However, for extra expressive
power, we define a second mechanism,local schedulers,
which can be used to resolve nondeterminism within system
components, based on local information only. This mecha-
nism is based on earlier work in [CLSV].

Cryptographic protocols: In [CCK+06b], we applied the
task-PIOA framework to analyze an Oblivious Transfer (OT)
protocol of Goldreich, et al. [GMW87]. That analysis re-
quired defining extra structure for task-PIOAs, in order to
express issues involving computational limitations. Thus,
we defined notions such astime-bounded task-PIOAs, and
approximate implementation with respect to time-bounded
environments. Details are beyond the scope of this paper,
but we outline our approach in Section IV.

Adversarial scheduling: The standard scheduling mech-
anism in the cryptographic community is anadversarial
scheduler, namely, a resource-bounded algorithmic entity
that determines the next move adaptively, based on its
own view of the computation so far. This is weaker than
the perfect-information schedulerused for distributed al-
gorithms, which have access to local state and history of
all components and have unlimited computation power. Our
task schedule sequences are essentiallyoblivious schedulers,
which fix the entire schedule of tasks, nondeterministically,
in advance. This formulation does not directly capture the
adaptivity of adversarial schedulers.

Our solution is to separate scheduling concerns into two
parts. We model the adaptive adversarial scheduler as a sys-
tem component, for example, a message delivery service that
can eavesdrop on the communications and control the order
of message delivery. Such a system component has access to
partial information about the execution: it sees information
that other components communicate to it during execution,
but not “secret information” that these components hide.
On the other hand, basic scheduling choices are resolved
by a task schedule sequence, chosen nondeterministically
in advance. These tasks are equivalence classes of actions,
independent of actual choices that are determined during the
execution. We believe this separation is conceptually mean-
ingful: The high-level adversarial scheduler is responsible
for choices that are essential in security analysis, such as
the ordering of message deliveries. The low-level schedule
of tasks resolves inessential choices. For example, in the
OT protocol, both the transmitter and receiver make random
choices, but it is inconsequential which does so first.

Related work: The literature contains numerous models
that combine nondeterministic and probabilistic choices (see
[SdV04] for a survey). However, few tackle the issue of
partial-information scheduling, as we do. Exceptions in-
clude [CH05], which models local-oblivious scheduling,
and [dA99], which uses partitions on the state space to

obtain partial-information schedules. The latter is essen-
tially within the framework ofpartially observable MDPs
(POMDPs), originally studied in the context of reinforcement
learning [KLC98]. All of these accounts neglect partial
information aspects of (parameterized) actions, therefore are
not suitable in a cryptographic setting. A version of local
schedulers was introduced in [CLSV].

Our general approach to cryptographic protocol verifica-
tion was directly inspired by the Interactive Turing Machine
(ITM) framework of [Can01]. There, participants in a proto-
col are modeled as ITMs and messages as bit strings written
on input and output tapes. ITMs are purely probabilistic,
and scheduling nondeterminism is resolved using predefined
rules. In principle, this framework could be used to analyze
cryptographic protocols rigorously, including computational
complexity issues. However, complete analysis of protocols
in terms of Turing machines is impractical, because it
involves too many low-level machine details. Indeed, in
the computational cryptography community, protocols are
typically described using an informal high-level language,
and proof sketches are given in terms of the informal protocol
descriptions. We aim to provide a framework in which proofs
in the ITM style can be carried out formally, at a high
level of abstraction. Also, we aim to exploit the benefits of
nondeterminism to a greater extent than the ITM approach.

Several other researchers have added features for com-
putational cryptographic analysis to conventional abstract
concurrency modeling frameworks such as process algebras
and restricted forms of PIOAs [LMMS98], [PW00], [PW01],
[MMS03]. These approaches again use less nondetermin-
ism than we do: individual system components are purely
probabilistic, and scheduling is determined by predefined
rules. For example, in [LMMS98], a uniform distribution
is imposed on the set of possible reductions for each term.
In [MMS03], internal reductions are prioritized over external
communications and several independence properties are
assumed. In [PW01], scheduling is based on a distributed
scheme wherein each system component schedules the next
one, based on its own local information. None of the prior
work separates high-level and low-level nondeterminism
resolution, as we do.

Roadmap: Section II defines task-PIOAs, task schedules,
composition, and implementation, and presents a composi-
tionality result. Section III presents our simulation relation
and its soundness theorem. Section IV summarizes our OT
protocol case study. Section V discusses local schedulers, and
concluding discussions follow in Section VI. Further details
appear in [CCK+06a].

II. TASK-PIOAS

A. Basic PIOAs
We assume our reader is comfortable with basic notions of

probability theory, such asσ-fields and (discrete) probability
measures. A summary is provided in [CCK+06a].

A probabilistic I/O automaton (PIOA)P is a tuple
(Q, q̄, I, O,H,D) where: (i)Q is a countable set ofstates,
with start state q̄ ∈ Q; (ii) I, O and H are countable
and pairwise disjoint sets of actions, referred to asinput,
output and internal actions, respectively; and (iii)D ⊆



(Q× (I ∪O∪H)×Disc(Q)) is a transition relation, where
Disc(Q) is the set of discrete probability measures onQ. An
actiona is enabledin a stateq if (q, a, µ) ∈ D for someµ.
The setA := I ∪O ∪H is called theaction alphabetof P.
If I = ∅, thenP is closed. The set ofexternalactions ofP
is I ∪O and the set oflocally controlledactions isO ∪H.
We assume thatP satisfies:

• Input enabling:For every stateq ∈ Q and input action
a ∈ I, a is enabled inq.

• Transition determinism:For everyq ∈ Q and a ∈ A,
there is at most oneµ ∈ Disc(Q) such that(q, a, µ) ∈ D.
If there is exactly one suchµ, it is denoted byµq,a, and
we write tranq,a for the transition(q, a, µq,a).

An execution fragmentof P is a finite or infinite sequence
α = q0a1 q1a2 . . . of alternating states and actions, such that
(i) if α is finite, then it ends with a state; and (ii) for every
non-finali, there is a transition(qi, ai+1, µ) ∈ D with qi+1 ∈
supp(µ), wheresupp(µ) denotes the support ofµ. We write
fstate(α) for q0, and, if α is finite, we write lstate(α) for
its last state. We useFrags(P) (resp.,Frags∗(P)) to denote
the set of all (resp., all finite) execution fragments ofP. An
executionof P is an execution fragment beginning from the
start statēq. Execs(P) (resp.,Execs∗(P)) denotes the set of
all (resp., finite) executions ofP.

The traceof an execution fragmentα, written trace(α), is
the restriction ofα to the set of external actions ofP. The
symbol≤ denotes the prefix relation on sequences, which
applies in particular to execution fragments and traces.

Nondeterministic choices inP are resolved using asched-
uler, which is a functionσ : Frags∗(P) −→ SubDisc(D)
such that(q, a, µ) ∈ supp(σ(α)) implies q = lstate(α).
Here,SubDisc(D) denotes the set of discrete sub-probability
measures onD—that is, the measure of the entire spaceD is
required to be≤ 1. Thus,σ decides (probabilistically) which
transition (if any) to take after each finite execution fragment
α.

A schedulerσ and a finite execution fragmentα generate
a measureεσ,α on theσ-field FP generated by cones of exe-
cution fragments, where each coneCα′ is the set of execution
fragments that haveα′ as a prefix. The measure of a cone,
εσ,α(Cα′), is defined recursively, as: (i)0, if α′ 6≤ α and
α 6≤ α′; (ii) 1, if α′ ≤ α; and (iii) εσ,α(Cα′′)µσ(α′′)(a, q), if
α′ is of the formα′′ a q andα ≤ α′′. Here,µσ(α′′)(a, q) is
defined to beσ(α′′)(tranlstate(α′′),a)µlstate(α′′),a(q), that is,
the probability thatσ(α′′) chooses a transition labeled by
a and that the new state isq. Standard measure theoretic
arguments ensure thatεσ,α is well-defined. We call the state
fstate(α) thefirst stateof εσ,α and denote it byfstate(εσ,α).
If α consists of the start statēq only, we call εσ,α a
probabilistic executionof P.

Let µ be a discrete probability measure overFrags∗(P).
We denote byεσ,µ the measure

∑
α µ(α)εσ,α and we say

that εσ,µ is generated byσ andµ. We call the measureεσ,µ

a generalized probabilistic execution fragmentof P. If every
execution fragment insupp(µ) consists of a single state, then
we call εσ,µ a probabilistic execution fragmentof P.

We note that thetrace function is a measurable function
from FP to theσ-field generated by cones of traces. Thus,
given a probability measureε on FP , we define thetrace

distribution of ε, denotedtdist(ε), to be the image measure
of ε under trace. We extend thetdist() notation to arbi-
trary measures on execution fragments ofP. We denote
by tdists(P) the set of trace distributions of (probabilistic
executions of)P.

Definition 2.1: Two PIOAsPi = (Qi, q̄i, Ii, Oi,Hi, Di),
i ∈ {1, 2}, are said to becompatibleif Ai∩Hj = Oi∩Oj =
∅ wheneveri 6= j. In that case, we define theircomposition
P1‖P2 to be the PIOA(Q1×Q2, (q̄1, q̄2), (I1∪I2)\ (O1∪
O2), O1 ∪ O2, H1 ∪H2, D), whereD is the set of triples
((q1, q2), a, µ1×µ2) such that (i)a is enabled in someqi, and
(ii) for every i, if a ∈ Ai then (qi, a, µi) ∈ Di, otherwise
µi = δ(qi). This definition can be extended to any finite
number of PIOAs rather than just two.

B. Task-PIOAs
We now augment the PIOA framework with task parti-

tions, our main mechanism for resolving nondeterminism.
Definition 2.2: A task-PIOAis a pairT = (P, R) where

(i) P = (Q, q̄, I, O,H,D) is a PIOA (satisfying transition
determinism) and (ii)R is an equivalence relation on the
locally-controlled actions (O ∪H). The equivalence classes
of R are calledtasks. A task T is enabledin a stateq if
somea ∈ T is enabled inq.

Unless otherwise stated, technical notions for task-PIOAs
are inherited from those for PIOAs. Exceptions include the
notions of probabilistic executions and trace distributions.
For now, we impose the following action-determinism as-
sumption, which implies that tasks alone are enough to
resolve all nondeterministic choices. We will remove this as-
sumption when we introduce local schedulers, in Section V.
• Action determinism:For every stateq ∈ Q and taskT ∈

R, at most one actiona ∈ T is enabled inq.
A task schedulefor T is any finite or infinite sequence

ρ = T1T2 . . . of tasks in R. A task schedule isstatic
(or oblivious), in the sense that it does not depend on
dynamic information generated during execution. Under the
action-determinism assumption, a task schedule can be used
to generate a unique probabilistic execution, and hence, a
unique trace distribution, of the underlying PIOAP. One
can do this by repeatedly scheduling tasks, each of which
determines at most one transition ofP. Formally, we define
an operation that “applies” a task schedule to a task-PIOA:

Definition 2.3: Let T = (P, R) be an action-deterministic
task-PIOA whereP = (Q, q̄, I, O,H,D). Given µ ∈
Disc(Frags∗(P)) and a task scheduleρ, apply(µ, ρ) is the
probability measure onFrags(P) defined recursively by:
1) apply(µ, λ) := µ. (λ denotes the empty sequence.)
2) For T ∈ R, apply(µ, T ) is defined as follows. For every

α ∈ Frags∗(P), apply(µ, T )(α) := p1 + p2, where:
• p1 = µ(α′)η(q) if α is of the form α′ a q, where

a ∈ T and (lstate(α′), a, η) ∈ D; p1 = 0 otherwise.
• p2 = µ(α) if T is not enabled inlstate(α); p2 = 0

otherwise.
3) For ρ of the form ρ′ T , T ∈ R, apply(µ, ρ) :=

apply(apply(µ, ρ′), T ).
4) For ρ infinite, apply(µ, ρ) := limi→∞(apply(µ, ρi)),

whereρi denotes the length-i prefix of ρ.
In Case (2) above,p1 represents the probability thatα is

executed when applying taskT at the end ofα′. Because of



transition-determinism and action-determinism, the transition
(lstate(α′), a, η) is unique, and sop1 is well-defined. The
term p2 represents the original probabilityµ(α), which is
relevant if T is not enabled afterα. It is routine to check
that the limit in Case (4) is well-defined. The other two cases
are straightforward.

Next, we show thatapply(µ, ρ) is a generalized probabilis-
tic execution fragment generated byµ and a scheduler for
P, in the usual sense. Thus, a task schedule for a task-PIOA
is a special case of a scheduler for the underlying PIOA.

Theorem 2.4:Let T = (P, R) be an action-deterministic
task-PIOA. For each measureµ on Frags∗(P) and task
scheduleρ, there is schedulerσ for P such thatapply(µ, ρ)
is the generalized probabilistic execution fragmentεσ,µ.

Any such apply(µ, ρ) is said to be ageneralized prob-
abilistic execution fragmentof T . Probabilistic execution
fragmentsand probabilistic executionsare then defined by
making the same restrictions as for basic PIOAs. We write
tdist(µ, ρ) as shorthand fortdist(apply(µ, ρ)), the trace dis-
tribution obtained by applying task scheduleρ starting from
the measureµ on execution fragments. We writetdist(ρ)
for tdist(apply(δ(q̄), ρ)) the trace distribution obtained by
applyingρ from the unique start state. (Recall that the Dirac
measure for an elementx, δ(x), is the discrete probability
measure that assigns probability1 to {x}.) A trace distribu-
tion of T is anytdist(ρ). We usetdists(T ) to denote the set
{tdist(ρ) : ρ is a task schedule forT }. Finally, we define
composition of task-PIOAs:

Definition 2.5: Two task-PIOAsTi = (Pi, Ri), i ∈ {1, 2},
are said to becompatibleprovided the underlying PIOAs are
compatible. In this case, we define theircompositionT1‖T2

to be the task-PIOA(P1‖P2, R1 ∪R2).
It is easy to see thatT1‖T2 is in fact a task-PIOA. In

particular, since compatibility ensures disjoint sets of locally-
controlled actions,R1 ∪ R2 is an equivalence relation on
the locally-controlled actions ofT1‖T2. It is also easy to
see that action determinism is preserved under composition.
Note that, when two task-PIOAs are composed, no new
mechanisms are required to schedule actions of the two
components—the tasks alone are enough.

C. Implementation
We now define the notion of external behavior for a task-

PIOA and the induced implementation relation between task-
PIOAs. Unlike previous definitions of external behavior, the
one we use here is not simply a set of trace distributions.
Rather, it is a mapping that specifies, for every possible
“environment”E for the given task-PIOAT , the set of trace
distributions that can arise whenT is composed withE .

Definition 2.6: Let T be any task-PIOA andE be an
action-deterministic task-PIOA. We say thatE is an envi-
ronment for T if (i) E is compatible withT and (ii) the
compositionT ‖E is closed. Note thatE may have output
actions that are not in the signature ofT .

Definition 2.7: The external behaviorof T , denoted by
extbeh(T ), is the total function that maps each environment
E to the set of trace distributionstdists(T ‖E).

Thus, for each environment, we consider the set of trace
distributions that arise from all task schedules. Note that
these traces may include new output actions ofE , in addition

to the external actions already present inT . Our definition of
implementation is influenced by common notions in the secu-
rity literature (e.g., [LMMS98], [Can01], [PW01]). Namely,
the implementation must “look like” the specification from
the perspective of every possible environment. The precise
notion of implementation is formulated in terms of inclusion
of sets of trace distributionsfor each environment automaton.
An advantage of this style of definition is that it yields simple
compositionality results (Theorem 2.9).

Definition 2.8: Let T1 and T2 be comparable action-
deterministic task-PIOAs, that is,I1 = I2 and O1 = O2.
We say thatT1 implementsT2, written T1 ≤0 T2, if
extbeh(T1)(E) ⊆ extbeh(T2)(E) for every environmentE for
both T1 andT2. In other words, we requiretdists(T1||E) ⊆
tdists(T2||E) for everyE .

The subscript0 in the relation symbol≤0 refers to the
requirement that every trace distribution intdists(T1||E)
must have an identical match intdists(T2||E). For security
analysis, we also define another relation≤neg,pt, which
allows “negligible” discrepancies between matching trace
distributions [CCK+06b].

D. Compositionality
Because external behavior and implementation are defined

in terms of mappings from environments to sets of trace
distributions, a compositionality result for≤0 follows easily:

Theorem 2.9:Let T1, T2 be comparable action-
deterministic task-PIOAs such thatT1 ≤0 T2, and let
T3 be an action-deterministic task-PIOA compatible with
each ofT1 andT2. ThenT1‖T3 ≤0 T2‖T3.

Proof. Let T4 = (P4, R4) be any environment (action-
deterministic) task-PIOA for bothT1‖T3 and T2‖T3. Fix
any task scheduleρ1 for (T1‖T3)‖T4. Let τ be the trace
distribution of (T1‖T3)‖T4 generated byρ1. It suffices to
show thatτ is also generated by some task scheduleρ2

for (T2‖T3)‖T4. Note thatρ1 is also a task schedule for
T1‖(T3‖T4), and thatρ1 generates the same trace distribution
τ in the composed task-PIOAT1‖(T3‖T4).

Now, T3‖T4 is an (action-deterministic) environment task-
PIOA for each ofT1 andT2. Since, by assumption,T1 ≤0 T2,
we infer the existence of a task scheduleρ2 for T2‖(T3‖T4)
such thatρ2 generates trace distributionτ in the task-PIOA
T2‖(T3‖T4). Sinceρ2 is also a task schedule for(T2‖T3)‖T4

andρ2 generatesτ , this suffices. 2

III. S IMULATION RELATIONS

We define a new simulation relation notion for closed,
action-deterministic task-PIOAs, and show that it is sound
for proving≤0. Our definition is based on three operations
involving probability measures: flattening, lifting, and expan-
sion. These have been previously defined, e.g., in [LSV03].

A. Flattening, lifting, and expansion
The flatteningoperation takes a discrete probability mea-

sure over probability measures and “flattens” it into a single
probability measure. Formally, letη be a discrete probability
measure onDisc(X). Then the flattening ofη, denoted by
flatten(η), is the discrete probability measure onX defined
by flatten(η) =

∑
µ∈Disc(X) η(µ)µ.

The lifting operation takes a relationR between two
domainsX andY and “lifts” it to a relation between discrete



measures overX andY . Informally speaking, a measureµ1

on X is related to a measureµ2 on Y if µ2 can be obtained
by “redistributing” the probability masses assigned byµ1, in
such a way that the relationR is respected. Formally, the
lifting of R, denoted byL(R), is a relation fromDisc(X) to
Disc(Y ) defined by:µ1 L(R) µ2 iff there exists aweighting
functionw : X × Y → R≥0 such that
1) For eachx ∈ X andy ∈ Y , w(x, y) > 0 implies x R y.
2) For eachx ∈ X,

∑
y w(x, y) = µ1(x).

3) For eachy ∈ Y ,
∑

x w(x, y) = µ2(y).
Finally, theexpansionoperation takes a relation between

discrete measures on two domains and returns a relation of
the same kind that relates two measures whenever they can
be decomposed into twoL(R)-related measures. Formally,
let R be a relation fromDisc(X) to Disc(Y ). Theexpansion
of R, written E(R), is a relation fromDisc(X) to Disc(Y )
defined by:µ1 E(R) µ2 iff there exist two discrete measures
η1 and η2 on Disc(X) andDisc(Y ), respectively, such that
µ1 = flatten(η1), µ2 = flatten(η2), andη1 L(R) η2.

We use expansions directly in our definition of simulation.
Informally, µ1 R µ2 means that it is possible to simulate
from µ2 anything that can happen fromµ1. Furthermore,
µ′1 E(R) µ′2 means that we can decomposeµ′1 and µ′2 into
pieces that can simulate each other, and so we can say that
it is also possible to simulate fromµ′2 anything that can
happen fromµ′1. This intuition is at the base of the proof of
our soundness result (cf. Theorem 3.5).

B. Simulation relation definition
We need two more auxiliary definitions. The first expresses

consistency between a probability measure over finite execu-
tions and a task schedule: informally, a measureε over finite
executions is said to be consistent with a task scheduleρ if
it assigns non-zero probability only to those executions that
are possible under the task scheduleρ. We use this condition
in order to avoid useless proof obligations in our definition
of simulation relation.

Definition 3.1: Let T = (P, R) be a closed, action-
deterministic task-PIOA,ε a discrete probability measure
over finite executions ofP, and ρ a finite task schedule
for T . Thenε is consistent withρ provided thatsupp(ε) ⊆
supp(apply(δ(q̄), ρ)), whereq̄ is the start state ofP.

For the second definition, suppose we have a mappingc
that, given a finite task scheduleρ and a taskT of a task-
PIOA T1, yields a task schedule of another task-PIOAT2.
The idea is thatc(ρ, T ) describes howT2 matches taskT ,
given that it has already matched the task scheduleρ. Using
c, we define a new functionfull(c) that, given a task schedule
ρ, iteratesc on all the elements ofρ, thus producing a “full”
task schedule ofT2 that matches all ofρ.

Definition 3.2: Let T1 = (P1, R1) and T2 = (P2, R2)
be two task-PIOAs, and letc : (R1

∗ × R1) → R2
∗ be a

function that assigns a finite task schedule ofT2 to each
finite task schedule ofT1 and task ofT1. Define full(c) :
R1

∗ → R2
∗ recursively as follows:full(c)(λ) := λ, and

full(c)(ρT ) := full(c)(ρ) _ c(ρ, T ) (the concatenation of
full(c)(ρ) andc(ρ, T )).

We can now define our new notion of simulation for task-
PIOAs and establish its soundness with respect to the≤0

relation. Note that our simulation relations do not just relate

states to states, but rather, probability measures on executions
to probability measures on executions.1 The use of measures
on executions here rather than just executions is motivated by
certain cases that arise in our OT protocol proof, e.g., cases
where related random choices are made at different points
in the low-level and high-level models (see Section III-D).

Definition 3.3: Let T1 = (P1, R1) andT2 = (P2, R2) be
two comparable closed action-deterministic task-PIOAs. Let
R be a relation fromDisc(Execs∗(P1)) to Disc(Execs∗(P2)),
such that, ifε1 R ε2, then tdist(ε1) = tdist(ε2). ThenR is
a simulation fromT1 to T2 if there existsc : (R1

∗ ×R1) →
R2

∗ such that the following properties hold:
1) Start condition:δ(q̄1) R δ(q̄2).
2) Step condition:If ε1 R ε2, ρ1 ∈ R1

∗, ε1 is consistent
with ρ1, ε2 is consistent withfull(c)(ρ1), and T ∈ R1,
then ε′1 E(R) ε′2 where ε′1 = apply(ε1, T ) and ε′2 =
apply(ε2, c(ρ1, T )).

C. Soundness
Lemma 3.4:Let T1 andT2 be comparable closed action-

deterministic task-PIOAs,R a simulation fromT1 to T2.
Let ε1 and ε2 be discrete probability measures over finite
executions ofT1 andT2, respectively, such thatε1 E(R) ε2.
Then tdist(ε1) = tdist(ε2).

The following theorem says that, for closed task-PIOAs,
the existence of a simulation relation implies inclusion of
sets of trace distributions. Our main soundness result for (not
necessarily closed) task-PIOAs then follows as a corollary.

Theorem 3.5:Let T1 andT2 be comparable closed action-
deterministic task-PIOAs. If there exists a simulation relation
from T1 to T2, thentdists(T1) ⊆ tdists(T2).

Proof. Let R be the assumed simulation relation fromT1

to T2. Let ε1 be the probabilistic execution ofT1 generated
by q̄1 and a (finite or infinite) task schedule,T1, T2, · · · . For
eachi > 0, defineρi to be c(T1 · · ·Ti−1, Ti). Let ε2 be the
probabilistic execution generated bȳq2 and ρ1ρ2 · · · . We
claim thattdist(ε1) = tdist(ε2), which suffices.

For eachj ≥ 0, let ε1,j = apply(q̄1, T1 · · ·Tj), and
ε2,j = apply(q̄2, ρ1 · · · ρj). Then for eachj ≥ 0, ε1,j ≤
ε1,j+1 and ε2,j ≤ ε2,j+1; moreover, limj→∞ ε1,j =
ε1 and limj→∞ ε2,j = ε2. Also, for every j ≥ 0,
apply(ε1,j , Tj+1) = ε1,j+1 and apply(ε2,j , ρj+1) = ε2,j+1.
Observe thatε1,0 = δ(q̄1) andε2,0 = δ(q̄2). The start condi-
tion for a simulation relation and a trivial expansion imply
thatε1,0 E(R) ε2,0. Then by induction, using the definition of
a simulation relation in proving the inductive step (this uses
a series of lemmas; see [CCK+06a] for details), we show
that, for eachj ≥ 0, ε1,j E(R) ε2,j . Then, by Lemma 3.4,
for eachj ≥ 0, tdist(ε1,j) = tdist(ε2,j). Now, tdist(ε1) =
limj→∞ tdist(ε1,j), and tdist(ε2) = limj→∞ tdist(ε2,j).
Since for eachj ≥ 0, tdist(ε1,j) = tdist(ε2,j), we conclude
that tdist(ε1) = tdist(ε2), as needed. 2

Corollary 3.6: Let T1 andT2 be two comparable action-
deterministic task-PIOAs. Suppose that, for every environ-
mentE for bothT1 andT2, there exists a simulation relation
R from T1‖E to T2‖E . ThenT1 ≤0 T2.

1It would be nice to simplify this definition so that it involves measures
on states instead of measures on executions, but we don’t yet know how to
do this.



D. Example:Trapdoor vs. Rand
The following example, from our OT proof, was a key

motivation for generalizing prior notions of simulation rela-
tions. We consider two closed task-PIOAs,Trapdoor and
Rand. Rand chooses a number randomly and outputs it.
Trapdoor, on the other hand, first chooses a random number,
then applies a known permutationf to the chosen number,
and then outputs the result. (The nameTrapdoor refers to
the type of permutationf that is used in the OT protocol.)

More precisely,Rand has output actionsreport(k), k ∈
[n] = {1, . . . , n} and internal actionchoose. It has tasks
Report = {report(k) : k ∈ [n]}, andChoose = {choose}.
Its state contains one variablezval, which assumes values
in [n]∪{⊥}, initially ⊥. Thechoose action is enabled when
zval = ⊥, and has the effect of settingzval to a number
in [n], chosen uniformly at random. Thereport(k) action is
enabled whenzval = k, and has no effect on the state (so
it may happen repeatedly). See Figure 1.

z = 1

z = n

z = 2
choose

report(1)

report(2)

report(n)

Fig. 1. Task-PIOARand

Trapdoor has the same actions asRand, plus internal
action compute. It has the same tasks asRand, plus the
task Compute = {compute}. Trapdoor’s state contains
two variables,y and z, each of which takes on values in
[n] ∪ {⊥}, initially ⊥. The choose action is enabled when
y = ⊥, and setsy to a number in[n], chosen uniformly at
random. Thecompute action is enabled wheny 6= ⊥ and
z = ⊥, and setsz := f(y). The report(k) action behaves
exactly as inRand. See Figure 2.

choose

y = 1

y = 2

y = n

compute

compute

compute

z = f (1)

z = f (2)

z = f (n)

report(f (1))

report(f (2))

report(f (n))

Fig. 2. Task-PIOATrapdoor

We wanted to use a simulation relation to prove that
tdists(Trapdoor) ⊆ tdists(Random). In doing so, we
decided that the steps that definez should correspond in
the two automata, which meant that thechoose steps of
Trapdoor, which definey, should map to no steps ofRand.
Then, between thechoose and compute in Trapdoor, a
randomly-chosen value would appear in they component
of Trapdoor’s state, but no such value would appear in
the corresponding state ofRand. Therefore, the simulation
relation would have to relate a probability measure on states
of Trapdoor to a single state ofRand.

We were able to express this correspondence using a
simulation relation of our new kind: Ifε1 and ε2 are dis-

crete measures over finite execution fragments ofTrapdoor
and Rand, respectively, then we defined(ε1, ε2) ∈ R ex-
actly if the following conditions hold: (i) For everys ∈
supp (lstate(ε1)) and u ∈ supp (lstate(ε2)), s.z = u.z.
(ii) For every u ∈ supp (lstate(ε2)), if u.z = ⊥ then either
lstate(ε1).y is everywhere undefined or else it is the uniform
distribution on [n]. The task correspondence mappingc is
defined by:c(ρ,Choose) = λ, c(ρ,Compute) = Choose,
c(ρ,Report) = Report.

IV. A PPLICATION TO SECURITY PROTOCOLS

In [CCK+06b], we use the task-PIOAs of this paper to
model and analyze the Oblivious Transfer (OT) protocol
of Goldreich et al. [GMW87]. In the OT problem, two
input bits (x0, x1) are submitted to a TransmitterTrans
and a single input biti to a ReceiverRec. After engaging
in an OT protocol,Rec should output only the single bit
xi. Rec should not learn the other bitx1−i, and Trans
should not learni; moreover, an eavesdropping adversary
should not, by observing the protocol messages, be able
to learn anything about the inputs or the progress of the
protocol. OT has been shown to be “complete” for multi-
party secure computation, in the sense that, using OT as the
only cryptographic primitive, one can construct protocols for
securely realizing any functionality.

The protocol of [GMW87] uses trap-door permutations
(and hard-core predicates) as an underlying cryptographic
primitive. It uses three rounds of communication: First,
Trans chooses a random trap-door permutationf and sends
it to Rec. Second,Rec chooses two random numbers(y0, y1)
and sends(z0, z1) to Trans, wherezi for the input index
i is f(yi) and z1−i = y1−i. Third, Trans applies the
same transformation to each ofz0 and z1 and sends the
results back as(b0, b1) Finally, Rec decodes and outputs
the correct bit. The protocol uses cryptographic primitives
and computational hardness in an essential way. Its security
is inherently only computational, so its analysis requires
modeling computational assumptions.

Our analysis follows the trusted party paradigm
of [GMW87], with a formalization that is close in spirit
to [PW00], [Can01]. We first define task-PIOAs representing
the real system (RS)(the protocol) and theideal system (IS)
(the requirements). InRS, typical tasks include “choose
random (y0, y1)”, “send round 1 message”, and “deliver
round 1 message”, as well as arbitrary tasks of incompletely-
specified environment and adversary automata. Note that
these tasks do not specify exactly what transition occurs;
e.g., the send task does not specify the message contents—
these are chosen byTrans, based on its own internal state.

Then we prove thatRS implementsIS. The proof consists
of four cases, depending on which parties are corrupted.2. In
the two cases whereTrans is corrupted, we can show that
RS implementsIS unconditionally, using≤0. In the cases
whereTrans is not corrupted, we can show implementation
only in a “computational” sense, namely, (i) for resource-
bounded adversaries, (ii) up to negligible differences, and

2Actually, in [CCK+06b], we prove only one case—when onlyR is
corrupted. We prove all four cases in [CCK+05], but using a less general
definition of task-PIOAs than the one used here and in [CCK+06b], and
with non-branching adversaries.



(iii) under computational hardness assumptions. Modeling
these aspects requires additions to the task-PIOA framework
of this paper, namely, defining atime-boundedversion of
task-PIOAs, and defining a variation,≤neg,pt, on the≤0

relation, which describes approximate implementation with
respect to polynomial-time-bounded environments. Similar
relations were defined in [LMMS98], [PW01]. Our simula-
tion relations are also sound with respect to≤neg,pt. We also
provide models for the cryptographic primitives (trap-door
functions and hard-core predicates). Part of the specification
for such primitives is that their behavior should look “ap-
proximately random” to outside observers; we formalize this
in terms of≤neg,pt.

The correctness proofs proceed by levels of abstraction, re-
lating each pair of models at successive levels using≤neg,pt.
In the case where onlyRec is corrupted, all but one of
the relationships between levels are proved using simulation
relations as defined in this paper (and so, they guarantee≤0).
The only exception relates a level in which the cryptographic
primitive is used, with a higher level in which the use of
the primitive is replaced by a random choice. Showing this
correspondence relies on our≤neg,pt-based definitions of the
cryptographic primitive, and on composition results for time-
bounded task-PIOAs. Since this type of reasoning is isolated
to one correspondence, the methods of this paper in fact
suffice to accomplish most of the work of verifying OT.

Each of our system models, at each level, includes an
explicit adversary component automaton, which acts as a
message delivery service that can eavesdrop on communica-
tions and control the order of message delivery. The behavior
of this adversary is arbitrary, subject to general constraints on
its capabilities. In our models, the adversary is the same at all
levels, so our simulation relations relate the adversary states
at consecutive levels directly, using the identity function.
This treatment allows us to consider arbitrary adversaries
without examining their structure in detail (they can do
anything, but must do the same thing at all levels).

Certain patterns that arise in our simulation relation
proofs led us to extend earlier definitions of simulation rela-
tions [SL95], [LSV03], by adding the expansion capability
and by corresponding measures to measures: (i) We often
correspond random choices at two levels of abstraction—for
instance, when the adversary makes a random choice, from
the same state, at both levels. We would like our simulation
relation to relate the individual outcomes of the choices at
the two levels, matching up the states in which the same
result is obtained. Modeling this correspondence uses the
expansion feature. (ii) TheTrapdoor vs. Rand example
described in Section III occurs in our OT proof. Here, the
low-level system chooses a randomy and then computes
z = f(y) using a trap-door permutationf . The higher level
system simply chooses the value ofz randomly, without
using valuey or permutationf . This correspondence relates
measures to measures and uses expansion. (iii) In another
case, a lower-level system chooses a random valuey and then
computes a new value by XOR’ingy with an input value. The
higher level system just chooses a random value. However,
XOR’ing any value with a random value yields the same
result as just choosing a random value. This correspondence
relates measures to measures and uses expansion.

V. L OCAL SCHEDULERS

With the action-determinism assumption, our task mech-
anism is enough to resolve all nondeterminism. However,
action determinism limits expressive power. Now we remove
this assumption and add a second mechanism for resolving
the resulting additional nondeterminism, namely, alocal
schedulerfor each component task-PIOA. A local scheduler
for a given component can be used to resolve nondetermin-
istic choices among actions in the same task, using only
information about the past history of that component. Here,
we define one type of local scheduler, which uses only the
current state, and indicate how our results for the action-
deterministic case carry over to this setting.

Our notion of local scheduler is simply a “sub-automaton”:
We say that task-PIOAT ′ = (P ′, R′) is a sub-task-PIOA
of task-PIOA T = (P, R) provided that all components
are identical except thatD′ ⊆ D, where D and D′ are
the sets of discrete transitions ofP and P ′, respectively.
Thus, the only difference is thatT ′ may have a smaller
set of transitions. Alocal schedulerfor a task-PIOAT is
any action-deterministic sub-task-PIOA ofT . A probabilistic
systemis a pairM = (T ,S), whereT is a task-PIOA andS
is a set of local schedulers forT . A probabilistic execution
of a probabilistic systemM = (T ,S) is defined to be any
probabilistic execution of any task-PIOAS ∈ S.

If M1 = (T1,S1) and M2 = (T2,S2) are two prob-
abilistic systems, andT1 and T2 are compatible, then their
compositionM1‖M2 is the probabilistic system(T1‖T2,S),
whereS is the set of local schedulers forT1‖T2 of the form
S1‖S2, for someS1 ∈ S1 andS2 ∈ S2.

If M = (T ,S) is a probabilistic system, then anenviron-
ment for M is any environment (action-deterministic task-
PIOA) for T . If M = (T ,S) is a probabilistic system, then
theexternal behaviorof M, extbeh(M), is the total function
that maps each environment task-PIOAE for M to the set⋃

S∈S tdists(S‖E). Thus, for each environment, we consider
the set of trace distributions that arise from two choices: of
a local scheduler ofM and of a global task scheduleρ.

If M1 = (T1,S1) andM2 = (T2,S2) are comparable
probabilistic systems (i.e.,T1 andT2 are comparable), then
M1 implementsM2, written M1 ≤0 M2, provided that
extbeh(M1)(E) ⊆ extbeh(M2)(E) for every environment
(action-deterministic) task-PIOAE for both M1 andM2.
We obtain a sufficient condition for implementation of prob-
abilistic systems, in which each local scheduler for the low-
level system always corresponds to the same local scheduler
of the high-level system.

Theorem 5.1:Let M1 = (T1,S1) andM2 = (T2,S2) be
two comparable probabilistic systems. Suppose thatf is a
total function fromS1 to S2 such that, for everyS1 ∈ S1,
S1 ≤0 f(S1). ThenM1 ≤0 M2.

We also obtain a compositionality result for probabilistic
systems. The proof is similar to that of Theorem 2.9, for the
action-deterministic case.

Theorem 5.2:Let M1, M2 be comparable probabilistic
systems such thatM1 ≤0 M2, and letM3 be a proba-
bilistic system compatible with each ofM1 andM2. Then
M1‖M3 ≤0 M2‖M3.



VI. CONCLUSIONS

We have extended the traditional PIOA model with a task
mechanism, which provides a systematic way of resolving
nondeterministic scheduling choices without using informa-
tion about past history. We have provided basic machinery
for using the resulting task-PIOA framework for verification,
including a compositional trace-based semantics and a new
kind of simulation relation. We have proposed extending the
framework to allow additional nondeterminism, resolved by
schedulers that use only local information. We have illus-
trated the utility of these tools with a case study involving
analysis of an Oblivious Transfer cryptographic protocol.

Although our development was motivated by concerns of
cryptographic protocol analysis, partial-information schedul-
ing is interesting in other settings. For example, some dis-
tributed algorithms work with partial-information adversarial
schedulers, althrough the problems they solve are provably
unsolvable with perfect-information adversaries [Cha96],
[Asp03]. Also, partial-information scheduling is realistic for
modeling large distributed systems, in which basic schedul-
ing decisions are made locally, and not by any centralized
mechanism.

Many questions remain in our study of task-PIOAs: Our
notion of implementation,≤0, is defined by considering all
environments; can we characterize≤0 using a small subclass
of environments? Can our simulation relation notion be sim-
plified without sacrificing soundness or applicability? Also,
our notion of local schedulers needs further development.

It remains to consider more applications of task-PIOAs, for
cryptographic protocol analysis and for other applications. A
next step in cryptographic protocol analysis is to formulate
and prove protocol composition results like those of [PW00],
[Can01] in terms of task-PIOAs. Finally, we would like to
model perfect-information schedulers, as used for analyzing
randomized distributed algorithms, using task-PIOAs.
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