
MIT Open Access Articles

Random sketching, clustering, and short-
term memory in spiking neural networks

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Hitron, Y, Lynch, N, Musco, C and Parter, M. 2020. "Random sketching, clustering,
and short-term memory in spiking neural networks." Leibniz International Proceedings in
Informatics, LIPIcs, 151.

As Published: 10.4230/LIPIcs.ITCS.2020.23

Persistent URL: https://hdl.handle.net/1721.1/137566

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International license

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/137566
https://creativecommons.org/licenses/by/4.0/

Random Sketching, Clustering, and Short-Term
Memory in Spiking Neural Networks
Yael Hitron
Weizmann Institute of Science, Rehovot, Israel
yael.hitron@weizmann.ac.il

Nancy Lynch
Massachusetts Institute of Technology, Cambridge, MA, USA
lynch@csail.mit.edu

Cameron Musco
University of Massachusetts, Amherst, MA, USA
cmusco@cs.umass.edu

Merav Parter
Weizmann Institute of Science, Rehovot, Israel
merav.parter@weizmann.ac.il

Abstract
We study input compression in a biologically inspired model of neural computation. We demon-
strate that a network consisting of a random projection step (implemented via random synaptic
connectivity) followed by a sparsification step (implemented via winner-take-all competition) can
reduce well-separated high-dimensional input vectors to well-separated low-dimensional vectors. By
augmenting our network with a third module, we can efficiently map each input (along with any small
perturbations of the input) to a unique representative neuron, solving a neural clustering problem.

Both the size of our network and its processing time, i.e., the time it takes the network to
compute the compressed output given a presented input, are independent of the (potentially large)
dimension of the input patterns and depend only on the number of distinct inputs that the network
must encode and the pairwise relative Hamming distance between these inputs. The first two steps
of our construction mirror known biological networks, for example, in the fruit fly olfactory system
[9, 29, 17]. Our analysis helps provide a theoretical understanding of these networks and lay a
foundation for how random compression and input memorization may be implemented in biological
neural networks.

Technically, a contribution in our network design is the implementation of a short-term memory.
Our network can be given a desired memory time tm as an input parameter and satisfies the following
with high probability: any pattern presented several times within a time window of tm rounds will
be mapped to a single representative output neuron. However, a pattern not presented for c · tm
rounds for some constant c > 1 will be “forgotten”, and its representative output neuron will be
released, to accommodate newly introduced patterns.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases biological distributed computing, spiking neural networks, compressed
sensing, clustering, random projection, dimensionality reduction, winner-take-all

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.23

1 Introduction

In this work we study brain-like networks that receive potentially complex and high-
dimensional inputs (e.g., from sensory neurons representing odors, faces, or sounds) and
encode these inputs in a very compressed way. Specifically, we consider networks with n
input neurons and k output neurons, where n may be very large. When presented with up
to k sufficiently different but otherwise arbitrary input patterns, the goal of the network is

© Yael Hitron, Nancy Lynch, Cameron Musco, and Merav Parter;
licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 23; pp. 23:1–23:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yael.hitron@weizmann.ac.il
mailto:lynch@csail.mit.edu
mailto:cmusco@cs.umass.edu
mailto:merav.parter@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.ITCS.2020.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks

to represent the inputs in such a way that they can be recognized when presented again:
each input should be uniquely mapped to a single representative output neuron that fires if
that input pattern is reintroduced. Further, any small perturbations of a presented input
should be recognized by the same representative neuron. We call the above problem the
neural clustering problem.

Clustering, input memorization, and compression are fundamental problems in biological
neural networks. Our work is also inspired by the important novelty detection problem
[25, 41]. Novelty detection requires detecting inputs that differ significantly from previously
seen inputs. It is easy to see that this problem can be solved with a neural clustering network,
in which all sufficiently far inputs are mapped to different representative neurons and all
sufficiently close inputs are mapped to the same neuron. A novel input is detected whenever
a new representative neuron is assigned. The novelty detection problem has been considered
recently in the fruit fly olfactory system [16], where it is believed to be solved using a random
projection based method. The high level structure of this method closely resembles the initial
stages of our clustering algorithm, and we see a major contribution of our work as providing
a theoretical understanding of how random projection can be implemented in biologically
inspired neural networks. For further discussion about the connection to fruit fly novelty
detection see Section 1.2.

1.1 Our Results
We study the neural clustering problem in a biologically inspired model of stochastic spiking
neural networks (stochastic SNNs), which was previously defined in [33, 34, 35]. In these
networks, computation proceeds in discrete rounds with each neuron either firing (spiking) in
a round or remaining silent. Each neuron spikes randomly, with probability determined by
its membrane potential. This potential is induced by spikes from neighboring neurons, which
can have either an excitatory or inhibitory effect (increasing or decreasing the potential). In
general, the input to an SNN is a stream of binary vectors, corresponding to spikes of the
input neurons. In our setting we will consider a single binary vector as the input pattern
and assume that each input vector is presented for a certain number of consecutive rounds
before changing. This allows the network time to stabilize to the correct output associated
with the given input.

We demonstrate that clustering can be solved efficiently in these networks, where the cost
is measured by (i) the number of auxiliary neurons, besides the input and output neurons,
that are required to solve the clustering task and (ii) the number of rounds required to
converge to the correct output for a given input, which corresponds to the number of rounds
for which the input must be presented for before moving to the next input.

In the clustering problem, we consider a (potentially large) set of n-length patterns that
are clustered around k base patterns. It is then required to map all patterns in the same
cluster to a unique output in [k].

Clustering with Output Reassignment. We also want our network to be reusable, with a
memory duration tm that is given as an input parameter. Instead of considering a single
infinite input stream with at most k distinct patterns (or clusters of patterns), our memory
module allows one having many distinct patterns, as long as their presentation times are
sufficiently spaced out. That is, in any window of Θ(tm) rounds, the network is presented
at most k distinct patterns. To handle distinct patterns in each Θ(tm)-round window, the
network must forget patterns that have not been introduced for a while and release their
allocated outputs so that they can be assigned to new inputs. Specifically, for some fixed

Y. Hitron, N. Lynch, C. Musco, and M. Parter 23:3

constant c, our network remembers a pattern (its cluster) for at least tm rounds and at most
c · tm round. The output of any pattern not introduced for c · tm rounds is released with
high probability and can be reassigned to represent another input.

The Neural Clustering Problem. We now formally define the neural clustering problem,
which is parametrized by several parameters: the input dimension n, the number of distinct
input patterns k, the memory duration tm, a bound on the relative distance of input patterns
∆, and the allowed failure probability δ. We require that every pattern introduced as input,
remains the input pattern for at least tp = poly(k, 1/∆, log(1/δ)) (i.e., independent of n)
consecutive rounds. The tp parameter is the processing time or mapping time, i.e., the time
it takes for the network to converge to the output neuron. Throughout, we will assume
that all patterns have p non-zero entries. We conjecture that this assumption can be easily
removed however keep it to simplify our arguments.

Define the relative Hamming distance between two inputs Xi, Xj ∈ {0, 1}n to be:

RD(Xi, Xj) = ||Xi −Xj ||1
max{||Xi||1, ||Xj ||1}

.

In the basic clustering problem, the network is introduced to a possibly large number of
distinct patterns that are clustered around k-centers. That is, in every window of tm rounds,
the patterns introduced are clustered around a base-set of k patterns X1, . . . , Xk ∈ {0, 1}n
such that the relative difference between each pair in the base-set is at least ∆, and any other
pattern introduced is sufficiently close to one of the patterns in the base-set (with relative
distance ≤ ∆/α for some α = Õ(1)). In the clustering problem the network maps similar
patterns to the same unique output qi for i ∈ [k] (i.e., the cluster name) and non-similar
patterns to distinct names. Formally:

I Definition 1 (Clustering Input Condition). An infinite input sequence Z1, Z2, ... is a well-
behaved clustering input sequence with input size n, output size k, memory duration tm,
relative distance parameter ∆, closeness parameter α, and input persistence time tp if:

For any set of tm rounds T = {t, t+1, ..., t+(tm−1)} there exist X1, X2, ..., Xk ∈ {0, 1}n
such that RD(Xi, Xj) ≥ ∆ for all i 6= j and for all i ∈ T , RD(Zi, Xj) ≤ ∆/α for some
j ∈ [k].
If Zi 6= Zi−1, then Zi = Zi+1 = ... = Zi+tp .

I Definition 2 (Clustering Network). A network N solves the clustering problem for input size
n, output size k, memory duration tm, relative distance parameter ∆, closeness parameter α,
input duration tp, and failure probability δ if, on a well-behaved input sequence for the same
parameters (Definition 1), on any fixed window of tm rounds, with probability ≥ 1− δ:

Each input pattern Z is mapped to some output qj for j ∈ [k]. That is, whenever the
input changes to Z round i (so Zi−1 6= Z but Zi = Z), there is a unique output neuron
qj that fires at round i+ tp and continues to fire as long as the input remains fixed to Z.
Any pair of far patterns Z,Z ′ with RD(Z,Z ′) ≥ ∆ introduced within the tm time window
are mapped to different outputs.
Any pair of closed-patterns Z,Z ′ with RD(Z,Z ′) ≤ ∆/α introduced within the same tm
time window will be mapped to the same output neuron.

Our goal is to design a clustering network that uses small number of auxiliary neurons and
requires small input persistence time tp. We show the following theorem.

ITCS 2020

23:4 Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks

RP +
WTA

RP +
WTA

RP +
WTA

RP +
WTA

Sequential mapping

𝑋

Output 𝑄

WTA
RP+

𝑅2 ത𝑋 = 𝑍

𝑅1 ത𝑋 = 𝑌

𝑋

Figure 1 High level illustration of the clustering network. Right: The input pattern X̄ ∈ {0, 1}n
is mapped to an intermediate sparser vector in two steps: random projection and WTA sparsification.
Left: In the clustering network, the input X̄ is mapped by applying O(log(k/δ)) parallel repetitions
of the random projection + WTA mapping. As a result, X̄ is mapped to a vector Z̄ with O(log(k/δ)

∆)
neurons. This vector is mapped to the output unit vector in {0, 1}k via a sequential mapping module.

I Theorem 3. For any parameters n, k, tm, δ and ∆, there is a network N with
O
(

log(1/∆)3 log(tm/δ) log(1/δ)
∆3/2

)
auxiliary neurons that solves the clustering problem with these

parameters, input persistence time tp = O
(

log(1/∆)2 log(tm/δ)
∆

)
and closeness parameter

α = O(log(1/∆)4).

Note that the number of auxiliary neurons and the convergence time of Theorem 3 are
independent of the input dimension n, which may potentially be very large. The spiking
neural network construction that achieves Theorem 3 involves in three steps. The first two
steps reduce the input from n neurons to m� n neurons, while approximately preserving the
relative distances between inputs. These steps use a biologically inspired construction that
mirrors circuits seen, for example, in the fruit fly olfactory system [9, 29, 17]. In particular
the first step maps the input to a set of intermediate neurons via random projection, and
the second step sparsifies the outputs of these intermediate neurons to yield a sparse code
representing the input. The final sequential mapping step then solves the clustering problem
given these m intermediate neurons as inputs, avoiding the high cost of directly solving the
problem on the n-dimensional input. See Figure 1 for an illustration.

1.2 Comparison to Previous Work
1.2.1 Broader Agenda: Algorithmic Theory for Brain Networks
Understanding how the brain works, as a computational device, is a central challenge of
modern neuroscience and artificial intelligence. Different research communities tackle this
problem in different ways, ranging from studies that examine neural network structure as a
clue to computational function [43, 3], to functional imaging that studies neural activation
patterns [40, 31], to theoretical work on simplified models of neural computation [23, 36],
to the engineering of complex neural-inspired machine learning architectures [21, 27]. This
paper joins a recent line of work [44, 37, 45, 38, 33, 30, 46, 34, 28, 32, 39, 10, 22] that
approach this problem using techniques from distributed computing theory and other branches
of theoretical computer science. The ultimate goal of this research direction is to develop an
algorithmic theory for brain networks, based on stochastic graph-based neural network models.
To understand neural behavior from a theory of computing point of view, we design networks

Y. Hitron, N. Lynch, C. Musco, and M. Parter 23:5

to solve abstract problems that are inspired by tasks that seem to be solved in actual brains.
We believe that the rigorous analysis of such networks in terms of static costs (e.g., the
number of neurons), and dynamic costs (e.g., the time to converge to a solution) will lead to
a better understanding of how these tasks may be performed in biological neural networks.

1.2.2 Connections to Sparse Recovery

Our work is closely related to sparse recovery (compressed sensing), where the goal is to map
high-dimensional but sparse vectors (with dimension n and s� n nonzero entries) into a
much lower dimensional space, such that the vectors can be uniquely identified and efficiently
recovered [19]. We can see that this goal is essentially identical to that of our first two network
layers, before the sequential mapping step. Two different s-sparse binary vectors have relative
hamming distance ≥ 1/s. Additionally there are k = O(ns) s-sparse binary vectors in n

dimensions. Thus, as a Corollary of Lemma 12, our first two layers can uniquely compress
all such vectors with high probability into dimension m = Õ

(
log k
∆1/2

)
= O(s3/2 logn).

It is known that optimal sparse recovery reducing the dimension to O(s logn) can be
achieved using random projections [13]. However, unlike in our setting, these random
projections have real valued outputs, which cannot be directly represented by binary spiking
neurons. The case when output of the random projection is thresholded to be a binary
value has been studied extensively, under the name “one-bit compressed sensing” [6]. In this
setting, it is known that dimension Θ̃

(
s2 logn

)
can be achieved and is required for general

sparse recovery [1]. If the input vectors are restricted to be binary (as in our case), dimension
O(s3/2 logn) is possible [24, 1]. Our results match this bound up to logarithmic factors.

1.2.3 Connections to Fruit Fly Novelty Detection via Bloom Filters

Recently, Dasgupta et al. [16] demonstrated that the fruit fly olfactory circuit implements a
variant of a classic Bloom filter [5] to assess the novelty of odors. A bloom filter is a data
structure that maintains a set of items, allowing for membership queries, with the possibility
of occasional false positives. The filter has m bits and r random hash functions mapping
the input space to integers in 1, ...,m. When an item is inserted, it is hashed using these r
functions and the bits corresponding to the hashed values are set to 1. A membership query
is answered by hashing the input in question and checking that all r bits corresponding to
its hashed values are set to 1.

Such a filter can be used to implement novelty detection – a novel pattern is detected
whenever an insertion operation sets a new bit to 1 or an membership query returns false.
Dasgupta et al. [16] demonstrate that a such a scheme is used in the fly olfactory circuit.
The hashing step consists of a random projection followed by winner-take-all sparsification,
which maps each input into a r-sparse binary vector. The r entries of this vector represent
the r hash function outputs. This step closely resembles the first two layers of our clustering
network.

Our third layer operates differently than a bloom filter, associating each sparsified
intermediate vector to with unique output via sequential mapping rather than simply marking
the bits corresponding to its entries. However, it can implement the same functionality
(and correspondingly can implement novelty detection). Specifically, to implement insertion
and deletion operations we can make the following modifications to the sequential mapping
sub-network:

ITCS 2020

23:6 Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks

The input layer contains an extra neuron that is set to 1 if the operation is insertion, and
0 if the operation is a membership query.
In the sequential mapping step the output layer fires only if this extra neuron fires. In this
way, new outputs will only be mapped during insertion operations and not membership
queries.
For query operations, we add an output neuron that fires only if there exists an index
j ∈ [k] for which many memory modules mji, as well as an association neuron aji fire.
Novelty detection can be implemented via an additional output neuron that responds
when an insertion causes a new output to be mapped or when a query operation returns
false.

2 Computational Model and Preliminaries

We start by defining our model of stochastic spiking neural networks.

Network Structure. A Spiking Neural Network (SNN) N = 〈X,Q,A,w, b〉 consists of n
input neurons X = {x1, . . . , xn}, m output neurons Q = {q1, . . . , qm}, and ` auxiliary
neurons A = {a1, ..., a`}. The directed, weighted synaptic connections between X, Q, and A
are described by the weight function w : [X ∪Q∪A]× [X ∪Q∪A]→ R. A weight w(u, v) = 0
indicates that a connection is not present between neurons u and v. Finally, for any neuron
v, β(v) ∈ R≥0 is the activation bias – as we will see, roughly, v’s membrane potential must
reach β(v) for a spike to occur with good probability.

The in-degree of every input neuron xi is zero. That is, w(u, x) = 0 for all u ∈ [X ∪Q∪A]
and x ∈ X. Additionally, each neuron is either inhibitory or excitatory: if v is inhibitory,
then w(v, u) ≤ 0 for every u, and if v is excitatory, then w(v, u) ≥ 0 for every u.

Neuron Chains. In our implementation, we make use of chains of neurons to create a delay
in a response. For a neuron u, and integer `, let C`(u) be a directed path of length ` starting
with u. All neurons on the chain are excitatory. We then say that a chain C`(u) is connected
to v if each neuron w ∈ C`(u) has an outgoing edge to v.

The SNN Model. An SNN evolves in discrete, synchronous rounds as a Markov chain. The
firing probability of every neuron at time t depends on the firing status of its neighbors at
time t − 1, via a standard sigmoid function, with details given below. For each neuron u,
and each time t ≥ 0, let ut = 1 if u fires (i.e., generates a spike) at time t. Let u0 denote the
initial firing state of the neuron. Our results will specify the initial input firing states x0

j = 1
and assume that u0 = 0 for all u ∈ [Q ∪A]. The firing state of each input neuron xj in each
round is the input to the network, and our results will specify to which sequences of input
firing patterns they apply.

For each non-input neuron u and every t ≥ 1, let pot(u, t) denote the membrane potential
at round t and p(u, t) denote the corresponding firing probability (Pr[ut = 1]). These values
are calculated as:

pot(u, t) =
∑

v∈X∪Q∪A
wv,u · vt−1 − β(u) and p(u, t) = 1

1 + e− pot(u,t)/λ (1)

where λ > 0 is a temperature parameter, which determines the steepness of the sigmoid. It is
easy to see that λ does not affect the computational power of the network. A network can
be made to work with any λ simply by scaling the synapse weights and biases appropriately.

Y. Hitron, N. Lynch, C. Musco, and M. Parter 23:7

For simplicity we assume throughout that λ = 1
Ω(log(n·k·∆·tm·1/δ)) , where n, k, δ,∆, tm are the

parameters of the clustering problem, defined in Section 1.1. Thus by (1), if pot(u, t) ≥ 1,
then ut = 1 w.h.p. and if pot(u, t) ≤ −1, ut = 0 w.h.p. , where w.h.p. denotes with
probability at least 1− (1/δ · n · k ·∆ · tm)−c for some constant c.

The remainder of the paper is devoted to proving Theorem 3. Our analysis considers the
three stages of the network in sequence: random projection, sparsification, and sequential
mapping to the final outputs.

3 Layer 1: Random Projection

The goal of this step is to reduce the input size from n input neurons to m� n neurons while
ensuring that the relative distance between any two n-length input vectors is approximately
preserved after the mapping. In this way, we can solve the clustering problem working with
the much smaller m neuron representation instead of the original n neuron input. While
there are many ways in which distance may be preserved, we consider one in particular,
based on the membrane potentials induced on the intermediate neurons by the inputs:

IDefinition 4 (Distance Preserving Dimensionality Reduction). Consider X1, . . . , Xk ∈ {0, 1}n
with RD(Xi, Xj) ≥ ∆ for i 6= j. Consider a network N mapping n input neurons to m
intermediate neurons, which are split into b buckets each containing m/b neurons. N is
distance preserving for X1, . . . , Xk if, for any two Xi, Xj, and any round t, in the large
majority of buckets, the identity of the neuron that in round t+ 1 has the highest membrane
potential below a fixed threshold τ is different if Xi is presented at round t than if Xj were
presented.1

Our network satisfies Definition 4 with parameters m = Õ
(

1√
∆

)
and b = Õ(1). We

implement the dimensionality reduction step via random projection. We note that random
projection has been studied extensively as a dimensionality reduction tool in computer
science, with applications in data analysis [4, 7, 12], fast linear algebraic computation [42, 11],
and sparse recovery [8]. See [47] for a survey. In neuroscience, it is thought that random
projection may play a key role in neural dimensionality reduction [20, 2]. Random projection
for example, underlies sparse coding of inputs in the fruit fly olfactory circuit [9, 17]. Random
connections have also been studied in theoretical models for memory formation, in which
inputs are mapped to representative output neurons [45, 38, 28].

We start with describing the construction and then analyzing its properties. The main
outputs of this section are Corollaries 9 and 11 which show that, with high probability, the
identities of the neurons with maximum membrane potential below some threshold τ in each
bucket of the intermediate layer share little overlap for far inputs (with relative distance ≥ ∆)
and significant overlap for close inputs (with relative distance ≤ ∆/α for α = O(log(1/∆)4)).
That is, the network satisfies the distance preserving dimensionality reduction guarantee of
Definition 4 for far inputs, along with an analogous guarantee for close inputs.

Our mapping can be understood as an example of local sensitive hashing [18, 15, 17]. In
each bucket, the input is hashed to the identity of the maximum potential neuron below τ in
that bucket. Near inputs have many hash collisions, and thus there is significant overlap in
the identities of the mapped neurons. Far input have fewer collisions and thus less overlap.

1 We formally define how the membrane potential is calculated in Section 2. “Large majority” will be a
constant fraction of the buckets significantly larger than 1/2, which will be specified in our bounds.

ITCS 2020

23:8 Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks

Layer Description. The random projection layer consists of m · ` intermediate auxiliary
neurons for m = Θ

(
log(1/∆)√

∆

)
and ` = Θ(log(tm/δ)). The layer is subdivided into ` buckets

b1, ..., b` containing m neurons each. Each input neuron has an excitatory connection to
each neuron in the intermediate layer with weight sampled as a Chi-squared random variable
(with one degree of freedom). We denote this random weight matrix connecting the two
layers by A ∈ Rm·`×n. For b ∈ 1, ..., `, we let Ab ∈ Rm×n denote the rows of A corresponding
to the intermediate neurons in bucket b. In typical applications of random projection, the
entries of A are most commonly either Gaussian or Rademacher random variable. Here we
use Chi-squared random variables as they are non-negative, a requirement in our setting
where the outgoing edge weights from each neuron (corresponding to the entries in A) must
be either all positive or all negative.

Layer Analysis. When the input neurons X fire with input pattern Xi ∈ {0, 1}n at time
t, by (1) the vector of membrane potentials of the intermediate neurons at time t + 1 is
given by AXi ∈ Rm×`. Our analysis will focus on the properties of this vector of potentials,
which can be viewed as a real valued compressed representation of the input Xi. Later, we
will show how these properties lead to desirable properties of the spiking patterns of the
intermediate neurons.

For technical reasons, we will not focus on the actual largest entry of AbXi, but on the
largest entry bounded by some fixed threshold τ which can still be identified via a minor
modification to a traditional WTA circuit. We begin with a preliminary lemma showing
that a Chi-squared distribution (the distribution of each entry in AbXi) is roughly uniform
around its mean. We give a proof in Appendix A.

I Lemma 5 (Chi-squared uniformity). Let Dp be the Chi-squared distribution with p degrees
of freedom. For any c with 1 ≤ c < p1/2 there are constants c`, cu (depending on c) such that,
for any interval [r1, r2] ⊆

[
p− cp1/2, p+ cp1/2], we have: c`(r2−r1)

p1/2 ≤ Prx∼Dp [x ∈ [r1, r2]] ≤
cu(r2−r1)
p1/2 . That is, Dp is roughly uniform on the range

[
p− cp1/2, p+ cp1/2].

We also use the fact that the Chi-squared distribution decays far from its mean, which follows
from standard sub-exponential concentration bounds.

I Lemma 6 (Chi-squared decay). Let Dp be the Chi-squared distribution with p degrees of
freedom. For any c ≤ 1 there is a constant c1 (depending on c) such that:

Pr
x∼Dp

[
x /∈ [p− c1p1/2, p+ c1p

1/2]
]
≤ c.

Using the near-uniform distribution property of Lemma 5, we can show that with good
probability, for every compressed vector AbXi ∈ Rm the gap between the two largest entries
(bounded by the threshold) is Ω(p1/2/m) – since there are m entries roughly uniformly
distributed in a range of size O(p1/2). This gap will be necessary for the neuron with the
largest membrane potential (and hence the highest firing probability) to be reliably identified
in the second sparsification layer of our network. We remark that in non-neural applications
of random projection such a gap would not be necessary: the largest entry in the bucket can
be typically be identified exactly.

The complete proof is given in Appendix A.

Y. Hitron, N. Lynch, C. Musco, and M. Parter 23:9

I Lemma 7 (Sufficient Gap). Consider our construction with bucket size m = c1. Let
X ∈ {0, 1}n be any input vector with ‖X‖ = p for p ≥ 5. Let τ = p + 2p1/2 and for any
b ∈ [`] define:

i1,b(X) = arg max
i∈[m]:[AbX](i)≤τ

[AbX](i) and i2,b(X) = arg max
i∈[m]\i1,b(X):[AbX](i)≤τ

[AbX](i),

where we set i1,b(X), i2,b(X) = 0 in the case that no index satisfies the constraint. For
sufficiently large constants c1, c2, with probability ≥ 99/100 over the random choice of Ab,
i1,b(X) 6= 0, [AbX](i1,b(X)) ≥ p, and either [AbX](i1,b(X)) − [AbX](i2,b(X)) ≥ p1/2

c2m
or

i2,b(X) = 0.

Along with Lemma 7 we prove that, with good probability, the neuron with the maximum
potential below τ in each bucket differs for any two far inputs.

I Lemma 8 (Low Collision Probability – Far Inputs). Let X1, X2 ∈ {0, 1}n be two vectors
with ‖X1‖ = ‖X2‖ = p 2 and RD(X1, X2) ≥ ∆. Assume that p ≥ c for some sufficiently
large constant c. Consider our construction with bucket size m = c1 log(1/∆)√

∆
. Then for

sufficiently large constants c1, c2, for any b ∈ [`], defining i1,b(·) and i2,b(·) as in Lemma 7,
with probability ≥ 0.9165:

i1,b(X1) 6= i1,b(X2).
For both j = 1, 2: i1,b(Xj) 6= 0, [AbXj](i1,b(Xj)) ≥ p, and
[AbXj](i1,b(Xj))− [AbXj](i2,b(Xj)) ≥ p1/2

c2·m or i2,b(Xj) = 0.

See Appendix A for the complete proof of Lemma 8. Intuitively, if X1 and X2 each
have Hamming weight p and relative distance ∆ they differ on Ω(∆p) entries. If just the
shared entries of these vectors fired as inputs, by Lemma 5 each intermediate neuron in
the bucket of size m would have its potential distributed roughly uniformly in a range of
width O([(1 − ∆)p]1/2) = O(p1/2). On average these potentials would be spaced out by
O(p1/2/m). By setting m = Õ(1/

√
∆) we have average spacing Õ(∆1/2p1/2). This is a small

enough spacing, so that when we consider the Ω(∆p) non-shared neurons in the inputs, their
contribution to the potential will be large enough to significantly reorder the potentials of
the intermediate neurons, so that the neuron with maximum potential is unlikely to be the
same for the two different inputs.

From Lemma 8 we can show that our network satisfies the distance preserving dimen-
sionality reduction guarantee of Definition 4, along with the additional condition that the
gap between the membrane potentials of the neurons with the largest potentials under
τ = p+ 2p1/2 is sufficiently large, so that these neurons can be distinguished reliably in the
second sparsification layer:

I Corollary 9 (Overall Success – Far Inputs). For m = O
(

log(1/∆)√
∆

)
, and ` = O(log(tm/δ)),

for any window of tm rounds, with probability ≥ 1−δ, for all pairs of inputs X1, X2 presented
during these rounds with RD(X1, X2) ≥ ∆, on at least 91/100 · ` of the ` buckets, letting
τ = p+ 2p1/2 and defining i1,b(·) and i2,b(·) as in Lemma 7:

i1,b(X1) 6= i1,b(X2)
For both j = 1, 2: i1,b(Xj) 6= 0, [AbXj](i1,b(Xj)) ≥ p, and
[AbXj](i1,b(Xj))− [AbXj](i2,b(Xj)) = Ω

(
p1/2

m

)
or i2,b(Xj) = 0.

2 When X is binary we often drop the subscript and just use ‖X‖ to denote the `1 norm which is equal
to the number of nonzero entries, | supp(X)|.

ITCS 2020

23:10 Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks

Proof. By Lemma 8 and a Chernoff bound, since ` = Θ(log(tm/δ)) = Θ(log(t2m/δ)), for any
fixed pair of inputs with RD(X1, X2) ≥ ∆, the conditions hold on at least 91/100 · ` buckets
with probability ≥ 1− δ/t2m. The corollary follows since at most tm inputs can be presented
in tm rounds, and so we can union bound over at most t2m pairs of far inputs. J

We can give a complementary statement to Lemma 8: if X1 and X2 are close to each
other, it is relatively likely that the index of the largest value of AbX1 and AbX2 are the
same. We defer the proof to Appendix A.

I Lemma 10 (High Collision Probability – Close Inputs). Let X1, X2 ∈ {0, 1}n be two vectors
with RD(X1, X2) ≤ ∆/α. Consider our construction with bucket size m = c1 log(1/∆)√

∆
. Then

for sufficiently large constants c1, c2 and α = O(log(1/∆)4), for any b ∈ [`], defining i1,b(·)
and i2,b(·) as in Lemma 7, with probability ≥ 0.97:

i1,b(X1) = i1,b(X2).
For both j = 1, 2: i1,b(Xj) 6= 0, [AbXj](i1,b(Xj)) ≥ p, and
[AbXj](i1,b(Xj))− [AbXj](i2,b(Xj)) ≥ p1/2

c2·m or i2,b(Xj) = 0.

Lemma 10 yields an analogous corollary to Corollary 9, which follows via a Chernoff
bound and a union bound over at most t2m pairs of close inputs that may be presented over
tm rounds.

I Corollary 11 (Overall Success – Close Inputs). For m = O
(

log(1/∆)√
∆

)
, ` = O(log(tm/δ)),

and α = O(log(1/∆)4), for any window of tm rounds, with probability ≥ 1− δ, for all pairs of
inputs X1, X2 presented during these rounds with RD(X1, X2) ≤ ∆/α, on at least 96/100 · `
of the ` buckets, letting τ = p+ 2p1/2 and defining i1,b(·) and i2,b(·) as in Lemma 7:

i1,b(X1) = i1,b(X2)
For both j = 1, 2: i1,b(Xj) 6= 0, [AbXj](i1,b(Xj)) ≥ p, and
[AbXj](i1,b(Xj))− [AbXj](i2,b(Xj)) = Ω

(
p1/2

m

)
or i2,b(Xj) = 0.

4 Layer 2: Sparsification via Winner Takes All

Corollaries 9 and 11 show that the random projection step preserves significant information
about input distance, encoded in the membrane potentials of the intermediate neurons, which
correspond to the entries of AX when the network is given input X. These membrane
potentials cause the intermediate neurons to fire randomly, as Bernoulli processes with
different rates. The goal of our second layer is to convert this random behavior to a uniquely
identifying sparse code for each input. We achieve this through a winner-takes-all (WTA)
based sparsification process, which is thought to play a major role in neural computation
[26, 14, 37]. A separate winner-take-all instance is applied to each bucket, “selecting” the
neuron with the highest membrane potential below τ by inducing its corresponding neuron
in the sparsification layer to fire with high probability while all other neurons in the bucket
do not fire.Let Y ∈ Rm denote the vector of membrane potentials of a single bucket of the
intermediate layer: Y = AbX. Our WTA layer maps each Y into a binary unit-vector Z of
the same length, in which the only firing neuron corresponds to the neuron with the largest
potential in Y that is bounded by the threshold parameter τ . As explained in Section 3, the
random projection step produces ` = O(log(tm/δ)) random compressed vectors, one for each
of the ` buckets. Each such copy is an input to an independent WTA circuit and thus, in
this section, we focus on our construction restricted to just a single bucket, bearing in mind
that in fact our network consists of ` repetitions of this module.

Y. Hitron, N. Lynch, C. Musco, and M. Parter 23:11

The first part of the WTA circuit is devoted to reading: the circuit collects firing statistics
for a period of T = Õ(m2) rounds to obtain a good estimate of the neuron in the bucket
that 1) has potential ≤ τ and 2) has the largest firing rate. This neuron corresponds to the
neuron with the highest potential in Y bounded by τ . This is done by augmenting each
neuron i in the bucket with a directed chain Hi of neurons of length T . The jth neuron in
the chain triggers the firing of the (j+ 1)th neuron with high probability. As a result, after T
rounds, the number of firing neurons in the chain Hi is equal to the number of times i fired
within the last T rounds, with high probability. We thus refer to this Hi chain as the history
chain of the ith neuron in the bucket. The second part of the circuit first excludes all neurons
with potential ≥ τ and then applies a standard WTA circuit to pick the neuron remaining
that fires the most in this T -length time interval. See Fig. 2 for an illustration of the overall
clustering network and the WTA module. The main result of this section is as follows.

I Lemma 12. For every pair of input patterns Xi, Xj presented over a period of tm rounds,
with probability at least 1− δ the following hold:

(I) If RD(Xi, Xj) ≥ ∆, then supp(Zi) \ supp(Zj) ≥ 0.9 · `.
(II) If RD(Xi, Xj) ≤ ∆/α, then supp(Zi) ∩ supp(Zj) ≥ 0.9 · `.

We first give a detailed description of the specification step via WTA (see Figure 2). We
focus on a single bucket, bearing in mind that in fact our network consists of ` repetitions of
this module.

Reading via History Chain. Every neuron i ∈ {1, . . . ,m} in the bucket is connected to a
chain Hi of length T = Θ(log(1/δ) ·m2) of neurons where the jth neuron in this chain fires
in round t with high probability iff its incoming neighbor on that chain fires in round t− 1.
This is done by setting the bias value of each neuron to 1 and the edge weights to be 1/2.
As a result we get that the number of firing neurons in this chain equals to the number of
times i fires within the last T rounds with high probability.

Omitting the Neurons Exceeding the Threshold Value. For every neuron i ∈ {1, . . . ,m}
we introduce an inhibitor copy ri that has the same incoming weights as i and therefore
also has the same potential. We set the bias of ri such that with high probability it fires iff
its potential exceeds the threshold value τ . We then connect ri to all neurons in the chain
Hi with large negative weight. As a result, if the potential of neuron i exceeds τ with high
probability all neurons in Hi will not fire.

Selecting the Maximum Firing Rate with Pairwise Comparisons. For every ordered pair
of neurons i, j ∈ [1,m], we have a designated (threshold gate) neuron yi,j that fires iff the ith
neuron in the bucket fires more than the jth neuron within the last T rounds. To accomplish
this, each of the neurons in the chain Hi (respectively, Hj) is connected to yi,j with a positive
(respectively, negative) edge weight of ±1. Hence, the total weighted sum incoming to yi,j
is exactly the difference between R(i) and R(j) where R(i), R(j) are the number of times
that the ith and jth neurons fired in the last T rounds. We set the bias of yi,j such that
it fires with high probability iff R(i) − R(j) ≥ 1. The ith output neuron in Z computes
the AND-gate of the threshold-gates yi,1, . . . , yi,m. That is, zi fires in round t only if every
yi,1, . . . , yi,m fired in round t−1. The AND-gate can be implemented by setting the incoming
edge weight from each yi,j to zi to be 1/m, and the bias of Zi to 1− 1/(2m).

ITCS 2020

23:12 Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks

Analysis. The requirement from the WTA module is that the firing frequency vector R has
its largest entry in the same position as the largest entry of Y that is ≤ τ . If this is the case,
the WTA circuit indeed selects the neuron corresponding to the largest firing rate ≤ τ , and
the only entry in the support of Z is the one corresponding to this entry. For the largest
entry in R to reflect the largest entry in Y ≤ τ with probability ≥ 1− δ, the gap between the
largest and second largest firing rates must be Ω

(√
log(1/δ)/T

)
. Using the gap condition of

Corollary 9 we will show that this gap is Ω(1/m), letting us set T = O(log(1/δ) ·m2). The
desired gap is achieved in a large fraction of the buckets, this implies that the WTA picks
the maximal entry in most of the buckets as well.

B Claim 13. Let Y be a vector with i = arg maxj:Y (j)≤τ Y (j) and Y (i)− Y (j) = Ω(p1/2/m)
for every3 j 6= i with Y (j) ≤ τ . Then in the output vector Z, Z(i) = 1 and Z(j) = 0 for
every j 6= i with probability at least 99/100. If Y is first introduced in round t, the desired
output vector Z fires in round t+ T + 2 w.h.p.

The proof of Claim 13 and the complete proof of Lemma 12 is given in Appendix B.

R
an

d
o

m

P
ro

je
ct

io
n

s

…

ത𝑋

𝑅1(ത𝑋)

𝐻𝑖

R
ea

d
in

g
W

TA 𝑅2(ത𝑋)

Sequential mapping
and memory mechanism

𝑅∗(ത𝑋)
1 𝑘2 …

𝑅1(ത𝑋) 𝑅1(ത𝑋)

𝑅2(ത𝑋) 𝑅2(ത𝑋)

𝐻1

𝑧1 𝑧2 𝑧3

𝑦2,1 𝑦2,3

𝑦1 𝑦2 𝑦3

𝐻2

𝐻3

ത𝑌

ҧ𝑍

Figure 2 Left: Overall network description, the input pattern X is mapped to unique output
neuron in [1, k] via three main steps. Right: Description of the WTA circuit. For clarity we only
show the connections for the second output neuron, but same holds for all k output neurons. Every
input neuron i in Y is connected to a history chain Hi of length T that is used to collect firing
statistics. For each pair of input neurons i, j, there is a threshold gate qi,j that fires only if i fired
at least T/2m more times than j within T rounds. Each history neuron in Hi, Hj is connected
with weight 1 (respectively −1) to qi,j and the bias of qi,j is T/2m. Finally, each output neuron qi
computes the AND gate of qi,1, . . . , qi,m, i.e., fires only if all these gates fire in the previous round.
As a result a winner qi is selected only if yi − yj = Ω(1/m) for every j 6= i.

5 Layer 3: Sequential Mapping

We conclude by discussing the final sequential mapping layer of our network, which maps
the binary patterns Zi of length r = O(` ·m) to a single output neuron. The inputs to the
third layer are the r neurons Z = {z1, z2, . . . , zr} and its outputs are the k output neurons
Q = {q1, q2, . . . , qk}. The r-length patterns will be mapped to their unique output neuron in
a sequential manner, where at each given round, a newly introduced pattern will be mapped
to the available output with the smallest index. The mapping will satisfy the following
properties: (1) patterns Zi, Zj that correspond to far input patterns Xi, Xj respectively will
be mapped to distinct outputs, (2) patterns Zi, Zj that correspond to close input patterns

3 This required gap is based on Lemma 7/Corollary 9.

Y. Hitron, N. Lynch, C. Musco, and M. Parter 23:13

Compressed Input

Association

Output

Memory

(Lateral
inhibition)

Figure 3 Schematic description.

presented within the same time window of Θ(tm) rounds will be mapped to the same outputs.
Recall that tm is the memory duration which is a parameter of the network. A key component
in our network is the memory module that remembers the association between each previously
introduced pattern and its selected output for Θ(tm) rounds. Roughly speaking, our network
has two intermediate layers: an association layer and a memory layer (see Figure 3), which
we describe below.

We first describe the construction by considering the case where a new pattern Z is
introduced (and no close pattern to it was introduced before). When Z is presented to
the network for the first time, it activates the association layer which contains r neurons
ai,1, . . . , ai,r for each output qi. Let supp(Z) be the non-zero entries of Z. Since4 | supp(Z)| ≤
` it can activate at most ` · k many neurons ai,j for every j ∈ supp(Z) and i ∈ {1, . . . , k}.
Every output qi is connected to its association neurons ai,1, . . . , ai,r and fires only if many of
them fire.

Our construction will make sure that the number of active association neurons of a taken
output (i.e., output already mapped to other pattern, far from Z) will be small, which will
prevent the firing of these outputs when a far pattern is presented. This will be provided
due to the memory module appended to each output qi which remembers the pattern (in
fact the cluster of patterns) that were mapped to qi in the past. For each j in the support
of the pattern associated with qi, the memory module corresponding to qi and zj inhibits
all other association neurons associated with qi, while activating the association aij . This
association will be remembered – by the memory module – for at least c1 · tm rounds and at
most c2 · tm rounds, for c1 < c2 with high probability.

For every available output qi, all its association neurons ai,j for j ∈ supp(Z) will start
firing once Z is presented, which will in turn activate qi. To select exactly one output neuron
among all the available ones, the output layer is connected via a lateral inhibition, where
every neuron qi inhibits all qj for j ≥ i+ 1.

Overall, our sequential mapping module satisfies:

I Theorem 14 (The Sequential Mapping Module). There exists a sequential mapping module
with r input neurons, Θ̃(r · k) auxiliary neurons, and k output neurons that for every pattern
Z that is introduced in round t satisfy the following with probability 1− δ:
(1) The pattern Z is mapped to one of the outputs q1, . . . , qk in round t+ 6.
(2) Any pair of close patterns Z,Z ′ introduced within a span of c1 · tm rounds are mapped

to the same output neuron.
(3) Any pair of far patterns Z,Z ′ introduced within a span of c1 · tm rounds are mapped to

different output neurons.
In addition, if a pattern Z (or a pattern close to it) is not introduced for tm rounds, then its
unique mapped output qj is released after c · tm rounds, for some constant c ≥ 1.

4 As the WTA module picks at most one winning entry in each of the ` buckets.

ITCS 2020

23:14 Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks

5.1 Complete Network Description of the Sequential Mapping
Next we precisely describe the neurons and edge weights of the sequential mapping sub-
network.

The association layer. For each neuron zi in the input layer, and each neuron qj in the
output layer, we introduce an association neuron denoted as aj,i. The neuron aj,i has
positive and negative incoming edges from the memory modules that is described in the
next paragraph. It also has a positive incoming edge from the neuron zi with weight
w(zi, aj,i) = 2`, and bias β(aj,i) = (19/10)`− 1. We set the connections to this neuron in a
way that guarantees it fires only if zi fired in the previous round, and no other (far) pattern
is already mapped to qj .

The memory modules. For each neuron zi in the input layer and output neuron qj we
introduce a memory of association module Mj,i which remembers the association of neuron
zi and qj . The memory module Mj,i contains c · log(1

δ′) excitatory neurons denoted as M+
j,i

where δ′ = δ/` and c is chosen to be a sufficiently large constant. For every m ∈ M+
j,i we

introduce a feedback neuron fm which starts exciting m once the memory module is being
activated.In addition, we introduce a delay chain CMj = C5(qj) that starts at the output qj
and ends at each of the neurons m ∈M+

j,i. Finally, the memory module contains two head
neurons, an excitatory neuron m+

j,i and an inhibitory neuron m−j,i.
Each excitatory neuron m ∈M+

j,i has positive incoming edges from aj,i, qj , C
M
j , as well

as from the corresponding feedback neuron fm with the following weights and bias

w(aj,i,m) = 2λ, ∀u ∈ CMj w(u,m) = 2 , w(fm,m) = λ · (χ+ 2) + 9 β(m) = 9 + 2 · λ ,

where χ = log(tm − 1). Note that if the feedback neuron fm fired in the previous round, the
memory neuron m fires with probability at least 1

1+e−χ = 1− 1/tm. The feedback neuron
fm for m ∈ M+

j,i has positive incoming edges from m and m+
j,i with weights w(m, fm) =

2 , w(m+
j,i, fm) = 2 , and bias β(fm) = 3 . Hence, w.h.p. fm fires iff m and m+

j,i fired in
the previous round. The excitatory head neuron m+

j,i has positive incoming edges from all
m ∈M+

j,i with weights w(m,m+
j,i) = 2 and bias β(m+

j,i) = c · log(1/δ′) + 1. The head neuron
m−j,i is an inhibitory copy of m+

j,i with the same incoming edges, bias and potential function.
Each association neuron aj,i has a positive incoming edge from the head memory neuron

m+
j,i with weight w(m+

j,i, aj,i) = `. In addition, aj,i has negative incoming edges from the
inhibitory memory neurons m−j,i′ for every i′ = {1, 2, . . . k} \ {i} with weights w(m−j,i′ , aj,i) =
−1. Note that w.h.p. aj,i fires in round t only if zi = 1 in round t− 1. In case where there
are at least 1/10` memory modules mj,i′ that inhibit aj,i, it fires only if its own memory
module, namely, Mj,i is active. To prevent a situation of partial memory where only part of
the memory modules associated with a pattern are released, if at most 0.9` of the memory
modules Mj,1, . . . ,Mj,r are active, we activate the inhibition of these firing modules. For
that purpose, for every output qj , we introduce 3 deletion neurons d1

j , d
2
j , d

3
j . The neurons

d1
j , d

2
j detect this situation and the inhibitor d3

j kills the partial memory. The deletion neuron
d1
j has incoming edges from all head neurons m+

j,i for i = 1 . . . r with weights w(m+
j,i, d

1
j) = 2

and bias β(d1
j) = 1. Hence, w.h.p. d1

j fires in round t iff at least one memory module fired
in round t− 1. The second deletion neuron has incoming edges from all the inhibitor head
neurons m−j,i for i = 1 . . . r with weights w(m−j,i, d2

j) = −1 and bias β(d2
j) = −0.9`+ 1. Thus,

w.h.p. d2
j fires in round t iff at most 0.9` memory module fired in round t− 1. The third

deletion neuron d3
j has incoming edges from d1

j and d2
j with weights w(d1

j , d
3
j) = w(d2

j , d
3
j) = 2

and bias β(d3
j) = 3. Hence, d3

j fires in round t iff d1
j and d2

j fired in round t − 1. In
addition, the head neurons m+

j,i,m
−
j,i have a negative incoming edge from d3

j with weight
w(d3

j ,m
+
j,i) = w(d3

j ,m
−
j,i) = −2c log(1/δ′).

Y. Hitron, N. Lynch, C. Musco, and M. Parter 23:15

Compressed Input

Association

Output

Memory

𝑧𝑖

𝑞𝑗

𝑎𝑖𝑗

𝑀𝑖𝑗

𝑚𝑖𝑗
+ 𝑚𝑖𝑗

−

𝑚

𝑓𝑚

𝑀𝑖𝑗
+

The Memory Module 𝑴𝒊𝒋

Figure 4 Left: an illustration of the network. The green edges correspond to edges with positive
weight where the red edges correspond to negative weights. For simplicity we omitted the history and
deletion neurons as well as the rest on the association and memory modules. Right: The memory
module and the feedback loop mechanism.

History neurons. If an input pattern Z is already mapped to an output neuron, our goal
is to map every pattern close to Z to the same output. To make sure that close patterns
Z,Z ′ are indeed mapped to the same output, for each output neuron qj we introduce an
inhibitory history neuron hj . The role of the history neuron is to take care of a situation
where a pattern Z is mapped to output qj , but when a close pattern Z ′ is presented later on,
an output qi for i < j is free. Recall that in our construction, each pattern is mapped to
the first available output. To do that, the network parameters of the history neurons are
defined as follows. Each history neuron hj has positive incoming edges from all associated
excitatory memory neurons m+

j,i for i = 1 . . . r with weights w(m+
j,i, hj) = 1. In addition, it

has a positive incoming edge from the output neuron qj with weight w(qj , hj) = ` and bias
β(hj) = −(3/2)` − 1. Thus, the history neuron hj fires if the output neuron qj fired and
at least a large fraction of the memory modules corresponding to qj are active (the latter
indicates that qj is indeed taken). The history neuron hj then inhibits all the preceding
output neurons q1, . . . , qj−1, preventing the input pattern from being mapped to a different
output.

The output layer. The output layer Q consists of excitatory neurons. In order to map the
input pattern sequentially, for each qj ∈ Q we introduce an inhibitor output neuron q−j which
inhibits the output neurons qj′ for j′ ∈ {j + 1, . . . , k}. The neuron qj is connected to q−j via
a delay chain of length 3 denoted as CIj = C3(qj). The neuron q−j has incoming edges from
CIj with weights 2, and a negative bias of β(q−j) = 5. Hence, w.h.p. q−j fires iff qj fired for 3
consecutive rounds.

Each output neuron qj has positive incoming edges from the association neuron aj,i for
every i = {1, 2, . . . k}. In addition, qj has negative incoming edges from all preceding neurons
q−i for i < j and all successive history neurons hi where i > j. The weights and bias are
given by

w(aj,i, qj) = 2 ∀i ∈ [r], w(q−i , qj) = −3` ∀i < j, w(hi, qj) = −3` ∀i > j, β(qj) = `−1

Note that qj fires in round t only if at least (1/2)` association neurons fired in round t− 1,
and no history or inhibitor output neuron inhibit it.

As in previous sections, we assume that before the first round no neuron fires (i.e v0 = 0
for every neuron v in the network). Figure 4 illustrates the structure of the network and
Figure 5 demonstrates the network flow with two inputs.

ITCS 2020

23:16 Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks

5.2 Network Dynamics
Before providing the detailed analysis of the network, we give a more detailed description
of the network behavior in the two orthogonal cases: mapping close patterns to the same
output and mapping far patterns to distinct outputs.

Introduction of a New Pattern Xj . A pattern Xj is introduced in round t where
q1, . . . , qj−1 are already allocated. We will describe how Xj is mapped to qj . First, in
Step (1), Xj is mapped to a vector Y j = R1(Xj). In Step (2), Y j is mapped to a binary
vector Zj which is the input to the sequential mapping sub-network. Let t′ be the time in
which Zj fires. This will cause the firing of the association layer in the following manner.
Let X1, . . . , Xj−1 be the patterns mapped to q1, . . . , qj−1.

For every allocated neuron qi, i ≤ j − 1, and every entry i1 ∈ supp(Zj) \ supp(Zi), their
association neuron ai,i1 is inhibited by the memory modules Mi,i2 for every i2 ∈ supp(Zi).
Thus, for every allocated neuron qi, when introducing Zj , at most | supp(Zi)∩supp(Zj)| ≤
0.1 · ` association neurons ai,j′ are active.
Since an output qi fires only if at least 1/2` association neurons are active, qi would not
fire.
For every free output qi for i ∈ {j, . . . , k}, all the association neurons ai,i1 for every
i1 ∈ supp(Zj) are now active. Hence, in the next round, all qj , . . . , qk fire.
Since we have a lateral inhibition, qj inhibits5 all other qi for i ∈ {j + 1, . . . , k}.
Only at the point where qj+1, . . . , qk are inhibited, the memory modules Mj,i1 of the
winner output qj start being active, for every i1 ∈ supp(Zj). This memory module
continues firing from that point on for Θ(tm) rounds, even when Xj is not introduced.
Each activated moduleMj,i1 for every i1 ∈ supp(Zj) inhibits each of the other association
neurons aj,i2 for every i2 6= i1. In addition, each Mj,i1 excites its own association neuron
aj,i1 for i1 ∈ supp(Zj), thus canceling the inhibition from the other Mj,i2 modules. As a
result, the only inhibited association neurons are aj,i2 for i2 /∈ supp(Zj).

Re-Introduction of a Close-Pattern Xj . We now consider the situation where Xj is
introduced in round t, and a close-pattern Xj′ was introduced in the past (e.g., in a window
of Θ(tm) rounds). We would like to show that Xj will be mapped to the exact same output
neuron qj′ as Xj′ .

For every allocated neuron qi and every entry i1 ∈ supp(Zj) \ supp(Zi), their association
neuron ai,i1 is inhibited by the memory modules Mi,i2 for every i2 ∈ supp(Zi).
Thus, for every allocated neuron qi for i 6= j′, when introducing Zj , at most | supp(Zi) ∩
supp(Zj)| ≤ 0.1 · ` association neurons ai,i1 are active. As a result, qi1 will not fire.
In contrast, for the desired output neuron qj′ , only | supp(Zj) \ supp(Zj′)| association
neurons are inhibited, while the remaining ones, namely, aj′,i1 for i1 ∈ supp(Zj)∩supp(Zj′)
are active. Since | supp(Zj) ∩ supp(Zj′)| is sufficiently large, qj′ will fire.
Due to lateral inhibition of qj′ , all other free outputs qi′ for i′ ≥ j′ + 1 will not fire.
It remains to show that all other free outputs qi for i ≤ j′ − 1 will not be active. Recall
that these outputs have a lateral inhibition on qj′ that starts inhibiting qj′ within a
small number of rounds since the activation of qi. It is therefore important to neutralize
these outputs before their inhibition on qj′ comes into play. Indeed this is the reason for
introducing the delay to the lateral inhibition mechanism.

5 In fact, its inhibitor copy will do this inhibition.

Y. Hitron, N. Lynch, C. Musco, and M. Parter 23:17

𝑞2

𝑀21𝑀11

𝑎32𝑎12𝑎31𝑎11

𝑞1

𝑧1 𝑧2 𝑧3

𝑎21 𝑎22

𝑞2

𝑀21𝑀11 𝑀32𝑀12

𝑎32𝑎12𝑎31𝑎11

𝑞1

𝑧1 𝑧2 𝑧3

𝑎22𝑎21

Figure 5 Left: network’s state where first pattern (1, 1, 0) is presented. Since all outputs are
free at that point, the pattern is mapped to the first output q1, which activates all its memory
modules. Right: network description when the second input (1, 0, 1) is presented. Because the
memory modules M1,1 and M1,2 are active, the association neuron a1,3 is inhibited and this q1 will
not fire. As a result, (1, 0, 1) is mapped to q2, activating corresponding memory modules M2,1 and
M2,3.

To indicate the fact that qj′ was already allocated to a pattern close to Xj , we have a
history neuron hj′ that works as follows. It gets input from all the memory modules of
qj′ , as well as from qj′ itself. Since the close patterns Xj and Xj′ have many entries in
common, sufficiently many memory modules of qj′ will activate hj′ . For a free output
qi for i ≤ j′ − 1, the memory modules of qi are not active and hence the history neuron
would not be active.
The history neuron hj′ then inhibits all prior outputs qi for i ≤ j′ − 1 just before their
lateral inhibition chain affects qj′ . In addition, the inhibition on qi also occurs before the
memory modules of qi start being active. That is, since we want to remember only the
association to the correct output qj′ , we delay the activation of the memory model. The
latter starts only after qj′ fires for a consecutive constant number of rounds.

5.2.1 Correctness
The following definitions are useful in our context.

I Definition 15. A pattern Z is mapped to an output neuron qj in round t if when presenting
Z to the sequential mapping network in round t− 1, qj is the only firing output neuron in
round t.

I Definition 16. Mj,i is active in round t, if its head neurons m+
j,i, m

−
j,i fired in round t.

In order to prove the main Theorem 14, we start by establishing useful auxiliary claims
and observations.

I Observation 17. For every output neuron qj if the number of active memory modules Mij

in round t is between 1 and 0.9`, then w.h.p. there are no active memory modules in round
t+ 3.

Proof. For output neuron qj if the number of active memory modules Mij in round t is at
least 1 w.h.p. the deletion neuron d1

j fires in round t+ 1. If the number of active memory
modules Mij is also less than 0.9` then w.h.p. d2

j fires in round t+ 1 and therefore d3
j fires in

round t+ 2, inhibiting all memory modules Mij for i = 1, . . . , r. J

I Observation 18. Given that the deletion neurons of output qj did not fire in round t− 1,
w.h.p. a memory module Mj,i is active in round t iff at least (c/2) log(1/δ′) neurons m ∈M+

j,i

fired in round t− 1.

ITCS 2020

23:18 Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks

Proof. Recall that a memory module Mj,i is active in round t if the excitatory neuron m+
j,i

fired. The potential function of m+
j,i is given by

pot(m+
j,i, t) =

∑
m∈M+

j,i

2 ·mt−1 − 2c log(1/δ′)(d3
j)t−1 − c log(1/δ′) + 1 .

If at least c
2 log(1/δ′) neurons inM+

j,i fired in round t−1, the potential of m+
j,i in round t is at

least 1 and the probability that m+
j,i fire in round t is at least 1

1+e−1/λ ≥ 1−Θ(δ
n·k·∆·tm·log 1/δ).

On the other hand, if less than c
2 log(1/δ′) neurons inM+

j,i fired, the potential ofm
+
j,i is at most

−1 and the probability that m+
j,i fired in round t is at most 1

1+e1/λ ≤ Θ(δ
n·k·∆·tm·log 1/δ). J

B Claim 19. If Z1, Z2 are close and Z2, Z3 are close, then Z1, Z3 are close.

Proof. Let X1, X2, X3 be the corresponding input patterns, where Zi = R2(Xi) for i ∈
{1, 2, 3}. By the definition of the clustering instance, every pair of patterns Xi, Xj are either
with relative distance at least ∆/2 (i.e., if these patterns belong to different clusters), or have
relative distance at most ∆/α (i.e., if they belong to the same cluster) for α = Ω(log(1/∆)).

By Lemma 12, input patterns Xi, Xj that belong to different (resp., same) clusters are
mapped to far (resp., close) vectors Zi, Zj . We therefore have that X1, X2 are in the same
cluster, and also X2, X3 are in the same cluster, concluding that X1, X2, X3 are all in the
same cluster. C

B Claim 20. For every j ∈ [k] and i ∈ [`] w.h.p. the memory module Mj,i is active in round
t given that it was not active in round t− 3, only if CMj and aj,i fired in round t− 2.

Proof. By Observation 18 Mj,i is activated in round t only if at least (c/2) log(1/δ′) neurons
m ∈M+

j,i fire in round t− 1. Since Mj,i was not active in round t− 3 all feedback neurons
fm for m ∈M t

j,i was not active in round t− 2 and the potential of each m ∈M+
j,i in round

t− 1 is
∑
u∈CM

j
2 · (u)t−2 + 2λ · (aij)t−2 − 9− 2λ. Hence, if CMj and aj,i fired in round t− 2,

in the next round the potential of each m ∈ M+
j,i is at least 1 and m fires in round t − 1

with probability at least 1 − Θ(δ
n·k·∆·tm·log 1/δ). Thus, by Chernoff bound w.h.p. at least

(c/2) log(1/δ′) neurons m ∈M+
j,i fired in round t− 1.

On the other hand if CMj and aj,i did not fire together in round t− 2, the potential of
every m ∈ M t

j,i in round t − 1 is at most −2λ and m fires with probability at most 1
1+e2 .

Using Chernoff bound and choosing c to be sufficiently large, we conclude that (c/2) log(1/δ′)
neurons m ∈M+

j,i fire in round t− 1 with probability at most δ′. C

I Observation 21. For every output qj at each round w.h.p. the number of memory modules
Mj,i that are active is at most `.

Proof. Since every pattern has at most ` non zero entries, in each round at most ` association
neurons aj,i fire. By Claim 20, at each round at most ` memory modules Mj,i are activated
for the first time. If in round t− 3 more then 0.1` memory modules were active, the only
association neurons firing in round t− 2 correspond to the activated memory modules and
therefore w.h.p. no new modules are activated in round t. Else, by Observation 17 w.h.p.
the deletion neuron d3

j kills the active memory modules and no memory module is active in
round t. J

Using the same arguments, since the deletion neurons erase the partial memory, we can also
conclude that for every output neuron all its active memory modules correspond to the same
input pattern.

Y. Hitron, N. Lynch, C. Musco, and M. Parter 23:19

I Observation 22. For each output neuron qi in each round if it has active memory modules,
there exists an input pattern Z s.t if Mi,j is active then j ∈ supp(Z).

B Claim 23. If Z is mapped to qj in round t, with probability greater than 1− δ at least 0.8`
memory modules Mj,i where i ∈ supp(Z) are active for c1 · tm consecutive round starting
from round t+ 8.

Proof. Let Z be a pattern mapped to qj in round t. Recall that we assume persistence and
therefore w.h.p. Z is also mapped to qj in rounds t+ 1 to t+ 8.

First we argue that at least 0.8` of the association neurons aj,i for i ∈ sup(Z) fire in
round t+ 6. From Observation 17 either there where no memory modules corresponding
to qj active before Z was introduces or at least 0.9` 6. If there where no memory modules
active, all association neurons aj,i for i ∈ sup(Z) fire starting round t+ 1 ahead as long
as Z persist. Otherwise, since qj fired in round t + 7, we conclude that at least 0.5`
association neurons aj,i fired in round t + 6. The association neurons that fired are
from the support of Z and together with Observation 22 we conclude that the pattern
previously mapped to qj is close to Z and at least 0.8` association neurons fired in rounds
t+ 6 (due to Lemma 12).
For i ∈ sup(Z) for which aij fired in rounds t+ 6, we now calculate the probability that
Mij is active in round t+ 8. By Observation 18 its enough to calculate the probability
that at least (c/2) log(1/δ′) neurons m ∈M+

j,i fired in round t+ 7. The potential function
of every m ∈M+

j,i is given by

pot(m, t) =
∑
u∈CM

j

2 · (u)t−1 + 2λ · (aij)t−1 + (9 + λ · (2 + χ)) · (fm)t−1 − 9− 2λ .

Since qj fires in rounds t to t + 7, the delay chain CMj fired in round t + 6, and the
probability m fires in round t+ 7 is at least 1−Θ(δ

n·k·∆·tm·log 1/δ). Using Chernoff bound
with probability greater than 1 − δ/3` at least c log(1/δ′)

2 neurons in Mj,i fire in round
t+ 7 and the head memory neuron m+

j,i fires in round t+ 8.
Next we calculate the probability that m ∈M+

j,i fires c1tm consecutive rounds starting
round t+ 8 given that m+

j,i fires in round t+ 8. Since m+
j,i fired in round t+ 8, for every

m ∈M+
j,i that fired in round t+8, the feedback neuron fm is activated in round t+9 andm

fires in round t+10 with probability at least 1−1/tm. Hence, the probabilitym ∈M+
j,i fires

in rounds t+8, t+9 and c1tm consecutive rounds is at least (1−Θ(δ
n·k·∆·tm·log 1/δ))2 ·(1

ec1).
We chose c1 such that this is greater than 1/2. Thus, using Chernoff bound and a large
enough c (depending on c1) the probability that at least c log(1/δ′)

2 neurons m ∈M+
j,i fire

in rounds t+ 8, t+ 9 and then for c1tm consecutive rounds is at least 1− δ′/3 = 1− δ/3`.
Summing things up, the probability Mj,i is active for c1 · tm consecutive rounds from
round t+ 8 ahead is at least the probability that m+

j,i fired in round t+ 8 and c log(1/δ′)
2

neurons in M+
j,i fires c1tm consecutive rounds starting round t+ 8. By union bound this

probability is greater than

1− 3 · (δ/3`) = 1− δ/`.

Thus, we conclude that the probability all 0.8` modules Mj,i s.t aj,i fired in round t+ 6 are
active for c1 · tm consecutive rounds is greater than 1− δ. C

We are now ready to prove the correctness of the sequential mapping step.

6 up too ±3 rounds, but since we assume persistence its ok.

ITCS 2020

23:20 Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks

Proof of Theorem 14

Proof. We start by proving the 3 main properties of the network. Given a pattern Z

introduced in round t we will show:
(1) Z is mapped to one of the outputs q1, . . . , qk in round t+ 6
(2) For any pattern Z ′ which is close to Z and was introduced within a span of c1 · tm rounds

from t, Z and Z ′ are mapped to the same output neuron.
(3) For any pattern Z ′ which is far from Z and was introduced within a span of c1 · tm

rounds from t, Z and Z ′ are mapped to a different output neuron.

By induction on the order of arrival of the patterns. Let Z be the first pattern arrived in
round 0. We show that Z is mapped to the first (available) neuron q1 in round 6. For every
i ∈ sup(Z) the potential function of the association neuron a1,i is given by:

pot(a1,i, t) = 2`(zi)t−1 + `(m+
1,i)

t−1 −
∑
j 6=i

(m−1,j)
t−1 − (19/10)`− 1 .

Since Z is the first pattern seen, no neuron has fired in round zero and pot(a1,i, 1) =
(1/10)`− 1 > 1, and w.h.p. each a1,i for i ∈ sup(Z) fires in round 1.

Since q1 is the first output, no preceding output neuron inhibits it, and its potential is:

pot(q1, t) =
r∑
i=1

(2 · a1,i)t−1 −
k∑
i=2

3`hi − `+ 1 .

By Claim 13, w.h.p. each input pattern Z (to the sequential mapping network) has at
least 0.98` non-zero entries (and at most `). Therefore, at least 0.98` association neurons
a1,i excite q1 in round 2. Recall that the history neurons hi fire only if at least 1/2 of the
corresponding memory modules are active in the previous round. Hence w.h.p. in round 1,
no history neuron fires.

We conclude that q1 fires in round 2 w.h.p. By Claim 20 every memory module Mi,j

becomes active only after having qi firing for 5 consecutive rounds (due to the delay chain
CMi). For that reason, no memory module fires before round 5. Since the memory neurons
are not active, a1,i keeps firing in rounds 1 to 6, and q1 keeps firing in rounds 2 to 7. Since
q1 is connected to q−1 via a delay chain CI1 of length 3, starting round 5 (and as long as q1
fires), the inhibitor q−1 inhibits all other output neuron qi for i ≥ 2. Thus, for every i ≥ 2 the
potential of qi in round 6 is at most `− 2`− 1/2`+ 1 < −1. As a result, for i ≥ 2 neuron qi
does not fire starting round 6.

We next argue that at this point, no memory modules are yet active and consequently the
history neurons are inactive as well. This is due to the fact that the delay in the inhibition
of qi by q1 is shorter then the delay chain CMi that starts at qi and ends at the memory
modules. Thus qi is inhibited before its memory modules are activated. We conclude that if
Z is observed, starting from round 6, the output neuron q1 is the only active output neuron,
and Z is mapped to q1.

Assume the claim holds for the first i− 1 presented patterns, we next consider the ith
pattern Z presented in round t.

We first show that for every Z ′ that is far from Z introduced in round t′ ∈ [t−c1 ·tm, t−1],
the pattern Z will be mapped to a different output. By the induction assumption, Z ′
is mapped in round t′ + 6 to some output neuron, qj . Since Z ′ was introduced within
c1 · tm rounds, by Claim 23 at least 0.8` many memory modules Mj,i for i ∈ sup(Z ′) are
active it round t.

Y. Hitron, N. Lynch, C. Musco, and M. Parter 23:21

Let X, X ′ be the inputs corresponding to Z and Z ′ respectively. From Lemma 12,
‖ sup(Z) ∩ sup(Z ′)‖ ≤ 0.1`. By Observation 21, the number of active memory modules
Mj,i in round t is at most `. Thus, the number of active memory modules Mj,i in round
t for i ∈ sup(Z) is at most 0.2`+ 0.1` = 0.3`.
For every association neuron aj,i whose memory module Mj,i is inactive in round t, there
are at least 0.8` memory modules that inhibit it. Therefore its potential is 2`− 8/10`−
(19/10)` + 1 < −1, and w.h.p. it does not fire in round t + 1. Overall, at most 0.3`
association neurons aj,i start firing from round t+ 1 and as long as the pattern persists.
We conclude that qj will stop firing from round t+ 2.
Next we show that two close patterns Z ′ and Z, introduced within a span of c1 · tm
rounds are mapped to the same output. First note that by Claim 19, all patterns that
are close to Z are close to each other. Hence, by the induction assumption, all patterns
close to Z introduced within the last c1tm rounds were mapped to the same output.
We now consider a pattern Z ′ close to Z introduced in round t′ ∈ [t − c1 · tm, t − 10].
By the induction assumption, the pattern Z ′ was mapped to output qj in round t′ + 6.
By claim 23, 0.8` many memory modules Mj,i are active in round t′ + 7 < t onward
(i.e., for Θ(tm) rounds). Combining with Lemma 12 because Z is close to Z ′, at least
0.7` many memory modules Mj,i, i ∈ sup(Z) are active in round t. Since there are at
most ` many active memory modules associated with qj in round t, the potential of the
association neuron aj,i for which the memory neuron is active in round t+ 1 is at least
2`+ `− (`− 1)− 1.9`− 1 = 0.1` > 1. We have that at least 0.7` many association neuron
aj,i fire in round t+ 1, leading to the firing of qj in round t+ 2.
Next, because at least 0.8` memory modules Mj,i are active from round t+ 3 ahead, the
history neuron hj fires, and by that inhibits all output neurons qi for i ≤ j − 1 starting
from round t+ 4. Recall that every inhibitor neuron q−i for i ≤ j − 1 starts firing only
after the delay chain CIi fired, i.e. after 3 rounds that qi fired. Hence the history neuron
hj inhibits every qi for i ≤ j − 1, just before q−i starts firing. We next show that no
other qi fires for i ≥ j + 1. This holds since q−j inhibits any such qi in round t+ 6 via
the delay chain CIj . Finally, we show that qj continues firing as long the pattern persists.
Because at least 0.5` of the association neurons aj,i are firing, and no preceding inhibitor
q−i is currently firing (thanks to the history neuron hj), it remains to show that no other
history neuron hi for i 6= j inhibits qj . By the induction assumption, all patterns close
to Z were mapped to qj . Hence if for some other output qi for i 6= j, at least 0.5` of its
associated memory modules are active, by Observation 17 at least 0.9` memory modules
are active. Since the pattern Z ′′ that was mapped to qi is far from Z, we have that at
most 0.2` many memory modules Mi,i′ for i′ ∈ sup(Z) are active, thus qi does not fire
and consequently hi does not fire.
We now consider the case of a newly presented pattern, i.e., no close pattern to it has
been presented in the last Θ(tm) rounds. We will show that in such a case, Z will be
mapped to the left-most available output qj , where by available we mean that no memory
module Mj,i is active in round t. Let qi1 , qi2 . . . qis be the available output neurons in
round t. Hence all the association neurons ai1,i for i ∈ sup(Z) start firing in round t+ 1.
This is because no memory module Mi1,j is active. Thus, in round t + 2 the output
neuron qi1 starts firing. As for the unavailable neurons qj , by Observation 17 at least
0.9` memory modules Mji are active and by Observation 22 they are associated with a
pattern Z ′′ which was mapped to qj . The pattern Z ′′ is far from Z (Z is a new pattern)
and therefore at most 0.2` memory module Mj,i for i ∈ sup(Z) are active in round t.
Hence, at most 0.2` association neurons aj,i fire starting round t+ 1 and w.h.p. qj will

ITCS 2020

23:22 Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks

not fire starting round t+ 2 (and also no history neuron inhibits qi1). Since we assume
persistence, and due to the delay in the activation of the memory modules, qi1 fires also
in rounds t+ 3 and t+ 4, and in round t+ 5 the inhibitor q−i1 starts firing, inhibiting all
the successive output neurons qj for j ≥ i1 + 1.

In order to finish the proof of Theorem 14 we will prove th following Lemma.

I Lemma 24 (Reset, Clearance of Memory). Let Z be a pattern last introduced in round t and
mapped to qj . If no close pattern Z ′ is introduced in rounds [t, t+ c2 · tm], then qj is released
in some round τ ≤ t+ c2tm, i.e., all memory modules Mj,i stop firing with probability greater
than 1− δ.

Proof. Let Z be a pattern last introduced in round t and mapped to qj . By Observation 17
if in some round τ there are less than 0.9` memory modules corresponding to qj firing, after
3 round 0 memory modules are active and w.h.p. qj is released. As long as there are at least
0.9` memory modules firing, since all patterns introduced in rounds t to t + c2tm are far
from Z by the same arguments used in Lemma 14 starting from round t+ 1 less than 0.5`
association neurons associated with qj fire and qj will not fire for c2tm consecutive rounds
starting from round t + 2 (as long as it is not already released). Thus, from round t + 7
ahead w.h.p. all neurons in the delay chain CMj do not fire.

Therefore, the probability neuron m ∈M+
j,i fires in round τ ∈ [t+ 8, t+ c2tm] given that

fm did not fire in round τ − 1 is at most Θ(δ
log 1/δ·n·k·∆·tm). Moreover, by union bound the

probability that there exists a neuron m ∈M+
j,i that fired in some round τ ∈ [t+ 8, t+ c2tm]

given that fm did not fire in round τ − 1 is at most δ/2`.
Next we calculate the probability at least half of the neurons m ∈ M+

j,i fire for c2tm
consecutive rounds. Because the delay chain CMj do not fire starting round t+7 the potential of
each neuronm ∈M+

j,i in round t′ ∈ [t+7, t+c2tm] is bounded by λ·(χ+2) = λ(log(tm−1)+2).
Hence, the probability m ∈M+

j,i fires in round t′ is at most 1− 1
e2(tm−1)+1 < 1− 1

e2tm
. We

conclude that the probability a neuron m ∈M+
j,i fires for c2tm consecutive rounds is at most

ec2/e
2 which for c2 > e2log(3) is less than 1/3. Using Chernoff bound and a sufficient large c

(constant depending on c2) the probability that at least (c/2) log(1/δ′) neurons in M+
j,i fire

for c2 · tm consecutive rounds starting round t+ 7 is at most δ/2`.
If m+

j,i fires for c2tm consecutive rounds starting round t+ 8, be Observation 18 at each
round at least 1/2 of the neurons in M+

j,i fired. Given that no neuron m ∈ M+
j,i fires in

round τ ∈ [t + 8, t + c2tm] unless fm fired in round τ − 1, the head neuron m+
j,i fires for

c2tm consecutive rounds only if at least 1/2 of the neurons in M+
j,i fires for c2tm consecutive

rounds. Thus we conclude that m+
j,i fired for c2tm consecutive rounds starting round t+ 8

with probability at most δ/(2`) + δ/(2`) = δ/`. Note that by Observation 21 at most `
memory neurons Mij are active at each round and using union bound we conclude that with
probability at least 1− δ the output neuron qj is release in round τ < t+ c2tm J

This concludes Theorem 14 and therefore also Theorem 3. J

References
1 Jayadev Acharya, Arnab Bhattacharyya, and Pritish Kamath. Improved bounds for universal

one-bit compressive sensing. In 2017 IEEE International Symposium on Information Theory
(ISIT), pages 2353–2357, 2017.

2 Zeyuan Allen-Zhu, Rati Gelashvili, Silvio Micali, and Nir Shavit. Sparse sign-consistent
Johnson–Lindenstrauss matrices: Compression with neuroscience-based constraints. PNAS,
2014.

Y. Hitron, N. Lynch, C. Musco, and M. Parter 23:23

3 Cornelia I Bargmann and Eve Marder. From the connectome to brain function. Nature
Methods, 10(6):483–490, 2013.

4 Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: applic-
ations to image and text data. In Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 245–250. ACM, 2001.

5 Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM, 13(7):422–426, 1970.

6 Petros T Boufounos and Richard G Baraniuk. 1-bit compressive sensing. In 42nd Annual
Conference on Information Sciences and Systems (CISS 2008)., pages 16–21. IEEE, 2008.

7 Christos Boutsidis, Anastasios Zouzias, and Petros Drineas. Random projections for k-means
clustering. In Advances in Neural Information Processing Systems 23 (NIPS), 2010.

8 Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random projections:
Universal encoding strategies? IEEE transactions on information theory, 52(12):5406–5425,
2006.

9 Sophie JC Caron, Vanessa Ruta, LF Abbott, and Richard Axel. Random convergence of
olfactory inputs in the Drosophila mushroom body. Nature, 497(7447):113, 2013.

10 Chi-Ning Chou, Kai-Min Chung, and Chi-Jen Lu. On the algorithmic power of spiking neural
networks. arXiv preprint, 2018. arXiv:1803.10375.

11 Kenneth L Clarkson and David P Woodruff. Low rank approximation and regression in input
sparsity time. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing
(STOC), 2013.

12 Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu.
Dimensionality reduction for k-means clustering and low rank approximation. In Proceedings
of the 47th Annual ACM Symposium on Theory of Computing (STOC), 2015.

13 Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

14 Robert Coultrip, Richard Granger, and Gary Lynch. A cortical model of winner-take-all
competition via lateral inhibition. Neural Networks, 5(1):47–54, 1992.

15 Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. Fast locality-sensitive hashing. In
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 1073–1081. ACM, 2011.

16 Sanjoy Dasgupta, Timothy C Sheehan, Charles F Stevens, and Saket Navlakha. A neural data
structure for novelty detection. Proceedings of the National Academy of Sciences, 115(51):13093–
13098, 2018.

17 Sanjoy Dasgupta, Charles F Stevens, and Saket Navlakha. A neural algorithm for a fundamental
computing problem. Science, 358(6364):793–796, 2017.

18 Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, pages 253–262. ACM, 2004.

19 David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–
1306, 2006.

20 Surya Ganguli and Haim Sompolinsky. Compressed sensing, sparsity, and dimensionality in
neuronal information processing and data analysis. Annual Review of Neuroscience, 2012.

21 Simon S Haykin. Neural networks and learning machines, volume 3. Pearson, 2009.
22 Yael Hitron and Merav Parter. Counting to Ten with Two Fingers: Compressed Counting

with Spiking Neurons. ESA, 2019. arXiv:1902.10369.
23 John J Hopfield, David W Tank, et al. Computing with neural circuits- A model. Science,

233(4764):625–633, 1986.
24 Laurent Jacques, Jason N Laska, Petros T Boufounos, and Richard G Baraniuk. Robust 1-bit

compressive sensing via binary stable embeddings of sparse vectors. IEEE Transactions on
Information Theory, 59(4):2082–2102, 2013.

ITCS 2020

http://arxiv.org/abs/1803.10375
http://arxiv.org/abs/1902.10369

23:24 Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks

25 Robert T Knight. Contribution of human hippocampal region to novelty detection. Nature,
383(6597):256, 1996.

26 Christof Koch and Shimon Ullman. Shifts in selective visual attention: towards the underlying
neural circuitry. In Matters of intelligence, pages 115–141. Springer, 1987.

27 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 2015.
28 Robert A. Legenstein, Wolfgang Maass, Christos H. Papadimitriou, and Santosh Srinivas

Vempala. Long Term Memory and the Densest K-Subgraph Problem. In 9th Innovations in
Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA,
USA, pages 57:1–57:15, 2018.

29 Andrew C Lin, Alexei M Bygrave, Alix De Calignon, Tzumin Lee, and Gero Miesenböck.
Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination.
Nature neuroscience, 17(4):559, 2014.

30 Adi Livnat and Christos Papadimitriou. Evolution and learning: used together, fused together.
A response to Watson and Szathmáry. Trends in Ecology & Evolution, 31(12):894–896, 2016.

31 Nikos K Logothetis. What we can do and what we cannot do with fMRI. Nature, 453(7197):869,
2008.

32 Nancy Lynch and Cameron Musco. A Basic Compositional Model for Spiking Neural Networks.
arXiv preprint, 2018. arXiv:1808.03884.

33 Nancy Lynch, Cameron Musco, and Merav Parter. Computational Tradeoffs in Biological
Neural Networks: Self-Stabilizing Winner-Take-All Networks. In Proceedings of the 8th
Conference on Innovations in Theoretical Computer Science (ITCS), 2017.

34 Nancy Lynch, Cameron Musco, and Merav Parter. Neuro-RAM Unit with Applications to
Similarity Testing and Compression in Spiking Neural Networks. In Proceedings of the 31st
International Symposium on Distributed Computing (DISC), 2017.

35 Nancy Lynch, Cameron Musco, and Merav Parter. Spiking Neural Networks: An Algorithmic
Perspective. In 5th Workshop on Biological Distributed Algorithms (BDA 2017), July 2017.

36 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural Networks, 10(9):1659–1671, 1997.

37 Wolfgang Maass. On the computational power of winner-take-all. Neural computation,
12(11):2519–2535, 2000.

38 Christos H Papadimitriou and Santosh S Vempala. Cortical learning via prediction. In
Conference on Learning Theory, pages 1402–1422, 2015.

39 Christos H Papadimitriou and Santosh S Vempala. Random Projection in the Brain and
Computation with Assemblies of Neurons. In 10th Innovations in Theoretical Computer
Science Conference (ITCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

40 Narender Ramnani and Adrian M Owen. Anterior prefrontal cortex: insights into function
from anatomy and neuroimaging. Nature Reviews. Neuroscience, 5(3):184, 2004.

41 Charan Ranganath and Gregor Rainer. Cognitive neuroscience: Neural mechanisms for
detecting and remembering novel events. Nature Reviews Neuroscience, 4(3):193, 2003.

42 Tamas Sarlos. Improved approximation algorithms for large matrices via random projections.
In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 2006.

43 Olaf Sporns, Giulio Tononi, and Rolf Kötter. The human connectome: a structural description
of the human brain. PLoS Computational Biology, 1(4):e42, 2005.

44 Leslie G Valiant. Circuits of the Mind. Oxford University Press on Demand, 2000.
45 Leslie G Valiant. Memorization and association on a realistic neural model. Neural computation,

17(3):527–555, 2005.
46 Leslie G Valiant. Capacity of Neural Networks for Lifelong Learning of Composable Tasks.

In Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 367–378, 2017.

47 Santosh S Vempala. The random projection method, volume 65. American Mathematical
Society, 2005.

http://arxiv.org/abs/1808.03884

Y. Hitron, N. Lynch, C. Musco, and M. Parter 23:25

A Additional Proofs: Random Projection

We first prove Lemma 5, that a Chi-squared distribution is nearly uniform within a constant
number of standard deviations from its mean.

I Lemma 5. Let Dp be the Chi-squared distribution with p degrees of freedom. For any c
with 1 ≤ c < p1/2 there are constants c`, cu (depending on c) such that, for any interval
[r1, r2] ⊆

[
p− cp1/2, p+ cp1/2], we have:

c`(r2 − r1)
p1/2 ≤ Pr

x∼Dp
[x ∈ [r1, r2]] ≤ cu(r2 − r1)

p1/2

That is, Dp is roughly uniform on the range
[
p− cp1/2, p+ cp1/2].

Proof. It is well known that Dp has mean p, density d(x) = 1
2p/2Γ(p/2)x

p/2−1e−x/2. Since we
assume p1/2 > c ≥ 1 we have p ≥ 2 and the distribution has mode p− 2. Additionally, we
have p− cp1/2 > 0. So for x ∈

[
p− cp1/2, p+ cp1/2] we can bound:

d(x) ≤ d(p− 2) = 1
2p/2Γ(p/2)

(p− 2)p/2−1e−p/2+1 ≤ 1
Γ(p/2) ·

(p
2e

)p/2−1

By Stirling’s approximation, Γ(p/2) ≥
√

2π
p/2
(
p
2e
)p/2 which gives:

d(x) ≤
√

p

4π ·
2e
p

= e√
π · p1/2 . (2)

On the other side, since p− cp1/2 > 0, and since the density of the Chi-squared distribution
is monotonically decreasing as x moves further from the mode p− 2 either left or right:

d(x) ≥ min(d(p− cp1/2), d(p+ cp1/2)). (3)

We lower bound each term in the minimum.

d(p− cp1/2) = 1
2p/2Γ(p/2)

(p− cp1/2)p/2−1e−p/2+(c/2)p1/2

= 1
2Γ(p/2)

(p
2e

)p/2−1
·
(

1− c

p1/2

)p/2−1
· e(c/2)p1/2−1

Again using Stirling’s approximation, and a similar argument to the proof of (2), for some
constant c1, 1

2Γ(p/2)
(
p
2e
)p/2−1 is lower bounded by c1

p1/2 . Thus,

d(p− cp1/2) ≥ c1
p1/2 ·

(
1− c

p1/2

)p/2−1
· e(c/2)p1/2−1

≥ c1
p1/2 ·

(
1− c

p1/2

)(p1/2
c −1

)
·(c/2)p1/2

· e(c/2)p1/2−1 ·
(

1− c

p1/2

)(c/2)p1/2−1

≥ c1
p1/2

1
e(c/2)p1/2 · e(c/2)p1/2−1 ·

(
1− c

p1/2

)(c/2)p1/2−1

≥ c1
ep1/2 ·

(
1− c

p1/2

)(p1/2
c −1

)
·(c2/2)+(c2/2−1)

≥ c1 · ec
2/2

ep1/2 ·
(

1− c

p1/2

)c2/2−1
≥ c′

p1/2 (4)

ITCS 2020

23:26 Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks

for some constant c′ that depends on c. We give a similar bound for p+ cp1/2.

d(p+ cp1/2) = 1
2Γ(p/2)

(p
2e

)p/2−1
·
(

1 + c

p1/2

)−p/2−1
· e(c/2)p1/2−1

≥ c1
p1/2 ·

(
1 + c

p1/2

)−p/2−1
· e(c/2)p1/2−1

= c1
p1/2 ·

(
1 + c

p1/2

)− p1/2
c ·(c/2)p1/2

· e(c/2)p1/2−1 ·
(

1 + c

p1/2

)−1

≥ c

ep1/2 ·
(

1 + c

p1/2

)−1
≥ c′

p1/2 (5)

for some c′. Combining (4) and (5) with (3) and (2) gives that there exist constants c`, cu
such that for all x ∈ [p− cp1/2, p+ cp1/2],

c`
p1/2 ≤ d(x) ≤ cu

p1/2 .

Thus for any r1, r2:
c`(r2 − r1)

p1/2 ≤ Pr
x∼Dp

[x ∈ [r1, r2]] ≤ cu(r2 − r1)
p1/2 ,

completing the lemma. J

We next give a complete proof of Lemma 7.

A.1 Proof of Lemma 7
Since each [AbX](i) is a Chi-squared random variable with p degrees of freedom, which has
median ≤ p, each [AbX](i) is upper bounded by p ≤ τ = p+ 2p1/2 with probability ≥ 1/2.
Thus, by Lemma 5 applied with c = 2, conditioned on [AbX](i) ≤ p+ 2p1/2, there is some c`
with:

Pr
[
[AbX](i) ∈

[
p, p+ 2p1/2

] ∣∣[AbX](i) ≤ p+ 2p1/2
]
≥ c` · 2p1/2

p1/2 = 2c`.

Thus, for large enough constant c1 and m = c1, with probability at least 199
200 , we have

i1,b(X) 6= 0 and [AbX](i1,b(X)) ≥ p. Call this event E1. Condition on the event that E1
occurs and, in particular, that [AbX](i1,b(X)) = x for any x ∈ [p, p+ 2p1/2]. Call this event
E1,x. Then for all j 6= i1,b(X), [AbX](j) is an independent Chi-squared random variable
with p degrees of freedom conditioned on either 1) [AbX](j) ≤ x or 2) [AbX](j) ≥ p+ 2p1/2.
Since [AbX](j) ≤ p ≤ x with probability at least 1/2, this conditioning at most doubles the
density at any one value. Thus, by Lemma 5,

Pr
[
[AbX](j) ∈

[
x− p1/2

c2m
,x

] ∣∣E1,x] ≤ 2cu · p
1/2

c2m

p1/2 .

By a union bound, we thus have:

Pr
[
∃j : [AbX](j) ∈

[
x− p1/2

c2m
,x

] ∣∣E1,x] ≤ 2cu · p
1/2

c2

p1/2 = 2cu
c2
.

Setting c2 sufficiently large ensures that this quantity is bounded by 1
200 . Thus, by a union

bound with the probability that E1 occurs, with probability ≥ 99
100 : i1,b(X) 6= 0 and 2) no

[AbX](j) falls in
[
x− p1/2

mc2
, x
]

=
[
[AbX](i1,b(X))− p1/2

mc2
, [AbX](i1,b(X))

]
. This completes

the proof.

Y. Hitron, N. Lynch, C. Musco, and M. Parter 23:27

A.2 Proof of Lemma 8
We first use the relative distance assumption to give a basic claim:

B Claim 25. Write X1, X2 as X1 = χ + δ1 and X2 = χ + δ2 where χ ∈ {0, 1}n is the
common vector with χ(i) = 1 iff X1(i) = X2(i) = 1. Note that since ‖X1‖ = ‖X2‖ = p we
have ‖δ1‖ = ‖δ2‖. Letting ∆ = RD(X1, X2),

‖δ1‖
p

= ∆
2 .

Proof. We can write:

∆ = RD(X1, X2) = ‖X1 −X2‖
p

= ‖δ1 − δ2‖
p

= ‖δ1‖+ ‖δ2‖
p

.

The claim follows since ‖δ1‖ = ‖δ2‖. C

B Claim 26. For i ∈ [2] and j ∈ [m] ∪ 0 let Ej be the event that j = i1,b(X1). With
probability ≥ 999/1000 over the choice of Ab χ, for all j we have:

Pr[Ej | Ab χ] ≤ 1
16 .

Proof. Let ∆ = RD(X1, X2) and assume for simplicity that ∆ ≤ 1 (we will latter see that it
is easy to remove this assumption). By Claim 25, ‖δ1‖ = ‖δ2‖ ≤ p

2 and thus ‖χ‖ ≥ p
2 . For

a constant c3 (to be set later) sub-divide the range
[
‖χ‖ − c3p1/2, ‖χ‖+ c3p

1/2] into 1
∆1/2

subranges of width:

2c3p1/2∆1/2 = 2
√

2c3‖δ1‖1/2,

where the equality follows from Claim 25. By Lemma 5 (applied with the constant c
in the Lemma set to c3) for any i ∈ [m], [Abχ](i) falls into each range with probability
Θ(c3 ·∆1/2). Thus, by a standard Chernoff bound, for m = c1 log 1/∆√

∆
for sufficiently large

c1, with probability 1999/2000 over the choice of Ab, at least c4 indices of Abχ fall within
each bucket where c4 is a constant to be set later. Note that c1 depends on c3, c4. Call the
event that c4 indices fall into each bucket Efull−buckets. Additionally, as argued in Lemma
7, for sufficiently large m, the maximum value [AbX̄1](i1,b(X̄1)) below p + p1/2 satisfies
[AbX̄1](i1,b(X̄1)) ≥ p with probability at least 1999/2000. Thus, with probability 1999/2000
over the choice of Ab,

Pr
[
[AbX̄1](i1,b(X̄1)) ≥ p

∣∣Abχ] ≥ 1999/2000. (6)

Let Egood be the event that both Efull−buckets and (6) hold. Egood holds with probability
≥ 999/1000 over the choice of Ab. First note that conditioning on Egood, Pr[E0

∣∣Ab χ] ≤ 1
2000 ,

easily giving the claim for j = 0. We now consider j ∈ [m]. We consider any bucket,

R =
{
j : [Abχ](j) ∈

[
r, r + 2

√
2c3‖δ1‖1/2

]}
,

where r is be some integer multiple of 2
√

2c3‖δ1‖1/2. Roughly, since each index in R has a
very similar value in Abχ, each has nearly the same likelihood of being the largest entry in
AbX1 below τ = p+ 2p1/2. Since Efull−buckets occurs, there are at least c4 of these indices

ITCS 2020

23:28 Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks

and thus if c4 is large, none has very high probability of being the largest entry. Formally,
we will show that, assuming Egood holds, for each j ∈ R,

Pr[Ej | Ab χ] ≤ 1
16 . (7)

Since this bound holds for all buckets in the range [‖χ‖ − c3p1/2, ‖χ‖+ c3p
1/2] , it will give

the claim after arguing that no index with Abχ falling outside this range is likely to have
E(1, j) occur either.

Indices in Buckets. Each entry of Abδ1 is identically distributed as an independent Chi-
squared random variable with ‖δ1‖ degrees of freedom. Additionally, Abδ1 is independent of
Abχ since δ1 and χ have disjoint supports. Consider j ∈ R with Pr[[AbX̄1](j) ≥ τ

∣∣Abχ] ≥
15/16. In this case, since E(1, j) can only hold if [AbX̄1](j) ≤ τ , (7) trivially holds.

Next consider j ∈ R with Pr[[AbX̄1](j) ≥ τ
∣∣Abχ] ≤ 15/16. By Lemma 6 there is some c

with:

Pr
[
[Abδ1](j) ≥ ‖δ1‖+ c‖δ1‖1/2

]
= 1

64 ,

or equivalently since [AbX1](j) = [Abχ](j) + [Abδ1](j):

Pr
[
[AbX1](j) ≥ [Abχ](j) + ‖δ1‖+ c‖δ1‖1/2

∣∣Abχ] = 1
64 ,

Setting r2 = min
(
[Abχ](j) + ‖δ1‖+ c‖δ1‖1/2, τ

)
we thus have that

Pr[[AbX1](j) ∈ [r2, τ]
∣∣Abχ] ≤ 1

64 . (8)

Additionally, by Lemma 5 there is some r1 with r2 − r1 = Θ(‖δ1‖1/2) such that:

Pr
[
[AbX1](j) ∈ [r1, r2]

∣∣Abχ] = 1
32 .

Since for all j′ ∈ R, |[Abχ](j)− [Abχ](j′)| ≤ 2
√

2c3‖δ1‖1/2 = O(‖δ1‖1/2) we have r2 =
[Abχ](j′) +O(‖δ1‖1/2) and thus again by Lemma 5, for all j′ ∈ R:

Pr
[
[AbX1](j′) ∈ [r1, r2]

∣∣Abχ] = Ω(1).

If we set the constant c4 large enough, since assuming Egood, |R| ≥ c4 we have:

Pr
[
∃ j′ ∈ R \ j : [AbX1](j′) ∈ [r1, r2]

∣∣Abχ] ≥ 31
32 .

If this event holds, we can only have E(1, j) occur if [AbX1](j) falls in [r2, τ], which by (8)
occurs with probability ≤ 1

64 conditioned on Abχ. Thus by a union bound we have:

Pr[Ej | Ab χ] ≤ 1
16 ,

giving (7) in this case.

Y. Hitron, N. Lynch, C. Musco, and M. Parter 23:29

Indices Outside Buckets. We now consider indices not falling in any bucket: that is, j
with [Abχ](j) ≤ ‖χ‖ − c3p1/2 or [Abχ](j) ≥ ‖χ‖ + c3p

1/2. For the later, to have Eb(1, j)
occur we must have [AbX1](j) ≤ τ = p+ 2p1/2 and thus [Abδ1](j) ≤ ‖δ1‖ − (c3 − 2)p1/2 ≤
‖δ1‖ − (c3 − 2)

√
2‖δ1‖. By Lemma 6, this occurs with probability < 1/16 for all ‖δ1‖

as long as we set c3 large enough. Similarly, for j with [Abχ](j) ≤ ‖χ‖ − c3p
1/2, with

probability ≥ 15/16, we will have [Abδ1](j) ≤ ‖δ1‖+ c3p
1/2 and thus [AbX1](j) ≤ p. Since

assuming Egood, the maximum value of AbX1 bounded by ≤ τ is ≥ p, if [AbX1](j) ≤ p,
Eb(1, j) will not occur. Thus completes the argument in this case, giving that for all j with
[Abχ](j) ≤ ‖χ‖ − c3p1/2 or [Abχ](j) ≥ ‖χ‖+ c3p

1/2, Pr[Eb(1, j) | Ab χ] ≤ 1
16 .

Removing Bound on ∆. Finally, we note that we can remove the assumption that ∆ ≤ 1.
If ∆ ≥ 1 we can simply have χ encompass some of the non-shared entries in X1 until ‖χ‖ ≥ p

2
and ‖δ1‖ ≤ p

2 as desired. The bound will go through as argued up to constants, since we will
still have ‖δ‖1

p = Θ(∆) as in Claim 25 (note that we always have ∆ ≤ 2). C

We can now complete the proof of Lemma 8. We have:

Pr[i1,b(X1) = i1,b(X2) | Ab χ] =
m∑
j=0

Pr
[
i1,b(X1) = i1,b(X2) = j | Ab χ

]
=

m∑
j=0

Pr
[
i1,b(X1) = j | Ab χ

]
· Pr

[
i1,b(X2) = j|Ab χ

]
(9)

where the second line follows from the fact that AbX1 and AX2 are independent conditioned
on Ab χ since δ1, δ2 are disjoint vectors. By Claim 26, with probability ≥ 999/1000 over the
choice of Ab χ we can bound (9) by:

Pr[i1,b(X1) = i1,b(X2) | Ab χ] ≤
m∑
j=0

Pr
[
i1,b(X2) = j | Ab χ

]
· 1/16 = 1/16 (10)

where the last line follows simply since
∑m
j=0 Pr

[
i1,b(X2) = j | Ab χ

]
= 1. Since (10) holds

with probability ≥ 999/1000 over the choice of Ab χ, overall Pr[i1,b(X1) = i1,b(X2)] ≤
1/16 + 1/1000.

Applying Claim 7 and a union bound gives that i1,b(X1) 6= i1,b(X2) and the gaps between
the largest and second largest entries of AbX1 and AbX2 (bounded by τ) are both at least
≥ p1/2

c2·m (or there is at most one such entry), and [AbX1](i1(X1)), [AbX2](i1(X2)) ≥ p with
probability ≥ 1− (1/16 + 1/1000)− 2/100 = .9165, giving the lemma.

A.3 Proof of Lemma 10
We now give the deferred proof of Lemma 10, which shows that two close inputs are likely to
have the same intermediate neuron with the maximum potential ≤ τ in each bucket. We
restate the lemma below.

I Lemma 10. Let X1, X2 ∈ {0, 1}n be two vectors with RD(X1, X2) ≤ ∆/α. Consider our
construction with bucket size m = c1 log(1/∆)√

∆
. Then for sufficiently large constants c1, c2 and

α = O(log(1/∆)4), for any b ∈ [`], defining i1,b(·) and i2,b(·) as in Lemma 7, with probability
≥ 0.97:

i1,b(X1) = i1,b(X2).
For both j = 1, 2: i1,b(Xj) 6= 0, [AbXj](i1,b(Xj)) ≥ p, and
[AbXj](i1,b(Xj))− [AbXj](i2,b(Xj)) ≥ p1/2

c2·m or i2,b(Xj) = 0.

ITCS 2020

23:30 Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks

Proof. By Lemma 7, with probability ≥ 99/100, for all i ∈ [m]\ i1,b(X1) with [AbX1](i) ≤ τ :

[AbX1](i1,b(X1))− [AbX1](i) = Ω
(
p1/2

m

)
, (11)

By a similar argument, with probability ≥ 99/100, for all i ∈ [m],

|τ − (AbX1)i| = Ω
(
p1/2

m

)
. (12)

Additionally, by standard sub-exponential concentration (as used in Lemma 6) with
probability ≥ 99/100, for both j = 1, 2 and all i ∈ m we have [Ab δj](i) ∈ ‖δi‖ ±O(logm ·
‖δi‖1/2). Note that logm = O(log(1/∆)). Additionally, by Claim 25, since RD(X1, X2) ≤
∆/α for α = O(log(1/∆)4), we have for both i = 1, 2, ‖δi‖p ≤

∆
2α = O

(
∆

log(1/∆)4

)
. This gives

that

O(logm · ‖δ1‖1/2) = O

(
∆1/2p1/2

log(1/∆)

)
= O

(
p1/2

m

)
.

So for both j = 1, 2 and all i ∈ m, (Ab δj)i ∈ ‖δi‖ ±O
(
p1/2

m

)
. So by (11) we have for all

i 6= i1,b(X1) with [AbX1](i) ≤ τ :

[AbX2](i1,b(X1))− [AbX1](i) =

[AbX1](i1,b(X1))− [Ab δ1](i1,b(X1)) + [Ab δ2](i1,b(X1))− [AbX1](i) = Ω
(
p1/2

m

)
.

By (12) we also have,

[AbX2](i1,b(X1)) = [AbX1](i1,b(X1))− [Ab δ1)](i1,b(X1)) + [Ab δ2](i1,b(X1)) ≤ τ.

and similarly, for all i 6= i1,b(X1) with [AbX1](i) ≥ τ :

[AbX2](i) ≥ τ.

That is, i1,b(X1) is the largest entry of AbX2 under τ , and thus i1,b(X1) = i1,b(X2).
Applying Lemma 7 and a union bound gives the second claim with overall probability

1− 1/100− 1/100− 1/100 = 97/100. J

B Detailed Analysis of the Sparsification Step via WTA

Proof of Claim 13

Proof. Let i = arg maxj:Y (j)≤τ Y (j). For every neuron j ∈ {1, . . . ,m} in the input vector
Y , let R(j) be the random variable that counts the number of rounds in which j fires in a
window of T = Θ(m2 logm) rounds. By the construction described above in which all j with
Y (j) ≥ τ are inhibited with very strong weight, R(j) = 0 w.h.p. for all such j. Thus we focus
on j with Y (j) ≤ τ . We show that if Y (i)− Y (j) = Ω

(
p1/2

m

)
for j 6= i, then R(i) � R(j)

with probability at least 1−Θ(1/m).
First, let P be the vector of firing probabilities of each intermediate neuron induced by

the potentials in Y (ignoring the entries that have been zero’d out since Y (j) ≥ τ). By (1)
we have P (i) = 1

1+e−Y (i)
. Letting s(x) = 1/(1 + e−x), we have s′(x) ∈

[1
2 ,

3
4
]
for x ∈ [0, 1]

Y. Hitron, N. Lynch, C. Musco, and M. Parter 23:31

and can see that if Y (i)− Y (j) = Ω(1/m), then also s(Y (i))− s(Y (j)) = Ω(1/m). That is,
a gap of Ω(1/m) between Y (i) and Y (j) translates to a gap of Ω(1/m) between the firing
probabilities P (i) and P (j). To ensure that Y (i), Y (j) are in [0, 1] we can simply rescale the
weights of the random connection matrix A by 1

2p and shift them by p by adding a bias of p to
each intermediate neuron. By Corollary 9, before this shift and scaling, Y (i) ∈ [p, p+ 2p1/2],
so afterwards, Y (i) ∈ [0, 1]. For all j 6= i, since by Corollary 9 we had Y (i)−Y (j) = Ω

(
p1/2

m

)
we still have Y (i)− Y (j) = Ω

(1
m

)
as required and thus P (i)− P (j) = Ω

(1
m

)
.

By Chernoff bound, with probability of at least 1− c/m,

R(i) ≥ T · P (i)−
√
T · P (i) · c logm and R(j) ≤ T · P (j) +

√
T · P (j) · c logm) .

Hence, with probability 1− 2c/m we get that

R(i)−R(j) ≥ T · (P (i)− P (j))−
√
T · P (i) · c logm)−

√
T · P (j) · c logm.

≥ T · (P (i)− P (j))− 2
√
T · P (i) · logm = Ω(T/m)−O(

√
T · logm)

= Ω(T/m) ,

by taking T = c′ ·m2 logm for a sufficiently large constant c′.
Since the incoming weight of each neuron yi,j is R(i)−R(j) = ω(1), we get that yi,j fires

with probability of 1−Θ(1/m). By doing a union bound over all m− 1 neurons, and taking
large enough constants, we get that with probability at least 99/100, all neurons yi,j fire for
every j 6= i. Hence, zi is the only firing neuron in Z. J

Recall that in Step (1), every input vector Xi is projected into ` vectors Y i,b = Ab ·Xi

for every b ∈ {1, . . . ,m}. On each such vector Y i,b we apply the WTA circuit and get a
vector Zi,b. Let Zi = Zi,1 ◦ Zi,2 ◦ . . . ◦ Zi,` for ` = O(log(tm/δ)), where ◦ denotes vector
concatenation.

We conclude this section by showing that the relative gap between input patterns Xi, Xj

is reflected in their output vectors of the WTA circuit. By combining Claim 13 with Cor. 9
and 11, we prove Lemma 12 which completes the correctness of Step (II).

Proof of Lemma 12

Proof. First observe that for every input Xi, there are at most ` non-zero entries in Zi since
the threshold gates fire only if there is a sufficient gap in the firing rates. (I) For a fixed pair
Xi, Xj of far patterns, let Bi,j be the set of all buckets b where arg maxr∈[m]:Y i,b(r)≤τ Y i,b(r) 6=
arg maxr∈[m]:Y j,b(r)≤τ Y j,b(r) and the gap between largest and second largest entries in both
vectors Y i,b and Y j,b is Ω(p1/2/m). By Cor. 9, with probability 1− δ, for every pair of far
patterns Xi, Xj , |Bi,j | ≥ 0.9 · `.

By Claim 13, if Y i,b has a desired gap between the largest entry and other entries
then, with probability p = 99/100, Zi,b has exactly one winning entry corresponding to
arg max(Y i,b). In expectation the vectors Zi,b differ in p · |Bi,j | buckets. Thus by applying
Chernoff bound overall k2 pairs, in 0.9` of the buckets, the WTA picks a distinct winner for
the Xi and Xj patterns. Thus, supp(Zi) \ supp(Zj) ≥ 0.9`.

(II) For a fixed pair Xi, Xj of close patterns, let Bi,j be the set of all buckets b where
arg maxr∈[m]:Y i,b(r)≤τ Y i,b(r) = arg maxr∈[m]:Y j,b(r)≤τ Y j,b(r) and the gap between largest
and second largest entries in both vectors Y i,b and Y j,b is Ω(p1/2/m). By Cor. 11 with
probability 1− δ, for every pair of close patterns Xi, Xj , |Bi,j | ≥ 0.91 · `. By applying Claim
13 and Chernoff bound overall k2 pairs, in at least 0.9 · ` of the buckets, the selected winner
is the same with probability of 1− δ, implying that supp(Zi) ∩ supp(Zj) ≥ 0.9 · `. J

ITCS 2020

	Introduction
	Our Results
	Comparison to Previous Work
	Broader Agenda: Algorithmic Theory for Brain Networks
	Connections to Sparse Recovery
	Connections to Fruit Fly Novelty Detection via Bloom Filters

	Computational Model and Preliminaries
	Layer 1: Random Projection
	Layer 2: Sparsification via Winner Takes All
	Layer 3: Sequential Mapping
	Complete Network Description of the Sequential Mapping
	Network Dynamics
	Correctness

	Additional Proofs: Random Projection
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 10

	Detailed Analysis of the Sparsification Step via WTA

