
Ant-Inspired Dynamic Task Allocation via Gossiping

Hsin-Hao Su
MIT

Lili Su
UIUC

Anna Dornhaus
University of Arizona

Nancy Lynch
MIT

May 7, 2017

Abstract

We study the distributed task allocation problem in multi-agent systems, where each agent
selects a task in such a way that, collectively, they achieve a proper global task allocation.
In this paper, inspired by ant colonies, we propose several scalable and efficient algorithms to
dynamically allocate the agents as the task demands vary. Similar to ants, in our algorithms,
each agent obtains sufficient information to make its local decision by gossiping with the other
ants. Our algorithms vary in their advantages and disadvantages, with respect to (1) how fast
they react to dynamic demands change, (2) how many agents need to switch tasks, (3) whether
extra agents are needed, and (4) whether they are resilient to faults.

1 Introduction

In a multi-agent system, different tasks may need to be performed. The task allocation problem
is to find an allocation of agents such that there are enough agents working on each task. This is
often done in a distributed manner in many applications. For instance, drone package delivery for
one city may consist of deliveries for several different regions [Koz17]. The drones may learn the
demands in each region from a broadcasting ground control tower. The demands may vary from
time to time. The drones are required to coordinate among themselves, without central control, to
ensure that there are enough individuals working in each region.

The problem of task allocation also occurs in the ant world. In ant colonies, there are several
different tasks (brood cares, foraging, nest maintenance, defense [Rob92]) which require different
number of ants. Ant colonies generally do a good job of regulating the assignment of workers to
tasks. In this work, we take inspiration from ants to develop several algorithms that are efficient
and robust for the task allocation problem. Conversely, we hope our work can shed some light on
questions about collective insect behavior.

To model the task allocation without centralized controllers, we consider randomized gossip
protocols [DGH+87] (sometimes known as population protocols 1 [AAD+06]) as the underlying
method of communication among the agents. In short, randomized gossip protocols consist of
rounds. In each round, each agent chooses another agent uniformly at random to contact, and then
the pair exchanges messages. Gossip-based protocols capture a common method of communication
in biological systems. For example, in ant colonies, two ants communicate by touching each other
with their antennae [Gor02]. The gossip protocol model captures the way they exchange information
in a peer-to-peer manner. Not only are gossip-based protocols natural communication mechanisms
in biological systems, the algorithms in such protocols are usually simple, easily scalable, and
resilient to failures.

The Model We assume there are n agents and k tasks. Each agent a is associated with a unique
identifier, IDa ≤ poly(n), and a state Qa ∈ {1, 2, . . . , k}, which indicates the task that it is working
on. The scenario proceeds in synchronized rounds. In the beginning of round t, each agent receives

the demand signals ~d(t) = (d
(t)
1 , d

(t)
2 , . . . , d

(t)
k) from the tasks, where d

(t)
i indicates the demand of task

i 2. Note that the demands may change arbitrarily in every round. Each agent a chooses another
agent a′ uniformly at random and then they can exchange messages of O(k log n) bits (which fit
the size of the input signals). Then, the agents can change their states. Then they proceed to the
next round.

Cornejo et al. [CDLN14] and Radeva et al. [RDL+] defined a model for the task allocation
problem in ant colonies. In their work, when the ants receive the feedback from the environment,
there could be information flow from one ant to another. In our model, the information flow
happens only through gossiping.

Problem Formulation We formulate the task allocation problem similarly to [RDL+] and

[CDLN14] as follows. Let A
(t)
i denote the set of agents working on task i for 1 ≤ i ≤ k. Let

~w(t) = (w
(t)
1 , w

(t)
2 , . . . , w

(t)
k) denote the number of workers working on the k tasks (wi = |Ai|). We

say the allocation at round t is a proper allocation if w
(t)
i ≥ d

(t)
i for all i ∈ {1, 2, . . . , k}. For con-

1Though they are slightly different. E.g., population protocols usually have a more restrictive memory constraint.
2The demands should be thought as the work-rates required to keep the tasks satisfied.

1

Table 1: Comparisons of the Algorithms.

Mv. and Fill Tkn. Pass I Tkn. Pass II Ranking I Ranking II
#Agents D (1 + ε)D (1 + ε)D (1 + ε)D (1 + ε)D

Preproc. Time O(kε log n) O(kε log n) O(1
ε log2 n) O(

(
k
ε

)2
log n)

Realloc. Time O(log2 n) O(1) O(1) O(1) O(1)

Switching Cost OPT (k − 1) ·OPT OPT O(n)
O(k log n) ·OPT
(or O(n))

Fault Tolerance
transient faults
after preproc.

transient faults
after preproc.

transient & (crash)
no global clock

venience, assume that the total demand D =
∑k

i=1 di is fixed. We can assume this without loss
of generality, since we can let task k denote the dummy task for idle agents. We often omit the
superscripts (t) to denote the quantities of the current round.

There are several objectives we consider for an algorithm. First, whenever the demands change,
we hope that the allocation recovers to a proper one as soon as possible. The reallocation time is
defined to be the number of rounds needed for the algorithm to find a proper allocation, after the
demand stabilizes. Algorithms are allowed to have a preprocessing phase, so that the reallocation
can be done faster after that. Second, when the demands change, we hope the number of task
switches is as small as possible, since task changing may incur some overheads. We define the
switching cost to be the number of agents who switched tasks until a proper allocation is achieved.

When the demands change from ~d to ~d′, it is clear that the switching cost is at least OPT
def
=

|~d− ~d′|1/2 (if the work exactly matches the demand for each task). Third, we study the number of
agents needed for the algorithm. Clearly, all algorithms that behave correctly need to have at least
D agents. However, the question is whether extra agents can help us in designing more efficient
algorithms. Finally, we consider two types of faults: transient faults and crash faults. A transient
fault means an agent temporary malfunctions but later recovers. For example, an agent might not
receive the most recent demands for some reason (perhaps due to the propagation delay). We say
an algorithm tolerates transient faults if the agents adapt to a proper allocation after all the agents
recover from the faults. A crash fault is when an agent malfunctions permanently (and it will no
longer be contacted by other agents). We say an algorithm tolerates crash faults if the agents adapt
to a proper allocation after some of them crashed, as long as there are enough remaining agents.

2 Algorithms

In this work, we give three different types of algorithms for the task allocation problem. They
are incomparable in the sense that no one dominates the other on all the objectives (see Table
1). Our first algorithm, the move-and-fill algorithm, is similar to the algorithm of Radeva et
al. [RDL+], where the excess ants working on over-satisfied tasks leave the tasks and switch to the
unsatisfied tasks. We show that this can be done in O(log2 n) rounds in our model w.h.p.3 using
the gossip-based counting and selection algorithms developed in [KDG03] . The main advantage of
the algorithm over the other two is that the number of agents needed is exactly D. Moreover, the
switching cost is optimal. The drawback of the algorithm is that whenever the demands change,
the re-allocation time is O(log2 n) rounds. If the demands change more frequent than O(log2 n)
rounds, the allocation will not be able to catch up to the demands. In reality, the demands may

3With high probability, which means with probability at least 1 − 1/ poly(n).

2

change very frequently due to both internal factors (consumable tasks where the demands decrease
when they are done) and external factors (sudden changes in the environment).

The ant inspiration for the next two algorithms. Consider ant colonies, where ants receive the
demand signals from the tasks. In reality, the signals can be the temperature or the stimulation of
chemicals. Biologist have conjectured that different ants have different response thresholds to the
signals [BTD98]. The question is whether such a design could help in task allocation. Consider
the following simple example, where n = k = 2. Suppose that the first ant a1 is more sensitive
to the signal of task 1 than a2. Then, when task 1 and task 2 have both 1 unit of demand, it
is possible that a1 goes to work on task 1 and a2 goes to work on task 2. The main inspiration
here is that if the ants have different responses to the signals, then they can take advantage of
the difference to facilitate task allocation. Each ant can decide where to go based on the demand
signals, independent of the other ants’ actions. Therefore, the reallocation can be done very quickly.

Both our token passing algorithm and ranking algorithm are based on this idea. Both
algorithms consist of a preprocessing phase, where each ant a computes a value Xa. After Xa is
computed, they will allocate themselves according to Xa and the vector of demands, so that when
the demands change, each ant can reallocate itself instantaneously. The drawback compared to
the first algorithm is that they both need extra agents. After the Xa-values are computed, the
allocation is done in a very simple way. In a high level sense, we divide the range of Xa-values
into k disjoint intervals such that the length of i’th interval is proportional to the demand of task i
(with additional slacks, see Algorithm 1). Every agent will go to the task whose interval contains its
Xa-value. In general, we hope that the Xa-values of the agents are well-spread so that an interval
of length proportional to di would contain di agents whose Xa-values lying in the interval.

Algorithm 1 allocate task(a, Xa)

Let Ij = [
Dj−1+εj−1

N ,
Dj+εj
N), for 1 ≤ j ≤ k, where Dj =

∑j
i=1 dj ,εj = jb εk ·Dc, and N = D + εk.

Let Ij(a) be the interval where Xa is.
Go to task j(a).

In the token passing algorithm, each agent is assigned a unique token Xa from {1, 2, . . . , n+
b εk ·Dc} in the preprocessing phase. This is done by using the loose renaming procedure developed
by Giakkoupis et al. [GKW13]. When there are (1 + ε) ·D agents, the preprocessing phase takes
O(kε log n) rounds. After that, each agent can determine its role based on Xa and the demand
vector in O(1) rounds. There are two variants of the algorithms that reallocate in different ways
when the demands change. The first is that every agent keeps the Xa-value the same and then
reallocates according to that. In that algorithm, the switching cost is bounded by (k − 1) · OPT.
In the second variant, the Xa-values are also reallocated. This achieves the optimal switching cost
and the reassignments of Xa-values can be done instantaneously. However, unlike the first variant
it does not tolerate transient faults after the preprocessing phase.

In the ranking algorithm, Xa is an estimate of the normalized rank (i.e. rank(a)/n) of a,
where rank(a) is the rank of a’s ID over all the agents. In fact, the algorithm is more similar
to ants’ behavior. The ID of each agent can be thought as some features of the agents. In ant
colonies, ants allocate the tasks based on their individual traits such as age [Rob92, TN04], body
size [Wil80], genetic background [HSBB03]. For example, there are tendencies for older ants to go
foraging and for younger ants to work on the tasks that are closer to the nests [TN04]. The ranking
algorithms mimic this in the way that if the demands are fixed, then the allocation for every agent
is determined by the relative position of its trait (assuming the traits are comparable).

3

We propose two different ways for estimating the normalized ranks. The first is a rounding-based
algorithm that runs in O(1ε log2 n) rounds while the second is a sampling-based algorithm runs in

O((kε)2 log n) rounds. The advantage of the first one is that the estimate does not depend on the
execution of the algorithm and so that an agent always gets the same estimate. The advantage of
the second algorithm is that it can tolerant both transient and crash faults. Moreover, each agent
is allowed to keep its own clock, there is no global clock. The drawback is that the algorithms
may have a fairly large switching cost (e.g., task switching can happen even when the demands
are stabilized). However, for the second variant we may sacrifice the crash fault tolerance for a
bounded switching cost of O(k log n) ·OPT.

3 A Lower Bound

When we fix Xa-values for the allocation, for the simple way of allocating the task described in
Algorithm 1, the switching cost is capped at (k − 1) · OPT. An interesting question is whether
this is the best possible we can do. We may think of these algorithms as being inspired by the
fixed-response thresholds model, because for each agent a, the reaction to a particular demand
signal is always the same. We characterize such algorithms in the following definition.

Definition 3.1. A stable task allocation algorithm is where each agent a is associated with a func-
tion fa(d1, d2, . . . , dk) such that a goes to fa(d1, . . . , dk) when the demand vector is (d1, d2, . . . , dk).

Lemma 3.2. Suppose that an algorithm is stable. Then there exists demands ~d and ~d′ such that it
takes at least |d′ − d|1 = 2 ·OPT switching cost when the demands change from ~d to ~d′.

Proof. Suppose there are 3 agents, a1, a2, a3. Suppose to the contrary that fa1 , fa2 , fa3 are functions
for a1, a2, and a3 that achieve the optimal movements when there are 3 tasks with total demand
3. Suppose that the initial demand is ~d1 = (1, 1, 1). Without loss of generality, suppose that
(fa1(~d1), fa2(~d1), fa3(~d1)) = (1, 2, 3). When the demands change to ~d2 = (1, 2, 0), since we assume
that the strategy achieves the optimal movement, we must have (fa1(~d1), fa2(~d1), fa3(~d1)) = (1, 2, 2).
If the demands again change to ~d3 = (0, 2, 1), then we must have (fa1(~d1), fa2(~d1), fa3(~d1)) = (3, 2, 2)
by the same reasoning. Finally, if the demands again change back to ~d1 = (1, 1, 1), then by the
same reasoning, we have either (fa1(~d1), fa2(~d1), fa3(~d1)) = (3, 2, 1) or (fa1(~d1), fa2(~d1), fa3(~d1)) =
(3, 1, 2), contradicting with the fact that fa1 , fa2 , fa3 are functions.

4 Theoretical Problems Motivated by This Work

• The ranking problem in the gossip model. In our ranking algorithm, the preprocessing
phase relies on the estimation of ranks for every agent. We have two algorithms for estimating
the normalized rank up to ±ε in O(1

ε2
· log n) and O(1ε · log2 n) rounds w.h.p. in the uniform

gossip model. The question is whether one can do better, say in O(1ε · log n) rounds.

• The switching cost gap of stable algorithms. We showed that stable algorithms cannot
achieve the optimal switching cost (they must be at least 2-optimal). On the other hand, if
all agents have their Xa-values properly assigned, then one can achieve a switching cost that
is (k−1)-optimal. There is still a large gap between a factor of (k−1) and a factor 2. Closing
this gap is a very interesting open problem. The bounds are already tight when the number
of tasks is three. Our partition scheme (Algorithm 1) shows that 2 ·OPT is achievable, while
our lower bound shows that this is the best possible. In fact, we have partial results showing
that for D ≤ 7 (see Appendix A), we can achieve a switching cost of 2 ·OPT. For D > 7, we
could not generalize the pattern and therefore it is yet to be investigated.

4

References

[AAD+06] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta.
Computation in networks of passively mobile finite-state sensors. Distributed Comput-
ing, 18(4):235–253, 2006.

[BTD98] E. Bonabeau, G. Theraulaz, and J-L. Deneubourg. Fixed response thresholds and the
regulation of division of labor in insect societies. Bulletins of Mathematical Biology,
60:753–807, 1998.

[CDLN14] Alejandro Cornejo, Anna R. Dornhaus, Nancy A. Lynch, and Radhika Nagpal. Task
allocation in ant colonies. In Proc. 28th Symposium on Distributed Computing (DISC),
pages 46–60, 2014.

[DGH+87] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard
Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for replicated database
maintenance. In Proc. 6th ACM Symposium on Principles of Distributed Computing
(PODC), pages 1–12, 1987.

[GKW13] George Giakkoupis, Anne-Marie Kermarrec, and Philipp Woelfel. Gossip protocols for
renaming and sorting. In Proc. 27th Symposium on Distributed Computing (DISC),
pages 194–208, 2013.

[Gor02] Deborah M. Gordon. The organization of work in social insect colonies. Complexity,
8(1):43–46, 2002.

[HSBB03] William O.H. Hughes, Seirian Sumner, Steven Van Borm, and Jacobus J. Boomsma.
Worker caste polymorphism has a genetic basis in acromyrmex leafcutting ants. Pro-
ceedings of the National Academy of Sciences, 100(16):9394–9397, 2003.

[KDG03] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of ag-
gregate information. In IEEE 44th Symposium on Foundations of Computer Science
(FOCS), pages 482–491, 2003.

[Koz17] Stephan Kozub. Amazons new drone delivery plan includes pack-
age parachutes. https: // www. theverge. com/ 2017/ 2/ 14/ 14611242/

amazon-drone-package-delivery-parachute-patent-prime-air , 2017.

[RDL+] Tsvetomira Radeva, Anna Dornhaus, Nancy Lynch, Radhika Nagpal, and Hsin-Hao Su.
Costs of task allocation with local feedback: Effects of colony size and extra workers in
social insects and other multi-agent systems. submitted. Preliminary version appeared
as a brief announcement in Proc. 28th Symposium on Distributed Computing (DISC),
pages 657–658, 2014.

[Rob92] Gene E. Robinson. Regulation of division of labor in insect societies. Annual Review of
Entomology, 37(1):637–665, 1992.

[TN04] Frederic Tripet and Peter Nonacs. Foraging for work and age-based polyethism: The
roles of age and previous experience on task choice in ants. Ethology, 110(11):863–877,
2004.

5

[Wil80] Edward O. Wilson. Caste and division of labor in leaf-cutter ants (hymenoptera: Formi-
cidae: Atta). Behavioral Ecology and Sociobiology, 7(2):157–165, 1980.

6

A 2-Optimal Switching Cost for Small Demands with 4 Tasks

We give a solution for achieving a 2-optimal switching cost for n = D = 7 and k = 4 by figures.
For D < 7, the solution can be easily derived from them.

Figure 1: A solution for k = 4 and D = 7. Each node represents a demand vector. For example,
the node in the first level represents (7, 0, 0, 0). Therefore, the set of all demands (d1, d2, d3, d4)
such that d1 + d2 + d3 + d4 = 7 form a 3D simplex. Two nodes are adjacent if the L1 difference
of the demands vectors they represents equal to 2. The labels on the edges denote the ants that
switch tasks when the demands change from one endpoint to another (the edges across levels are
omitted due to the difficulty of drawing). Since each adjacent move involves at most 2 agents, the
solution is 2-optimal.

(a) Level 1 (b) Level 2

(c) Level 3 (d) Level 4

(e) Level 5

7

(f) Level 6

(g) Level 7

8

