THE INTERACTION OF SOUND AND SHOCK WAVES
WITH FLEXIBLE POROUS MATERIALS

by
JAMES FULLER ABBOTT

Submitted to the Department of Physics in
partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June, 1991

(© Massachusetts Institute of Technology, 199:.

Signature or Author S e ganace 1 - -

Department of Physics

Certified by - s e o - om

Karl Uno Ingard
Professor of Physics
Thesis Supervisor

Accepted by v e i e am

George F. Koster
Professor of Physics

MASSACHUSETTS instig$ehairman, Department Coinmittee
OF TECHNOLOGY

JUN 041991

LIBHARIES
ARCHIVES



THE INTERACTION OF SOUND AND SHOCK WAVES
WITH FLEXIBLE POROUS MATERIALS
by
James Fuller Abbott

Submitted to the Department of Physics on May 1, 1991
in partial fulfillment of the requirements for the
Degree of Doctor of Philosophy in Physics

ABSTRACT

Several topics are studied which illustrate the role of flexibility in determining the
acoustical properties of flexible porous materials. Characteristic lengths and times of
the acoustic problem of the flexible porous material are discussed, the equations of
mass balance, momentum balance, and compressibility definitions are then written,
then expressions for the propagation constants are derived. A power balance rela-
tion is obtained for the flexible porous material which explicitly identifies two loss
mechanisms for sound absorption: the losses due to the irreversible deformation of
the structure, and those attributed to the viscous drag between the fluid and the
structure. The finite flexible porous layer backed by a rigid wall is then considered.
We derive normal incidence and angle averaged absorption coefficients for the layer
with and without an impervious skin covering the free surface. The loss integrals
derived previously and the ratio of structure to fluid velocity are then calculated for
a number of cases, and then used to study mechanisms of sound absorption in open
layers. Irreversible deformation of the structure is shown to be the dominant loss
mechanism for closed layers. Transmission matrices are derived for a layer of flexi-
ble porous material for the two cases where the layer is, or is not, covered with an
impervious skin on both boundaries.

Three departures from the basic model - a porous layer with anisotropic flow re-
sistance and structure factor, periodic structures consisting of porous layers separated
by air gaps, and the porous medium in bulk with mean fluid flow - are considered.
An anisotropic material, treated as isotropic in the laboratory because of its high flow
resistance, is shown to exhibit very anisotropic behavior at some frequencies where
structural resonances reduce the relative motion between the fluid and structure and
therefore reduce the effective flow resistance. Another demonstrated consequence of
flexibility is shown for the periodic structure, in particular the multiple layer atten-
uator. Here the dips in the absorption coeflicient due to structural layer resonances
can coincide with peaks or dips due to fluid resonances in the air gaps; the absorption
coeflicient which results from this overlap is shown to be made more or less smooth
over frequency compared to the corresponding rigid case. Mean flow is then shown
to introduce a spatial gradient in the equilibrium porosity (and other field variables)




of a flexible porous material, an effect which could have important consequences for
the design of a porous baffle with a graded wave impedance.

The reflection of shock waves is also studied, and a quasi-linear theory is developed
which reproduces the principal features of experimental results obtained previously by
Ingard. The theory assumes that the propagating pulses in the air and structure are
linear and the gross, zeroth order motion of the porous layer is modeled by including
its energy and momentum in the conservation equations; these equations compare the
system just before and just after the reflection of the incident shock from the front
surface of the layer. The substantial motion of the layer and its dragging against a
constraining boundary (in this case the walls of the shock tube) are found to introduce
a dependence of the front reflection coefficient and maximal layer deformation on the
peak pressure of the incident shock.

Lastly, we address the question of measurement of the complex compressibility K,
a key parameter used to describe the dynamics of a given flexible porous material.
The standard long-wavelength assumption used to determine K from experimental
measurements of the frequency dependent velocity transfer function across a sample
is shown to often introduce significant errors into the subsequent estimate of K. We
then provide a computer algorithm which makes the long-wavelength acsumption
unnecessary.

Thesis Supervisor: Prof. K. U. Ingard
Title: Professor of Physics
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Chapter 1

Historical Introduction

1.1 Motivation

The history of investigations relating to the acoustical properties of porous materials
dates back more than one hundred years. The ability to predict the performance of a
given porous material, however, based on knowledge of a small number of measurable
macroscopic parameters, remains a difficult and unsolved problem. In addition, the
ability to consistently measure the performance of a given material, using different
laboratories and experimental techniques, often falls short of desired reproducibility.
This is not to say that the last century has not brought great progress in this field.
For certain material types or frequency ranges, the agreement between theory and
experiment is very good. Great advances have also been made in the instruments and
techniques of the modern acoustical laboratory. In some cases, the difficulties seem to
stem from a faulty assumption that a given flexible material can be treated as limp or
rigid, or that a particular consequence of the flexibility may be ignored. Techniques
for determining certain material properties using laboratory measurements can also
be flawed by such erroneous assumptions.

For this reason, this study examines the particular role of flexibility in determining
the measurable acoustical properties of porous materials. By doing this we hope to
shed some light on the problem of limited performance predictability and inadequate

reproducibility of laboratory measurements.
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1.2 A Brief History

Loid Rayleigh treated the problem of the porous wall in “The Theory of Sound” [1].
This was the first extensive discussion of how the acoustical properties of a porous
layer might be related to measurable, macroscopic parameters. He considered an in-
finitely extended half-space of porous material which contained parallel narrow tubes
running normal to the free surface. The medium was taken to be rigid, and the
analysis of the propagation of sound in narrow tubes, when viscosity and thermal
conduction are included, was used to derive an absorption coefficient for normally in-
cident sound. Included in his analysis was a porosity-like parameter and the necessary
boundary condition for an open surface (no impervious covering).

Monna [2], some forty years later, examined the problem of the rigid porous layer of
infinite depth using the flow resistance of the material and considering oblique angles
of incidence. He computed absorption coeflicients for normal and angle averaged
(diffuse field) incident sound. He briefly referred to the layer of finite thickness.

Some of the first considerations of flexibility of the porous material are found
in Rettinger’s work [3]. He reviewed progress in the field to date and introduced
the effective mass density and effective flow resistance; these quantities are meant to
include the effects of the motion of the material.

The following decade then brought a great increase in the research of this problem.
Morse and Bolt [4] and Scott [5] continued to view the problem in terms of effective
mass density and effective flow resistance. These parameters are meant to include the
important effects of the motion of the structure without explicitly modeling the wave
in the porous structure. Scott also discussed the significance of isothermal versus
isentropic thermodynamic changes of the fluid.

Perhaps the most significant advance to date came with the work of Zwikker and
Kosten [6]. Their analysis was based on a two fluid model for the fluid saturated
porous material. Flexibility of the structure was included as well as a complex com-
pressibility for the structure which accounted for the ilosses due to the irreversible

nature of the deformation of the structure with the passage of the sound wave. Their
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approach was used in the work of Beranek [7], who studied this theory in the domains
of very high and very low compressibility of the structure.

Biot [8, 9] later extended this coupled wave analysis to include shear as well as
dilatational waves in the structure. His work laid out a complete theoretical frame-
work for the coupled problem. The complexity of his model is formidable and, for a
medium where the shear wave speed is much less than the dilatational wave speed,
the method of Zwikker and Kosten is more appealing for its relative simplicity.

Soon after, Attenborough [10] and Zarek [11] presented reviews of the field and
discussed the microscopic details of how certain macroscopic parameters of a pcrous
material are determined.

More recently, Lambert [12], using a model analogous to that of Zwikker and
Kosten, compared theoretical predictions with experiments with some success, and
Ingard [13] pointed out the pitfalls of a faulty assumption of local reaction in flexible

porous layers in certain cases.

1.3 Thesis Summary

Our analysis here uses the model of Zwikker and Kosten [6] as a starting point. In
chapter 2 the characteristic lengths and times of the problem are discussed, then
tne equations of mass balance, momentum balance and defined compressibility are
written down for both the fluid and the porous material. A power balance relation is
then derived which explicitly identifies the physical mechanisms responsible for the
absorption of sound. Propagation constants are then derived and discussed.

In chapter 3 the finite layer of flexible porous material is studied. Pressure and
velocity fields, and the normal incidence and angle averaged (diffuse field) absorption
coefficients are calculated for the layer backed by a rigid wall, with or without an
impervious skin covering the free surface. The power balance results from chapter 2
are combined with calculated structure/fluid velocity ratios to reveal the mechanisms
of sound absorption, and their relationship to the flexibility of the material, in more

detail. Viscous drag between the fluid and structure is shown to be the dominant
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loss mechanism for the open porous layer, whereas irreversible deformations of the
structure are found to be chiefly responsible for absorption in closed layers. Transmis-
sion matrices are then derived for an isolated flexible porous layer with and without
impervious coverings.

In chapter 4 three departures from the basic model of chapters 2 and 3 - a porous
layer with anisotropic flow resistance and structure factor, periodic structures consist.
ing of porous layers separated by air gaps, and the porous medium in bulk with mean
fluid flow — are considered. An anisotropic material, treated as isotropic in the lab-
oratory because of its high flow resistance, will be shown to exhibit very anisotropic
behavior at some frequencies where structural resonances reduce the relative motion
between the fluid and structure and therefore reduce the effective flow resistance.
An example of a periodic structure, the multiple layer attenuator, is alse studied.
In particular we consider how fluid layer resonances and structural layer resonances
conspire to affect the overall absorption coeflicient of the attenuator backed by a rigid
wall. The influence of mean flow on the propagation of sound in a porous material is
considered; then mean flow is shown to induce a spatial gradient in the equilibrium
porosity (and other field variables) of a flexible porous material.

In chapter 5 we study the reflection of shock waves from a flexible porous layer,
and formulate a quasi-linear theory to explain key features in experimental data ob-
tained previously by Ingard [14]. The theory predicts significant maximum fractional
deformation of the layer, and demonstrates how the front reflection coefficient (de-
fined in chapter 5) depends on the pressure of the incident shock because of dragging
of the layer against a constraining surface.

Chapter 6 addresses questions of the measurement of the complex compressibility
of a flexible porous material, and the errors introduced by the popular long-wavelength
assumption in shaker experiments. An algorithm which makes this assumption un-
necessary is then provided.

Lastly, in chapter 7, we review and summarize the conclusions reached in the previ-
ous chapters which demonstrate how flexibility can influence the acoustical properties

of flexible porous materials.
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Chapter 2

Basic Theory

2.1 Characterizing the Flexible Porous Material

The flexible porous material is modeled by a two-fluid system, in a manner similar to
that presented by Zwikker and Kosten [6]. One of the fluids is the air which occupies
the interconnected voids of the structure, the other is the material of the structure.
In using the model we assume that shear and surface waves may be neglected in
the dynamics of the structure, and we associate a pressure with the negative of the
diagonal components of the material’s stress tensor. Although both the fluid in the
pores and the material are modeled as isotropic fluids in this analysis, we adopt the
convention of referring to the fluid in the pores as the “fluid”, the material of the
structure as the “material”, and the frame of the material composed of the open
pores bounded by structural material as the “siructure”.

The porous material is assumed to consist exclusively of interconnected “open”
cells. To treat a partially open cell structure where some fraction of the cells are
closed, we would consider only the open cells in the measure of the porosity, and the
closed cells would affect the density and compressibility of the structural material.
In many cases closed cells in the structure lead to a medium which is inhomogeneous
and anisotropic; questions of anisotropy will be discussed in chapter 4.

Although this chapter presents a basic model which is already widely known, we

add a new discussion of power balance and mechanisms of sound absorption in a
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flexible porous material. In addition, the idea of the porosity variation being treated
as an acoustic field variable which was proposed by Ingard [15] is an addition to the
widely used model of Zwikker and Ko:‘en.

The basic theory of this chapter makes a number of simplifying assumptions about
the porous medium. In later chapters most of tliese assumptions will be relaxed,
one at a time, in more complex models. The medium is assumed to be isotropic
and homogeneous. We assume no mecaun flow is present, and we initially consider
the medium in bulk without the influence of boundaries. The changes of the field
variables associated with waves in the porous material are assumed sufficiently small

to justify linearization of the basic equations.

2.2 Physical Parameters

For the fluid, material, and structure we define, respectively, densities p, p', and
M = H'p' and compressibilities «, «', and K. Both &' and K are complex; more will
be said about their definitions in the next section. The experimental determination
of the complex compressibility K is discussed in chapter 6.

The volume fraction of the open or inter-connected voids in the porous material
is the porosity H and we define H' = 1 — H as the corresponding volume fraction of
the material.

The induced mass factor G is a dimensionless, empirically determined factor which
accounts for tortuosity of the interconnected pores in the porous medium; it appears
in the momentum balance relations for both the fluid and material (see section 2.4.3).
It accounts for components of the total fluid velocity which contribute to the kinetic
energy density but are averaged out in forming the average fluid velocity u. This will
be shown explicitly in the section ou power balance in the porous material.

The flow resistance per unit length is . This is empirically determined by mea-
suring the steady average flow velocity resulting from a constant pressure drop across

a layer of porous material. This is obtained using the relation
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Hru, = —g-g (2.1)

The inclusion of H above means u; is the average flow velocily inside the porous

layer.

2.3 Characteristic Physical Scales

The simplifying assumptions stated earlier correspond to certain magnitudes of char-
acteristic length and time scales of waves in the porous material; these parameters

and there acceptable magnitudes are discussed below.

2.3.1 Length Scales

The two-fluid model of waves in a flexible porous material has two distinct solutions,
one for each of the modes of wave motion. Two length scales of the problem are the
wavelengths of these two modes, labeled here as A; and A,. At higher frequencies, the
two modes are readily associated with a wave in the structure and a wave in the fluid;
for an arbitrary frequency, such a distinction is not possible. The characteristic fiber
or pore size of the frame §g is also important, and our assumption of homogeneity

assumes

A1y A2 > b5 (2.2)

The finite layer with a rigid backing is discussed in chapter 3; the layer thickness
is d. In this case, for low values of flow resistance (r < pw), effects of the dominant

layer resonance for the fluid wave are seen when

1
4dy/Hom

and for the structure layer resonance when

" =
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Vy R

HUTT (2.4)

In particular, the frequency v; may correspond to a peak in the absorption co-
efficient due to significant relative motion between the fluid and the structure. Fre-
quencies near v,, however, may correspond to a dip in the absorption coefficient due
to the reduction in the relative motion. These effects are discussed in more detail in
chapter 3.

For the case of high flow resistance, the fluid and structure move together and

layer resonances are found when

1
4d\/pk
where g = Hp + H'p' and 1/k = 1/(Hk) + 1/ K,.

V3 &~

(2.5)

As the fluid flows through the pores there is a characteristic thermal boundary
layer thickness ér. In this analysis we assume that the thermodynamic changes in

the fluid within the pores are isothermal so

§p ~ bs (2.6)

For higher frequencies this may not be valid, but the analysis can be corrected
by using an empirically determined complex compressibility for the fluid. Because of
the isothermal assumption, the fluid compressibility « is taken to be real.

The relative sizes of the viscous boundary layer and the pores influence the the
flow resistance r, but this does not concern us here; we assume that the flow resistance
has been determined experimentally and will not discuss the microscopic details of

its origin here.

2.3.2 Time Scales

The acoustic angular frequency is w with corresponding period T' = 2w /w. Three

important characteristic times or frequencies can be identified in the context of the
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flexible porous material.

The first corresponds to the characteristic therinodynamic relaxation time for the
structure and material. Unlike our isothermal assumption for the fluid, we cannot
assume that either isothermal or isentropic changes apply for the structure and the
material, because their relaxation times are unknown relative to the acoustic period.
For this reason the compressibilities for the structure and material are taken to be
complex, to be measured by experiment. In most materials, the magnitude of the
complex compressibility of the material is much smaller than that of the structure.

Next we consider the relative roles of flow resistance r and inertial mass density
of the fluid p in the pores which leads to the characteristic frequency

r

W = — (27)
14

For acoustic frequencies such that w <« wp , the  ction force dominates and the

dynamics of the fluid wave is described by the approximately diffusive equation

2
P o (v (28)
where p is the fluid pressure and the fluid sound speed, outside the porous material,
is c.
For frequencies such that w > wp , the inertial forces in the fluid dominate and
the wave propagates much as it would in free space but with attenuation proportional

to the flow resistance r.

Lastly we can define

wg = _1'_ = —WwF (29)

M M

where M = H'p'is the bulk mass density of the porous frame, equal to the product
of H', the volume fraction of the structure occupied by structure material, and p', the
muss density of the structural material. This frequency is related to the ratio of the
flow resistance force and the inertial forces in the porous frame and, for a material

with small stiffness, the motion of the structure can be substantial for frequencies
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such that w < ws. For the domain w >> wg, the porous frame is essentially rigid.

2.4 Basic Equations

2.4.1 Physical Assumptions

The flexible porous material in bulk, assumed isotropic, homogeneous, and with no
mean flow present, is considered here; in chapter 4 we examine the effects of anisotropy
and mean flow.

The basic equations are linearized; we keep only terms to first order in the field
variables. We will discuss this approximation in more detail below; for now we point
out that linearization is consistent with the assumptions

[u| |«'| ép &p' 6H

o e 2 o H <1 (2.10)

2.4.2 Acoustic Field Variables

The velocities for the fluid and structure, @ and @' respectively, are average velocities.
The actual velocities for both the fluid and the material can vary greatly over small
distances in the porous medium because of the tortuous nature of the interconnected
pores in the structure. For this reason, the velocity vectors @ and @' result from an
average of all the velocity vectors found in the medium ove. a region of characteristic

dimension §y where

A> by > b (2.11)

where ) is the acoustic wavelength and §s is the sizc of the pores or channels in
the frame.

The acoustic pressure in the fluid is denoted by p. In general the stresses in the
structure of the porous material must be modeled by a three-dimensional, second
rank stress tensor which is a function of position and time. We assume here that

only dilatational waves propagate in the structure and that the medium is isotropic;
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these assumptions allow us to replace thc stress tensor with an acoustic pressure
for the structure which is equal to th: negative of the diagonal components of the
stress tensor. Although on physical acales much larger than the pore size this is
reasonable, on the length scale of ti.e ;.ores the shear deformations of the material
are more responsible for the larger scal: Lulk deformations of the structure; this fact
is central to our distinction between the n-aterial itself and the structure consisting
of the material fibers.

The density of the fluid is p and the density of the structural mnterial is p'.
Because of the porous nature of the medium, the mass of the fluid per unit volume
of the structure is Hp and correspondingly for the structure itself, M = H'p'.

These velocities, pressures, densities, and porosity form a set of eleven acoustic
variables which will be determined by eleven equations below. They consist of eight
equations of mass and momentum balance for the structure and fluid, and three
compressibility definitions. A compressibility definition is equivalent to a statement

of energy balance and equation of state.

2.4.3 Mass Balance

The fact that fluid or structure mass is neither created or destroyed leads to state-
ments of continuity or mass conservation for the fluid and the material. After lin-

earization of the field variables we have

ie+paQH + Hpdivi =0 (2.12)
ot ot
and
op' OH'
’ ! (AT — —
H ¥ +p ¥TS + Hp'divi' =0 (2.13)

The linearization leads to the exclusion of terms like up4f , uH gﬁ ,and u'H' %%’

which, for a plane wave, corresponds to the physical assumptions:
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&H

ups. 6H

| Z i~ =<1
Hpg: H

uH 22 5
Hp3: P

and

u:H,a' 50’
H’p’%"— P

(2.14)

(2.15)

(2.16)

where §H, 8p, and 8p' correspond to the first order fractional acoustic variations

of the equilibrium values.

2.4.4 Momentum Balance

In the absence of any external volume forces on the flexible porous material, the

linearized equations of momentum balance are

Hpat: + HpG 0 (u — @)= —Hr(d —4') —gradp

0

and

K. a, .

H'p'— 5 HpG’at(u—'&") = +Hr(d — ') — grad p'

Here linearization causes the exclusion of terms containing factors like ufe

for a plane wave of speed ¢ correspond to the physical assumptions

and
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(2.18)

% which

(2.19)

(2.20)



where ¢’ is the speed of a plane wave in the structure of the porous material.

The second terms on the left hand sides of equations 2.17 and 2.18 correct the
momentum equations to account for the fact that, by averaging over all directions
to obtain the velocities, contributions to the kinetic energy arising from components
transverse to the resulting @ and @' vectors are not accounted for. These induced
mass factor terms account for the tortuosity of the pores in the porous material and
are written so that any resulting forces exerted on the material by the fluid are equal
and opposite to those applied to the fiuid by the material.

The first terms of the right hand sides of 2.17 and 2.18 are the result of the mutual

viscous drag between the fluid and the structure.

2.4.5 Compressibilities

We define three compressibilities for the flexible porous material; in each case the
definition serves as a combined statement of energy balance and equation of state.
18p , 1 2“.’: K 1 8H'

K=——

A T -2

The fluid compressibility « is assumed real and will be taken to be the isothermal
value. True, for sufficiently high frequencies an isentropic value would be more correct
and in the intervening frequency range x would be complex, but for our purposes here
the impact of these considerations on the overall acoustic properties is small.

The compressibilities for the structure and the material are taken to be complex.
The structure’s bulk compressibility ' is typically very small and here we have defined
it with the assumption that deformation of the material itself is due largely to the
the pressure in the fluid. Its compliance under shear deformations can be much
larger. These shear deformations are largely responsible for the bulk deformations of
the structure. As a result, the structure compressibility K can be quite important
in the interactions we will examine; its magnitude is usually much larger than /.
Here we assume that the pressure in the structure is responsible for the deformations

associated with vhe compressibility K.
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2.4.6 Power Balance

We now derive a equation which relates the acoustic energy density and intensity in
the porous material to the losses due to viscous drag and irreversible changes which
occur as the structure deforms.

For our purposes here, we take ' to be sufficiently small that we can neglect the
first term in equation 2.13 and take K as real, and account for the losses due to
deformation of the structure by introducing a bulk viscosity term into equation 2.18
which gives us a momentum equation for the structure

o'

H’p’a — HpG-g-t-(i[— i) =+Hr(@ —4') — grad p’' + BV’ (2.22)

Combining equations 2.12, 2.13, and 2.21 we can write

op H' _ 0p .
Ko~ TI_KBT +divi =0 (2.23)
op , .90
[_ . . —f — ]
nat+K6t +diva' =0 (2.24)

then, taking the dot product of @ with equation 2.17 and %' with equation 2.18

and adding the results we obtain

d [1 - o | —y 1 -y s —v]_
E[EHp(u-u)+§Hp(u-u)+§HpG’(u—u)-(u—u) =
—Hr(@ - ') (€—4')— @ -gradp— @' - grad p' + @' - BV’ (2.25)

Also, multiplying equation 2.23 by p and equation 2.24 by p' and adding we have

o , 1., H_ op Op
91z ey - ZKp oy PP
ot [2"’” TR ey TRy,
—pdivd — p' divad’ (2.26)

It is interesting to note that the above equation 2.26 is actually a definition of
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the total potential energy density. If we were to slowly compress a chunk of porous
material we note that thc time rate of change of the internal energy per unit volume

would be given by

OPE

5 =P divd — p' divd’ (2.27)

so that the quantity on the left hand side of equation 2.26 is the time derivative
of the potential energy density.
Adding equations 2.25 and 2.26 then leads to a power balance relation

%(/cs +PEY+divI = — (L1 + L2) (2.28)

where the kinetic energy density is

KE = ZHplaP + S Hp | + ~HpGli - @] (2.29)

the potential energy density is

— 1 2 1 12 [ Iap H 3])'
PE = 58P + -2-Kp + /(np B H,Kp 5 )dt (2.30)
the total intensity is given by
+ 1 — Uld
I= -2-Re(pu + p'i’) (2.31)

and the terms L1 and £2, defined below, correspond to power dissipated.

Equation 2.29 shows explicitly how the induced mass factor G accounts for the
kinetic energy components in the frame of reference of the tortuous structure.

On the right hand side of equation 2.28 we see two terms which correspond to
dissipation in the porous material. L1, due to the resistive drag between the fluid

and the structure is

L1 = Hr|@ - @' (2.32)
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As the structure deforms, irreversible changes occur, causing losses associated with

L2 where

L2 =i . BV (2.33)

In steady state the sum of the kinetic and potential energy densities is constant

so the time derivative term in equation 2.28 is zero. Then, using the vector identity

V@@ (V-@)=a- V@ + (V. @) (2.34)

and equation 2.13 and taking a time average over an acoustic period we obtain:

div (Z) = ——;-Hrhl'— @' - %wK.-Ip'P (2.35)

where we have returned to the complex compressibility K = K, + {K;, and used
the relationship between the bulk viscosity 8 and the real and imaginary parts of K

as derived in appendix A which is

K; = Pwk? (2.36)

and the fact that

(V- (@ (V@) =0 (2.37)

To complete our analysis of the power balance in the porous layer we now integrate

equation 2.35 over the layer. The left hand side becomes

/V div (F)dV = fA (T dA) = II;, (2.38)

where the V integral is taken over the volume of the layer, the A integral is taken
over the free surface of the layer, and II;, is the power per unit area which flows into

the layer. This leads to a power balance equation for the layer of the form



o= [ (.;.Hrm L %wK;|p'|2)dV (2.39)

The above result, divided by the incident intensity, is an absorption coefficient.
The two terms of the integrand correspond to losses associated with viscous druy and
deformation of the structure, respectively. This explicit identification of these sound

absorption mechanisms will be used in chapter 3 to study their relative roles.

2.4.7 Propagation Constants

Propagation constants are now obtained for a plane wave in the porous material of
frequency w and wavenumber ¢q. Using the compressibility definitions in 2.21 we can
obtain complex amplitude equations for the field variables where now p = p(¥,w) and
u = u(7,w) with 7 a position vector.

The linearized equations 2.12,2.13,.17,2.18 become

(H'|H)wKp' — iwkp = —divd (2.40)
— iwKp' —iwk'p = —divid (2.41)
—iwpit = Hfi' — Vp (2.42)

— iwMd' = Hfd — Vp' (2.43)

where we have defined

F=7r—iwGp (2.44)
ir

p = 1+ — 45)

p = Hp( +wp) (2.45)
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M= M(1+ i (2.46)

Equations 2.40 - 2.43 can then be combined to give two coupled wave equations

in p and p
Vip + w’pr(l — iHiw'fwpr)p = iHFwK (1 — iwpH' [FH?)p' (2.47)

V' + W MK(L +iH'F fwM)p' = iHFwk(1 + iwMk'[# Hr)p (2.48)

We now consider a plane traveling wave in the porous medium of propagation con-
stant § for which the magnitude is written as q. The spatial dependence is exp(iq- 7).

Equations 2.47 and 2.48 can then be written as

[—¢* + (w/c)*Blp = (iwHFK)§;p' (2.49)

(—¢* + (w/e)’B2p' = (iwHFK)é,p (2.50)

where we have used the definitions

2 _ PK Cppe ) =
= —(1-— 'lH 2.51
By pno( 7K' [wpK) (2.51)
K )
g2 =ME i e (2.52)
Pko
6 =1—iH'wp/H?*F (2.53)
6, = 1 + iwM«k'/Hix (2.54)
Ko = 1/pc? (2.55)

31



Although we use these full expressions in our analysis here, in many cases of
practical interest, where the “cross” terms in the mass balance equations 2.12 and
2.13 are very small, we would have

2. PK . MK

dy=1, 4, =1, R — L 2.56
f ﬂf pno,ﬂ pro ( )

Now, by introducing the normalized propagation constant § = §/(w/c), we can

use equations 2.49 and 2.50 to obtain the dispersion relation

Q' - (BF+BHQ*+ BB+ A=0 (2.57)

where

A = (H7 Jwp) (K ko) (K /Ko)848, (2.58)

The two solutions to this equation are

Q= 583 +82) + 5\/(8 — 2y — 44 (259)

Q: = %(ﬂ? +87) - %\/(ﬂ,% — B2)2 — 4A (2.60)

where the subscripts 1 and 2 refer to the two characteristic wave modes of the
system.
We also obtain the ratio I'; ; between the pressure in the structure and the pressure

in the fluid using equations 2.49 and 2.50:

Qla=F}  _ (<iHF/wp)(x/xo)s,
(il wp) (K [ra)3s P

where again, the subscripts refer to the two modes. Then using equations 2.40

]

P
I — = 2.61
2= (2.61)

and 2.41 we also obtain, for the ratio of the velocity magnitude in the structure to

the velocity magnitude in the fluid
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[ KTt e
T =T T R S (HH)KT,,

(2.62)

Figures 2-1 - 2-4 are plots of the real and imaginary parts of the propagation
constants for the two modes for a set of four cases of decreasing compressibility. In
each case, the imaginary part of the structure compressibility is taken to be 1/10th
of the real part.

For high frequencies (w > r/p,r/p'), one mode can be associated with the wave
in the fluid and the other with the wave in the structure. In this case we have for the

limiting values of @

0, — ‘/% = JHy (2.63)

using the isothermal fluid compressibility x = yxo, and

HoK,

Pko

Q2 =y (2.64)

In the low frequency limit, the fluid and structure move together and there is only

one mode of significance, the other is strongly damped. This mode’s wavenumber is

Q— 25 (2.65)

Pko
where p = Hp + H'p' and 1/k = 1/(Hk) + 1/ K,.
In the domain where w ~ r/p,7/p’, the porous medium is considered flexible and

each of the two modes corresponds to a combination of structure and fluid motion.

2.4.8 Wave Propagation in an Unbounded Porous Medium

In circumstances where the influence of boundaries in negligible, the propagation
constants obtained above can be used to describe the propagation of a plane wave in
the porous material. If the angular frequency of such a wave is w, we have for the

phase speed
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=— = —_ 2.66
qr Qrko Qr ( )
where co is the isentropic speed of sound in the fluid outside the porous material

and the complex propagation constant is written as Q = @, +iQ;. The decay rate of

the plane wave in the porous medium is

XdBpercm = —20 loglo e“Q""° >~ 8.69Qik0 o 862Qtw
0

(2.67)

if w/co has units of inverse centimeters.
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Figure 2-1: K/ko = (2,0.2) , Real and imaginary parts of normalized propagation
constants for modes 1 and 2 for H = 0.95,G = 0.5, H'p' = 2lbs/ ft3,+ = 10pc/inch
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Figure 2-2: K /Ko = (1.1,0.11) , Real and imaginary parts of normalized propagation
constants for modes 1 and 2 for H = 0.95,G = 0.5, H'p' = 2lbs/ft3,r = 10pc/inch
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Figure 2-3: K/ko = (1.0,0.1) , Real and imaginary parts of normalized propagation
constants for modes 1 and 2 for H = 0.95,G = 0.5, H'p' = 2lbs/ ft3,r = 10pc/inch
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Figure 2-4: K/ro = (.5,0.05) , Real and imaginary parts of normalized propagation
constants for modes 1 and 2 for H = 0.95,G = 0.5, H'p' = 2lbs/ ft3,r = 10pc/inch
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Chapter 3

The Finite Layer

3.1 Specific Configuration

We now consider a specific geometry, the layer of porous material backed by a rigid
wall. Such a configuration is not only of considerable practical importance, it also
serves to illustrate the many consequences of flexibility in a porous material. In this
chapter, the absorption coefficient will be computed for an “open” and a “closed”
layer in a manner following Ingard [15] with some additions. We then present a new
discussion of the velocity ratio and mechanisms of sound absorption in the flexible
porous material. In addition, we derive original expressions for the transmission
matrices of open and closed flexible porous layers.

Figure 3-1 shows the coordinate system used. The layer, consisting of a homoge-
neous, isotropic, flexible porous material, is of uniform thickness d, of infinite extent
in all directions parallel to its free surface, and backed by a rigid wall. We choose a
coordinate system so that & is oriented normal to the free surface of the layer, with
z = —d coinciding with the free surface and = = 0 coinciding with the junction of
the rigid wall and the back of the porous layer. The §j and 2 directions are parallel to
the free surface of the layer, and we will orient § so that the incident, reflected, and
refracted waves all propagate in the zy plane.

We will examine two distinct types of surfaces at £ = —d. The ’open’ surface refers

to the porous material terminating at = = —d without any covering of impervious

37



. . /:‘/’ g
) o’ // A
] . /‘ . x
"o, . /';/,
---------- I g
o. .' ) /
. //’
X=-o X=0

Figure 3-1: Geometry of Porous Layer and Defined Coordinate System

skin; the pores are open to the fluid at z < —d. The second, the 'closed’ surface,
corresponds to an impervious skin, of negligible thickness and mass per unit area,

covering the porous layer at £ = —d. For most of the results of this chapter, we will

consider each of these two cases.

3.2 Boundary Conditions

As in chapter 2, we denote the pressure of the fluid p and that of the frame p', the
velocity of the fluid is i and for the frame @’'. We denote components of the velocities
using subscripts; for example, the # and § components of the fluid velocity would

be written u, and u, respectively. The rigid wall backing the porous layerat z = 0

requires

uz(z=0)=u(z=0)=0 (3.1)

The open and closed layers have different boundary conditions at z = —d.

3.2.1 Open Layer

Continuity at the free surface of the open layer requires that

38



o, = Hug(z = —d) + H'ul(z = —d) (3.2)

where uo,, is the & component of the total fluid velocity just outside the layer at
z = —d.
The fluid pressure p must be continuous since the layer is open, and the frame

pressure p' must vanish at the free surface.
po=p(z=-d), plz=-d)=0 (3.3)

3.2.2 Closed Layer

The clesed layer has an impervious skin at * = —d which requires that the fluid just
outside the layer, the fluid just inside the layer in the pores, and the edge of the frame

must all have the same & velocity component.

Upe = Ug(T = —d) = ul(z = —d) (3.4)

The covering is assumed to have negligible mass per unit area so the sum of the
frame and fluid pressures just inside the cover must equal the fluid pressvre just

outside the cover.

po = p(e = —d) + p'(z = —d) (3.5)

3.3 Pressure and Velocity Fields

A plane wave of wavenumber k and angle of incidence ¢ (see figure 3-1) is incident
on the free surface of the porous layer. Continuily of the trace velocity across the

boundary at z = —d requires

g, = ksin(9) (3.6)
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and

% =\/¢* — ¢} = V4 — k2 sin’(¢) (3.7)

Since there are two values of q (g, and g;) for the two modes given in equations 2.59
and 2.60, there will be a corresponding ¢, and ga,. In the § direction, ¢, = g1y = ¢y,

This means, in general, that each mode will have a different direction of travel in
the porous material, although for a given mode the fluid and structure wave travel in
the same direction. The pressure and velocity fields are in general a linear combination
of the corresponding fields of each of the two modes.

Using the boundary condition in equation 3.1, the general form for the velocity

components u, and ul, is

uz = Uy sin(quoz) + U sin(qz,,:v)]e“’”" (3.8)

ul, = [y1U1 sin(qizz) + 72Us sin(ga.x)] 'V (3.9)

where 7, and 7, are the ratios of structure to fluid speed in each of the modes.
Using these equations and the amplitude equations 2.42 and 2.43 , we can write

for the pressure fields in the fluid and and frame

» = [P cos(q1z) + P; cos(ge)]e!t¥ (3.10)

p' = [['1 P cos(qizz) + [ P, cos(qz,,a:)]e“’"" (3.11)

where I'; and I'; are the ratios of structure to fluid speed in each of the modes

and

Pl = —ipCZ1U1 (3.12)
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Pz = ——ipCZzUz (3.13)

with
2 = (il = il fwp) (3.14)
Z, = th(ﬁ/p — iH7y2/wp) (3.15)

3.4 Rigid, Limp, and Flexible Domains

Typically, a porous material is modeled as rigid, limp, or flexible based on the value
of its structural compressibility. In fact any material is flexible, yet under certain
conditions it may be essentially immobile or rigid, or in others it may comove with
the fluid and be characterized as limp. For this reason, we instead refer to rigid,
limp, or flexible domains; frequency ranges for which a given flexible porous material
exhibits the corresponding behavior.

It is instructive to calculate the ratio of the structure and fluid velocities for
some typical values of structure compressibility. This ratio allows us 1;0 define these
rigid, limp, and flexible domains and sets the stage for a more complete discussion of
mechanisms of sound absorption in section 3.8.

Figures 3-2 to 3-5 below show the magnitude ¥,, and phase ¥, of the ratio

G0t = :;E; = :Z Z; (3.16)

taken in the middle of the layer at £ = —d/2, using equations 3.8 and 3.9 .

In each of these cases, the rigid domain corresponds to the frequency range where
V.. — 0 because u' — 0; the structure does not move. The material behaves as limp
when ¥, ~ 1 and ¥, ~ 0, this corresponds to comotion of the structure and fluid.
It should be noted that, for materials of low compressibility, the low frequency limit

gives 4 — @' — 0 even though ¥, — 0; this case would be regarded as liinp. Note

41



that consistent with this definition, a material of low compressibility could exhibit
limp behavior at some frequencies although the range of frequencies becomes smaller
the lower the compressibility.

The flerible domain refers to intervening frequencies for which there is significant
relative motion of the fluid and structure due at least partly to the motion of the
structure.

Figure 3-2 shows ¥ for a material of very high compressibility which exhibits limp
behavior at low frequencies and rigid behavior at high frequencies.

Figure 3-5 shows ¥ for a very stiff material, showing rigid behavior for most
of the frequencies shown, except for some comotion resulting {rom structural layer
resonances.

Figures 3-3 and 3-4 show ¥ for materials of moderate compressibility. The rigid
domains are evident at the higher frequencies, and particularly interesting is the
significant comotion occurring at intermediate frequencies. This type of limp behavior
can result in a considerable reduction in the absorption coefficient as we shall see in

later sections.

3.5 Input Admittance for the Open Layer

To compute the absorption coefficient for the open layer we use the normalized input

admittance at # = —d which has the form

Ug(z = —d)

= 3+ i0c = pc———m———
n=p+io A~ Fy—)

(3.17)

Although input admittance is used here for the open layer, input impedance will
be used for the closed layer in the following section. This is because the open layer
boundary condition at # = —d leads to an input admittance which is the sum of two
terms, each of which correspond to one mode of the wave motion (see equation 3.20).
The closed layer boundary condition at ¢ = —d leads to a more complicated form of
the input admittance. The total input impedance for the closed layer, however, can

be written as the sum of two terms, one for each of the modes, this will be evident in
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Figure 3-2: K/ko = (2000,0.1) , Limp limit of Magnitude and Phase angle of ratio
between structure and fluid velocity in middle of layer. With H = 0.95,G = 0.5,d =
linch, H'p' = 2lbs/ ft3,r = 10pc/inch
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Figure 3-3: K/xo = (10,1) , Magnitude and Phase augle of ratio between structure
and fluid velocity in mitdl. of layer. With H = 0.95,G = 0.5,d = linch,H'p' =
2bsf jit v = 10pc/inch
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Figure 3-4: K/ko = (1,0.1) , Magnitude and Phase angle of ratio between structure
and fluid velocity in middle of layer. With H = 0.95,G == 0.5,d = linch,H'p' =
2lbs/ ft3,r = 10pc/inch
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Figure 3-5: K/ko = (0.1,0.01) , Magnitude and Phase angle of ratio between structure

and fluid velocity in middle of layer. With H = 0.95,G = 0.5,d = linch, H'p' =
2ibs/ ft2,r = 10pc/inch
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equation 3.26.

To obtain the input admittance for the open layer, we first obtain expressions for

the amplitude of the fluid pressure and normal velocity just outside the layer. This

is done by applying the boundary conditions 3.2 and 3.3 to the general expressions

3.8 - 3.11 which gives

plz=—-d)=(1- —f‘—l-)Pl cos(qizd)e'®¥ = (1 — —)Pz cos(gzzd)e' MV
2

u(z = —d) = [-Uy(H + H'y1) sin(q1d) — U2(H + H"yz)sin(qzwd)]e“""

The normalized input admittance at ¢ = —d is then

Nopen = —im tan(qizd) — i tan(gz.d)

where

M

(H + H'y1) [ Ty ]

n 7, T, T,

2 = (H+H"72

)

3.6 Input Impedance for the Closed Layer

The normalized input impedance at z = —d is defined as
. 1 p(m = -—(I)

=0 tiy=—2C" "0

¢ +ix pcug(z = —d)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

In a manner analogous to the previous section, we apply the boundary conditions

3.4 and 3.5 to the general expressions 3.8 - 3.11 to obtain
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p(z = —d) = [(1 4 T1) P, cos(qizd) + (1 + I'z) P; cos(qz-d)] e (3.24)

u(z = —d) = (71 — 1)Uy sin(q1.d) €' = (1 — 4;)U; sin(gzd)e!®? (3.25)
The normalized input impedance at z = —d is
Cclo-ed = iCl COt(qlzd) + i(:z COt(QZmd) (3'26)
where
-1
G =2 (72 ) (1+1;) (3.27)
Y2—N
1-—
(o = Z, ( h ) (1+T,) (3.28)
T2—N

3.7 Absorption Coeflicients

The absorption coefficient, as a function of angle, is written for the open layer in
terms of the real and imaginary parts of the normalized input admittance or, for the
closed layer, is expressed in terms of the normalized input impedance. As explained
in the previous section, this separate treatment of the open and closed cases results

in more compact admittance and impedance expressions.

4 cos ¢

a(¢17’) = (ﬂ + cos ¢)2 + o2

(3.29)

46 cos ¢
(1 + 6 cos ¢)? + (x cos ¢)?

The expression for the angle averaged absorption coefficient, which can also be

a(¢’ C) =

(3.30)

computed for either case, is obtained by assuming that the sound incident on the layer
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is the sum of plane waves in all possible angles of incidence with the total intensity
per unit solid angle the same for all directions, a so called 'diffuse’ sound field. (There
are other aspects of the definition of a 'diffuse’ sound field which do not concern us

here.) This average takes the form

JT% (@) cos $sin ¢ dgp B
fo"/z cos ¢sin ¢ do -

Figures 3-6 to 3-9 show computed absorption coeflicients, both for normal inci-

o =

m/2
2/0 (@) cos psin ¢ d (3.31)

dence and angle averaged, for a number of cases of increasing flow resistance.

The layer resonances discussed in section 2.3.1 are very apparent in most of these
cases. For the open layer, peaks in absorption occur when the layer thickness is one-
quarter of a wavelength for the fluid wave at higher frequencies. Dips are seen when
the structure has a quarter-wave resonance. This is a consequence of reduced relative
motion between the fluid and the structure and will be examined in more detail in the
following section. For the closed layer the resonant peaks have more regular spacing
and height due to the abrupt wave impedance changes at both 2 = —d and z = 0.
In the low frequency limit, all the cases show o — 0. For high frequencies the open
layer approaches the absorption coefficient of a rigid layer and the closed layer can
be modeled as a frequency independent characteristic impedance at ¢ = —d (see
equations 3.14 and 3.15); thus a is constant for high frequencies.

The dotted lines represent the angle averaged absorption coeflicient obtained using
equation 3.31. These a’s are consistently higher than the normal incidence a’s. This
can be understood by taking a particular case and plotting a($) where ¢ is the angle
of incidence. Such a case in shown in figure 3-10.

We see a peak in the absorption coefficient for a particular angle which in general
will be different from that for ¢ = 0. This is a common result seen, for example, in
the absorption of sound in a rigid porous sheet. For this reason, the angle averaged

@ is usually greater than a(¢ = 0).
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Figure 3-6: Absorption Coefficients for Open and Closed Layers; Normal Incidence
(solid line) and Angle Averaged (dashed line); With r = 1pc/inch, H = 0.95,G =
0.5, K/ko = (1,0.1),d = .25inches and d = linch, f{'p' = 2lbs/ ft3
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Figure 3-7: Absorption Coefficients for Open and Closed Layers; Normal Inciderce
(solid line) and Angle Averaged (dashed line); With r = 4pc/inch, H = 0.95,G =

0.5, K/ko = (1,0.1),d = .25inches and d = linch, H'p' = 2lbs/ ft*
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Figure 3-8: Absorption Coefficients for Open and Closed Layers; Normal Incidence
(solid line) and Angle Averaged (dashed line); With r = 16pc/inch, H = 0.95,G =
0.5, K/ro = (1,0.1),d = .25¢tnches and d = linch, H'p' = 2lbs/ ft3
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Figure 3-9: Absorption Coefficients for Oper. and Closed Layers; Normal Incidence
(solid line) and Angle Averaged (dashed line); With r = 32pc/inch, H = 0.95,G =
0.5, K/ro = (1,0.1),d = .25inches and d = linch, H'p' = 2lbs/ ft*
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Figure 3-10: Absorption Coeflicient as a Function of Angle for Open and Closed Lay-
ers, Frequency = 1000 Hz; all with K = (1,0.1), H = 0.95,G = 0.5,d = linch,H'p' =

2lbs/ ft3,r = 10pc/inch,v = 1000Hszquency= 1000 Ha
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3.8 Mechanisms of Sound Absorption

If the goal is to design a sound absorbing material with certain acoustical charac-
teristics, then it is important to more fully understand what underlying physical
mechanisms are responsible for the conversion of acoustic energy into heat in the
flexible porous layer. We will consider open and closed layers separately, and reveal
fundamentally differcnt loss mechanisms in the two cases.

For purposes of discussion of the open porous layer, we choose a typical set of ma-
terial properties as a test case. Figure 3-11 shows the normal incidence (our discussion
in this section will focus only on normally incident sound) absorption coeflicient for
a material with H=0.95, G=0.5, d = 1 inch, H’p’ = 2 lbs/ ft®, r = 10pc/inch, and K
= (1,0.1)xo (ko is the isentropic compressibility of air). Also shown in this figure are
the corresponding curves for two other materials which have K /xo = (2000,0.1) and
~ (0,0). These two traces are labeled as ’limp’ and ’rigid’ respectively.

The inclusion of flexibility has significant consequences in this case. Compared

to the rigid case, the mobility of the structure has greatly altered the absorption
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coefficient. In addition, the stiffness of the structure has caused comotion of the fluid
and structure which has resulted in reduction of the absorption coefficient at certain
frequencies. The question still remains, however: what is the relative importance of
losses due to viscous drag between the fluid and structure and losses due to deforma-
tion of the structure itself? As was shown in section 2.4.6, these two effects can be

separated by computing the integrals

0
loss, = f[% fu_d %Hr|u — '[P de (3.32)
! ! /0 L oKip'[? da (3.33)
088} = — —WwI; .
33k Ho r=-d 2 P
a = loss, + lossy, (3.34)

where Il is the incident intensity, and since we are considering only normal inci-
dence, @ || @' || £ and u = [i@|,u’ = |@'|.

The three quantities «, loss,, and loss, are plotted for the open layer test case
in figure 3-12. For most frequencies, the losses attributed to the deformation of
the structure are much less than those due to viscous drag. Ia the vicinity of the
structure’s layer resonance, however, the deformation losses are actually larger. For
higher flow resistances this effect can be greater still.

To compare these two loss mechanisms we plot the quantity 10log(loss, /loss,)
for a few materials: the test case and two others with slightly different imaginary
parts of the structure compressibility K;. For the lower K; = 0.01, we see narrow
frequency ranges where the losses are comparable. In this case the structure is more
readily excited in a layer resonance, but the resulting losses are less. For the case of
higher K; = 1, the loss ratio has a broader peak and is due to « more highly damped
structural resonance, but has higher losses for a given deformation.

We next consider a closed flexible porous layer; an impervious skin (with negligible
mass per unit area) covers the free surface. To identify the mechanisms responsible

for sound absorption in such a layer, we set » = 0, and associate any remaining
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absorption with the losses due only to the irreversible deformation of the structure.
For the open layer, this method cannot be used because setting r = 0 prevents the
sound in the fluid frem inducing any motion of the structure, and makes any losses
due to viscous drag impossible; as a result there is no absorption in such a layer. The
impervious cover of the closed layer, however, permits the sound wave outside the
layer to couple directly the structure at the free surface. For this reason, even with
r = 0, a closed porous layer can exhibit significant absorption, which is due only to
losses caused by the deformation of the structure.

Figure 3-14 shows two cases: the solid line is the normal incidence absorption
coeflicient for a closed porous layer with » = 1pc/inch and the dotted line shows the
same case, but with » = 0. This comparison shows the dominant role of structural
deformation losses in such a layer.

A significant distinction is evident between the mechanisms of sound absorption
between the open versus the closed layer. In the open layer, the absorption is due
almost exclusively to viscous drag except at frequencies corresponding to structural
layer resonances, or cases of very high flow resistance, in which case the closed layer
boundary condition is almost realized at the free surface.

This difference has consequences for the design of an absorptive porous layer. On
one hand a open layer can provide relatively smooth performance over frequency but
the flow resistance of the material must be carefully specified. The closed layer, on
the other hand, has a much rougher performance over frequency, due to the sharpness
of the structural layer resonances, yet it will deliver good performance over a wider
range of flow resistance. The effect of flow resistance in the closed layer is to lower
and broaden the peaks in the absorption coefficient; perhaps a composite closed layer

system could further smooth the performance over frequency.

52



Figure 3-11: K/xo = (2000,0.1),(1,0.1),(1.0e-20,1.0e-6); Open layer, Absorption Coef-
ficient, Normal Incidence, for Flexible, Limp, and Rigid cases, all with H = 0.95,G =
0.5,d = linch, H'p' = 2lbs/ft*,r = 10pc/inch
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tion 3.8); for a material with H = 0.95,G = 0.5,d = linch, H'p' = 2lbs/ft®,r
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Figure 3-13: Open Layer, Ratio of Power Dissipated through Structure Deformation
versus Resistive Drag; 10log(lossk/loss,); 3 cases: K = (1,0.1), K = (1,1), K =
(1,0.01), all with H = 0.95,G = 0.5,d = linch, H'p' = 2lbs/ ft®,r = 10pc/inch
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Figure 3-14: Closed Layer, Absorption Coefficient; for a material with H = 0.95,G =
0.5, K = (1,0.1),d = linch, H'p' = 2lbs/ft*,7 = 0 or lpc/inch
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3.9 Transmission Matrices

A transmission matrix relates the pressure and normal velocity on one side of a finite

layer to the pressure and normal velocity on the other side.

Ty, T
D2 _ 11 12 Y41 (3.35)

U Ty To Uy
We define p;, u; as the pressure and normal velocity at £ = 0 and p,, u, as the
corresponding quantities at ¢ = [. (Note: We are now placing the & coordinate so
that the layer extends from z =0 to z = 1.)
In general we may write expressions for the field quantities at an arbitrary position

in the layer as

p(z) = P " 4 p_etn= 4 P-H.e‘q’” + P,_e~lac (3.36)
p’((l!) = P1+I'1e“""' + PI_PIC-‘qlz + Pz.,.I'ze““‘” + Pz_I‘ze“"“‘” (3.37)
Piv e _ P ige , Por e _ P2 _igye
(pc) u(z) = Z. ¢ T e + Z, ¢ T (3.38)
' _ 71P1+ iz 71P1— —iq1z 72P2+ igaz __ 72P2- —iqaz
(pe) v'(z) = A 7 + 7, 7z (3.39)

where Py, P,_, P, P,_ are amplitudes to be determined by the boundary con-
ditions.

We now derive transmission matrices of the form shown in equation 3.35 for two
distinct cases: that of the porous layer with open surface and that of a porous layer

with an impervious skin on both sides.
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3.9.1 Layer with Open Surface

For the porous layer with no coating of impervious skin, the boundary conditions at

each free surface are of the form

n=pz=0), p=px=1), ple=o)=p(z=1)=0

(3.40)

w = Hu(z =0)+ (1 - H)u'(z=0) , uy=Hu(z =1)+ (1 - H}'(z =1) (3.41)

Applying these boundary conditions to the field equations 3.36 - 3.39 we have,

expressed in matrix form

/ n
Uy

0

\ 0

where

( 1

)

= Aopen.

/

( P, )
P,
Py,

\ Po- )

1 1
H+(1-H)y __[H+(1-H) H+(1-H)y
| ) g
I I r,
\ I‘le“"' Fle““’" Pzeiq’l

And p, and u, can be expressed in matrix form as

y )
Uz

where

) = Bopen
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(P, )
P,
Py,

.

1
] N [H+51:Hha]
1P

Pzt"—{q’l

/

(3.42)

(3.43)

(3.44)




r *
B ( eiqll e—iqll eiqgl e—-‘qzl
open =
H+§1—H)‘n] iql __[H+§1—H2‘n] ~igy! [H+(1—H)-n] taal _[H+gl-th] ~igal
[ ! € 1 € 2 € 2 €

(3.45)
Combining the matrix equations 3.42 and 3.44 we can then write a matrix equation

for the transmission matrix which is:

(1 0)

Thw Ty 01
= Bopen (~A¢>pen)—l (3'46)

\ 0 0/
where (Agpen) ™! denotes the matrix inverse of Aopen-

"The resulting transmission matrix for the porous layer with open surfaces is:

T open T en
Tmn — ( 11,0p 12,0p: ) (3.47)

T21,open T22.opcn

where
T, _ anl'y cos(qyl) sin(gal) — asT'y sin(gyl) cos(gal) (3.48)
11,0pen = oy T, sin(qzl) — o[y sin(qll) .
[ (T2 —Ty)sin(gil)sin(gal)
Tiz,open = aI'; sin(gal) — Ty sin(q:!) (049
T1.0pen = i ((al'3)? + (@2l'1)?) sin(gul) sin(gal) — 203051 T(1 — cos(qul) cos(gy!))
open (I'2 = T1)(a1 T2 sin(gal) — asl'y sin(qul))
(3.50)
. _oqT'; cos(qil) sin(gal) — @,y sin(qil) cos(gal) (3.51)
22,0pen — all‘2 sin(qzl) — azPI Sin(QIl) -
where
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— H+H"Yl

H+ H'
a = i iet]

T (3.52)

pcy

3.9.2 Layer with Closed Surface

The corresponding transmission matrix for the closed layer, where both surfaces are

covered by an impervious skin of negligible mass per unit area, is obtained in a similar

manner.

The boundary conditions at z = 0 and = = [ are

pn=plz=0)+p'(z=0), pp=plz=1)+p(z=1)

y=uz=0)=u(z=0), vu=uz=1)=u(z=1)

These boundary conditions applied to 3.36 - 3.39 give

(Pl\

uy

0

where

(14T,

1
Atosed = Z
losed —
-7
Zy

\ 0

= Aclooed

1+14

1
Z,

-(1-m)
Z,

(P,
P,
Py,

\ P )

1+,

L
Z,

I__le

And p; and u, can be expressed in matrix form as

P2
Uz

) = Bcloacd
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( P, )
P,
Pay

)

14T, \

e
7

~(1-v;)

Z

\ 1-v4 eiq;l —(1~‘71!e—!q,l 1-7; eiqzl '(1-:13!e—iqal )
Zy Z, Z3 Z

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)




where

14 Ty)efal (14Ty)e='nl (14 Tp)elal (14 Ip)e—tont
Bczo.,d=(( F 1)t (14 Ty)emn (14Tt (14Ts)e ) (3.58)

elnl —_e—iag! eleal —e—taal

Z 7 7 2

Combining the matrix equations 3.55 and 3.57 we can then write a matrix equation

for the transmission matrix which is:

(1 0)

Ty, T 01
H 12 = Bcloud (Aclooed)—l (3-59)
Ty Ty 00

\0 0

where (Aciosed) ™! denotes the matrix inverse of Agiosed.

The resulting transmission matrix for the porous layer with closed surfaces is:

Zloud _ ( Tll.cloud Tl2,cloud ) (3.60)

TZl,cloud T22,cloud

where

€ cos(q11) sin(gal) — €3 sin(qyl) cos(gal)

Tll,cloced = € sin(qgl) . sin(qll) (3.61)
. [ (€ + €5) sin(q1l) sin{qal) — 2¢;¢;(1 — cos(q1) cos(qzl))]
T closed = 2 - - T " 3.62
11 loed [ (11 — 12)(ex sinlaal) — & sin(aud)) (3:62)
o (71 = 72) sin(g1!) sin(ga!)
T21,cloaed =1 [ € Sin(qzl) — € Sin(qll) (3-63)
s ctosed = €1 cos(q11) sin(gal) — €, sin(g1l) cos(gal) (3.64)

€ sin(qal) — €z 8in(q1!)

where
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6= pcZy(1+T1)(1 —72) , €2=pcZy(14+T2)(1—m)
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Chapter 4

Departures from the Basic Model

We now consider three models, each of which represents some increase in complexity
compared to the finite layer discussed in chapter 3. First we relax the assumption
that the porous medium is isotropic, and consider a finite layer backed by a rigid wall
which has different flow resistances and induced mass factors in the directions normal
and parallel to the free surface of the layer. Second, we compute the absorption
coefficient for a multiple layer attenuator, consisting of open flexible porous layers
separated by air gaps, backed by a rigid wall. Here the method of characterizing
wave propagation in periodic structures due to Brillouin [16] is used to simplify the
calculation. Lastly, the consequences of mean fluid flow for sound propagation in a
porous material in bulk are discussed, and the equilibrium problem for the flexible

porous material is solved for the case of constant equilibrium fluid density.

4.1 Anisotropic Flexible Porous Layer

The motivation for studying the anisoiropic porous layer is the following. In some
cases, laboratory measurements are made of the flow resistance of such a layer in the
direction normal to the free surface. This flow resistance is then used to predict the
performance of such a layer backed by a rigid wall in a reverberation room where
diffuse sound conditions are assumed. Only the normal flow resistance (which we call

rz) is used to predict the angle averaged (diffuse field) absorption coefficient; this
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assumes that the layer is one of local reaction and that the wave speed in the normal
direction is much greater than the wave speed in the parallel direction. In this case,
the surface admittance of the layer is independent of angle of incidence, and a relation
between the normal incidence and angle averaged absorption coefficient based on this
approximation is used.

For sufficiently low frequencies the refracted wavein the porous layer travels almost
normal to the surface for all angles of incidence. In this case, the assumption of local
reaction will provide accurate results, and knowledge of the flow resistance normal to
the surface is adequate to determine the angle averaged absorption coefficient.

For higher frequencies, as we shall show, the refracted wave can have a significant
component parallel to the surface. This means that the layer must be treated as non-
locally reacting, and the relation between the normal incidence and angle averaged
absorption coefficients must assume a surface admittance which depends on angle of
incidence. In particular, the flow resistance parallel to the layer’s surface must be
known to accurately predict the diffuse field absorption coefficient.

For this reason, we try to better understand the circumstances under which the
assumption of local reaction is invalid and, given this, how anisotropy of the layer

may lead to poor predictions of acoustic performance of the flexible porous material.

4.1.1 Changes to the Basic Theory given Anisotropy

An analysis, similar to that used for the isotropic layer found in chapters 2 and 3,
is repeated with the new assumptions that both the flow resistance and the induced
mass factor in the & and § directions can be different; we use the same # and §
coordinates as in chapter 2. We define the flow resistance and induced mass factor in
the & direction as r, and G, and in the § direction, r, and G,,.

The four mass and momentum balance amplitude equations 2.40 - 2.43 must now

be replaced by two new amplitude equations for mass balance

H'/|H)wKp' — iwkp = —igau, — igyu, (4.1)
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—iwKp' — iwk'p = —igou;, — iqyu,, (4.2)

and four new amplitude equations for momentum balance

— iwpatty = Hizu! — igyp (4.3)
— twpyuy = Hiyu, —iqyp (4.4)
—iwMu!, = Hfyu, — iq.p' (4.5)

— iwM,ul, = Hf,u, — ig,p’ (4.6)

where we have defined
To = T — WwGep Ty =1y — iwGyp (4.7)
ir ir

6. = Hp(1 + —=) ,p, = Hp(1 + £ 4.8

o= Holl+ 22) i = Hp(1 + 22) (48)
M, = M1+ 'H’"’”) M, = M(1 + zH”“) (4.9)

From these we obtain two expressions for the ratio between p' and p

(] 2+A 2 __ K -
R S £ ko ko (4.10)
p bz Q2 + (J__‘_‘)AQz (p.,H)nol'l'
or
Q? +<" ne)AQE + :’
ry = B b o b (4.11)
P = Q2 +( =)AQS — (5! Yo ) K pe
where
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b = ——=- (4.12)

Pz 9 Mg
=l _ple 4.13
. (4.13)

~ H 3

p=+ (5)(FE _ He
- Hyay P2y
ot (B

A

(4.14)

By setting I't = I'y; and substituting Q2 = sin? ¢, we obtain two solutions for
the £ component of the propagation constant @), where, as in chapter 2 with the
isotropic case, the two solutions correspond to the two modes of wave propagation in
the flexible porous material.

The isotropic case corresponds to A = 1. It is interesting to compare how Q, is
determined for the isotropic versus the anisotropic case. For both cases, the incident
wave with angle of incidence ¢ and open-air wavenumber ko determines the trace
wavenumber and therefore @, in the porous medium. For the isotropic case, the
dispersion relation then gives @ which is independent of direction of propagation in
the medium, and @, is obtained using @, = \/m For the anisotropic case,
the dispersion relation gives Q). in terms of @, and the propagation constant in the
medium in dependent on the direction of propagation.

Another change from the isotropic case is the ratio of the velocities for a given
mode, necessary for computation of the absorption coefficient. From the amplitude

equations we obtain

a2 - _‘l_l.{E _ Hf., —_ iwﬁ¢F1'2
Ty —iwM, + HiTy s

(4.15)

With these results we proceed in a manner analogous to that used for the isotropic
layer in chapter 3 and obtain normal incidence and angle averaged absorption coeffi-

cients for the open layer.
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4.1.2 Consequences of Anisotropy

Figure 4-1 shows a comparison of an anisotropic and an isotropic luyer. For each we
have plotted the angle averaged absorption coefficient, then on the right is shown the
refraction angle in the anisotropic layer of a plane wave which has angle of incidence
of ¢ = 60 degrees.

This case has a refracted angle which is greater than 40 degrees for most of the
frequency range, and a corresponding significant disagreement between the absorption
coefficients for the two material types.

Figure 4-2 shows the same comparison for an isotropic and anisotropic material

: L

11 . . S S R, cmrriaaeale ann wa oaa 3
with r, = 10pc/inch, ten times the r, value used previously. Here we see the increase

a

in flow resistance has resulted in smaller refraction angles and a better agreement
between the absorption coefficient curves for the two cases.

An interesting feature of the absorption coefficient for the isotropic material shown
in Figure 4-2 is the significant disagreement with the anisotropic curve at 600 Hz. This
is a result of a structural resonance in the material which, by reducing the relative
motion between the fluid and structure, reduces the effective flow resistance and
increases the disagreement between the isotropic and anisotropic cases.

This means that even in cases where a high flow resistance allows one to treat
the anisotropic material as isotropic, the flexibility of the material, and in particular

structural resonances, can result in poor predictions at certain frequencies.
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Figure 4-1: Angle Averaged Absorption Coefficient for Anisotropic and Isotropic
Layer, and Refraction Angles for both modes in Anisotropic layer for angle of incidence
60 degrees; all with K = (1,0.1), H = 0.95,G = (0.5,0.1 or 0.5),d = lin.,H'p' =
2lbs/ ft3,r = (1,0.1 or 1)pc
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Figure 4-2: Angle Averaged Absorption Coefficient for Anisotropic and Isotropic
Layer, and Refraction Angles for both modes in Anisotropic layer for angle of incidence
60 degrees; all with K = (1,0.1),H = 0.95,G = (0.5,0.1 or 0.5),d = lin.,H'p' =
2lbs/ ft3,r = (10,1 or 10)pc
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4.2 Periodic Structures

In some cases, acoustical attenuators consist of several porous layers separated by air
gaps. A principal advantage of such a geometry is that the layer and air gap thick-
nesses can be ’tuned’ so that the resulting absorption coefficient will be particularly
high at c<rtain frequencies or very uniform: over a broad frequency range.

Using the transmission matrix for the open flexible layer derived in chapter 3 and
the analytical methods for treating wave propagation in periodic structures provided
by Brillouin [16] , we consider the problem of an attenuator consisting of & number
of porous layers separated by air gaps. As with the finite layer studied in chapter 3,
we back the attenuator with a rigid wall at £ = 0. We consider the case of normal
incidence for an attenuator consisting of N cells, each cell consisting of a porous
layer of thickness d; and an air gap of thickness d,. The entire device extends from
¢ = —N(d; + d;) to © = 0 where it is terminated by a rigid wall. This configuration

is shown in figure 4-3.

Qjef‘

pres %
<> W.ﬂ'.d

(", e ?/ wall

(—'—"‘4'4 _—

a’r gap

Figure 4-3: Geometry of the Multiple Layer Attenuator

4.2.1 The Multiple Layer Attenuator

The transmission matrix for a given cell of the attenuator can be used to relate the

acoustic pressures and velocities on its two boundaries. Across a single cell we have
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"Cu C
P2 _ 11 12 41 ( 4.1 6)
Uz Ca Cn uy

C— cos(kod,) ipcsin(kods) Ty T (4.17)
(i/pc)sin(kods)  cos(kod,) Tyy Ta

with

where the matrix T will be either the open or the closed transmission matrix
provided in equations 3.47 - 3.51 or 3.60 - 3.64; in this study we will assume layers of
the open type. In either case the layer thickness ! in those expressions is set equal to
d;.

We associate a complex wavenumber S with the attenuator using

P2 = exP‘S(da-vvd.)pl y U = exp{S(d¢+d|) Uy (4.18)
which means
-~ 2
eiS(datdr) _ Cn ‘;' CUa2 n \/(Cn -; sz) _1 (4.19)

and define wave impedances Z; and Z_ (for waves nropagating in the +& and —&

directions respectively) using the two roots of the equation

y 451 P2
Z,_ = (2] (2 4.20
. (pcul)+,_ (Mz)h_ (4.20)

80

1 Ci — Ca \/(0'11+022)2
2y = o [ 2 . ~1 (4.21)

In this derivation we have used the fact that, for a passive acoustic transmission

element characterized by the transmission matrix C we have
C11022 — C120y =1 (4.22)
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The characteristic normal input adinittance for the attenuator is

3 _ u(m — "'dt) _ e—i15dt __ @iSd:
Mz = —di) = pcp(a: = —d,) Z,ei5d — 7_eiSd (4.23)
where
de = N(di + d,) (4.24)

With these results we compute the absorption coefficient for an attenuator of the
open layer type and attempt to identify the specific consequences of layer flexibility

for such a device.

4.2.2 Absorption Coeflicient

We first consider how changing the size of the air gap between the open flexible porous
layers affects the absorption coefficient of the attenuator. To do this we make the
thickness of the porous layers very small, d; = 0.25 in. In figure 4-4, four different
cases are shown with progressively larger air gaps ranging from 1 to 8 inches. Dips
in the absorption coefficient occur when the air gap equals an integral number of half
wavelengths (d, = (2amc)/w; n — positive integer). This is because a fluid layer
resonance occurs when the velocity nodes coincide with the locations of the porous
layers, and the corresponding low fluid velocity in the layers results in a reduction in
losses from the relative motion of the fluid and structure. This effect produces the
‘comb-like’ features seen at the higher frequencies, above 2000 Hz for the case d, = 2
in. and above 400 Hz for the d, = 8 in. case. At lower frequencies a sequence of peaks
and dips is evident in all the plots of this section. These features are due to fluid layer
resonances which span several air gaps. They are weaker than their high frequency
counterparts because they must permit layers to coincide with non zero portions of
the velocity resonance in the fluid and can be seen to extend progressively lower in
frequency as the total length of the attenuator d; is increased in the four cases of
figure 4-4.

In order to focus on the effects of layer flexibility, we consider four cases with
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Figure 4-4: Absorption Coefficients for Open Layer Multiple Baffle Attenuator. With
dair = 1,2,4,8in.;7 = 10pc, H = 0.95,G = 0.5, K /Ko = (1,0.1), diayer = 0.25in., N =
8,H'p' = 2ll;.~3/ft3
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layer thickness d; = 1 in. ¢nd air gap d, = 4 in. This result, for a progression

of increasing structure compressibilities, is shown in figure 4-5. The thicker layer
prevents the strong fluid resonances seen in the previous cases; although the low
frequency, multiple gap fluid resonances persist, they do not concern us here. The
interesting result shown here is the appearance of a structural resonance in the layere
of the attenuator as a consequence of their flexibility. First appearing around 2000
Hz for the K/xo = (0.5,0.05) case, the resonance moves downward in frequency as
the compressibility is increased. A resonance of this type corresponds to a structure
wave whose half wavelength equals the thickness of the layer d;.

We have seen that for an attenuator consisting of flexible porous layess, there can
be significant impact on the absorption coefficient due to both fluid and structural
resonances, an effect shared by the finite layer backed by the rigid wall. Lastly we
consider a case where these two resonances occur at similar frequencies, this is shown
in figure 4-6. Here a slow variation of the layer’s thickness over the four cases shown

causes the structural resonance to move through the frequencies of the fluid resonance.
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Iigure 4-5: Absorption Coefficients for Open Layer Multiple Baffle Attenuator.
With K/ko = rigid,(0.5,0.05),(1,0.1),(2,0.2);r = 10pc, H = 0.95,G = 0.5,d,;, =

4in.,digyer = lin.,, N = 4, H'p' = 2lbs/ ft3
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Figure 4-6: Absorption Coeflicients for Open Layer Multiple Baffle Attenuator. With
diayer = 0.5,0.6,0.7,0.8in.;r = 10pc, H = 0.95,G = 0.5,K/ko = (1,0.1),dsir =

6in.,N =4, H'p' = 2lbs/ ft®
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The consequence of this overlap is an absorption coefficient which is the result of both
effects. In some cases the result is a smoothing of the absorption coefficient curve; in

others the dips are deepened.

4.3 Mean Flow

In some cases a porous layer may cover the cross section of an air duct or the exit of
such a duct into a room. The absorption characteristics of such a layer may then be
altered due to the presence of a zeroth order, time independent fluid flow or 'mean’
flow.

We focus here first on the problem of the rigid porous material in bulk with a mean
flow present. In particular we will show the basic influence of the presence of mean
flow on the phase speed and attenuation of plane waves traveling with and against
the flow. Then we solve the equilibrium problem for the flezible porous material and
show that the mean flow may induce, among other things, a spatial gradient of the

equilibrium porosity.

4.3.1 The Rigid Porous Medium with Mean Flow

We start by deriving the general form of the equations of mass and momentum balance
for the rigid porous material. Velocity, pressure, and density are initially assumed
to consist of a zeroth order equilibrium value which has space dependence, and a
first order acoustic part which depends on space and time. Using the subscript 't’ to

denote the total fields we have

H = H (4.25)
U
P, = P(z)+p(z,t)

po = p(z)+6(x,t)

U(z) + u(z,t)
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The mass balance relation

6Hpt + aHpgllt =0

B¢ e (4.26)
becomes
0 0 ou,
—_ J, ~—— = — ) — )
(C')t +[t0m)pt . (4.27)
and the momentum balance relation
(?Htht BHp,Utz _ BPt
T + e - D HrU, (4.28)
is written as
0 0 oP,
— —_ J, = —— — .

We next focus on the equilibrium problem by assuming all field quantities to be

time independent. The above equations for mass and momentum balance become

0 ou
J—p = —p—0n .
Usp=—r3- (4.30)
and
0 oP
—U = —-—=— — ] .
Hpan[ 52 Hrl (4.31)

The above two equations, combined with a compressibility definition for the fluid
could, for example, predict 'choked’ flow under certain conditions. In general, these
equations lead to a rather complicated spatial dependence for the equilibrium field
variables. For our purposes here we assume that the cquilibrium fluid density is

constant. This assumption gives

— =0 (4.32)
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= U # U(zx)
P

0
_— = - /
= B2 Hrl
= P(z) = —HrU(z — zo) + P(zo)

Given these equilibrium solutions we now write for the total values of the field

variables, with plane wave solutions for the acoustic parts,

He = H (4.33)
U, = U+ Re[u(q,w)ei(‘ll‘~wt)]
P, = P(zo) - HrlU(z — o) + Re[p(q,w)e‘("’”“’"]

pe = p+ Relb(q,w)e )

These expressions for the field variables can be substituted into the mass and

momentum balance equations 4.27 and 4.29 to give

(w—qU)k p(q,w) = q u(q,w) (4.34)

where we used the fluid compressibility x = (1/p)(8p,/0P.) , and

Hp(w + ,—, —qU) u(g,w) = ¢ p(q,w) (4.35)

We can use these results to obtain a dispersion relation, propagation constants,
and plane wave impedances. Writing the ratio of p and u we have the dispersion

relation

plew) g _ Hp(w+i(r/p) - qU)
u(g,w)  K(w—qll) a (4:36)
and the propagation constants
w U w . r U -
¢ = H(= - q—)(= +i— - q¢—) (4.37)
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which, by defining

1 U r
C=7__;'€,M=—C-,R='p—“)' (4.38)
allows us to write, for the normalized propagation constants Q = q/ko,
QR = H(l-MQ)(1+iR)- MQ) (4.39)

= (1-HM*)Q*+ HM(2+iR)Q - H(1+iR) =0

which gives, for the normalized propagation constants Q, and Q_, in the direction

with the flow and against the flow respectively

~HM(2 +iR) £ \/4H(1 + iR) — (HMR)?

Qx = 21 — A7) (4.40)

Using the assumption that M < 1, we write for an approximate value of Q.

Qs = —HM(1 +iR/2) + \/H(1 + iR) (4.41)

If we take M = 0 we recover the familiar, symmetric pair or propagation constants

for the rigid porous material without mean flow (see appendix A)

Qs =, [H(1 “,;‘:3) (4.42)

If we further consider R = 0 and H = 1, we get Q1 = 1/(M + 1) which gives
¢}, = U % ¢, the expected result that the phase speed of a open air wave includes the

parallel component of the flow velocity.

4.3.2 The Equilibrium Problem for the Flexible Material

We now consider the equilibrium problem for a porous medium when its flexibility
is accounted for. We will again assume that the equilibrium density of the fluid

is constant, but now include the potential spatial dependence of the porosity and
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pressure in the structure. We also assume that the fractional change in the equilibrium
fluid pressure (and consequently the Mach number, as we shall show) is small.

For this problem, we take as field variables the equilibrium porosity, pressure in
the fluid and structure, and the mean flow velocity, all of which will be assumed to
have spatial dependence. By definition, none of these zeroth order equilibrium field
variables have time dependence.

The field variables are

U(z) — Mean flow velocity

P(z) — Equilibrium fluid pressure

P'(z) — Equilibrium structure pressure

H(z) — Equilibrium porosity

H'(z) =1- H(z)

and

p — Equilibrium porosity (p # p(z))

The mass balance for the fluid is

OHpU
e 0 (4.43)
which, with p being constant leads to
0 O0H
A Ly (4.44)

Oz Oz
The mass balance for the structure tells us nothing since the zeroth order velocity
of the structure is zero.

Momentum balance for the fluid looks like

OHpU? opP
oz = —'5'; — HrU (4.45)
which, after combining with 4.44 gives
ou oP
HpU—r—— = ——— — .
pU e e HrU (4.46)
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For the structure the momentum balance looxs like

6HIPIUl2 B _3Pl

0z Oz + 85U
and since U’ = 0 this is
oP'
HrU = —
" Oz
Also, using the compressibility
1 OH'
tmay
we have
OH' opP'
- KH'=——
Oz KH Oz
and lastly, the porosities are related by
H !
0z Oz

These equations 4.44, 4.46, 4.48, 4.50, and 4.51 can be combined to give

ﬂj— = H'KrU2
Or

opP . 2
B = —HrU(1 — H'KpU?)

OP'
—5;- = H'I‘U

Qli =-HH'KrU
Ox

!
-(?—I—I— = HH'K+U
Oz

7

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)



We pause for a moment to comment on the consequences of our assumption that
the fractional change of the equilibrium pressure in the fluid is small. This fractional

change can be written as

AP  HrU(AX) _ HrU(AX)  Hr(AX)
P = P - pc? - pc

M (4.57)

where AX is the characteristic distance of sound propagation through the porous
material, and M is the Mach number of the mean flow. Since, for our purposes, we
are assuming Hr(AX)/pc = 1, we have

AP
- ~M (4.58)

Therefore our assumption of a small fractional change of the equilibrium fluid
pressure corresponds to M < 1.

In the above equation 4.53, the second term is of order M? and will be dropped.
The U? term in equation 4.52 however, can be shown to be of order M and will be
kept.

The equations can be easily solved by noting that the product HU is constant
as specified by equation 4.44. If we define this product to be U = HU, and refer to

value of the field variables at £ = 0 with the subscript 0, we have for the solutions

U(e) = U [1 - (1 - Ho)e*/#] ™ (4.59)
P(z)= P, —rU=z (4.60)

P'l(z) = Py + U= (4.61)

H(x) = (Ho — 1)e*/% + 1 (4.62)
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H'(z) = H)e®/* (4.63)
where the characteristic distance in the layer is

1
KrU

i =

(4.64)

The exponential terms in equations 4.62 and 4.63 will never get very large because
in this model we are assuming » < Z.

A very interesting feature of these solutions is that they predict a spatial gradient
of the equilibrium porosity in such a manner that the wave impedance will increase
steadily in the direction of the mean flow. This effect may provide some interesting
opportunities to create a graded impedance so as to enhance the absorptive perfor-
mance of a flexible porous material.

The complete solution of the acoustic problem in the flexible porous medium is
extremely complicated because, as we saw with the corresponding rigid problem, the
local speed of sound varies with position in the layer. It may be possible, using
techniques similar to the WKB approximation, to make some headway by assuming
that this sound speed is a weak function of position. The flexible case, however, is
further complicated by the fact that two modes of wave motion exist in two coupled

media, with different spatial dependencies of their equilibrium properties.




Chapter 5

Reflection of Shock Waves

5.1 Introduction

Experimental measurements of the reflection of shock waves from flexible porous
materials were made by Ingard in 1982 [14]. A 2 meter shock tube was employed
with a driving section at one end and a changeable termination section at the other;
figure 5-1 shows this configuration. This termination was prepared with an open
surface porous plug which covered the cross section of the tube, was 2, 4 or 8 inches
in length, and was backed by a rigid plate. Shock pulses were initiated from the
driving end, recorded as they passed a pressure transducer half way down the tube
(apprcximately 1 meter from the termination), then recorded again after reflection
from the termination. The maximal deformation of the porous plug as a result of
the reflection was measured by allowing an ink saturated cdge of the l: yer to leave
a permanent record of its compression on a small dowel placed through it, coaxially
with the shock tube. A much more complete discussion of the experimental apparatus
and techniques can be found in {14].

The experimental data shown on the following pages consist of a pressure trace
obtained from the pressure transducer in the shock tube, a frequency spectrum of a
typical incident shock wave, and a compilation of measured front reflection coefficients
and maximum fractional deformations of the porous layer as a function of the incident

shock’s peak overpressure.
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Figure 5-1: Shock Tube Experimental Configuration
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These results indicate that the role of the flexibility of the porous material and
the zeroth order motion of the layer must be taken into consideration to accurately
predict reflection coeflicients for such a material.

Not only does the layer exhibit zeroth order motion and compression during the
reflection, but the fluid in the pores and the free surface boundary does as well. In
addition, the propagation of the shock through the shock tube and the porous layer
is non-linear. This means that a complete model of the problem would require a
computational, numerical model which, while offering significant predictive power,
would probably obscure many of the central physical mechanisms responsible for the
dependence of the reflection coefficient and maximum deformation on the incident
shock’s peak pressure. Such a numerical study is left for the future and referred to
again in chapter 7.

The quasi-linear model presented here treats the shock waves as linear pulses
but accounts for the gross (zeroth order) motion of the layer by including its kinetic
energy and momentum in the conservation equations. The objective is to construct a
simple theory which predicts the general dependence of the front reflection coefficient
and maximal deformation on the incident shock’s pressure, yet at the same time
provides insight into the physical mechanisms responsible for this dependence. A more
comprehensive model of the type provided here might offer considerable predictive

value without requiring cumbersome numerical techniques.
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5.2 Characteristic Times of the Problem

It is useful at the outset to estimate the characteristic times of the problem, namely
the time during which the shock is reflected from the front surface, the time of the
round trip of the transmitted pulse through the porous layer, and the time required
for the layer to fully deform.

The first characteristic time ¢, is the time over which the incident shock wave
is reflected from the front surface of the porous layer. This will be taken to be
approximately the temporal length of the shock from its maximum height to half
its maximum height. A typical experimental pressure trace of a shock wave and its
frequency spectrum are shown in figures 5-2 and 5-3. As can be seen from the pressure
trace, t; ~ 1 mS.

Next we estimate a characteristic time ¢, which corresponds to the round trip
travel time of the transmitted portion of the incident shock at the front surface of the
layer as it propagates through the layer, reflects off the rigid backing, then propagates
out to the front surface of the layer, then propagates through air to the location where
the free surface of the layer was originally. This time can be estimated by noting that
most of the pressure traces of the reflected shocks show a double peaked form. The
first peak results from reflection of the shock from the front of the layer, and the
second peak comes from the wave which does the round trip through the layer as
described above. We will put these claims on a firmer basis later in this chapter.
Considering the time separation of the two peaks in the reflected pulse to then be
approximately equal to t;, we have for the 8 inch layer ¢, ~ 3 mS for a 0.3 atm
overpressure incident pulse. For thinner layers or stronger pulses t, is less than this
value; these effects will also be discussed below.

The third time of importance is the time ¢; required for the layer to fully deform.
Unfortunately, this time cannot be read directly off the pressure traces as was done
to obtain ¢; or ¢;. The best we can do, in the context of the model employed here,
is to treat the layer as a mass and spring system characterized by an effective mass

m and an effective spring constant k. The time t; would then be one quarter the
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Figure 5-2: Overpressure as a function of time, measured at the pressure transducer,
showing typical incident and reflected shocks
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Figure 5-3: Frequency Spectrum of a typical Incident Shock Wave used in the exper-
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oscillation period of this mass spring system. We will demonstrate more conclusively
the appropriateness of such a 'lumped’ model in the next section.

Since the motion of the layer consists of free motion of one boundary and no motion
of its other boundary (at the rigid termination), the effective mass of the layer can be
shown to equal one third of its total mass for purposes of writing the kinetic ener~y of
the layer as K Ey, = (1/2)/mU¢ or the natural frequency as w2 = k/m . (For purposes
of writing the total linear momentum of the layer in terms of its velocity at the free
surface as Jp = m'U, we will use an effective mass which is one-half the total mass
or (3/2)m.) Taking the layer to be of cross sectional area A and undeformed length

d, we then have for the effective mass

= ZpAd (5.1)

The effective spring constant can be related to the effective compressibility of the

layer material through

1 od 1 0d d (1d8d d
7=ar=¢ (zb—) =7 (za;) =" (52)

This gives us

m ™ t
ty ~ — 1/—.— \/;~2\/§d~4\/_ -3~15mS (5.3)

The linear speed of sound in the layer is written here as ¢’. The fact that the actual

propagation speed of the leading edge of a shock in the layer can be considerably
greater than the linear speed means, for the stronger incident shocks, that we have
under-predicted t3’s value. The quantity j is the effective mass density of the layer
and £ is the effective longitudinal compressibility; both are discussed further in the
following section.

The resulting times are

ti~1mS < t3=1.5mS < ¢, ~3ImS (5.4)
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We make three observations based on the relative magnitudes of these character-
istic times. Since t; < t3 we will assume that the free surface boundary does not
move appreciably during the period of the reflection of the shock wave from its front
surface, although we will allow for some motion to account for the dragging of the
layer against the walls of the shock tube.

Secondly, the fact that ¢, > t; means that the so-called second peak in the reflected
shock will be the result of a pulse which propagated through the layer while it was
deforming (and deformed) appreciably. As a consequence, our model will attempt
to make quantitative estimates of the front reflected pulse height and the maximum
deformation of the layer and will not seek to predict the overpressure of the second
reflected peak.

Since the time necessary for the transmitted wave to traverse the layeris t,/2 ~ 1.5
m3S, which is approximately the same as the reflection time ¢,, the gross motion cf the
layer resulting from the front reflection will involve most of the layer, and in particular
the portion with the greatest contribution to the kinetic energy and momentum of
the layer as a whole. The errors introduced by this assumption may be significant

and are discussed in section 5.5.

5.3 The Incident Shock Wave

We make a number of simplifying assumptions about the shock wave which propagates
through the air in the shock tube as well as in the porous layer. We assume that
the shock can be modeled as a pulse which is a solution to the linear equation of
sound without dissipation, and therefore that the speed of the shock, in the air for
example, is the linear speed of sound c¢. This approximation is clearly not valid for
the shocks used here of 1 atm overpressure, since not only will they deform as they
propagate, from non-linear effects and dissipation, but they can also have a leading-
edge propagation speed which is significantly larger than c. It is our hope, however,
that these approximations will not destroy our ability to reproduce the principal

features in the experimental dsta.
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The shape of the shock is taken to be approximately a triangle as shown in figure
5-4. The shock’s overpressure is P, its spatial length is [, and its temporal length is
T, with [ = ¢r. Over the extent of the shock wave the overpressure is taken to fall
linearly from the peak overpressure P to 0 or atmosphieric pressure over a distance [;
this gives the triangular form. P will be written with the subscripts "', ’r’, and 't’
to correspond to the incident, reflected, and transmitted shocks respectively st the

front surface of the layer.

Figure 5-4: Shock Wave Geometry
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A computer program was used to determine the frequency spectrum of a typical
incident shock; the resnlt is shown in figure -3 The spectrom gives an indication
of the energy content of the pulse as a function of frequency. We note that most
of the energy of the pulse occurs for v < 500 Hz. This suggests that we can use
the low frequency limit of the flexible porous material described in chapter 2 and
appendix D. In particular we found that for low frequencies the fluid and structure
tend to move together, the structure can be treated as limp, and one can estimate the
wavenumber in such a medium by referring to an effective density and compressibility.
The normalized wavenumber in such a medium can be related to the wave speed in
the medium and the open air wave speed using @ = ¢/¢'.

This supports our claim that it is reasonable to treat the porous layer as consisting
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of a homogeneous material of mass density g and compressibility <. Further support
for this assumption comes from the results of Ingard’s experiments [14]; he states that
most of the measurements were repeated for a material of significantly different flow
resistance with the same results. This further justifies our claim that relative motion

of the fluid and the structure in the porous layer may be ignored.

5.4 Front Reflection and Compression

We define the front reflection coefficient as the peak pressure of the shock which
has just reflected from the front surface of the layer divided by the peak pressure
of the incident shock just before it reaches the layer. The 'second’ peak evident in
the complete reflected shock, therefore, does not figure into this reflection coefficient.
The mazimal fractional deformation of the layer is defined as the maximum distance
the front surface of the porous layer moves as a result of the shock wave reflection
divided by the layer length before the reflection.

Figures 5-5 and 5-6 summarize the experimental data by showing the front reflec-
tion coefficient and maximal iractional deformation as a function of incident shock
overpressure for four separate cases. These figures have been corrected for the non-
linear attenuation suffered by the shocks traveling between the pressure transducer
and the layer front surface; as a result they better represent conditions at the layer
surface. Both traces illustrate significant dependence on the incident shock’s over-
pressure, indicating that non-linear effects are important. If the process were entirely
linear, the front reflection coeflicient would be constant and the maximal fractional
deformation would be only a first order, acoustic perturbation.

Our goal is to develop a quasi-linear theory which is both simple yet suflicient
to reveal the basic physical mechanisms responsible for the dependence of these two
quantities on the incident shock pressure. To dn this we focus for this calculation on
the interval during which the incident shock is reflected from the front surface of the
flexible porous layer. We will proceed by writing equations of energy and momentum

balance which account for the incident, reflected, and transmitted shocks at the front
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Figure 5-5: Front pressure reflection coefficient as a function of incident shock over-
pressure from the experiments
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Figure 5-6: Maximum fraction deformation of porous layer as a function of incident
shock overpressure from the experiments

i P
! / B

)

’ /
S .8 : /
V4

(@]

wn

i

ﬁ,

x4

AN

O =5 . .6 Rt L2 L4
PEAK PRESSURE, ATM,

88



surface of the layer, as well as the layer’s gross (zeroth order) motion. In addition
we vill attempt to account for the dragging of the porous layer against the walls of
the shock tube during the interval of the front reflection by introducing an empirical,
adjustable friction parameter which is described in more detail below.

Denoting the total shock energy as E (with the appropriate subscript), the kinetic
energy of the gross motion of the layer as Er, and the work done by the layer as it

drags against the shock tube wall as W, we can write for the energy balance

Ei=E.+E,+E . +W (5.5)

For the incident and reflected shocks in the air the energy density is e = P?/pc?.

Integrating this density over the triangle form of the shock gives

Al Al

E = 2Lp =
3pcz '’ 3pct T

(.G)

The transmitted shock in the layer requires a similar expression for the energy
with I, p, and c replaced by their counterparts in the layer, namely ', p, and ¢'. We
are further assuming that the layer’s front surface has acquired a velocity U during
the period of the front surface reflection. This means that the approximate expression
for the energy in the laboratory frame of the transmitted wave should utilize a wave

speed ¢ = ¢’ + Uy. These assumptions leed to a transmitted wave energy of

[
Al L, Al L, Al g AQ b o

B = Fpoilt = Fpait = 3cp(c/Q + Up) b ~ 3pc*(1 + QUgJc)

where we have used the fact that I'/c" = [/ec.

For the purposes of our calculations here we will neglect the U, dependent term
in the denominator of the above expression so we write 1/(1 + QUy/c) ~ 1. This
simplifies the calculation and, as can be demonstrated, the fact that QUp/c ~ 0.1
justifies the approximation. In addition, the pressure amplitude of the transmitted

pulse will ultimately be an adjustable parameter of our analysis.
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The kinetic energy of the gross motion of the porous layer will be taken to be

Ep = -;:ﬁzU,f (5.8)

and the work done by the layer as it drags against the wall of the shock tube during

the interval of the reflection from the front surface of the layer can be approximated

by

U Upl Uo l

W F2r ~ F2- = FlpgAd)7 - (5.9)

where we have introduced an average frictional force F, and then a friction factor
F which is the force F' normalized by the weight of the layer so F = F/(jgAd) with
g being the acceleration of gravity.

These energy expressions can be substituted into equation 5.5 to give

Al _, Al AlQ Uo l
L= P? + ? d .
3PC2P‘ 3pc2 r 3 P + mUO + f( gA ) C (5 10)
By defining
_ P, _ P, _ (gl _d_,
we can write equation 5.10 as
= m e+ q2r 4 24 (L) (2Y Lol (P
1=R"+ QiiT 23 P, + i5c \P (5.12)

We then proceed to derive an equation of momentum balance in a similar manner.
We denote the incident, reflected, and transmitted shock’s momentum as J with the
appropriate subscript, the momentum of the layer as a whole as J,, and the impulse
imparted to the shock tube walls by frictional dragging as I. In each case we are
writing the component of momentum in the direction of propagation of the incident

pulse (thus J. is implicitly negative). The moms- .+, bulance relation is

Ji=Jdo+Je+Jp+1 (5.13)
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For the incident and reflected shocks the magnitude of the momentum density is

j = P/c. Integrating this over the volume of the shock gives

5=4p J = -121—’1), (5.14)
[

The transmitted shock in the layer has momentum

]
Al p _Alp (5.15)

t = It
2c 2c

The momentum associated with the gross motion of the layer will be taken to be

Jp = grwo (5.16)

and the impulse imparted to the walls of the shock tube during the interval of

front reflection is approximately

[~ Fr = F(pgAd)*

- 1
- (5.17)
where we have again used the friction factor F as in equation 5.9.
These expressions can be substituted into equation 5.13 to give
Al Al Al 3. . l
EZP: = _%Pr + E—C-Pt + EmUo + f(pgAd)z (5.18)
which becomes, after using the definitions given in 5.11
Uy P P
1=- T +3—— — .
K+ +36P.'+3fP; (5.19)

Finally, if we assume that losses resulting from friction between the layer and
the shock tube walls are of secondary importance in relating the initial front surface
speed of the layer Us to its maximum fractional deformation § = (Ad)pax/d, we can
then assume that the initial kinetic energy of the layer just after the front reflection
is entirely converted into the potential energy in the layer’s maximum compression.

This energy balance takes the form
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1

QL(Ad)}‘“x = %Ld%” (5.20)

5771 U ~

Equations 5.12, 5.19 and 5.20 can be solved simultaneously to determine R and §
as functions of the incident shock overpressure P;, once the other parameters of the
equations have been specified.

The parameters which must bhe specified in advance of solving this system of
equations are:

d — Undeformed Layer Thickness

p/p — Ratio of effective layer density to air density

T — Incident shock’s temporal length

&/x — Ratio of effective layer compressibility to air isothermal compressibility

F — Average friction force during front reflection normalized by layer weight

T = P,/P; — Transmitted (into free surface of layer during interval of front
reflection) shock overpressure divided by incident shock overpressure.

Of these parameters, the first three may be readily specified in advance. The
undeformed layer length is provided with the experimental data. The effective layer
density, based on the low frequency limit of the flexible porous material (discussed
in chapter 2), can be taken to be approximately g ~ Hp + (1 — H)p', where p and
p' are the densities of the fluid and the layer’s structural material (without voids)
respectively and H the layer porosity. The incident shock’s temporal length can be
read directly off the pressure traces and will be assumed to be independent of the
shock’s overpressure in this analysis.

The fourth parameter, the normalized compressibility of the frame of the porous
layer, is difficult to estimate accurately without a specific experiment (as described
in chapter 6) designed to do it. We do have, however, an estimate of the speed
of the sound wave in the layer by taking the time separation t, of the front and
back reflected pulses for a case where the incident shock’s overpressure is sufficiently
small (for example, using the 0.3 atm overpressure case) in which case the round trip

distance traversed during time t; can be assumed to be 2d and totally within the
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layer. Taking the speed of sound in the layer to be ¢’ we can estimate

e ~ 7 (30) (*:2D

The last two parameters are very difficult to estimate in the absence of more ex-

o o~
K=

periments. Without knowing how tightly the porous layer was squeezed into the shock
tube and lacking even an approximate estimate of the relevant friction coefficient, the
friction factor is a purely empirical, adjustable parameter. The transmission coeffi-
cient T might be estimated by considering a weak incident pulse, obtaining the ratio
of the transmitted pressure after a round trip through the layer to the incident pulse
pressure from the data, then attempting to extract an estimate of T by accounting
for the fact that the shock underwent two crossings of the layer’s front surface, the
trip through the layer, and the trip through the air back to the original location of
the layer’s free surface. This would probably introduce significant errors since our
previous discussion of characteristic times indicated that the layer was significantly
deformed, in varying degrees, during the time the transmitted pulse made its way to
the rigid termination and back. We will therefore take T also to be an adjustable
parameter of the calculation and infer its correct value by the value which brings our

“model’s predictions in closest alignment with the experimental data.

5.5 Model Predictions and Conclusions

Figures 5-7 to 5-12 are the result of calculations using this model. For purposes of
comparison with the experimental results summarized in figures 5-5 and 5-6, we have
used the model to estimate the front reflection coefficient and fractional maximum
deformation for a few combinations of values of the parameters T and F.

Good correspondence is seen between experiment and theory for the front reflec-
tion coefficient. For parameter values T' = 0.4 and F = 200, the theoretical curves
shown in figures 5-7 and 5-9 exhibit both the correct magnitude and downward slope
seen in the experimental data. It is particularly interesting to note that, in the ab-

sence of the dragging of the layer against the shock tube walls, the front reflection
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coefficient would be constant (see F = 0). This means that a measurement of this
type, designed to reveal an incident amplitude dependence in the reflection coefficient,
must attempt to control or measure the effects of this dragging in order to understand
the role of other physical mechanisms.

The maximum fractional deformation predictions in figures 5-8 and 5-10 show the
correct upward trend and order of magnitude found in the experimental duta. They
do, however, come out consistently low. Figures 5-11 and 5-12 show the interesting
result that, by halving the effective density of the layer, one can obtain much better
agreement between theory and experiment. Even the reflection coefficient predictions
can be subsequently corrected by using a larger T or F (these have a weak effect on
the deformation predictions as seen in figures 5-8 and 5-10).

A possible explanation for this improvement with a half-density assumption is
that, during the interval of front reflection, the stress wave propagating into the layer
has involved much of the layer in the gross (zeroth order) motion, but it has not
involved all of it. The resulting error might then be reduced by using the lower
effective density. Then the lower eflective mass of the layer would correspond to the

fraction of the total mass participating in this gross motion.
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Figure 5-7: Model prediction of Front Reflection Coefficient (pressure) vs. Incident
shock pressure for 8 inch layer; 5/p = 17.5; T=0.4; F =0,100,200,300;
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Figure 5-8: Model prediction of Maximum Fractional Deformation of Porous Layer
vs. Incident shock pressure for 8 inch layer; /p = 17.5; T=0.4; F =0,100,200,300;
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Figure 5-9: Model prediction of Front Reflection Coefficient (pressure) vs. Incident
shock pressure for 8 inch layer; p/p = 17.5; F =200; T=0.2,0.4,0.6;
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Figure 5-10: Model prediction of Maximum Fractional Deformation of Porous Layer
vs. Incident shock pressure for 8 inch layer; 5/p = 17.5; F =200; T=0.2,0.4,0.6;
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Figure 5-11: Model prediction of Front Reflection Coefficient (pressure) vs. Incident
shock pressure for 8 inch layer; 5/p = 17.5 or (17.5)/2; F =200; T=0.4;
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Figure 5-12: Model prediction of Maximum Fractional Deformation of Porous Layer
vs. Incident shock pressure for 8 inch layer; 5/p == 17.5 or (17.5)/2; F =200; T=0.4;
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Chapter 6

Measurement of Complex

Compressibility

The flexibility of a porous material, which has been shown to have important conse-
quences for its acoustical properties, is specified by the complex compressibility K.
The real part K, accounts for the fractional density change in the structure resulting
from a structural pressure change. The imaginary part K; is related to the irreversible
nature of the deformations of the structure. As discussed in chapter 2 (and explic-
itly shown in appendix A), K; can be compared to a kind of bulk viscosity of the
structure of the porous material since the pressure depends not only on the fractional
deformation of the material, but also the time rate of change of the deformation.

The fact that K plays a central role in the theory of the flexible porous material
means that its accurate measurement over the range of frequencies of interest is
essential for the prediction of frequency dependent acoustical properties.

A diagram of a device which can be used to determine this compressibility is
shown below. This particular desigr. was proposed by Ligard and Koch [17].

The vessel is which the sample in placed is evacuated to remove the air from the
voids of the porous sample. Although most of the analysis in previous chapters could
be applied, with some minor modifications, to a semi-porous material in which some
fraction of the voids are not interconnected, this experiment requires that no such

voids exist. This is because as the vessel is evacuated these closed voids expand and
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Figure 6-1: Exper’mental apparatus used for the measurement of the complex com-
pressibility of a flexible porous material
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alter the relationship between the velocity transfer function across the sample and

K; this makes the subsequent determination of K difficult, if not impossible.

The sample is set upon a shaker and driven with random vibrations. A Fast
Fourier Transform program provides the magnitude of the velocity transfer function
across the sample as a function of frequency. The location and height of the maximum
of this curve can be used to determine K.

Typically a relationship between this curve and K is used which assumes that the
wavelength in the sample is much larger than the sample length. In addition, the
imaginary part of K is assumed to be much smaller than the real part. The resulting
equations readily give the real and imaginary parts of K in terms of the location and
height of the magnitude of the velocity transfer function, but significant errors can
be introduced by the approximations. In the following discussion we calculate these
errors and then describe a computer algorithm that allows K to be obtained from the
data without these approximations; this is referred to as the eract method. A listing

of a computer program based on this algorithm is provided in appendix E.
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6.1 Relating K to the velocity transfer function

We can use the method of transmission mtrices to derive a relationship between the
peak of the velocity transfer function and the complex compressibility K. If we take
as location 1 the base of the sample, location 2 at the top of the sample but beneath
the transducer and mount, and location 3 on top of the transducer, the relevant

transmission matrices are
cos gl ip'c sin ql
23 _ S q P q n 6.1)
Uy (i/p'c')singl  cosql Uy
1 wM/A
| _ |1 M P2 (6.2)
Us 0 1 Ug

where the length of the sample is ! and its cross sectional area is A. In the sample,

and

q is the propagation constant, p' is the effective density, and ¢’ is the wave speed. M
is the total mass of the transducer and mount on top of the sample.
Multiplying these matrices, and assuming p; = 0 at the free surface of the trans-
ducer, allows us to write for the ratio us/u,
Us 1

uw  cos ql — pqlsin gl (6:3)

where y is defined as the ratio of the transducer and mount mass to the total mass

of the sample

M wM
M= Al T pAql (64)
and
1 w
' =5 (6.5)

Cc = q
VoK, +ik)

An approximation typically used at this stage is |gl| < 1 which gives
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U3 ~ 1 _ 1
w o 1—((1/2+p)(a)?) ~ 1 ((1/2 + p)(o'/ p)(wl]c) (K, +iKy))

(6.6)

Making the additional assumption that K; < K., knowledge of the frequency of

the maximum of |us/u;|(w) determines K. since

1
e~ 6.7
(172 + 1)(p'/ p)(Wrmazl/c)? (6.7)
and the height of the maximum of |u3/u,|(w) determines K; using
K = (6.8)

~ |ua /11 |maz

where we have defined w,,,; as the lowest frequency for which |u3/u;|(w) has a
maximum and |u3/%;|maz = |ta/t1|(w = Wmae)-

The approximating assumptions therefore allow knowledge of the peak of the
|us/u,|(w) curve to be easily converted to an estimate of K, and K;.

In many cases, however, these approximations introduce significant errors into the
subsequent prediction of K. Even in some cases where K; < K,, the long-wavelength
assumption alone is sufficient to cause errors.

These errors are calculated and plotted in figures 6-2 to 6-5. The exact value of
K has been assumed in advance; then 6.3 is used to get an exact location of the
frequency and height of the maximum of |us/u;|(w). This frequency and maximum
height are put back in 6.7 and 6.8, and the compressibility estimate is obtained. This
estimate, referred to as K = K, +iK; , is then compared with the actual K assumed
at the start.

Figure 6-2 shows a comparison of K and K for K, = 1, plotted against the mass
ratio u. These results would be constant if plotted as a function of the density ratio
p'/p or the sample length I. This is because they are each factors in the dimen-
sionless parameter gl found in equations 6.3 and 6.6. Figure 6-2 shows K, differs

significantly from K,, even when K; = (1/10)K,. The error in this case is greatest
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for the lower values of the mass ratio. One should be careful, however, when setting
1p an experimental apparatus, to keep the mass ratio p small enough so that the
peak frequency of |uz/u;|(w) occurs within the operational frequency range of the
apparatus. If K. ~ K; , then the error is greatest for the higher mass ratios. Figure
6-3 shows similar results when K; = 0.5 is compared with K;.

Figures 6-4 and 6-5 show the same cases as in figures 6-2 and 6-3 respectively, but

instead we have plotted the Percent Magnitude Error (PME) which is defined as

K|~ K]

PME = K]

l x 100 (6.9)

For cases where K; = (1/10)K,, this error can be ~ 10% for a large range of mass
ratios and goes to 0% as the mass ratio becomes large. For cases where K, ~ K; ,

errors of ~ 50% are found for a wide range of mass ratios.

6.2 The Exact Method

An algorithm is described here which allows one to obtain the complex compressibility
K to essentially arbitrary precision once wya. and |uz/u, |mae have been specified. A
flowchart outlining the algorithm and a sample run of a c¢++ program based on it are
shown in figure 6-6. A source listing of the program is provided in appendix E.

After taking general parameters as input such as the mass ratio, density ratio,
sample length, and the specifics of the search such as wpnge and |ug/ %1 |mae, the ap-
proximate method (using equations 6.7 and 6.8) is used to determine K, which is the
starting location for the two dimensional search over the K,, K; plane.

Since K, is determined by wma. in equation 6.7, the first bi-directional search
locaies the K, which corresponds to the best match to the target wyqa. value input
at the start. By bi-directionol search we mean a search which begins at some starting
point, then alternates looking upward or downward in the argument for a minimum in
the function. After finding a minimum the search step size is reduced and the search
is restarted. In this case, the function used is the absolute value of the difference

between the local wym,., and the target wmae. The resulting best K, is called K, .
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The process is repeated by searching for the K; which gives the best match to the
target value of |u3/u1|mae; this K; is called K; .

Now using (K, 1, K; 1) as a starting point, the above two searches are repeated and
the best compressibility obtained is called (K, sr, K rr). If this value is good enough
the algorithm is finished. If not, a new starting point is formed from the geometric

mean of the two K’s just obtained. Its value is Ky ey stare = (\/K,.,IK,'", \/K;,IK,',”).

The above four searches are then repeated.

As shown in figure 6-6 and found from extensive testing of the program, in many
cases the program will zero in on K within a few iterations. This suggests the use of
such a method in situations where the errors introduced using equations 6.7 and 6.8

are unacceptable.
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Figure 6-2: Measurement of Complex Compressibility - K, versus Mass Ratio for the
cases K/xo = (1,0.1),(1,0.5),(1,1)
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Figure 6-3: Measurement of Complex Compressibility - K; versus Mass Ratio for the
cases K /ro = (0.5,0.5),(1,0.5),(2,0.5)
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Figure 6-4: Measurement of Complex Compressibility - Per Cent Magnitude Error
versus Mass Ratio for the cases K/xo = (1,0.1),(1,0.5),(1,1)
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Figure 6-5: Measurement of Complex Compressibility - Per Cent Magnitude Error
versus Mass Ratio for the cases K/ro = (0.5,0.5),(1,0.5),(2,0.5)
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Figure 6-6: Flowchart and Sample Run for Exact Method Algorithm
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Chapter 7

Concluding Remarks

7.1 Consequences of Flexibility

Flexibility has been shown to have important consequences for the acoustical prop-
erties of porous materials. In some cases, assuming a flexible porous material to be
limp or rigid introduces significant errors in, for example, the predicted absorption
coefficient. The effect of flexibility, in many circumstances, has been shown to be
related to a structural layer resonance. The structure sustains wave motion which
causes losses due to its deformation (related to the imaginary part of the complex
compressibility) and the viscous drag between the structure and fluid. In a number of
different examples, including anisotropic materials and periodic structures, we have
demonstrated how these effects can influence the sound absorption performance of
a porous material. In addition, flexibility has been shown to alter the equilibrium
properties of a porous material with mean flow. We have found that, if a shock
wave is incident on a flexible porous layer, the momentum in the incident pulse can
cause gross motion of the layer, resulting in large deformations (for example, an 80%
deformation for an 1 atm shock). In addition, the dragging of the layer against a
constraining surface, if present, has been shown to introduce dependence of the front
reflection coefficient (defined in chapter 5) on the peak pressure of the incident shock.
Both of these effects are a direct consequence of the mobility of the material; the first

depends strongly on the flexibility of the material as well.
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In chapter 2 we set the stage for most of the subsequent analyses by discussing
the characteristic lengths and times of the acoustic problem of the flexible porous
material, writing the equations of mass balance, momentum balance, and compress-
ibility definitions, and deriving expressions for the propagation constants. For high
frequencies these propagation constants were readily identified as one for a fluid wave
and one for a structure wave. For low frequencies, the single important mode was due
to comotion of the fluid and structure and therefore associated with an effective den-
sity and effective compressibility (see appendix A). In addition, we derived a power
balance relation for the flexible porous material which explicitly identified two loss
mechanisms for sound absorption: the losses due to the irreversible deformation of
the structure (labeied loss, below) and those attributed to the viscous drag between
the fluid and the structure (loss,). These quantities, giving the power absorbed per

unit area of the layer, are divided by the incident intensity and written as

0

lossy, = —1_—}-0- y %u)K,-|p'|2 dz (7.1)

loss, = L —l-Hr|u u'|? de (7.2)
T Ho z=-d 2 ’

where IIj is the incident intensity. The above quantities were related to the normal

incidence absorption coefficient a through

a = loss, + loss,, (7.3)

The finite flexible porous layer backed by a rigid wall was then considered in
chapter 3. We derived normal incidence and angle averaged absorption coefficients
for the layer with and without an impervious skin covering the free surface. The
above integrals 7.1, 7.2, and the ratio of structure to fluid velocity were calculated
for a number of cases, then used to study the mechanisms of sound absorption in
such a medium. The flexibility of the layer was found to increase the absorption
coefficient at some frequencies. Particularly interesting was the observation that

at some frequencies, corresponding to structural layer resonances, the absorption
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coefficient was actually reduced due to the reduced relative motion between the fluid
and structure. The absorption of sound in closed porous layers was shown to result
mostly from irreversible deformations of the structure. Transmission matrices were
then derived for a layer of flexible porous material for the two cases where the layer
is, or is not, covered with an impervious skin on both boundaries.

In chapter 4 three departures from the basic model of chapters 2 and 3 - a porous
layer with anisotropic flow resistance and structure factor, periodic structures con-
sisting of porous layers separated by air gaps, and the porous medium in bulk with
mean fluid flow — were considered. An anisotropic material, treated as isotropic in the
laboratory because of its high flow resistance, was shown to exhibit very anisotropic
behavior at some frequencies where structural resonances reduce the relative motion
between the fluid and structure and therefore reduce the effective flow resistance.
Another interesting consequence of flexibility was found in the periodic structure; the
multiple layer attenuator was used as an example. Here the dips in the absorption
coefficient due to structural layer resonances could coincide with peaks or dips due
to fluid resonances in the air gaps; the absorption coefficient which resulted from
this overlap could be made more or less smooth over frequency compared to the cor-
responding rigid case. Mean flow was shown to introduce a spatial gradient in the
equilibrium porosity (and other field variables) of a flexible porous material, an effect
which could have important consequences for the design of a porous baffle with a
graded wave impedance.

To better understand the non-linear interaction of sound with flexible porous
materials, the reflection of shock waves was studied in chapter 5. A quasi-linear
theory was developed which reproduced the principal features in experimental results
obtained previously by Ingard [14]. The theory assumed that the propagaiing pulses
in the air and the structure were linear and modeled the gross, zeroth order motion of
the porous layer by including its energy and momentum in the conservation equations;
these equations compared the system just before and just after the reflection of the
incident shock from the front surface of the layer. The substantial motion of the

layer and its dragging against a constraining boundary (in this case the walls of the
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shock tube) were found to introduce a dependence of the front reflection coefficient
and maxirmnal layer deformation on the peak pressure of the incident shock.

Lastly, in chapter 6, we addressed the question of measurement of the complex
compressibility K, a key parameter used to describe the dynamics of a given flexi-
ble porous material. The standard long-wavelength assumption, used to determine
K from an experimental measurement of the frequency dependent velocity transfer
function across a sample, often introduces significant errors into the subsequent es-
timate of K. These errors were calculated for a number of cases. We then provided
a computer algorithm which made the long-wavelength assumption unnecessary. A

listing of the computer program based on the algorithm is provided in appendix E.

7.2 Future Work

The influences of mean flow on the equilibrium properties of a flexible porous material
in bulk were derived in chapter 4 for the case when the equilibrium fluid density is
assumed constant. Future studlies should attempt to solve this problem without this
assumption. Additionally, the corresponding problem of sound in the fluid should be
studied, and the derivation of a transmission matrix for a flexible porous layer with
mean flow should be attempted.

The quasi-linear theory of the reflection of shock waves presented in chapter 5
falls short of being able to provide a quantitative, complete prediction of the reflected
shock waveform in terms of the incident shock waveform. Such predictability would
require a numerical, computational model of the problem. The analysis is complicated
by the fact that, in addition to the applicable differential equations being non-linear,
the free surface boundary of the layer is in motion. Although the low frequency limit
of the flexible porous medium used in chapter 5 may still be appropriate, the problem
remains a difficult one.

Through all the chapters we have assumed that the porous medium consisted ex-
clusively of open, interconnected pores; in some cases a semi-porous material could

be modeled with minor additions to the theory. Sound absorption in closed cell ma-
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terials, however, is an important and poorly understood phenomenon. Some progress
might be achieved by treating the closed cell foam as consisting of a large number of
adjacent, very thin closed porous layers — this model would predict significant absorp-
tion of sound - then studying more carefully the relative role of irreversible changes

in the gas and the structure with the passage of the wave.
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Appendix A

Complex Compressibility and
Bulk Viscosity

If a plane sound wave propagates through a medium of density p and compressibility
, which has bulk viscosity 3, the propagation constant q can be taken as complex,

giving for the pressure field in one-dimension

T, t) = poei(qm_w") psd poe"ql'ze‘er'e'—‘wt A.l
p

where the e~%7 factor accounts for the attenuation of tne wave.
In order to derive an expression for the propagation constant ¢ in this case, we

write the mass balance relation

Op Ou

“é? + P'é;' =0 (A.2)
and momentum balance
Ou Op 0%u
P5t T os o (A-3)
and real compressibility
1 6p)
K=~|=— Ad
[4 (3p (A-4)



which lead to the amplitude equations

— ikpw p(q,w) + igpuig,w) =0 (A.5)

—ipwu(g,w) +igp(g,w) + Bg* u(q,w) = 0 (A.6)

which give, to first order in 3, the propagation constant

k3 '
q; =k (1 + zw"—f) (A7)

Alternatively, we can make the compressibility complex (& = &, + ix;) and omit
the bulk viscosity term in the momentum equation.

The resulting amplitude equations are

— ir,pw p(g, w) + Kipw p(q,w) + igpu(q,w) = 0 (A.8)

— ipwu(q,w) +igp(g,w) =0 (A.9)

In terms of the real and imaginary parts of the complex compressibility, the prop-

agation constant is

2 = k2 (1 + z"—) (A.10)

Ky
By requiring ¢; = g1, equations A.7 and A.10 give

K _ KB

Kr wp

(A.11)

which means, to first order in 3, that the imaginary part of the compressibility «;

corresponding to the bulk viscosity 3 is

2 2
KBk, KB 1 B (ko) — B (__1_) — fuwn? (A.12)
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Appendix B

The Rigid Porous Material

B.1 Absorption Coefficient for the Open Layer

The rigid porous layer is a useful limiting case of the flexible porous layer when the
motion of the structure is negligible. The equations of motion are simplified because
the velocity of the structure is zero, and the porosity of the medium is independent
of position and time. The flexihle model of the open porous layer predicts absorption
coeflicients consistent with the rigid layer when the frequency is sufficiently high so
that the inertia of the structure prevents it from moving in response to the wave
in the fluid; this occurs when w > zi=. The flexible model of the closed porous
layer does not have a useful rigid limit because of the boundary conditions; the fluid
velocity in a rigid closed layer would be identically zero. It does have a meaningful
high frequency limit, however, as discussed in chapter 3.

This makes the rigid-layer calculation an excellent diagnostic tool when working
with the more complex flexible model. By setting the compressibilities x’' and K close
to zero in the flexible case, one can readily compare the rigid limit to the trne rigid
model.

For a rigid porcus material we define an average fluid velocity #, a pressure p, and
a compressibility x. The linearized equations for conservation of mass and momentum

and defined compressibility are
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9p

5?+Hpchvu=0 (B.l)
ou oi -
Hp-a7 + HPGE = —~Hri —grad p (B.2)
1 Bp)
kK=—|—= B.3
p (Bp (B.3)

For the case of a plane wave of frequency w propagating in the rigid porous

medium, equations B.1, B.2, and B.3 give the propagation constant

q = ViHfwk (B.4)

or
q iH7
= = = — B.5
R (B.)
where
F=7r—iwp(l+G) (B.6)
For the open porous layer with a free surface at £ = —d and a rigid wall at = = 0,
we can then write for the normalized normal input admittance
x = —d -

n=p0F+ic= pcu (2 ) _ zra tan gd (B.7)

p(z =—-d) = HF
The absorption coefficients can then be found using 3.29 and 3.31.

B.2 Power Balance

In a manner analogous to the discussion in chapter 3, we can combine the equations

B.1, B.2, and B.3 to obtain

115



z%(’“ L PE) +divT=—L (B.8)

where the kinetic energy density is

1 1

KE = 5Hp|12‘|2 + 2H,oG|a|2 (B.$)
the potential energy density is
PE = %nlplz (B.10)
and the intensity is given by
1= %Re(pﬂ") (B.11)
and with
L = Hr|il? (B.12)

The quantity £ on the right hand side of equation B.8 represents the sound ab-
sorption mechanism due to viscous drag between the fluid and structure.
For the case of normal incidence, equation B.8 can be time averaged and integrated

over the thickness of the layer to give the power absorbed per unit area

1 t
Mo = /V SHrlatdv (B.13)

If on: divides by the incident intensity II;,., equation B.13 gives the normal inci-

dence absorption coefficient

1 2
- i / {
fv = Hrlif*dy (B.14)
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Appendix C

The Rigid Anisotropic Porous
Layer

The assumption of rigidity makes analysis of the anisotropic porous layer much sim-
pler. The predictions of such a rigid model are not only useful in describing the
behavior of rigid porous materials; they also serve as an excellent diagnostic tool for
checking the results for the flexible anisotropic porous material in the rigid limit.

With the & and § coordinate directions specified as in chapter 3, we define the
flow resistance in the two ditections as r, and 7, and the structure factors as G, and
G,. The average fluid velocities in the & and §j directions are u, and Uy,

Assuming a plane wave of angular frequency w and propagation constant compo-

nents ¢, and ¢,, the amplitude equation for mass balance is

iw”?(w, Qz, Qy) = igy uc(w, ey ‘Iv) +igy uv(w’qz’ qu) (C°1)

and the corresponding equations for momentum balance in the & and § directions

are

H7, uz(w,quIy) = "i‘Imp(waQw’Qy) (02)

H7#, uv(w’qm,%l) = "'i‘Iyp(w"ImqV) (03)
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where we have used the definitions

Fo =Te —w(l+Go)p , 7y =1y —iw(l4+Gy)p (C.4)
This leads to the dispersion relation

2

‘1: e Y
T = iwk s, (C.5)

and since the trace wavenumber is ¢, = kg sin ¢, we can write for the normalized

# component of the wavevector in the porous layer

Q. = % = \J ii{:“’ - (::—:) sin? ¢ (C.6)
Comparing equations B.5 and C.6, we see that the effects of anisotropy are not
important for normal incidence.
For the open layer we have for the normalized normal input admittance
Uz(z=—d)  pw

Qe tan(Qkod) (C.7)

Mo(z = ~d) = p(z = —d) T

where d is the layer thickness. The absorption coefficient for a plane wave of angle

of incidence ¢ is

48 cos ¢

a(gb, 7747) = ('3 + cos d))z + o2

(C.8)

where n, = 3 + io .
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Appendix D

Low Frequency Effective

Quantities

In the low frequency limit of the basic theory of the flexible porous materizl presented
in chapters 2 and 3, we found that there was no relative motion of the fluid and the
structure. Here we examine the consequences of this assumption.

If we take

- =0 (D.1)

we can write the basic equations of momentum balance 2.17, 2.18 as

o
HPEZ = —grad p (D.2)
and
vl
H'p'%uT = —grad p’ (D.3)

which can be summed and written as

Nl
(Hp+ H')5r = —grad (p + 7) (D.4)

The mass balance equations
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OHp

—6t—+deiviZ=0 (D.5)
and
LN
ar; t” + H'p div il = 0 (D.6)

which can be summed and written as

(] l\
3(’{”8’: B0) \ (Hp+ Hp)divic=0 (D.7)

Defining p=p+p', 5= Hp+ H'p', and

19p

=== D.8
T (D)
we can combine equations D.4 and D.7 to obtain the wave equation
1 8%
25 —
v D — 'é;—t'; =0 (D.g)
where the effective wave speed is
= — (D.10)

VPR
We focus our attention now on this effective compressibility . In particular we

will try to express it in terms of defined compressibilities of chapter 2

19p , 18y 1 oH'
Ty " T T T H o (B-14)
Since div # = div @’ we know, for a small fractional density change
1,/

Hp - H'p'

or
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AH  Dp AH | Ap
4 Be Y.

i > T p (D.13)
and using using the defined compressibilities in D.11 this leads to
kAp— (H'/H)KAp' = KAp' + ' Ap' (D.14)

We will take &’ = 0 since typically «' is much smaller than the compressibility of
air K.
Equation D.14 tells us that the small pressure changes in the fluid and structure

are related through

Ap' = alp (D.15)
where
Hg
a = *—I-{— (D-16)

This means that the partial derivative in equation 2.21 can be replaced by

5 () o (5 ®.7)

which means equation 2.21 can be written as

. 1 1 \dp a )6H ,( 1 )ap' ,( a )61{'
N—Hp+H'p’[H(1+a)6p+p(l+a 5?+H 1+ a -3_p+p 1+a/ 8p

(D.18)
or, using the defined compressibilities in equation D.11 and &' = 0
R= [H( - ) (ko) + 0 (o) (—H'E) + (=) @)
"~ Hp+ H'p 1+« pIve 14+« B l+a
(D.19)

which can be simplified to give
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or

HrK
Hg + K

x
Il

= -
|

A =
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(D.20)
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Appendix E

Exact Method Program

The c++ program listed below takes as input the general material properties of a
sample whose complex compressibility is to be measured by a shaker experiment
as described in chapter 6. In addition, one inputs the frequency and height of the
maximum of the velocity transfer function magnitude, measured across the layer.
The program’s search algorithm is described in chapter 6. The program returns the
real and imaginary parts of the material’s complex compressibility; a flowchart and
sample run are shown in figure 6-6.

#include <stdio.h>
#include <Complex.h>
#include <math.h>

#define check_it() \
chk = omega_m_check(); \
if (chk == -1) goto start; \
else if (chk == 1) goto done

#define check_it_Kreal() \
chk = Kreal_m_check(); \
if (chk == -1) goto start; \
else if (chk == 1) goto done

#define check_it_Kimag() \
chk = Kimag_m_check(); \
if (chk == -1) goto start; \
else if (chk == 1) goto done
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void setup();

void input();

void guess();

void check_both();
void check_freq();
void check_value();
void search();

void omega_report () ;
void Kreal_report();
void Kimag_report();

int omega_m_check();
int Kreal_m_check();
int Kimag_m_check();

double
double
double

double

double
double

value(double omega_arg, Complex K_arg);
miss_omega(Complex K_arg _mo);
miss_value(Complex K_arg_mv);

omega_max(Complex Kw_arg);

best_Kreal(double Krs, double Kis, double Ks);
best_Kimag(double Kirs, double Kiis, double Kis);

int done, omega_done, pass, squeeze_flag, omega_restart, ij;

double
double
double
double
double
double
double
double
double
double
double

omega_step_start, omega_start, omega_best;

mass_ratio, density_ratio, sample_thickness;

max_freq, max_value, max_freq_check, max_value_check, c¢;
K_step, omega_f1i, omega_f2, omega_step;

value_criteria, omega_crit;

frequency, slopel, slope2, squeeze_factor, omega, omega_£3;
error_zero, error_plus, error_minus;

Kreal_f1, Kreal_f2, Kreal_£3;

Kimag_f1, Kimag_£2, Kimag_£3;

Kreal, Kreal_start, K_crit, Kreal_best;

Kimag, Kimag_start, Kimag_best, K_step_start;

Complex K_guess, eye;
Complex qdi, qd2;
Complex K_plus, K_minus;
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main()

{
setup();
input () ;
guess () ;

search();

}

double miss_omega(Complex K_arg_mo)
{

double morv;
morv = fabs(max_freq - omega_max(K_arg_mo));

return morv;
.
s

double miss_value(Complex K_arg_mv)
{

double mvrv;
mvrv = fabs(max_value - value(omega_max(K_arg mv), K_arg mv));

return mvrv;

}

double best_Kreal(double Krs, double Kis, double Ks)
{

int N, chk;

double fp, fo, fm;

double fpp, fom, fmm;

double fpm, fop, fmp;

Kreal_start = Krs;
Kimag_start = Kis;
K_step = Ks;

start:
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Kreal = Kreal_start;

fp = miss_omega(Complex(Kreal+K_step, Kimag_start));

fo = miss_omega(Complex(Kreal, Kimag_start));
fm = miss_omega(Complex(Kreal-K_step, Kimag_start));

fpp = fp; fpm = fp;

fom = fo; fop = fo;
fmm = fm; fmp = fm;
Kreal_£3 = fp;
Kreal_f£f2 = fo;

Kreal_f1 = fm;
check_it_Kreal();
for (N=1; N>0; N += 1)

{
Kreal = Kreal_start + (N * K_step);

Kreal_ f£2
Kreal_f1
Kreal_f£3

fpp;
fop;
miss_omega(Complex(Kreal+K_step, Kimag_start));

Kreal_£3;
Kreal_ f£2;
Kreal _f£1;

fpp
fop

fmp

check_it_Kreal();
/* patch below prevent Kreal<0 values */
if ((Kreal_start - ((N+1) * K_step)) > 0.0)
{
Kreal = Kreal_start - (N * K_step);
Kreal_£3 = fom;

Kreal _f2 = fmm;
Kreal_f1 =
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miss_omega(Complex(Kreal-K_step, Kimag_start));

fpm = Kreal_£3;
fom = Kreal_£2;
fmm = Kreal f1;

check_it_Kreal();
}

if (N>250)
printf ("DANGER - HIGH N WARNING IN Kreal SEARCH\n");

done:

return Kreal _best;

}

double best_Kimag(double Kirs, double Kiis, double Kis)
{

int N, chk;

double fp, fo, fm;

double fpp, fom, fmm;

double fpm, fop, fmp;

Kreal_start = Kirs;
Kimag_start = Kiis;
K_step = Kis;

start:

Kimag = Kimag_start;

fp = miss_value(Complex(Kreal_start, Kimag+K_step));
fo = miss_value(Complex(Kreal_start, Kimag));
fm = miss_value(Complex(Kreal start, Kimag-K_step));

fpp = fp; fpm = fp;

fom = fo; fop = fo;
frm = fm; fmp = fm;
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Kimag_£3 = fp;
Kimag_£2 fo;
Kimag_£f1 = fm;

check_it_Kimag();

for (N=1; N>0; N += 1)
{
Kimag = Kimag_start + (N * K_step);

Kimag_£2 = fpp;
Kimag_£1 = fop;
Kimag_£3 = miss_value(Complex(Kreal_start, Kimag+K_step));

Kimag_£3;
Kimag_£2;
Kimag_f£1;

fpp
fop

fmp

check_it_Kimag();
/* patch bolow prevents Kimag<O values */

if ((Kimag_start - ((N+1) * K_step)) > 0.0)
{

Kimag = Kimag_start - (N * K_step);

Kimag_£3 = fom;
Kimag_f£2 frm;
Kimag_f1

miss_value(Complex(Kreal_start, Kimag-K_step));

fpm = Kimag_£3;
fom = Kimag_f£2;
frim = Kimag_£1;
check_it_Kimag();
}

if (N>250)
printf ("DANGER - HIGH N WARNING IN Kimag SEARCH\n");
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done:

return Kimag_best;

double omega_max(Complex Kw_arg)

{
int N, chk;
double fp, fo, fm;
double fpp, fom, fmm;
double fpm, fop, fmp;

omega_start = max_freq;
omega_step = omega_step_start;
start:
omega = omega_start;
fp = value(omegatomega_step, Kw_arg);

fo = value(omega, Kw_arg);
fm = value(omega-omega_step, Kw_arg);

fpp = fp; fpm = £p;

fom = fo; fop = fo;
fmm = fm; fmp = fm;
omega_£f3 = fp;
omega_£f2 = fo;
omega_f1 = fm;

check_it();

for (N=1; N>0; N += 1)
{
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omega = omega_start + (N * omega_step);

omega_f£2 = fpp;
om~ga_£f1 = fop;
omega_£3 = value(omega + omega_step, Kw_arg);

fpp = omega_£f3;
fop = omega_£2;
fmp = omega_f1;

check_it();

/* patch below prevents omega<O values */
if ((omega_start - ((N+1) * omega_step)) > 0.0)
{
omega = omega_start - (N * omega_step);
omega_f3 = fom;

omega_f2 from;
omega_f1 = value(omega - omega_step, Kw_arg);

fpm
fom
fmm

omega_£3;
omega_f£2;
omega_f1;

check_it();
}
if (N>250)
{printf ("DANGER - HIGH N WARNING IN OMEGA SEARCH\n") ;

printf ("omega=Y1f, omega_step=%1lf\n",
omega, omega_step);}

done:

return omega_best;
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double value(double omega_arg, Complex K_arg)
{

Complex qdz;

double ans;

qdz = omega_arg * (semple_thickness / c) *
sqrt(density_ratio * K_arg);

ans = sqrt(norm(1.0 /
(cos(qdz) - (mass_ratio * qdz * sin(qdz)))));

return ans;

void setup()
{

c = 34411.9; /* Isentropic Sound speed */
eye = Complex(0.0,1.0);
printf("\n\nCOMPRESS - Complex Compressibility Program\n\n");

}

void input()
{

printf("General parameters:\n");

printf("Mass ratio 7");
scanf (" 1f", &mass_ratio);

printf("Density ratio ?");
scanf (")1£", &deasity_ratio);

printf("Sample Thickness (inches) ?");

scanf ("%1£f", &sample_thickness);
sample_thickness = sample_thickness * 2,54;
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printf ("\nTarget valuvss:\n");

printf("Frequency for |u2/uil| maximum ?");
scanf (") 1f", &max_freq);
max_freq = max_freq * 2.0 * PI;

printf("Maximum |u2/ul| value 7");
scanf ("%1f", &max_value);

/%

printf ("\nSearch parameters:\n");

printf("Start Delta K step size 7");
scanf (") 1f", &K_step_start);

printf("Start Fract. Omega step size (Frac of Omega start)?");
scanf (") 1f", &omega_step_start);
omega_step_start *= max_freq;

*/

K_step_start = .2;
omega_step_start = .1 * max_freq;
omega_crit = .000001 * max_freq;
K_crit = .01;

printf("\n\n");
}

void guess()

{

K_guess = Complex( (1.0 / (density_ratio * (.5 + mass_ratio) *
((max_freq * sample_thickness) / c) *
((max_freq * sample_thickness) / c))),
(1.0 / (density_ratio * (.5 + mass_ratio) *
((max_freq * sample_thickness) / c) *
((max_freq * sample_thickness) / c)) /
max_value) );

printf("START K = (/1f,%1f)\n", real(K_guess), imag(K_guess) );
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int omega_m_check()
{
double mp, mm;
int rv;

rv = 0;

/*

omega_report () ;

*/
mp = omega_f3 - omega_£f2;
mm = omega_f2 - omega_f1;

if ( (mm > 0.0) && (mp < 0.0) )
{ omega_start = omega;
if (omega_step < omega_crit)
{omega_best = omega;

rv = 1;}
else {omega_step = omega_step * .75;
rv = -1;}
}
return rv; /* rv = -1, restart
0, continue
1, done
}
int Kreal_m_check()
{
double mp, mm;
int rv;
rv = 0;
/*
Kreal_report();
*/
mp = Kreal f£3 - Kreal_£2;
mm = Kreal_f2 - Kreal_f£1;

if ( (mm < 0.0) && (mp > 0.0) )
{ Kreal_start = Kreal;
if (K_step < K_crit)
{Kreal_best = Kreal;
rv = 1;}
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else {K_step = K_step * .75;

rv = -1;}
}
return rv; /* rv = -1, restart
0, continue
1, done */

int Kimag_m_check()
{
double mp, mm;
int rv;

rv = 0;

/*

Kimag_report () ;

*/
mp = Kimag_f3 - Kimag_f2;
mm = Kimag_f2 - Kimag_f1;

if ( (mm < 0.0) && (mp > 0.0) )
{ Kimag_start = Kimag;
if (K_step < K_crit)
{Kimag_best = Kimag;

rv = 1;}
else {K_step = K_step * .75;
rv = -1;}
}
return rv; /* rv = -1, restart
0, continue
1, done */

void search()

{
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omega_start = max_freq;

int all_over;
Complex K;
double xxx,yyy,jl1,j2,j3,j4,j6,j6,ferr_real,ferr_imag;

xxx = 0.0;
yyy = 0.0;
j1
j2

best_Kreal(real(K_guess),imag(K_guess),K_step_start);
best_Kimag(j1l,imag(K_guess),K_step_start);

printf ("\nINTERIM K = (%1£,%1f)\n", j1, j2);
all_over = 0;
for (;all_over == 0;)
{

j3
j4

best_Kreal(ji,j2,K_step_start);
best_Kimag(j3,j2,K_step_start);

printf("\nINTERIM K = (%1f,%1f)\n", j3, j4);

j1 = j3;
i2 = j4;
j6 = best_Kreal(j1,j2,K_step_start);
j6 = best_Kimag(j5,j2,K_step_start);

printf("\nINTERIM K = (%1£,%1£)\n", j5, j6);

if ((fabs(j1-3j5)<.005) && (fabs(j2-3j6)<.005))
all_over = 1;

j1 = jb;
j2 = j6;

/* Special inf loop avoider patch below */

j1 = sqrt( j3 * j6 );
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j2 = sqrt( j4 * j6 );

}
printf ("\nFINAL BEST K = (%1f,%1f)\n", j5, j6);

printf ("\nTarget Freq_Max=),1f, Actual Freq_Max=}1f\n",
(max_freq / (2.0 * PI)),
((omega_max (Complex(j5,j6))/(2.0%PI))));

printf ("\nValue=)1f, Actual Value=J1f\n",
max_value,
value ((omega_max (Complex(j5,j6))),Complex(j56,j6)) );

ferr_real
ferr_imag

(real(K_guess) - j5)/j5;
(imag(K_guess) - j6)/j6;

printf ("\nFractional Error using K_guess = (%1f£,%1£f)\n\n",
ferr_real,ferr_imag);

}
void omega_report ()
{
printf("omi=Y1f, om2=%1f, om3=J1f,\nfi=Y1f, £2=V1f, £3=%1f\n\n",
omega - omega_step, omega, omega + omega_step,
omega_f1, omega_f2, omega_f£3);
}

void Kreal_report ()

{

printf ("kri=Y1f, kr2=)1f, kr3=J1f,

\nf1=Y1f, £2=)1f, £3=%1f\n\n",
Kreal - K_step, Kreal, Kreal + K_step,
Kreal_f1, Kreal_f2, Kreal _£3);
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void Kimag_report ()

{

printf ("ki1=Y%1f, ki2=Y1f, ki3=)1f,

\nf1=1f, £2=)1f, £3=)1f\n\n",
Kimag - K_step, Kimag, Kimag + K_step,
Kimag_f1, Kimag_f2, Kimag_£3);
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