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Abstract16

This paper presents coordinated and fortuitous ground-based and space-borne observa-17

tions of equatorial plasma bubbles (EPBs) over the South American area on 24 Octo-18

ber 2018, combining the following measurements: Global-scale Observations of Limb and19

Disk (GOLD) far-ultraviolet emission images, Global Navigation Satellite System (GNSS)20

total electron content (TEC) data, Swarm in situ plasma density observations, ionosonde21

virtual height and drift data, and cloud brightness temperature data. The new obser-22

vations from the GOLD/UV imaging spectrograph taken at geostationary orbit provide23

a unique opportunity to image the evolution of plasma bubbles near the F-peak height24

over a large geographic area from a fixed longitude location. The combined multi-instrument25

measurements provide a more integrated and comprehensive way to study the morpho-26

logical structure, development, and seeding mechanism of EPBs. The main results of this27

study are as follows: (1) The bubbles developed a westward-tilted structure with 10◦–28

15◦ inclination relative to the local geomagnetic field lines, with eastward drift velocity29

of 80–120 m/s near the magnetic equator that gradually decreased with increasing al-30

titude/latitude. (2) Wave-like oscillations in the bottomside F-layer and detrended TEC31

were observed, which are probably due to upward propagating atmospheric gravity waves32

(AGWs). The wavelength based on the MSTID signature was consistent with the inter-33

bubble distance of ∼500–800 km. (3) The AGWs that originated from tropospheric con-34

vective zone are likely to play an important role in seeding the development of this equa-35

torial EPBs event.36

Plain Language Summary: This study presents multi-instrument observations of37

equatorial plasma density depletions occurred on 24 October 2018 by using Global-scale38

Observations of Limb and Disk (GOLD) far ultraviolet images, Global Navigation Satel-39

lite System (GNSS) total electron content (TEC) data, electron density measurements40

from Swarm satellite, ionosonde measurements, and cloud temperature data. This multi-41

instrument study generated an integrated and detailed image revealing both large-scale42

and meso-scale structures of the equatorial plasma depletion. Our results also suggest43

that atmospheric gravity waves originating from tropospheric convection activity could44

play a significant seeding role in the development of equatorial plasma bubbles.45

1 Introduction46

Equatorial plasma bubbles (EPBs) refer to irregular structures of plasma density47

depletion that are usually observed in the equatorial and low latitude F-region during48

postsunset period. Typical density irregularities within EPBs can have different scale49

sizes of several to hundreds of kilometers, and EPBs can cover a broad altitudinal range50

from the bottomside ionosphere up to ∼1,000 km (Cherniak, Zakharenkova, & Sokolovsky,51

2019; Lühr, Xiong, Park, & Rauberg, 2014). One of the top research priorities in the global52

space weather community is to better understand the generation mechanisms and the53

dynamic features of EPBs, because they can severely disrupt the amplitude and phase54

of trans-ionospheric radio waves so as to cause adverse effects on relevant communica-55

tion and navigation systems. It is generally accepted that EPBs are triggered under a56

favorable condition of the generalized Rayleigh-Taylor (R-T) instability at the bottom-57

side of the F layer, where a steep vertical density gradient forms after the E layer dis-58

appears post-sunset due to high recombination rate. During quiet times, the prerever-59

sal enhancement (PRE) of the zonal electric field is responsible for the enhanced upward60

E×B drift after sunset, which elevates the ionospheric height and subsequently ampli-61

fies the growth rate of R-T instability (Abdu, 2005; Carter, Zhang, Norman, Kumar, &62

Kumar, 2013; Fejer, Scherliess, & de Paula, 1999; Kil, 2015; Woodman & La Hoz, 1976).63

Thus, initial density perturbations at the bottomside F-layer can then evolve into EPBs64

and develop nonlinearly after rising to the topside ionosphere.65
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The morphological features and spatial/temporal variability of EPBs have been widely66

investigated via case studies and statistical analysis using different observational meth-67

ods. For example, the structure of EPBs can be observed from irregular traces of range-68

type equatorial spread F (ESF) in ionograms (Abdu, 2012; Hysell, 2000; Li et al., 2018;69

Tsunoda, 2015). The spatial variation of EPBs can be derived from the dark streaks of70

emission depletion in optical observations from ground-based all-sky imagers (ASIs) or71

space-based ultraviolet imaging spectrographs (e.g., Comberiate & Paxton, 2010; Hickey72

et al., 2018; Kelley et al., 2003; Kil, Heelis, Paxton, & Oh, 2009; Makela, 2006; Marti-73

nis et al., 2015; Otsuka, Shiokawa, Ogawa, & Wilkinson, 2002; Shiokawa, Otsuka, Lynn,74

Wilkinson, & Tsugawa, 2015). In addition, the altitudinal information of irregularities75

embedded within EPBs can be examined through observations of plume-like structures76

from coherent backscatter radar or incoherent scatter radar measurements (Ajith et al.,77

2015; Jin et al., 2018; Li et al., 2013; Rodrigues et al., 2018; Tulasi Ram, Ajith, Yokoyama,78

Yamamoto, & Niranjan, 2017; Yokoyama & Fukao, 2006). Furthermore, the temporal79

variation and occurrence distribution of irregularities/bubbles can be extracted from in80

situ satellite observations, such as the Defense Meteorological Satellite Program (DMSP)81

constellation (Burke, Gentile, Huang, Valladares, & Su, 2004; Burke, Huang, Gentile, &82

Bauer, 2004; C. Y. Huang, Burke, Machuzak, Gentile, & Sultan, 2002), Communications/Navigation83

Outrage Forecasting System (C/NOFS) satellite (C.-S. Huang et al., 2014; Smith & Heelis,84

2017), and Swarm constellation (Xiong et al., 2016; Zakharenkova, Astafyeva, & Cher-85

niak, 2016). Moreover, with the fast-growing and global availability of ground-based Global86

Navigation Satellite Systems (GNSS) measurements and space-based radio occultation87

data, the evolution characteristics of EPBs can be monitored continuously on both global88

or regional scales (e.g., Aa et al., 2018; Barros, Takahashi, Wrasse, & Figueiredo, 2018;89

Buhari et al., 2014, 2017; Cherniak, Krankowski, & Zakharenkova, 2014; Cherniak & Za-90

kharenkova, 2016; Katamzi-Joseph, Habarulema, & Hernández-Pajares, 2017; Ma & Maruyama,91

2006; Nishioka, Saito, & Tsugawa, 2008; Takahashi et al., 2015).92

Although EPBs have been extensively studied for several decades, there are still93

some important and challenging tasks that need to be performed to improve current un-94

derstanding of their detailed spatial/temporal structures and seeding mechanisms. In95

this regard, different instruments have their own advantages and limitations in analyz-96

ing EPBs: (1) Coherent/incoherent scatter radars can monitor irregularities at high spa-97

tial resolution, but their location and field-of-view (FOV) limit their coverage range. (2)98

Optical measurements of ASIs are limited with their field-of-view, and their availabil-99

ity depends on weather conditions. For this reason, multiple ASIs are usually required100

to get a complete evolution of EPBs structures. (3) Low-Earth orbiting (LEO) satellite101

observations can produce in situ density profiles or ultraviolet radiance images of irreg-102

ularities at high spatial resolution, but they can only sample a narrow swath of the EPBs103

structures along the track of the satellite. (4) Global/regional GNSS total electron con-104

tent (TEC) observations can monitor ionospheric variability continuously; however, the105

small-scale structures characteristic of EPBs will sometimes be smoothed out because106

of the integrating nature of the TEC calculation, not to mention huge data gaps which107

still exist over receiver-sparse areas, such as oceans.108

For these reasons, collective analysis of multi-site and multi-instrument measure-109

ments provides an effective way to generate an integrated and comprehensive image for110

specifying both large-scale and mesoscale features of plasma bubbles (e.g., Aa et al., 2019;111

Cherniak et al., 2019). Recently, with the successful launch and deployment of NASA’s112

Global-scale Observations of Limb and Disk (GOLD) mission, an excellent opportunity113

exists to use the unique data-set from the GOLD far ultraviolet (FUV) imaging spec-114

trograph to monitor equatorial ionospheric structure. In this paper, we present coordi-115

nated ground-based and space-borne observations of an EPBs event which occurred on116

October 24, 2018. Our analysis uses multi-instrument measurements: GOLD/UV imag-117

ing spectrograph, TEC from GNSS receiver networks, Swarm in-situ density observa-118

tions, ionosonde measurements, and cloud temperature data. We use these observations119
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to implement a comprehensive analysis of the structural evolution and relevant seeding120

mechanisms of EPBs.121

2 Data Description122

The GOLD mission was launched on 25 January 2018 and started its operational123

observations in October 2018. The main scientific objective of GOLD is to understand124

the “weather” response of the Earth’s thermosphere and ionosphere system to forcing125

from above and below, and the formation and evolution of equatorial plasma bubbles126

is a primary scientific question (Eastes et al., 2017, 2019). Operating at geostationary127

orbit (GEO) over the longitude of 47.5◦W, GOLD has an unparalleled advantage of “star-128

ing” at the American region from a fixed geographic location for extended periods of time,129

providing an exact time-evolving map that can unambiguously specify the spatiotem-130

poral variability of Earth’s thermosphere and ionosphere system. The GOLD instrument131

is a far-ultraviolet imaging spectrograph that measures Earth’s airglow emissions from132

132 to 162 nm, which can be used to infer thermospheric temperature and composition133

on the dayside disk as well as equatorial ionospheric structures on the nightside. The night-134

time disk images of atomic oxygen 135.6 nm emissions, which have a spatial resolution135

∼100 km in the longitudinal direction and ∼50 km in the latitudinal direction, will be136

used in this study to derive valuable information on the low latitude ionosphere.137

Gridded TEC products from the Madrigal distributed data system are also used138

to study EPBs structures. TEC data are produced and provided through the Madrigal139

distributed data system developed at the Massachusetts Institute of Technology (MIT)’s140

Haystack Observatory by using dense networks of worldwide GNSS receivers, and have141

a resolution of 1◦ (latitude) × 1◦ (longitude) × 5 min (Rideout & Coster, 2006; Vier-142

inen, Coster, Rideout, Erickson, & Norberg, 2016). Moreover, ionosonde measurements143

from Sao Luis (2.6◦S, 315.8◦E) and Fortaleza (3.9◦S, 321.6◦E), as well as in situ plasma144

density measurements onboard the Swarm A/C satellites are also used here to analyze145

the characteristics of plasma irregularities.146

Localized gravity waves that originated from the tropospheric convective zone could147

be an essential factor in seeding EPBs, and the deep convection activity can be deduced148

from cloud temperature data. These data are derived from global (60◦S–60◦N) 4-km pixel-149

resolution infrared brightness temperature data, merged from selected geostationary satel-150

lites measurements over the period of record (i.e., Geosynchronous Operational Environ-151

mental Satellites [GOES]-8/9/10/11/12/13/14/15/16, United States; the Meteorolog-152

ical Satellite [Meteosat]-5/7/8/9/10, European Community; Geosynchronous Meteoro-153

logical Satellite[GMS]-5/Multi-functional Transport Satellite[MTSat]-1R/2/Himawari-154

8, Japan) (Janowiak, Joyce, & Xie, 2017).155

3 Results156

EPBs are known to produce optical signatures observed as streaks of reduced emis-157

sion in space-borne ultraviolet imaging spectrographs (Kelley et al., 2003; Kil et al., 2004).158

Figure 1 shows continuous OI 135.6 nm radiance maps observed by GOLD in successive159

disk scans during 21:10–22:55 UT on 24 October 2018. The bright zonal band in the low-160

latitude region paralleling the magnetic equator (red line) is produced by enhanced oxy-161

gen ion density in the equatorial ionization anomaly (EIA) region. The dark streaks that162

cut through the EIA band represent reduced emissions caused by low density within plasma163

bubbles. There are seven discernible dark streaks marked with #1–7 from east to west.164

These streaks elongate from northwest to southeast direction, with a meridional length165

of ∼1,500-2,000 km and inter-bubble distance of ∼500-800 km. Moreover, Figure 2 dis-166

plays similar UV images for later time periods of 23:10–23:55 UT on October 24, 2018.167

The white dotted curves show four different geomagnetic field lines (marked with I, II,168

III, and IV) along which the EPBs were approximately extending. When comparing the169

–4–This article is protected by copyright. All rights reserved.



manuscript submitted to JGR-Space Physics

consecutive images, the EPBs depletion streaks were found to be drifting eastward and170

developing westward-tilted (or backward C-shape) structure. The tilt angle ranges from171

10◦–15◦ relative to the Earth’s magnetic field line (Figure 2c and 2d). The airglow sig-172

nature of EPBs and the tilted structure were also illustrated in simulations (e.g. Ret-173

terer, 2010) and are consistent with the previous ground-based and space-borne obser-174

vations (Jin et al., 2018; Kelley et al., 2003; Kil et al., 2009; Li et al., 2018; Tsunoda, Liv-175

ingston, McClure, & Hanson, 1982), which will be further discussed in the next section.176

Besides the UV images, the EPBs can also be observed in two-dimensional TEC177

maps as a depletion structure perpendicular to the geomagnetic equator. Figure 3 shows178

twelve successive TEC maps over the South American region with 15-min cadence dur-179

ing 21:00–23:45 UT on 24 October 2018. The EIA crests can be seen as two regions with180

enhanced TEC about 10 degrees north and south of the geomagnetic equator (black dot-181

ted line). Two TEC depletion belts are parallel to the magnetic field lines, as highlighted182

by the black dashed lines, which exist over the equatorial region around 45◦W and 40◦W.183

Comparing with the surrounding region, the amplitude of the TEC depletion within these184

EPBs is approximately 10 TEC Unit (TECU, 1016 el/m2). Taking the left-side branch185

of the depletion as an example, we find an onset time of around 22 UT with a subsequent186

gradual extension toward the EIA crest along the geomagnetic field line “I”, which is the187

same field line as that marked in Figure 2. The EPB along field line “II” also exhibited188

similar but weaker evolution.189

Moreover, there are two ionosondes, i.e., Sao Luis and Fortaleza, which are located190

near these two depletion belts and are labeled as asterisk and diamond in Figure 3. Fig-191

ure 4 shows the F-layer bottomside virtual height (h’F), vertical drift velocity, and zonal192

drift velocity measured by these two ionosondes on 24 October 2018 (red), as compared193

with the previous 5-day averaged values (black). It can be seen from the top panels that194

the h’F over Sao Luis exhibited a significant pre-reversal enhancements (PREs, marked195

with an arrow) from 250 km to 360 km at around 21 UT on 24 October, while the 5-day196

averaged peak value of PREs is less than 300 km. A considerable h’F elevation around197

the same time can be also observed for Fortaleza station, with the peak value of PREs198

(310 km) on 24 October larger than 5-day average one (250 km). The corresponding peak199

velocity of vertical drift shown in Figures 4c and 4d, which is 30 m/s over Sao Luis and200

25 m/s over Fortaleza, also displayed considerable increase compared with the 5-day av-201

eraged values (∼10 m/s). These collectively demonstrate the presence of an enhanced202

dusk sector zonal electric field, raising the F layer and amplifying the growth rate of the203

R-T instability to generate the observed EPBs. The zonal drift exhibited eastward ve-204

locity after the PREs.205

The nighttime GOLD/UV OI 135.6 nm images were mainly fixed at the American-206

Atlantic longitudes. The TEC maps have a broader coverage but with data gaps over207

the ocean, especially near the Northern Hemisphere part of the EIA. These two data-208

sets complement each other and thus were combined to generate a map shown in Fig-209

ure 5, which provides a much broader spatial context for EPBs. The extension of EPBs210

to the southern EIA crest and the backward C-shape streak spanning both hemispheres211

are clearly indicated. Furthermore, three consecutive satellite passes of Swarm A/C and212

the corresponding latitudinal profiles of the in situ electron density along these orbits213

are also shown in Figure 5. Both Swarm A and Swarm C flew at the height of ∼450 km214

and were located at nearby longitudes around 09 LT (dayside) and 21 LT (nightside).215

Swarm B is not shown here since it did not pass through the American sector at local216

dusk hours during this period. The signature of plasma irregularities can be clearly seen217

in orbit #1 (17.0◦W) of Swarm A during 22:00–22:30 UT and orbit #5 (39.0◦W) of Swarm218

C during 23:30–00:00 UT, where considerable plasma density bite outs with sawtooth-219

like irregular fluctuations were measured near the magnetic equator (horizontal dotted220

line). This revealed the presence of small-scale density fluctuations within the EPBs seen221

in the GOLD/UV imaging and GNSS TEC results. Although Swarm A and C were very222
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close to each other and passed the EPBs nearly the same time, there are certain spatial223

differences in the small-scale structures that are observed by them (e.g., compare pan-224

els 1 and 4).225

4 Discussion226

First, the development of the westward tilt (or backward C-shape) of the EPBs de-227

pletion has been clearly shown in GOLD/UV optical images in Figure 1 and Figure 2.228

This shape has previously been suggested to be caused by latitudinal variation of zonal229

plasma drift and/or the polarization electric field inside the EPBs. As described in the230

principle of F-region dynamo theory (Rishbeth, 1997): the neutral wind in the post-sunset231

sector is typically eastward at low latitudes, which generates a downward F-region dy-232

namo electric field. This vertical electric field further drives an eastward E × B drift of233

the F-region plasma with nearly similar velocities as the neutral wind. During this study234

event, estimation of the eastward drift velocity of 80–120 m/s near the magnetic equa-235

tor can be achieved through comparing the differences (∼2◦–3◦) of the central location236

of the dark streaks #1 between Figure 2a and 2d, which is consistent with the zonal drift237

velocities measured by ionosondes in Figures 4e and 4f and previous experimental/modeling238

studies of EPBs zonal drift velocities (e.g. Chapagain et al., 2012; Gurav et al., 2018; Huba,239

Ossakow, Joyce, Krall, & England, 2009; Sun et al., 2016). Furthermore, both numer-240

ical calculations and in situ observations have previously shown that this zonal plasma241

eastward drift often decreases with increasing altitude/latitude and thus forming a back-242

ward C-shape (e.g., Kil, Kintner, de Paula, & Kantor, 2002; Martinis, Eccles, Baumgard-243

ner, Manzano, & Mendillo, 2003; Pimenta, Fagundes, Sahai, Bittencourt, & Abalde, 2003).244

On the other hand, Kil et al. (2009) and C.-S. Huang et al. (2010) suggested that a po-245

larization electric field can develop inside the plasma depletion region due to conductiv-246

ity gradients, which can also retard the eastward flow of the plasma depletion structures.247

Second, in addition to generally favorable condition for the R-T instability created248

by the usual Pre-reversal enhancement, various mechanisms have been proposed as pos-249

sible seeding factors that can trigger initial plasma density perturbations on the bottom250

side F layer. These include: (1) Enhanced zonal eastward electric field due to solar wind-251

magnetosphere-ionosphere coupling processes. The prompt penetration electric field (PPEF)252

from high latitude to low latitude can increase the F-layer vertical drift on the daytime253

through dusk sectors and thus facilitate the development of EPBs (Abdu et al., 2003;254

Basu et al., 2007; Ebihara & Tanaka, 2015; Tulasi Ram et al., 2008). (2) Gravity waves255

(GWs) from the lower atmosphere. Gravity waves generated by upward propagating me-256

teorological processes in the lower atmosphere may modulate the bottomside F-layer plasma,257

producing large-scale wave structures (LSWS) with periodic spacing, which may accel-258

erate the F-layer uplifting and trigger EPBs (Abdu et al., 2009; McClure, Singh, Bamg-259

boye, Johnson, & Kil, 1998; Retterer & Roddy, 2014; Tsunoda, 2010; Tsunoda et al., 2011;260

Tulasi Ram et al., 2014). (3) Neutral wind shear. Some studies suggested that vertical261

shear in the zonal winds could cause wave-like vortex, which has a rapid growth rate that262

can seed the R-T instability and initiate plasma irregularities (Hysell, Kudeki, & Chau,263

2005; Hysell, Larsen, Swenson, & Wheeler, 2006; Kudeki, Akgiray, Milla, Chau, & Hy-264

sell, 2007). (4) Nighttime medium-scale travelling ionospheric disturbances (MSTIDs)265

due to Perkins/Es instabilities (Perkins, 1973). The polarization electric field within MSTIDs266

can map along the geomagnetic field lines to the equatorial bottomside F layer to ini-267

tiate the EPBs (Krall et al., 2011; Miller, Makela, & Kelley, 2009; Taori et al., 2015; Val-268

ladares & Sheehan, 2016).269

For the current EPBs case, the geomagnetic activity condition was relatively quiet270

on 24 October 2018 with the interplanetary magnetic field (IMF) Bz close to zero and271

no geomagnetic storm or substorm onset within a few hours before the observed EPBs272

(Figure 6a). The possibility of significant external driving forces (e.g., interplanetary elec-273

tric fields) from the magnetosphere for EPBs in the postsunset sector is unlikely under274
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this circumstance. Figure 6b displays the rate of TEC index (ROTI) map to illustrate275

the ionospheric irregularities between 35◦W and 55◦W over the South American sector.276

Next, we discuss the possibility of forcing from below. Figure 6c shows the temporal vari-277

ation of the electron density profile at Sao Luis between 12 and 24 UT on October 24,278

2018. Of particular note, the ionosonde-retrieved topside profile above the F2 peak is279

obtained assuming a α-Chapman shape of plasma distribution (Reinisch & Huang, 2001),280

and thus only the bottomside profile should be examined. Three continuous quasi-periodic281

(∼50 min) wave-like modulations of the bottomside F-layer height marked by white ar-282

rows can be clearly seen between 22–24 UT. Moreover, Figure 6d shows the F-layer true283

height as observed by the digisonde at specific plasma frequencies (3.0–6.5 MHz) over284

Sao Luis, plotted from 18 UT to 24 UT. There was a clear downward phase propaga-285

tion (marked with a dashed line), which identifies the possible presence of atmospheric286

gravity waves (Abdu et al., 2009; Mandal et al., 2019). Furthermore, Figure 6e shows287

a keogram plot of detrended TEC as a function of latitude and time at 48◦W longitude288

that around the EPBs region. Detrended TEC was calculated using the same method289

mentioned in Coster et al. (2017) and Zhang et al. (2017), where 1-hour TEC moving290

average was subtracted. Medium-scale travelling ionospheric disturbances (MSTIDs) that291

represent the ionospheric signature of atmospheric gravity waves are clearly observed in292

detrended TEC. Several possible TID wavefronts (marked with dashed lines) can also293

be clearly seen with an estimated propagation velocity of ∼200–300 m/s and wavelength294

of ∼500–800 km. The latter is close to the value of inter-bubble distance shown in GOLD/UV295

and TEC images. Many studies have demonstrated that such atmospheric gravity waves296

can be generated in the tropospheric convective region near the inter-tropical convergence297

zone (ITCZ) and can grow exponentially when propagating all the way upward into the298

thermosphere-ionosphere system before being entirely dissipated (Li et al., 2016; Vadas,299

2007; Yiǧit et al., 2012; Yizengaw & Groves, 2018). However, considering that troposphere300

excitation sources can be highly mobile and that wave propagation along the long path301

is strongly influenced by low atmosphere variability, the manifestation of TIDs in the keogram302

might not be so regular and well-organized. Thus, in order to further specify the poten-303

tial source of the AGW/TIDs, Figure 6f shows an observation of deep clouds in bright-304

ness temperature at 22 UT on 24 October 2018. The purple to blue areas in South Amer-305

ican and West African areas indicates that temperature was lower than 210 K, a signa-306

ture suggesting that the tops of thunderstorms protrude well into the tropopause region307

(Hoffmann & Alexander, 2010). Such objects are referred to as deep convective clouds308

and can be an important source for the generation of upward propagating AGWs (e.g.,309

Azeem et al., 2015; Jonah et al., 2018; Vadas & Liu, 2009). In particular, these studies310

indicated that concentric secondary gravity waves and TIDs with a wavelength of sev-311

eral hundred to thousand kilometers can be triggered by troposphere convection and de-312

tected at ionospheric heights. The deep convection activity shown here occurred in the313

local afternoon and continued for several hours, which was during the similar periods and314

in locations adjacent to where the MSTIDs were observed. Therefore, the combination315

of these mutually supportive pieces of evidence collectively suggests that convectively316

induced AGW/TIDs could have seeded the EPBs in this current case.317

5 Conclusion318

This paper presents coordinated ground-based and space-borne observational anal-319

ysis of equatorial plasma bubbles over the South American area on 24 October 2018. The320

morphological structure and seeding mechanism of the bubbles were analyzed by using321

multi-instrument measurements, including the GOLD/UV imaging spectrograph, GNSS322

TEC maps, Swarm in situ electron density data, ionosonde measurements, and cloud tem-323

perature data. The new observations provided by GOLD/UV geosynchronous images324

provide a unique tool for studies of plasma irregularity evolution and equatorial iono-325

spheric dynamics from a fixed longitude location. Furthermore, a combination of differ-326

ent measurements provides a powerful tool for the space weather community to achieve327
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a more integrated and detailed view on plasma irregularity structure. The main results328

can be summarized as follows: (1) The plasma depletion developed westward-tilted struc-329

ture of 10◦–15◦ relative to the Earth’s magnetic field line, with an eastward drift veloc-330

ity of 80–120 m/s near the magnetic equator that gradually decreased with increasing331

altitude/latitude. (2) Wave-like oscillations of travelling ionospheric disturbances were332

observed both in ionosonde electron density profiles and detrended TEC keograms. Ob-333

served wavelengths were consistent with inter-bubble distances of 500–800 km. (3) At-334

mospheric gravity waves originating from the tropospheric convective zone are suggested335

to be a possible seeding process for the development of this EPBs event.336
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a) 2018-Oct-24 21:10 & 21:25 UT
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Figure 1. OI 135.6 nm radiance maps observed in successive disk scan of GOLD/UV night-

time imaging during 21:10–22:55 UT on 24 October 2018. The dark streaks marked by different

numbers represent the optical signature of EPBs. The geomagnetic equator is also shown by red

dashed lines. GOLD = Global-Scale Observations of the Limb and Disk; UV = ultraviolet; EPBs

= equatorial plasma bubbles.

–9–This article is protected by copyright. All rights reserved.



manuscript submitted to JGR-Space Physics
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Figure 2. The same as Figure 1, but during the time interval of 23:10–23:55 UT on 24 Oc-

tober 2018. The white dotted curves show 4 different geomagnetic field lines that go across the

EPBs. EPBs = equatorial plasma bubbles.
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Figure 3. Gridded TEC maps over South American regions with 15-min interval during

21:00–23:45 UT on 24 October 2018. The ionosonde stations of Sao Luis and Fortaleza are

marked with asterisk and diamond, respectively. Two geomagnetic field lines (“I” and “II”) that

go across the EPBs are marked in dashed lines, and the geomagnetic equator is shown in dotted

line. EPBs = equatorial plasma bubbles.
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Figure 4. The temporal variation of ionospheric h’F, F layer vertical drift, and zonal drift

velocity observed at Sao Luis (left panels) and Fortaleza (right panels) during the period of 24–25

October 2018. The black lines represent the values of previous 5-day average. The vertical dotted

line represents the local sunset. The error bars represent the velocity spread.
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Figure 5. (a) Combined global map of GNSS TEC and OI 135.6 nm radiance of GOLD/UV

imaging at 22:10 UT with three consecutive satellite paths of Swarm A. (b) Variation of in situ

electron density as a function of latitudes along these paths. (c, d) The same as Figures 5a and

5b, respectively, but at 23:40 UT and for Swarm C satellite paths. The shaded areas represent

certain plasma depletions. The magnetic equator is marked by solid line in left panels and dotted

line in right panels. GNSS = global navigation satellite system; TEC = total electron content;

GOLD = Global-Scale Observations of the Limb and Disk; UV = ultraviolet.
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Figure 6. (a) Temporal variation of interplanetary magnetic field (IMF) Bz, the longitudi-

nal asymmetric index (ASY-H), and the symmetric index (SYM-H) between 12 and 24 UT. (b)

Rate of TEC Index plot at 23:30 UT. (c) Electron density profile and hmF2 at Sao Luis between

12 and 24 UT. Three quasi-periodic wave-like structures are marked by arrows. (d) Variation

of F-layer true heights for different frequencies (3.0–6.5 MHz) at Sao Luis. (e) Keogram plot of

detrended total electron content (TEC) as a function of latitude and time at 48◦W longitude

between 18 and 24 UT. The TID structures are marked by dashed lines. (f) Observation of deep

clouds in brightness temperature at 22 UT. All six images are for 24 October 2018.
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