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Abstract

We put forward a new extensive-form mechanism that, in a general context with perfectly informed players
and quasi-linear utilities,

• Virtually achieves optimal revenue at a unique subgame-perfect equilibrium;
• Is perfectly resilient to the problems of collusion, complexity, and privacy; and
• Works for any number of players n > 1.

1 Introduction

1.1 Our Goal

We consider contexts with quasi-linear utilities, non-negative valuations, and perfect knowledge. Informally,
these are contexts where there are finitely many states; each player i’s has a a true type θi specifying a
value θ(ω) ≥ 0 for each possible state ω; the true-type profile θ is common knowledge among the players; an
outcome is a pair (ω, P ) where ω is a state and P a profile of prices (reals); and player i’s utility in such an
outcome is θi(ω)− Pi.

In such contexts, without any information about the players, we wish to find a mechanism yielding an
outcome (ω, P ) with maximum revenue, that is, such that

∑
i Pi is maximum. If the players are rational

and cannot be forced to accept negative utilities, such maximum revenue is upperbounded by the maximum
social welfare, that is the value

MSW = max
ω∈Ω

∑
i

θi(ω).

But since the players must be incentivized to participate in the mechanism, we are happy to “virtually”
achieve optimal revenue. That is, for any given ε > 0, we seek a mechanism producing an outcome (ω, P )
such that ∑

i

Pi ≥ (1− ε)MSW.

This indeed is a classical goal, and several mechanisms have been proposed for achieving it. But we are
interested in achieving virtually optimal revenue in a much more robust way than considered so far: namely,
by means of mechanisms resilient to the problems of equilibrium selection, collusion, complexity, and privacy.
Let us explain.
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The Problem of Equilibrium Selection (and Equilibrium Failure) Some mechanisms achieve a
desired social-choice property P “at a Nash Equilibrium.” Such mechanisms provide only a weak guarantee
that P might hold for the final outcome of the game. This is so because there may be several Nash equilibria,
while P holds for just some of them. Furthermore, if such mechanisms were of normal form, then the existence
of multiple equilibria might actually make it unlikely for the players to reach any equilibrium.1 Thus, even
if a given social-choice property P holds at each possible equilibrium, P may not hold in a real play.

The Problem of Collusion In equilibrium-based mechanism design, the problem of collusion often arises
for quite natural reasons. Any equilibrium, even a dominant-strategy one, only guarantees that no single
player has incentive to deviate from his strategy. However, two or more players may have all the incentive
in the world to jointly deviate from their equilibrium strategies. Accordingly, the actual profile of strategies
played out may not be an equilibrium at all.2

The Problem of Complexity The execution of any mechanism relies on two main resources: commu-
nication and computation. The first resource relates to the number of bits exchanged, and the latter to
the number of elementary computations performed. (Note that “communication lowerbounds computation”
because any bit sent must, at least, be read.) Often, however, the required amount of these resources is
exponential in some relevant parameters (such as the number of players). And when this is the case, a
mechanism will in practice fail to reach its objective, except when played in a “tiny” context. Else, designers
and players alike will die way before the final outcome will be computed.

The Problem of Privacy By definition, an outcome resulting from the rational play of a mechanism
betrays some information about the players’ true types. We regard this “loss of privacy” as intrinsic.
Typically, however, mechanisms ask the players to reveal much more information about themselves than
that deducible from the outcomes: very often they ask the players to reveal their entire true types. This
additional loss of privacy, as argued by [6], has the potential of distorting incentives, and thus of preventing
the achievement of the designer’s goals. Players who value their privacy de facto receive a negative utility
when revealing their true types. Thus, when a mechanism asks such players to so reveal themselves, it
simultaneously provides them both with positive and negative incentives, so that it may no longer be clear
how these opposing forces will balance out.

1.2 Relevant Prior Mechanisms

Mechanisms that, in our perfect-knowledge contexts, achieve our goal at just one equilibrium are easy to
design, but also totally vulnerable to the crucial problems of equilibrium selection and equilibrium failure.3

When there are at least 3 players perfectly informed about each other, the general normal-form mechanism
of Jackson, Palfrey, and Srivastava [7] can achieve any social-choice property, and thus our goal as a special

1For instance, assume that there exist two equilibria, σ and τ , and that some players believe that σ will be played out, while
others believe that τ will. Then, rather than an equilibrium, a mixture of σ and τ will be played out, so that P may not hold.
Of course, this problem worsens as the number of players and/or equilibria grows.

2In a second-price auction, although the mechanism is dominant-strategy, if the players with the highest two valuations for
the item on sale collude, then the revenue generated drops from the second-highest to the third-highest valuation. As for a more
extreme example, Ausubel and Milgrom [2] show that, in a combinatorial auction, two sufficiently informed players can totally
destroy the economic efficiency of the VCG mechanism [?, ?, ?], although it too is dominant-strategy.

3Consider the following normal-form mechanism, which we term hope-for-the-best: Each player reports the (alleged) true-
type profile. If all reports coincide with the same profile t, then (1) choose the state ω = argmaxx

∑
i ti(x), and (2) choose each

price Pi to be ti(ω), minus a small discount ε. Else, choose the “null outcome” (⊥, 0n).
Clearly, truthfully reporting the players’ types is a Nash equilibrium yielding virtually maximum revenue. However, hope-

for-the-best also has additional equilibria Ex, where in Ex all players report all true valuations divided by x. Thus, the truthful
equilibrium is E1, and in each Ex the utility of each player is increased by a factor x, and the money collected is a fraction 1/x
of the maximum possible revenue. Accordingly, hope-for-the-best is extremely vulnerable to equilibrium selection: not only
it has many equilibria, but the players actually prefer any one of them to the single one achieving maximum revenue.
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case. But their mechanism continues to be vulnerable to equilibrium selection, although to a lesser extent.4

In addition, their mechanism is also vulnerable to collusion and privacy.
Again when there are at least 3 players perfectly informed about each other (as long as some additional

technical conditions are satisfied), the classical normal-form mechanism of Abreu and Matsushima [1] can
achieve our goal, since it too “virtually” achieves essentially all social-choice properties. The main advantage
of their normal-form mechanism is that it is invulnerable to equilibrium selection or failure. This is so
because a single equilibrium survives the iterative elimination of strictly dominated strategies. However,
their mechanism is very vulnerable to collusion, complexity, and privacy. More precisely,

1. It is totally vulnerable to collusion. That is, every pair of players (i, j) could jointly and profitably
deviate from their equilibrium strategies. And in our application, when such a deviation occurs the
revenue cannot be maximum.

2. Its communication complexity (and thus its computational complexity) is doubly exponential in k.
Here k denotes the number of bits required to specify the value that a player has for a given state.

3. It has maximum privacy loss. That is, it requires the players to reveal their true types in their entirety.

A variant of this mechanism was put forward by Glazer and Perry [5]. Their mechanism is of extensive form
and complete information, and virtually achieves essentially all social-choice properties at a unique subgame-
perfect equilibrium. Accordingly, their mechanism too is invulnerable to equilibrium selection. However, the
Glazer-Perry mechanism continues to be vulnerable to collusion, complexity and privacy problems. More
precisely, its vulnerability to collusion and privacy is identical to that of the Abreu-Matsushima mechanism,
while its communication complexity is exponential in k.

1.3 Our Results

Informally, like Glazer and Perry, we put forward an extensive-form mechanismM of complete information,
that, in all contexts with quasi-linear utility and non-negative valuations in which the players are perfectly
informed about each other, yields a game with a single subgame-perfect equilibrium. At this equilibrium, our
mechanism generates virtually maximum revenue. Our M too, therefore, is immune to equilibrium selection
problems. In addition, it satisfies the following new properties:

• M works for any number of players n > 1.
• M has perfect collusion resilience.
• M has perfect communication complexity.
• M has perfect privacy.

By saying that M has perfect collusion resiliency we mean that M generates virtually optimal revenue,
unless all players belong to the same coalition. In our collusive model, players are free to coordinate their
actions as they please (e.g., by entering binding contracts with each other and by making side-payments to
each other). Therefore M ’s collusion resiliency is indeed best possible: when all players belong to the same
coalition and coordinate each other so that the strategy profile appears to be consistent with a different
true-type profile, no mechanism can guarantee anything. In our collusive model each coalition is assumed to
act so as to maximize the sum of the individual utilities of its members, and the players know who colludes
with whom —a natural choice, since we are dealing with perfectly informed players. (Notice that modeling

4The point is that the JPS mechanism has plenty of other equilibria σ that generate smaller revenue while being more attractive
to all players. As in the case of hope-for-the-best of Footnote 2, each such σ consists of reporting all true valuations divided
by the same factor x. To be sure, this time each component σi is weakly dominated by some other strategy σ′

i. This means
that, in all cases (i.e., for all possible subprofiles of strategies for the other players) σi provides no more utility to i than σ′

i

does, while in at least some cases σi provides less utility to i than σ′
i. But in the JPS mechanism this happens in only one case:

when all other players “suicide” (i.e., when all other players deliberately choose the worst possible strategies for themselves).
Thus, as long as a single player does not believe that all others will commit mass suicide, all players prefer σ to the truthful and
revenue-maximizing equilibrium τ .
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the players as also knowing who colludes with whom would not help the above discussed prior mechanisms
to be collusion-resilient.)

By saying thatM has perfect communication complexity we mean that, atM’s unique subgame-perfect
equilibrium, the total number of bits exchanged is at most that required to specify an outcome plus 2 bits
per player. (Notice that, since our states and types are totally abstract, one cannot analyze the computation
requirement of our players. That of the mechanism are instead trivial no matter what.)

By saying thatM has perfect privacy we mean that, atM’s unique subgame-perfect equilibrium, nothing
can be learned about the players’ types, by the mechanism designer or any observer of the play, except for
what is deducible from a perfect-revenue outcome.

2 Preliminaries

Basic Notation
• Integers and Reals. We denote by Z the set of integers, by Z+ the set of non-negative integers, by R the

set of real numbers, and by R+ the set of non-negative reals.
• Subprofiles. A subprofile is a vector indexed by a subset of the players. We refer to a subprofile
V = {Vi : i ∈ S} as a subprofile over S. To emphasize that V is a subprofile over S we may write VS .
• Plays. We may also refer to a strategy profile of a mechanism M as a play of M . For a play σ of M ,
M(σ) denotes the corresponding outcome, or distribution over outcomes if M or the σi are probabilistic.

Our Contexts A collusive context C with quasi-linear utilities and non-negative valuations (a collusive
QLU+context for short) is identified by four components, C = (N ,Ω, T , θ,C), where
• N , is a finite set of players: N = {1, . . . , n}.
• Ω, is a finite set of states;
• T is a profile, where each Ti is a set, the set of i’s types. Each type maps Ω to Z+, and ⊥ to 0.
• θ is a profile, where each θi, i’s true type, is a member of Ti; and
• C is a non-trivial partition of N .

In C, the components N , Ω, and T are common knowledge to everyone. By saying that C is perfect-knowledge
we mean that θ and C are also common knowledge to the players (but not to the designer).

The set of outcomes of C is Ω× Rn. The null outcome consists of (⊥, 0n). If O = (ω, P ) is an outcome,
we refer to ω as O’s state; to P as O’s price profile; to each Pi as the price of i; to

∑
i θi(ω) as O’s social

welfare; and to
∑

i Pi as O’s revenue. The maximum social welfare of C, denoted by msw(C), is defined to
be max

ω

∑
i θi(ω).

For each player i, i’s utility function ui in C is so defined: for each outcome (ω, P ), ui(ω, P ) = θi(ω)−Pi.
If D is a distribution over outcomes, i’s utility for D is denoted by Ui(D) and is defined to be ED[ui(ω, P )].

If S is a subset in C, then S represents the maximal subset of players colluding with each other, and S’s
members act so as to maximize the sum of their (individual) utilities. A collusive set is a member of C with
cardinality greater than 1. A player i is independent if {i} ∈ C. The context is non-collusive if all players are
independent. If C is a non-collusive context, we may more simply write C = (N ,Ω, T , θ).

Our Mechanisms We solely consider mechanisms of extensive form and complete information. Accord-
ingly, each mechanism M specifies
• a finite game tree T ;
• an outcome for each leaf (terminal node) of T ; and
• for each internal node (decision node) X of T , a player PX (the acting player) and an action set AX

consisting of the set of children of X.
In M , a (pure) strategy for a player i specifies an action in AX for each decision node X for which i = PX .
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Games A game G consists of a context C and a mechanism M : G = (C,M).

Subgame-Perfect Equilibria Since in a perfect-knowledge collusive QLU+context C all players know
the utilities of all other players, and all mechanisms M we consider are of extensive form and complete
information, the traditional notion of subgame-perfect equilibrium applies to the games G = (C,M). Recall
that such an equilibrium is a strategy profile σ such that, for each decision node N in G’s game tree, letting
GN be the subgame of G rooted at N , and letting σN be the restriction of σ to GN , then σN is a Nash
equilibrium of GN .

3 Our Mechanism

In describing our M, for clarity only, we make use of multiple “steps taken by the mechanism.” These are
marked by letters and interspersed with the players’ steps, which are marked by numbers. (In reality, only
the players act until a terminal node is reached.)

Our M works for any QLU+context (N ,Ω, T , θ,C), if its parameters are chosen as follows.

• ε and each εij , for i ∈ {2, . . . , n} and j ∈ {1, . . . , n}, are constants so that
1

5n > ε > ε21 > · · · > ε2n > ε31 > . . . > ε3n > · · · > εn1 > · · · > εnn > 0.
• nr is the cardinality of Or, the set of outcomes with price profiles in (Z+)n and revenue equal to r. For

any (ω, P ) ∈ Or, fr(ω, P ) is the rank of (ω, P ) in Or —whose outcomes are ordered considering first
their states, in lexicographical order, and then their price profiles, in the order in which P precedes P ′

if (1) Pj = P ′j for all j ≤ i and (2) Pi+1 > P ′i+1. (Therefore, 0 ≤ fr(ω, P ) < nr.)

Mechanism M

a: Set ω = ⊥, and Pi = 0 ∀i.

Comment. (ω, P ) will be the final outcome of M.

1: Player 1 announces a state ω? and a profile K of non-negative integers.

Comment. (ω?,K) is player 1’s proposed outcome, allegedly an outcome of maximum revenue.
In the unique rational play of M, ω? is guaranteed to be the final state ω if

∑
j Kj > 0.

b: If
∑

iKi = 0, the mechanism ends right now.

[2, n]: In Step i ∈ [2, n], player i announces a profile ∆i of non-negative integers such that ∆i
i = 0.

Comment. i suggests to raise the current price of j, that is Kj +
∑i−1

`=2 ∆`
j , by the amount ∆i

j .

c: For each player i, publicly select bipi and P ?
i as follows. Let Ri = {j : ∆j

i > 0}. If Ri 6= ∅, then bipi

is the lexicographically highest player in Ri, and P ?
i = Ki +

∑bipi

`=2 ∆`
i . Else, bipi = 1 and P ?

i = Ki.

Comment. bipi is the “best informed player about i”, and P ?
i the “provisional price of i.”

[n+ 1, 2n]: In Step n+ i, if P ?
i > 0, player i announces YES or NO.

(By default, i announces YES if P ?
i = 0, and player 1 announces YES if bip1 = 1.)

Comment. Each player i announces YES or NO assuming that (1) the final state is ω? and (2) his
final price is P ?

i − ε− δi, where
• ε is our predetermined constant, and thus a fixed, small but positive discount due to any

player if this stage of the mechanism is reached, and
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• δi is a variable, small and non-negative “knowledge discount” offered to player i. This discount
depends on the amount of knowledge contributed by i. The knowledge contributed by player
1 consists firstly of the revenue and secondly of the rank of his proposed outcome. The
knowledge contributed by any other player consists of all price raises he proposes.

By default, player 1 accepts his own price if no one raises it.
At this point the players are done playing, and the mechanism proceeds as follows. If all players
announce YES, the so ε, δ-discounted outcome (ω?, P ?) is implemented with probability 1. Else:
• With high probability the final state is ⊥, the best-informed players of the players announcing

NO are punished with suitably high fines, and all other players pay nothing.
• With very small probability, but proportional to the number of players saying YES, the ε, δ-

discounted outcome (ω?, P ?) is implemented as if all players said YES.
• With complementary probability the (only δ-discounted) null outcome is chosen.

Therefore, any independent player i who has a non-negative utility for the outcome (ω?, P ?) strictly
prefers announcing YES, regardless of (1) what the other players announce and (2) whether he is
in line for punishment —for having raised the price of some players too much and become their
best informed player. In fact, if the ε, δ-discounted outcome (ω?, P ?) were to be implemented in
the end, his utility would be ≥ ε + δi, while his utility for the δ-discounted null outcome (⊥, 0n)
would be exactly δi.

d: If all players announce YES, then reset ω to ω?, and each Pi to P ?
i − ε. Then, go to Step g.

e: Publicly flip a biased coin c1 such that Pr[c1 = Heads] = 1− ε.
If c1 = Heads, reset Pbipi

to Pbipi
+ 2P ?

i for each player i announcing NO and go to Step g.

f: Publicly flip a biased coin c2 such that Pr[c2 = Heads] = Y
nB , where Y is the number of players

announcing YES, and B =
∑

i announces NO

P ?
i .

If c2 = Heads, reset ω to ω? and each Pi to P ?
i − ε.

Comment. If c2 =Tails, ω and P continue to be ⊥ and (0, . . . , 0).

g: Reset each Pi to Pi − δi, where

δ1 = 2ε
∑

j Kj − εfr(ω?,K)
nr

, where r =
∑

j Kj, and, for i 6= 1

δi =
∑

j ε
i
j∆

i
j.

Comment. Although some players’ prices may be negative, the mechanism never loses money, and
in the unique rational play the utility of every player is non-negative. Note that, by ending in
Step b when

∑
j Pj = 0, M avoids losing money (due to its “reward program”) if no player raises

prices.

4 Traditional Analysis of Our Mechanism

Let us first analyze our mechanism disregarding collusion, complexity and privacy.

Notation If N is a decision node of an extensive-form game G, and σ a strategy profile of G. Then GN

denotes the subgame rooted at N ; σN the restriction of σ to the subgame GN ; and σi(N), if i is the player
acting at N , the action that σi specifies for i at N .

We define the depth of a node N in M’s game tree to be the number of nodes in the path from the root
to N . That is, N ’s depth is d if there is a sequence of nodes x1, . . . , xd such that x1 is the root, each xi+1 is
a child of xi, and xd is node N . Accordingly, the depth of the root is 1.
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Note that the maximum depth of a decision node inM’s game tree is 2n. In fact, unless player 1 ends the
mechanism right away by proposing an outcome of 0 revenue, each player acts exactly twice. More precisely,
at any node of depth d ∈ [1, n] the acting player is d, and at any node of depth d ∈ [n+ 1, 2n] is d− n.

Definition 1. For any game (C,M), where C = (N ,Ω, T , θ) is a perfect-knowledge non-collusive QLU+context,
we denote by θ the strategy profile defined as follows: for each decision node N ,

• If N has depth d ∈ [n+ 1, 2n], then θd−n(N) consists of announcing Y ES if θd−n(ω?) ≥ P ?
d−n, and NO

otherwise.
• If N has depth d ∈ [2, n], then θd(N) consists of announcing ∆d such that, for j 6= d,

∆d
j = max

(
0, θj(ω?)−Kj −

∑d−1
`=2 ∆`

j

)
.

• If N has depth 1, then θ1(N) consists of announcing ω? = argmaxω

∑
i θi(ω) and Ki = θi(ω?) for all i.

(We purposely chose the symbol “θ” to be graphically similar to the symbol “θ”. In fact, the latter
represents the true-type profile, and former the “truthful strategy profile”, where the players truthfully use
their knowledge of θ so as to produce an outcome of virtually maximum revenue.)

Since in M the parameter ε can be chosen to be arbitrarily small, to prove that M generates virtually
maximum revenue at a unique subgame-perfect equilibrium (without imposing arbitrarily high prices), it
suffices to prove the following.

Theorem 1. In any game (C,M), where C = (N ,Ω, T , θ) is a perfect-knowledge non-collusive QLU+context,
the following three properties hold:

P1. θ is the unique subgame perfect equilibrium.
P2. if M(θ) = (ω, P ), then (P2.1)

∑
i θi(ω) = msw(C), and (P2.2)

∑
i Pi ≥ (1− 3εn) ·msw(C).

P3. Ui(M(θ)) ≥ 0 for each player i.

Proof. Let C be as per our hypothesis, and let G = (C,M). Then, as proven in the next three subsections,
the following lemmas hold.

Lemma 1. If N is a node of depth d ∈ [n+ 1, 2n], then θ
N is the unique subgame-perfect equilibrium of GN .

Lemma 2. If N is a node of depth d ∈ [2, n], then θ
N is the unique subgame-perfect equilibrium of GN .

Lemma 3. If N is the root, then θ
N is the unique subgame-perfect equilibrium of G.

Notice that Property P1 coincides with the statement of Lemma 3. Here, therefore, we only prove
Properties P2 and P3. Set MSW = msw(C). By definition, when player 1 follows strategy θ1 he announces
ω? and K such that

∑
i θi(ω?) = MSW and Ki = θi(ω?) for all i.

As for Property P2, we distinguish two cases: MSW = 0 and MSW > 0. In the first case,
∑

iKi = 0,
and thusM ends in Step b, with state ω =⊥ and each price Pi = 0. Since θi(⊥) = 0 for each i, we have that∑

i θi(⊥) = 0 =
∑

i Pi, that is, the revenue equals the maximum social welfare. Therefore Property P2 holds.
In the second case,

∑
iKi > 0 so that M ends at Step g. Moreover, under strategy profile θ no player i

raises any price (i.e., ∆i
j = 0 for all j) in Steps 2 through n, and all players say YES in Steps n+ 1 through

2n, so that M sets the final state to ω? and each price Pi to Ki − ε − δi. In the case under consideration,
the knowledge reward δi for each player i 6= 1 is 0, and for player 1 is δ1 = 2εMSW − εfr(ω?,K)

nr
. Now, since

δ1 < 2εMSW , the final revenue of the mechanism (including all rewards) is∑
i

Pi = MSW − nε− δ1 > MSW − nε− 2εMSW > MSW − nεMSW − 2εMSW = (1− 3εn)MSW,

where the second inequality holds because, types being integral functions, MSW is a positive integer. There-
fore Property P2 holds.

As for property P3, if each θi is identically 0 over Ω, then Ui(M(θ)) = Ui(⊥, 0n) = 0 for every i. Otherwise,
Ui(M(θ)) = ε > 0 for every i 6= 1 and U1(M(θ)) = ε+ δ1 > 0. Thus Property P3 holds too.
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Remark By giving each player i an extra discount ε in Step g,M could guarantee an additional property.
Namely, it could guarantee that the utility of each player i choosing θi as his strategy to be non-negative
whenever all players announces YES or NO rationally, even if some other player j acted irrationally and
raised i’s price beyond θi(ω?).

This additional property is important when dealing with players of limited rationality. Indeed, for each
player, given a state and a price for him to pay, saying YES or NO correctly requires minimum rationality;
however, given a reward proportional to the amount of price-raise suggested by him, suggesting a price-
raise correctly depends on a correct reasoning about the other players’ strategies, and thus requires “more
rationality.”

4.1 Proof of Lemma 1

Lemma 1. If N is a node of depth d ∈ [n+ 1, 2n], then θ
N is the unique subgame-perfect equilibrium of GN .

Proof. To prove our lemma it suffices to show that, in any subgame-perfect equilibrium σ, i announces YES
in Step n+ i if θi(ω?) ≥ P ?

i , and NO otherwise. The proof is by induction on the depth d of N .

Base Case. In this case the depth is d = 2n and the acting player is n. We distinguish between two cases.
Case 1: P ?

n ≤ θn(ω?). In this case, regardless of the number of the other players who announced YES
before him, if player n announces YES he increases the chances that the final outcome is the properly ε, δ-
discounted version of (ω?, P ?). Now, because in such a final outcome he pays at most P ?

n−ε−δn, and because
his true valuation for ω? is at lest P ?

n , player n has utility at least ε+ δn, and strictly prefers this outcome to
the only δ-discounted null outcome (⊥, 0n), where his utility is exactly δn. Therefore, it is strictly dominant
for n to announce YES in Step 2n, as we wanted to show.

Case 2: P ?
n > θn(ω?). In this case, again regardless of the number of players who announced YES, by

announcing YES himself player n strictly increases the probability that the final outcome is the properly
ε, δ-discounted version of (ω?, P ?). Now, because both P ?

n and θn(ω?) are integers, in our case we have
P ?

n ≥ θn(ω?) + 1. Accordingly, in the envisaged final outcome, because his discount is ε + δn, player n has
utility at most ε+ δn − 1, which is less than δn. Therefore he strictly prefers the δ-discounted null outcome
(⊥, 0n), where his utility is exactly δn, and it is strictly dominant for him to announce NO in Step 2n, as we
wanted to show.

Induction Step Let N be a node of depth d, with n < d < 2n. Then the acting player is i = d− n, and,
by inductive hypothesis, for every action taken by player i in N , denoting by M the corresponding child of
N , we have a subgame perfect equilibrium in the subgame GM . In such an equilibrium each player j > i
announces YES if and only if P ?

j ≤ θj(ω?). Therefore, given that all players after i play according to this
equilibrium, we can consider two separate cases:

Case 1: P ?
i ≤ θi(ω?). In this case, regardless of the number of the other players who announced YES

before him, or will announce YES after him, if player i announces YES he increases the chances that the final
outcome is the ε, δ-discounted version of (ω?, P ?). This is so because, by inductive hypothesis, the players
acting after him announce YES or NO according to their own valuations, independently of what i announces.
Since i’s utility in the discounted version of (ω?, P ?) is ε+δi, while his utility in the δ-discounted null outcome
(⊥, 0n) is exactly δi, i’s single best strategy is to announce YES, as we wanted to show.

Case 2: P ?
i > θi(ω?). The proof of this case can be easily derived from that of the previous one, taking

in consideration that i strictly prefers the δ-discounted null outcome (⊥, 0n) where his utility is δi, to the
ε, δ-discounted version of (ω?, P ?) where his utility is at most ε+ δi − 1 < δi.

4.2 Proof of Lemma 2

Lemma 2. If N is a node of depth d ∈ [2, n], then θ
N is the unique subgame-perfect equilibrium of GN .

8



Proof. To prove our thesis it suffices to prove that, since d is the acting player at node N , for any subgame-
perfect equilibrium σ and every player j 6= d the following two properties hold for σd:

1. No Overbidding: ∆d
j ≤ max

(
0, θj(ω?)−Kj −

∑d−1
`=2 ∆`

j

)
;

2. No Underbidding: if Kj +
∑d−1

`=2 ∆`
j < θj(ω?), then ∆d

j = θj(ω?)−Kj −
∑d−1

`=2 ∆`
j .

We prove both properties by induction on d.

Base Step: d = n.

Proof of No Overbidding. To prove that strategy σn satisfies the no-overbidding condition in the
base case, we must consider two separate possibilities: namely, max

(
0, θj(ω?)−Kj −

∑d−1
`=2 ∆`

j

)
= 0 and

max
(

0, θj(ω?)−Kj −
∑d−1

`=2 ∆`
j

)
= θj(ω?) − Kj −

∑d−1
`=2 ∆`

j . That is, we must prove that σn satisfies the
following two conditions:

B1. If Kj +
∑n−1

`=2 ∆`
j ≥ θj(ω?) then ∆n

j = 0;

B2. If Kj +
∑n−1

`=2 ∆`
j < θj(ω?), then ∆n

j ≤ θj(ω?)−Kj −
∑n−1

`=2 ∆`
j .

We prove that B1 holds by contradiction. Suppose σn causes n to overbid on another player j, that is,
to announce ∆n

j > 0. Therefore, we have Kj +
∑n

`=2 ∆`
j > θj(ω?). Consider now an alternative strategy σ̂n

for player n, in which he makes the same announcements as σn at each of the nodes of GN in which n acts,
except that, at node N , he announces

∆̂n
j = 0.

To establish B1 is thus sufficient to prove that σ̂n gives player n a strictly larger expected utility than σn

(when all other players stick to their strategies in σ). The difference between i’s utility under these two
strategies comes from the sum of three terms:

1. (Punishment) Under strategy σn, bipj = n because n is the last player who raises player j’s price. In
light of Lemma 1 and the fact that σ is assumed to be a subgame-perfect equilibrium, player j will
announce NO to the price proposed by n. Thus, with probability 1−ε, player n will be punished with a
fine of 2P ?

j . By contrast, player n will not be punished under strategy σ̂n. Accordingly, relative to this
term alone, the difference between n’s (expected) utility under σ̂n and his utility under σn is (1−ε)2P ?

j ,
which is always ≥ (1− ε)2∆n

j .

2. (Reward) Strategy σ̂n gives player n a smaller reward than σn. However, the difference between n’s
utilities under σ̂n and σn due to this term is lowerbounded by −εnj ∆n

j , and thus by −ε∆n
j .

3. (Probability-Change) By using σ̂n instead of σn, the probability that c2 = Heads changes. This change
can either increase or decrease player n’s expected utility, depending on whether he prefers state ⊥ with
price −δn, or state ω? with price P ?

n − ε − δn. However, the difference between n’s expected utilities
under σ̂n and σn due to this term is in any case lowerbounded by −∆n

j . This can be seen by analyzing
separately the case in which all players but j announce YES, and the case in which at least one player
besides j announces NO. This last case requires M to use two coin flips.

Thus the difference between n’s overall expected utility under σ̂n and n’s overall expected utility under σn

is greater than (1− ε)2∆n
j − ε∆n

j −∆n
j = (1− 3ε)∆n

j and thus greater than 0 as desired. This proves B1.
The proof of B2 is similar to that of B1 and is therefore omitted.

Proof of No Underbidding. Suppose that strategy σn causes player n to underbid on another player j,
that is, to announce ∆n

j such that Kj +
∑n−1

`=2 ∆`
j + ∆n

j < θj(ω?). Consider now an alternative strategy σ̂n
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for player n, in which he makes the same announcements as σn at each of the nodes of GN in which n acts,
except that, at node N , he announces

∆̂n
j = θj(ω?)− (Kj +

n−1∑
`=2

∆`
j).

It is easy to see that σ̂n gives player n a strictly larger expected utility than σn. Indeed, the only difference
between n’s utilities under these two strategies comes from the δ-discount, which is proportional to ∆̂n

j and
thus larger under strategy σ̂n. Thus underbidding can not be a subgame-perfect strategy for player n.

This concludes the proof for our base step. �

Together with Lemma 1, the base case implies that there is a unique subgame perfect equilibrium at each
node of depth n, in which player

(1) n raises each player j’s price exactly up to θj(ω?), and
(2) in each depth-(n+ j) node, player j announces YES if and only if θj(ω?) is greater than or equal to P ?

j .

Inductive Step d ∈ [2, n− 1].

Proof of No Overbidding. To prove that σd satisfies the no-overbidding property it suffices to show that
σd satisfies the following two conditions. (Recall: d is the player active at a node of such depth.)
I1. If Kj +

∑d−1
`=2 ∆`

j ≥ θj(ω?) then ∆d
j = 0;

I2. If Kj +
∑d−1

`=2 ∆`
j < θj(ω?), then ∆d

j ≤ θj(ω?)−Kj −
∑d−1

`=2 ∆`
j .

As for the matching condition of our Base Step, we prove that I1 holds by contradiction. Suppose σd causes
d to overbid on another player j, that is, to announce ∆d

j > 0. Then, we have Kj +
∑d−1

`=2 ∆`
j + ∆d

j > θj(ω?).
Consider now an alternative strategy σ̂d for player d, in which he makes the same announcements as σd

everywhere except that at node N he announces

∆̂d
j = 0.

To establish I1 it thus suffices to prove that σ̂d gives player d a strictly larger expected utility than σd.
The difference between d’s utilities under these two strategies comes from the sum of the same three terms
considered in the Base Step: Punishment, Reward, and Probability Change. The analyses of the Reward
and the Probability-Change terms are totally similar to those of their counterparts in the Base Step, and
are therefore omitted. As for Punishment, in the Base Step the active player was n and thus, automatically,
he was the last player capable of raising prices. Thus, ∆n

j > 0 straightforwardly implied that bipj = n. In
our Inductive Step we have to rely on our inductive hypothesis to prove that bipj = d, but this is not hard
to do. Indeed, according to the inductive hypothesis, in the subgame arising after d acts, there is a unique
subgame-perfect equilibrium, and in this equilibrium no player k > i will raise j’s price. Thus bipj = d. The
rest of the analysis of Punishment is totally similar to that of the Base Step. This establishes the proof of I1.

The proof of I2 does not present any additional difficulties and is omitted.

No Underbidding. The proof of the no-underbidding property is totally similar to that of the base case,
and is therefore omitted.

This concludes the proof of our Inductive Step, and thus of Lemma 2.

4.3 Proof of Lemma 3

Lemma 3. If N is the root, then θ
N is the unique subgame-perfect equilibrium of G.

Proof. In light of Lemmas 1 and 2, it suffices to prove that, whenever σ is a subgame-perfect equilibrium
of G, according to σ1(N) player 1 announces an outcome (ω?,K) of maximum revenue and first rank. We
divide the proof into two parts.
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Part 1. In this part we prove that, no matter what state ω? player 1 may announce, σN
1 causes him to

announce K so that Ki = θi(ω?) for each player i. We proceed by contradiction.
Assume first that σ1 is such that Ki > θi(ω?) for some player i. Define σ̂1 to be the strategy under which

player 1 makes the same announcements as under σ1, except that, at the root and relative to player i, player
1 announces a proposed price K̂i = θi(ω?). Consider the difference in the expected utilities of player 1 under
σ̂1 and under σ1 (assuming that all other players stick to their strategies in σ). This difference is again due
to three terms: Reward, Punishment and Probability Change. And as in prior analysis the key to see that
this difference is positive is realizing that, because as per Lemmas 2 and 3 we know what the other players
will do in all subsequent steps, (1) under σ̂1 player 1 is not punished but gets a smaller reward, while (2)
under σ1 he is punished and gets a bigger reward, and (3) the punishment is much bigger than the reward
and any possible gain or loss from Probability Change. This of course leads to a contradiction.

A similar analysis shows that a contradiction is also reached assuming that Ki < θi(ω?) for some player
i. Thus it must be Ki = θi(ω?) for some player i, as we wanted to show for Part 1. �

Proof of Part 2. In this part we prove that in any subgame-perfect equilibrium σ, Player 1 must choose
the state ω? so as to maximize the social welfare, with ties broken lexicographically. Again, the proof is by
contradiction. Leaving the breaking of ties aside for a moment, assume that σ1 causes player 1 to announce
a state ω? such that

∑
j θj(ω?) < msw(C). Let σ̂1 be the strategy under which player 1 makes the same

announcements as under σ1, except that, at the root, he announces ω̂? and K̂, where
∑

j θj(ω̂?) = msw(C)
and K̂j = θi(ω̂?) for each player j. Let all other players stick to their strategies in σ. Then, Lemmas 1 and
2 imply that player 1’s expected utility under σ̂1 is

ε+ 2ε
∑

i

θi(ω̂?)− εfr̂(ω̂?, K̂)
nr̂

,

where r̂ =
∑

i K̂i; while his expected utility under σ1 is

ε+ 2ε
∑

i

θi(ω?)− εfr(ω?,K)
nr

.

Thus the difference between the two is

2ε

(∑
i

θi(ω̂?)−
∑

i

θi(ω?)

)
− ε

(
fr̂(ω̂?, K̂1)

nr̂
− fr(ω?,K)

nr

)
which is greater than 0, because the first parenthetical quantity is a positive integer, while the second one is
a number in the interval [−1, 1].

Essentially the same argument shows that in the case of two or more states with maximum social welfare,
player 1 chooses the lexicographically first of them.

5 Collusion Analysis of Our Mechanism

Let us now show that our mechanism continues to produce virtually maximum revenue in every collusive
context (N ,Ω, T , θ,C). Recall that in such a context C is a non-trivial partition of N (i.e., the set of all
players does not constitute a single collusive set) and is common knowledge among the players (since in our
setting the players have perfectly informed about each other). Recall too that in our context all coalitions
C of players are rational, that is, act so as to maximize the sum of the utilities of each members. Indeed,
since our players (unknown to the mechanism designer!) are free to coordinate their actions in any way they
please, including entering binding contracts with one another, limiting the “amount of money flowing into a
coalition C ” would be irrational: the members of C could always and easily “distribute more money among
themselves later on in any proportions they want.”
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In general (i.e., in an extensive-form game of imperfect and incomplete information), to act rationally
the members of a coalition C should adopt a joint strategy, and communicate to each other every bit of
information they have about the game. That is, there should be a single strategy that, at any node in which
a member i of C acts, chooses i’s action based on the information collectively available to C . But as we are
in a setting not only of perfect information but also of complete information (at least for what the players
are concerned), a joint strategy of C simply consists of a subprofile of individual strategies.

Small Difficulties Transforming our non-collusive analysis ofM to a collusive one does not present major
difficulties, but requires some additional attention (to notation, of course, and) to “collusive utilities.” Let
us explain. The utility of a coalition C is the same as long as the state is the same and the sum of the
prices paid by its members, p, is the same. It does not matter to C whether if the total amount p is paid by
just one of its members, or by two or more of its members, in equal or different proportions. Thus, in Step
n + i of M, each member i of C should say YES if and only if

∑
j∈C θj(ω?) ≥

∑
j∈C P

?
j . Accordingly, in

Step k ∈ [2, n], a player k should be mindful, before raising the price of a member j of C of the total price
currently proposed for C . For instance, even if θj(ω?) > P ?

j , it would be irrational for k to raise j’s price by
P ?

j − θj(ω?) if the currently proposed, total price for C is already
∑

`∈C θ`(ω?). In fact, should k so raise the
price of j, the utility of C under the properly ε, δ-discounted version of (ω?, P ?) (assuming that no one else
raises the price of any member of C ) would be at most∑

i∈C

(ε+ δi)− 1 =
∑
i∈C

δi + |C |ε− 1,

which is less than
∑

i∈C δi, which is the utility of C under the δ-discounted null outcome (⊥, 0n). Therefore,
if k raises the price of j as above, it will be in C ’s best interest to minimize the chance that the so updated
outcome (ω?, P ?) will be implemented by having all of its members say NO in the last n steps ofM, so that
k will end up being punished with very high probability.

Paying attention to collective utilities is however still compatible with several of strategic choices. In
order to guarantee a unique subgame-perfect equilibrium,M needs to introduce incentives so as to artificially
generate a strict order of preference among otherwise equivalent strategies. It is here that M’s multiplicity
of small constants become handy. As we shall see, these constants incentivize all players to raise or set the
price of a coalition C by raising or setting the price of C ’s lexicographically first member.

In light of this discussion, in a collusive setting, the “truthful strategies” of M are defined as follows.

Definition 2. For any game (C,M), where C = (N ,Ω, T , θ,C) is a perfect-knowledge collusive QLU+context,
we denote by Θ the strategy profile defined as follows: for each decision node N

• If N has depth d ∈ [n+ 1, 2n], letting i = d−n and Ci be the coalition i belongs to, then Θi(N) consists
of announcing Y ES if ∑

j∈Ci

θj(ω?) ≥
∑
j∈Ci

P ?
j ,

and NO otherwise.
• If N has depth d ∈ [2, n], then Θd(N) consists of announcing ∆d such that, for any coalition C , letting
k be the lexicographically first player in C , we have:

∆d
k = max

0,
∑
j∈C

θj(ω?)−
∑
j∈C

Kj −
∑
j∈C

d−1∑
`=2

∆`
j


and ∆d

j = 0 if j is not the lexicographically first player in a coalition.
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• If N has depth 1, then Θ1(N) consists of announcing ω? = argmaxω

∑
i θi(ω) (ties broken lexicographi-

cally) and for every coalition C , letting k be the lexicographically first player in the coalition

Kk =
∑
i∈C

θi(ω?)

and Ki = 0 otherwise.

Accordingly, in a collusive setting, our main theorem can be stated as follows.

Theorem 2. Any game (C,M), where C = (N ,Ω, T , θ,C) is a perfect-knowledge collusive QLU+context,
has a unique subgame-perfect equilibrium E , and, letting M(E ) = (ω, P ), we have that

(1)
∑

i θi(ω) = msw(C), (2)
∑

i Pi ≥ (1 − 3εn) · msw(C), and (3) UC (M(E )) ≥ 0 for each coalition
C ∈ C.

The proof of Theorem 2 actually parallels that of Theorem 1, after restating Lemmas 1, 2, and 3 as
follows for the collusive setting.

Lemma 1′. If a node N has depth d ∈ [n+ 1, 2n], then ΘN is the unique subgame-perfect equilibrium of GN .

Lemma 2′. If a node N has depth d ∈ [2, n], then ΘN is the unique subgame-perfect equilibrium of GN .

Lemma 3′. If N is the node of depth 1, then ΘN is the unique subgame-perfect equilibrium of G.

The proof of Lemma 1′ is trivially derived from that of Lemma 1 after noticing that it now is strictly
dominant for a coalition to be unanimous, that is, that every player in a coalition C announces YES if and
only if the sum of utilities of C ’s members is greater than the sum of their payments.

The proof of Lemma 2′ is trivially derived from that of Lemma 2. As mentioned, one simple difference
concerns payments inside a coalition C . Although C cares only about the sum of the utilities and the sum of
the payments of its members, to get a unique subgame-perfect equilibrium, M properly structures its small
rewards by choosing εij > εik if and only if j < k. A second small difference concerns the case where one
player i in a coalition C can either raise the price of another player j, or let another member of C raise
j’s price instead. To guarantee that, whenever a player i has a chance to raise the price of another player,
i does so immediately (so as to guarantee the uniqueness of subgame-perfect equilibrium), mechanism M
again properly structure its rewards, this time choosing εij > εkj if i < k.

The proof of Lemma 3′ is very similar to that of Lemma 3. The main difference is that, to guarantee
unique subgame-perfect equilibrium, M uses the reward system to incentivize player 1 to announce the
lexicographically first outcome maximizing the revenue.

6 Complexity of Our Mechanism

In mechanismM, each player talks exactly twice. Moreover, the number of bits required to be communicated
at the unique subgame-perfect equilibrium is optimal within a constant factor. In fact, no matter what the
mechanism may be, the number of bits exchanged must be at least x, where x is the minimum number of bits
sufficient to describe an outcome. And at the unique subgame-perfect equilibrium of M, (1) the first player
sends the lexicographically first outcome with maximum revenue, (2) no other player raises any prices, and
(3) every player announces YES. Now notice that item 1 requires x bits by definition, while items 2 and 3
can be accomplished by sending 2n− 1 bits altogether, if one reasonably uses the bit 0 to encode “I do not
want to raise any prices” in Steps 1 through n, and “YES” in Steps n+ 1 through 2n. (Such encoding makes
more expensive to encode price raises, but at the unique equilibrium such a need does not arise.)
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7 Privacy Analysis of Our Mechanism

Consider a deterministic mechanism M designed to obtain a desired outcome O —in our case, the lexico-
graphically last outcome with maximum revenue— according to a given solution concept. Informally, we say
that M is perfectly private if there exists a predetermined algorithm A that, on input just (a description of)
the desired outcome O, without any other information about the true-type profile of the players, computes
the information divulged in a play of M that, according to the chosen solution concept, yields O.

This is trivially the case of our M. Indeed, given a string s describing the desired lexicographically first
outcome with maximum revenue, the “transcript” of M at the unique subgame-perfect equilibrium consists
of s02n−1, that is the encoding of player 1 announcing s and everyone else announcing no raises and YES.

Let us now formalize perfect privacy for the specific case at hand. (The proof thatM is perfectly private
is trivial any way.)

Notation For any profile of strategies σ for a mechanism M of extensive form and perfect information, we
respectively denote by M(σ) and M [σ] the outcome and the history of M under σ.5

Definition 3. Let M be an extensive-form perfect-information mechanism such that, for any perfect-knowledge
QLU+context C = (N ,Ω, T , θ,C), the game (C,M ) has a unique subgame-perfect equilibrium.

Then, we say that M is perfectly private if there is an algorithm A such that, for any unique subgame-
perfect equilibrium e of M :

A(M (e)) = M [e].

8 Additional Results

• No Dominant Strategies. Of course, another way to avoid equilibrium-selection problems consists of
adopting a strictly dominant-strategy mechanism. Unfortunately, even disregarding collusion, complex-
ity and privacy, we have proved that no (even weakly) dominant-strategy mechanism can guarantee
any positive fraction of the maximum revenue in non-collusive QLU+contexts [3].

• Collectively Perfect Knowledge. Our mechanism can be extended to a setting of distributively perfect
knowledge. In such a setting, the true type of each player i needs not to be known by each individual
player, nor should i’s true type be known to at least another player. It suffices that every aspect of a
player i is known to at least another player, but different players may know different aspects of i. More
precisely, for each player i and each state ω, there exists at least a player ji,ω who knows θi(ω).

In a sense, in a setting of distributively perfect knowledge, “each player is collectively known by the
other players.” In this more realistic setting, sticking again to the purest spirit of the field, we assume
that the designer has no idea of who knows what about whom.

We note that, even disregarding collusion, complexity, and privacy, the discussed mechanisms of Jack-
son, Palfrey, and Srivastava; of Abreu and Matsushima; and of Glazer and Perry, do not provide any
revenue guarantees in this less demanding setting. (In fact, strictly speaking, they are applicable to
such a setting.) By contrast, our mechanism works with a small complexity and privacy loss.

• Arbitrary Social-Choice Functions. Beyond revenue maximization, the first and third authors have been
able to virtually and resiliently achieve any social-choice function.

In a sense, they have enabled the Abreu-Matsushima and Glazer-Perry mechanisms to work without
collusion, complexity and privacy problems.

5By history we mean the sequence of nodes —equivalently, the terminal node— of M ’s game tree reached during the play.
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• Imperfect Knowledge and a General Alternative Approach. The additional results mentioned so far
involve players perfectly informed about each other (whether individually or “collectively”), and have
been obtained relying on a classical solution concept: indeed, unique sub-game perfect equilibrium.
The first and third authors, have however proved that it is possible to design mechanisms resilient
to collusion, complexity, and privacy, even in setting of imperfect knowledge (for instance, when the
knowledge of the players about each other is approximate, or even when no guarantee exists on the
knowledge (if any) that the players have about each other [4]). Examples of design problems for which
such resilient mechanisms have been found currently include provisions of a public good, (unrestricted)
combinatorial auctions, auctions of a single good in multiple supply, and sales of arbitrarily divisible
goods. These resilient mechanisms, however, rely on a new solution concept, implementation in resilient
strategies, that perhaps may be of independent interest.
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