
a urns FM~

ROOMnt Re m

~a*~~arAntt.

XrT/eSaS/W4

Unnumbered Blank Page

Note: This page is an unnumbered
blank used to preserve the printed
appearance of the author's original
document. It is the back side of the
previous numbered page.

NOW-.,

USE OF HIGH LIVEL LANGUAGES FOR SYSTEMS PRORAfING

Teelical Memorandum 13

(Pomwrly Wograming Linguistics Group
me 1b. 2, 20 November 1969)

Robert M. Graham

September 1970

Massgchusett Institute of Technology

Massachusetts 02139:Cambridge

-~ - ~ ~I7 1

Unnumbered Blank Page

Note: This page is an unnumbered
blank used to preserve the printed
appearance of the author's original
document. It is the back side of the
previous numbered page.

ACIOWLEDGIENT

1ft vaeportysd herein was supported in part by Project
MAC, as)L.T. assearch project sponsored by the Advacsed
U964"e Ptooagts Agency, Department of Defense, under Office
of M1ewt Nes ch Contract Nonr-4102401).

Note: This no is an edited transctipt of a talk
given at a meeting of the NSA Computer and Informa-
tivn Sciences Institute on November 20, 1969.

Unnumbered Blank Page

Note: This page is an unnumbered
blank used to preserve the printed
appearance of the author's original
document. It is the back side of the
previous numbered page.

Use of High Level Languages for Systems Programming

Robert M. Graham

Massachusetts Institute of Technology

(This paper is a slightly edited version of a transcript so that it

still contains the colloquial flavor of the oral presentation.)

I'm going to talk about languages for systems programming, what they

can do for us, and what we might expect from them in the future. These

comments are largely based on my experience with the Multics System and

I'll quote a few figures from Multics as we go along. I'm concerned

particularly with large and complex systems.

I'd like to just quickly review the basic problems in the design and

implementation of large software systems such as Multics, OS-360, TSS-360,

or any of the other monumental systems that have been built in the last five

years or so. The first problem one runs into is that of complexity. The

systems I'm talking about are large. They have a large number of modules

(subroutines). Multics is composed of well over five hundred separate sub-

routines. With a system this large you get a large number of interconnections

and a large number of different interactions between the various modules.

There is no regularity or iterative nature to the structure. Every module

is different, structured differently. There is no clear hierarchy of calls

between the modules. In general, large systems like this have conflicting

objectives which add to the complexity. Multics, for example, allows com-

plete sharing and complete privacy. These are two opposing, conflicting

objectives and this adds to the complexity of the system.

The second major problem is that the project is usually very large.

A system of the kind I'm talking about is too large and complex for one

person to keep in his mind at once; even the very best systems programmers

just can't keep all of the Multics System in their head at one time. Typi-

cally you need more than three or four people to implement such a system.

Multics was implemented by about fifty people. TSS-360, which is a general

purpose time-sharing system for the IBM 360/67 with objectives similar to

those of Multics, took about 300 people to implement.

The third major problem is the length of time from the conception of

the system until the system is working in a real environment. There is a

long period of evolution and iteration of the design; for example Multics

and TSS each took three to four years before the system was working at all.

This long period of time results in subordinate problems such as turn-

over of personnel which introduces a continuity problem. Most projects

experience anywhere from 10 to 20 percent turnover in personnel per year.

The training period required before a new programmer is effective in such

a project can be as long as a year, with a minimum of at least six

months. The number of people involved causes management problems. You

get a hierarchy of management: projects and sub-projects and managers

managing managers.

It also appears to be a universal law of some kind that in any large,

long-run project the best you can get is one hundred to two hundred lines

of debugged code per man month. Only on a very small, short-run project

can you expect to get a higher productivity than that.

-2-

The length of the project introduces another problem: critical

go-no-go decision points occur at one or more times during the life of the

project. Large scale funds have to be committed to the project. Usually

concrete results do not show themselves for some long period of time. You

have to believe the people who are doing the work and commit yourself to

continue funding the project to completion or cut it off at some point.

The point at which to cut off the project is before you lose so much face

that you have to dump in another hundred million dollars in order to make

it work, just to prove your point. Multics cost, I'm sure, well over ten

million dollars and I suspect that TSS must have cost as much as fifty

million dollars to implement, probably higher. -I'm just guessing at the

IBM figure and I was partially guessing at the Multics figure because there

were a number of organizations involved in it and I don't know all of their

financial contributions.

A fourth problem in a large complex system is the inability to predict

performance. We are still unable to accurately model any large software

system and so we have to build a prototype in order to understand the

system in the first place. So, only through building the prototype do we

gain understanding and insight and only by building it do we get any sort

of measure of how it will perform. In other words, we develop systems much

like the Wright Brothers developed airplanes; they built an airplane and

then pushed it off a cliff and it either flew or didn't fly. If it didn't,

they started all over again. Now we don't have to start over again but we

do have to redesign. If the prototype doesn't work right when it comes on

the air, then we have to start redesigning. Multics has been completely re-

designed and reimplemented at least once. There are some sections of it that

have gone through this iteration of redesign and reimplementation several times.

-3-

Systems of this complexity and size can't be simulated effectively with

any of the simulation techniques that we have today because they are too

time consuming and too expensive. In general, to use any of the simulation

languages of today you have to make a sidestep; you have to redesign the

system, so to speak, and design out all of the irrelevant things. But you

probably don't know what is irrelevant. Then you have to recode the rede-

signed system in the simulation language in order to simulate it.

It is a common property of human beings that intuition is not something

one is born with; it is something one has developed and so one's intuition

is poor when dealing with poorly understood relationships. So system pro-

grammers who say, "Well my intuition tells me that such and such is going

to be really red hot in that system" probably will be wrong unless he has

had considerable experience with very similar systems. Multics held a num-

ber of surprises for us. Many of the algorithms which were used in order

to be sure that there was efficiency in some local area turned out to be so

inefficient globally that choosing a simpler algorithm which ignored local

efficiency actually achieved a much higher global efficiency. For example,

the Multics hardware was built to deal with two different page sizes,

obviously, we decided it would be more efficient to use both page sizes

in transferring between the core and the drum. It turned out the bookkeeping

ard overhead of managing two different page sizes was far more expensive

than using just one page size with its attendant breakage cost.

Now this process of iteration and redesign in the development of a

large complex system is not new. In most other areas of engineering you build

a prototype, observe its performance, experiment with it, modify the design,

-4-

rebuild it, experiment again, and so forth, until you reach the level of

performance that you set out to get. This iterative technique is fairly

common in the aircraft business, only one doesn't usually fly them; one

uses a wind tunnel to test them out first. What I'd like to talk about

today is the fact that software system developers today very seldom use

the modern tools that are available; tools that they provide for other users

of the computer system. In other words, they don't use wind tunnels; they

don't use high level languages; they don't use symbolic debugging tech-

niques; they don't use simulation; in fact, they don't do much of anything

except write machine code and try and figure out why it doesn't work. But

they do provide all those nice tools for the average user of the system.

So I would like to address myself to what advantages one particular tool,

namely high level languages, has in the design and implementation of soft-

ware systems and particularly how its use can aid us in simulating or

analyzing the performance of the system before it is actually built.

Lets look first at the situation today. How can high level languages

immediately help the situation? In other words how can we use PL/I, FORTRAN,

or some other existing high level language to help us? Let me say 95 per

cent or more of Multics was implemented in a subset of PL/I, so there is no

question that it can be done: it can. The Multics System is now operational

and has been since October 1969 - operational in the sense of being open

to the MIT community in general. Anyone can walk in who wants to use

Multics, get a number, sign up, and use it (provided he has some money).

It supports 30 users with performance equivalent to CTSS, which is the system

we had on the 7094 before Multics. And this is a one processer system. So

-5-

it is not impractical to think of implementing an operating system in a

language like PL/I. I understand that SABRE has been redone in a subset

of PL/I, so that Multics is not a one shot fluke.

Using a high level language for a system implementation aids us in a

number of ways. I'm going to mention four that are all somewhat inter-

related. One way high level language can help is to reduce the complexity.

The way we say this in programming linguistic terms is that there is a

better match of the primitives in the language to the problem that we're try-

ing to do. There is a lot of string manipulation in system work and a

language that has strings as a basic data type and some operations on them

such as concatenation or move is very useful. It is a much better match

to the problem of manipulating strings than having to write copy loops

that move words full of characters around.

Operating systems can be viewed as a very large number of very simple

manipulations of a very complicated data structure. There are many tables

of one kind or another in a system. Languages which have facilities for

describing data structures like PL/I put us much closer to the problem be-

cause we can talk in terms of manipulating the entities in the table rather

than shifting, masking, and extracting a certain field out of a word. In a

PL/I program the structure of a table is described only once. All the de-

tails of the format, and how the data is going to be stored in memory are

handled by the compiler. The user is unconcerned with them and unaware of

them. He can think in terms of manipulating the entries in the table rather

than pushing bits around.

-6-

These comments apply even to functions like input and output. Most of

the modern computers have an input/output controller which is a small, spec-

ial purpose computer. The way you do input/output is to assemble a small pro-

gram for that computer. So, one can talk about this process of assembling a

program for the I/0 controller as a manipulation of certain data structures.

Things like I/O and table management are much more natural and more easily

expressed in these terms.

A second major way that high level languages can help is to magnify

productivity. People seem to write the same number of lines of code per

day regardless of what language they are using. It's a sort of measure of

the number of marks they put on paper rather than the number of machine

instructions. The use of a high level language magnifies the productivity

of the person by whatever ratio there is between machine language instruc-

tions and source language statements. I think a good example of this is as

follows: Unless you claim the Multics group is far superior in terms of

talent than the IBM people, comparison of the two efforts proves the point.

Fifty people implemented Multics while 300 or more poeple implemented TSS.

Both groups took about the same amount of time and the systems are approxi-

mately the same size. Thus, you get a magnification in productivity of six

or higher as a result of the fact that Multics was written in PL/I while

TSS was written in assembly language.

Another way productivity is helped by a high level language is that

the compiler can use the cleverest code generation techniques that are in-

vented by the cleverest machine language programmer. The fact that the high

level language is better matched to the problem means that it is easier

and faster to change and redesign a program in high level language so that

people can move faster and in effect do more work.

-7-

A third way high level language helps is to enhance understandibility.

Programs in high level language tend to be briefer and more lucid than

assembly language programs. One has less to cope with. There is a smaller

amount of information at which one has to look in order to understand what's

going on in the program. Another way of saying this is that the higher the

level of the language the more the programmer says what is supposed to hap-

pen as opposed to how it's going to happen. And this understandibility is

a help because it makes the system less complex. Much of the complexity in

a large system is due to implementation details (actual bit manipulations)

and is not inherent in the problem itself. Hence, a high level language

helps to sort out, and relegate to automatic bookkeeping by the compiler,

those irrelevant details which, if one were dealing on a machine language

level, would add to the complexity although they are not an inherent part

of the complexity. An operating system like Multics has enough complexity

that is inherent in the nature of what it is trying to do without adding any

more due to machine language programming.

High level languages also aid in transferability. We have the personnel

turnover problem in a large project. High level languages are generally

easier and quicker to learn. This means that new people coming onto the

project can become effective more rapidly. It is easier for them to pick

up programs that scmeone else has worked on in order to make improvements

on them or to fix bugs. Transferability is aided by the fact that the

compiler enforces standards on everyone writing in the compiler's language.

One has no choice on making a standard call to a subroutine. The compiler

always uses the standard. This can often be bypassed in machine language

8-

and sometimes is by the bit pusher because he has found a way to save

one or two cycles. Not observing standards of course makes it more diffi-

cult for anybody else to pick up the program and figure out what the origi-

nal programmer was doing.

Now, as I said, some sections of Multics were rewritten a number of

times. Let me give you a couple of figures. These are some of the im-

provements that were made in rewrites. One module was redone in three

man-months getting a 26 to 1 improvement in size and 50 to 1 improvement in

time. Another one got a 20 times improvement in size and a 40 times improve-

ment in time and took two man-months. Now the interesting thing about

figures like this is that the improvement generally came from a redesign.

The programmer really, in some sense, understood the function that was going

on in the module and discovered a much better and simpler way to do the

same thing. In other words, once the system was implemented and working,

people stood back and looked at it. They had a chance to look at individual

modules and see how they fitted in the system. People had a chance to think

about what the essential function of the module was and thus were able to

understand it better and see how to simplify it greatly.

Now these are all things that the high level languages in existence

today can do for us. These are things that I claim from experience with

Multics have actually happened. We have actually gotten these kinds of ad-

vantages from using PL/I. Now, as of today none of the high level languages

that exist do anything to aid us in predicting the performance of the system,

except to the extent that when we understand the system better, we understand

its performance a little better. But in general, there is no assistance in

predicting performance. It is my contention that one can, by choosing an

- 9-

appropriate high enough level language, get enough information in the

source language description of a program so that one can predict the per-

formance of the module without requiring the designer to separately

formulate it in a simulation language and run a simulation of it. I

propose to give you an indication of how that might be done.

So now I am going to look at what a high level language which is de-

signed specifically for software design and implementation should look

like; What ought we to have in it, what might we have in it. First, in

order to match it better to the problem, we want the right kind of primi-

tives. That means we need to isolate the basic building blocks that are

used in software systems and the basic transformations that are used in

software systems.

For example, I mean the following kinds of things. Table management

is a very common thing that is encountered in software systems. You find

symbol tables in both compilers and assemblers. You find symbol tables in

most modern loaders. You find symbol tables in file systems. You find all

sorts of other kinds of tables in system software - tables of processes

waiting, tables of processes executing, tables of I/O device assignment,

etc. So table management is certainly a basic function in software building.

One can envision a data type called TABLE and a number of basic functions

that operate on entities of this data type, such as, adding an entry to the

table, deleting an entry from the table, modifying an existing entry, locat-

ing an entry in the table for a given key, and copying the contents of an

entry from the table. A language incorporating this data type and these

functions would allow one to specify the elements in a table entry, possibly

-10-

in a manner analogous to a structure declaration of PL/I. It would also

allow one to specify what elements of an entry are going to be used as keys

in searching, allow one to specify (if one cares) the particular search

method to be used (there are a number of fairly standard search methods), and

might even ask one to specify which operations are going to be performed

relative to each of the different keys that one specifies.

Now this I claim is enough information so that the compiler can do a

much better, more efficient job of implementing references to tables and

the management of tables. Also, the compiler has a much better hold on the

cost (performance) of each table manipulation. So that if a compiler for

a language which included things like the above were coupled with supporting

analysis programs, we could automatically get some sort of hold on the

performance of a module described in this language.

Now to give you a little better idea of what I mean, let me describe how

one could get some sort of performance information out of a compiler for the

PL/I language. The compiler is certainly capable of giving you information

with regard to the amount of space used and the amount of time it takes to

execute many of the constructions in PL/I. For an assignment statement, it

can figure out the number of machine language instructions that are going to

be compiled for that statement. Thus, it knows how much space the

statement will take. It also knows how much time it will take to execute

each of those instructions, so it can tell you how long the assignment

statement is going to take to execute.

- 11-

PL/I requires declarations for the data that the program uses.

For the more complicated data like structures, the compiler itself figures

out how it is going to be formatted in memory. Thus, it knows how much

space it's going to take. It also knows how much supporting information

needs to be generated. I'm thinking of things like dope, which is support-

ing information describing the layout of data structures in memory which

is required when the structure is passed as an argument to a subroutine.

For DO loops which have a fixed number of iterations, the compiler can

compute a summary figure for that entire loop. By multiplying the number

of times around the loop by the times for the various statements within the

DO loop, a total time for the loop can be computed. If the number of itera-

tions is variable, it could print out a formula for you which is a function

of that variable. In certain simple programs the compiler might even be

able to develop some formula that expresses the performance of the entire

program as a function of a number of variables. One could then evaluate

this for the differing values of the variables.

The compiler is in a position to do this much better than you because

compilers for languages like PL/I put in calls to runtime support routines

and additional instructions for the setup for various kinds of arguments in

different ways depending upon the data type. It does a lot of things that

are hidden to you and unless you read the machine code you can't even get

a feel for the way the program is going to perform. We ran into this in

PL/I. This is one of the disadvantages of using a high level language; it

is difficult for the programmer to get a feeling for how long his program is

going to run. But the compiler is in a position to do something about this.

-12-

For example, one program consisted of two statements. The first was an

assignment statement which concatenated a carriage return on the end of a

character string. The second statement in the program called a print sub-

routine to print the augmented string. And that was the whole program. The

compiled program occupied 180 odd words of memory. The writer had no feel-

ing whatsoever that it was going to be anywhere near that magnitude of

compiled instructions for such a simple program.

Now where the compiler begins to fall down with languages like PL/I

in attempting to put these figures together is that it doesn't know a lot

about what it is you are trying to do. It merely knows how you are doing it.

If you write a DO loop to search a table, it doesn't know that you are

searching a table. So a compiler for high level language which included

table as a data type and functions operating on tables would be able to eval-

uate the table manipulation operations and compare them according to various

search techniques. You could leave the search technique unspecified and

give the maximum size of the table, the average number of entries, etc. The

compiler could then figure out which search technique would be most efficient

under the circumstances. So it could develop formulae giving the performance

in terms of the table size and the average number of entries in it.

Now I have gone through the table manipulation discussion merely as an

exercise to indicate what one might do immediately. My feeling is that

this first step is too small and that you want to go much further. In fact,

members of my research group are investigating high level concepts in system

implementation and design. We would like to evolve a language such that

enough information to build a good model of the program would be inherent in

-13-

the program. Because if you can build a good model of the program, you

can predict what it is going to do. You can also compare the efficiency

of different varients of the same function.

It is even conceivable that one may be able someday to calculate

theoretical lower bounds on the various operations. For example, one may

be able to calculate a lower bound on the time for table searches given a

particular table organization, in much the same way as Winograd

has developed formulae that give absolute bounds on the speed with which hard-

ware can possibly do arithmetic. The value of knowing such a bound is that,

if you know a bound and if you get fairly close to it you need not look for

another, more efficient method, because any other method you find is not

going to be much better. The trouble with trying to implement things

efficiently is you don't know how well you can do. You never know whether

another day's or week's work of looking for another method will yield a very

high pay-off. If we can build good models for these things then we have

some hope of trying to achieve such theoretical bounds.

Let me give an example of what I mean by a much higher level concept,

or much lower level concept depending on how you look at things. In Multics

there is a file system which is based on the virtual memory concept. The

user has a view of the file system as consisting of a number of files that

have symbolic names. These are organized into a number of directories which

are structured in a hierarchical way. He refers to a file by giving a name

which consists of a concatenation of the names of the directories in this

tree needed to locate the particular file he wants. The hardware has two

dimensional addressing called segment addressing. This is the GE-645 hard-

ware. Similar hardware exists on the IBM 360/67 on which TSS is implemented.

- 14-

One of the major functions of the file system in Multics is to trans-

form a symbolic reference to a file into an actual two dimensional address

which the hardware can use, which is a pair of integers representing a

segment number and a word number. A very large part of the file system is

involved with that transformation. One can view this as a mapping from one

address space to another. The user's address space consists of symbolic tree

names and the hardware's address space consists of pairs of integers. Thus

we require a mapping from one address space to another. It is very similar

to the kind of address space mapping that a compiler does. When you write

in PL/I, or some other compiler language, the only memory you have is in

terms of the variables you define. They may be single scalar variables,

they may be arrays, or they may be structures. You use symbolic names to

refer to them. The task of the compiler is to map these symbolic references

into machine addresses which are usable by the hardware to refer to its

memory. So that address mapping - taking a reference in one address space

and mapping it into a reference in another address space - is a large part

of what the file system in Multics does. There are a number of other func-

tions in systems which can be expressed as address space mappings which we

will not explore here.

Now actually the Multics hierarchy of files also has some things in it

called links which make it into a directed graph as opposed to a strict tree.

Most hardware memories are linear; just a single address identifies an

element of them. Some of the newer segmented memories have two dimensional

address spaces. One can talk about address spaces as having structure and

talk about primitive operations on address spaces, e.g., creating new

address spaces by adding a new address to an existing address space. One

-15-

can further talk about mapping between them and one can conceive of a theory

of address space mapping or a theory of structure transformations that

will allow one to say some very general things about them.

This kind of model for certain functions of the operating system

would be powerful enough, in terms of the information inherent in it.

so that a compiler would have an extremely wide latitude of choices on how

to implement it. The compiler would also be able to evaluate many different

implementations of it. If the compiler is able to do that, then of course

it has a lot of information on how the thing is going to perform.

If you have a language that includes concepts like address spaces, then

you can envision a sort of iterative design procedure taking place using

such a language. You get a rough design for the system in terms of the

major modules of the system. Then you sketch the structure and the control

sequencing some way. Then you define and describe the data structures that

are going to be involved; the tables you are going to use, the stacks you

are going to need, the queues, and so forth. Then if you describe the func-

tions of the various modules in terms of table manipulations or address

space mappings or some such concepts, the compiler and its supporting analysis

routines would be able to extract enough information from this description

to build a reasonable model of the system which you had so far specified.

Now the model presumably would contain a number of parameters. I men-

tioned some in connection with table searching. The density of a table is

important if you are using a random access organization while the average

number of entries in the table may be important if you are using some other

organization. If the designer were on-line with this system he could vary

_16-

these critical parameters in the system and observe the effect of the

variation on the performance of the system by displaying the values of

certain critical variables which meter the performance of the system. Now

this is way out in the future because the problem of identifying what

variables measure the performance of a system is a very wide open research

problem. In other words, if you are going to predict the performance of

the system ahead of time, you have got to know what things you have to

measure. This is an area which is very undeveloped at the present time.

The problem is to find out what variables in the system really characterize

its performance and then try to generalize these some way so that we can

say, for example, "The average search time of critical tables is what really

is the key to performance". In summary, the design process consists of

varying the parameters of the system, such as, the average size of the tables,

the amount of core memory available, the number of separate channels to the

secondary storage and other parameters which characterize the performance,

observing the result and change in performance, and then modifying your de-

sign accordingly. The designer iterates around this loop until he homes in

on satisfactory performance characteristics.

Now all this can be done, you see, without building any hardware or

without actually implementing the system, because what you are dealing with

is the description of what the system is going to do rather than an actual

implementation of it. Now if we are clever enough in the compiler business,

we will be able to build a compiler that can take that language and actually

compile code for the system for some particular computer; and if we are

really clever, we can figure out how to describe hardware so that we can

describe the hardware to a non-existent computer to the system and it will

-17-

give the performance for that hardware. Then you can try other hardware

designs to se what hardware will make the thing work well. Of course

beyond that, if we are really extremely clever, we won't even bother
nAw & edts

separating hardware from software; we will just describe the system and

the; de4ign system will figure out what ought to be in hardware and what

ought to be in software. WiII...maybe our grand-children can do that for

us.

.4*.. - - . ~. -

44,j -
4 ~ 4 ~

-~44)j,,q4 - ~ --

- ~ ~"Z.44.. ~*544 -

id J m-4e e.ad

,: 44 A ' 4

4 -, -............................. 4..'.,-" 44i' - -

4-~- 4.4 .44 .- A. ... 4.----------------, -- ---------------

-18-.

44 -

~"L~ -4
- - - .'.44~44'4 4- . -

4/

~

'.~ k~L~~4 ~ q~$~ u~ f~4 ~ ~ -

441' 4.."4~'-~.*444~ 4

4-4

4.4*4 -%4~ ~4~4 -

UNCLASSIFIED
Security Classification OUT-OF-PRINT

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology
UNCLASSIFIED

Project MAC 2b. GROUP None
3. REPORT TITLE

Use of High Level Languages for Systems Programming

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Memorandum
5. AUTHOR(S) (Last name, first name, initial)

Graham, Robert M.

6. REPORT DATE 78. TOTAL NO. OF PAGES 7b. NO.OF REFS

September 1970 21

8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)

NONR-4102 (01) TM-13
b. PROJEC-T NO.

9b. OTHER REPORT NO(S) (Any other numbers that may be
assigned this report)

d.

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

I11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

None 3D-200 Pentagon
Washington, D.C.

13. ABSTRACT

The basic problems in the design and implementation of large software systems are

reviewed. Using a high level language, such as PL/l, to implement a large software

system has many advantages. Several of the major advantages and how they contribute

to the solution of the major implementation problems are discussed. It is pointed

out that none of the high level languages existing today help in solving the problem

of performance prediction. It is then postulated that a language designed specifi-

cally for software design and implementation would not only be a major factor in the

solution of the basic problems of software design and implementation previously

discussed, but it would also make it possible to automatically predict the perfor-

mance of the software being designed. Some properties of such a language are ex-

plored. A direction for obtaining the performance measure through the use of

analysis and simulation is explored.

14. KEY WORDS

Programming Languages Systems Programming Project Management System Design

System Implementation System Performance Analysis High Level Languages

System Modeling

DD 2.. 1473 (M.I.T.) UNCLASSIFIED

Security Classification

