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Chapter 1

Introduction

PAL is a language designed for use as a tool to help
teach programming linguistics [8]. As such, it incorporates
generalizations of many of the features that are found in
most common programming languages. PAL also has a relatively
compact formal semantic definition. However, careful reading
of this definition clearly shows that it would be much more
readable if the control items and abstract syntax could be
represented with a more sophisticated data definition facility.
One goal of this thesis is to present such a facility.

But, the objective is not just to present the formal
definition in a readable format. More importantly, we are
interested in investigating the suitability of the PAL formal
definition techniques for describing data structures. We
will show that it is possible to integrate a facility for
data structures into the L-fAL subset. The formalization of
this facility is analogous to the formalization of the existing
PAL definitional facilities.

Another objective of this thesis 1is to increase the
flexibility of PAL and to give the user more contrcl over
the form and use of his data. The features we will add make

stronger representations of the data structure possikle. In




particular, the introduction of type checking and tags in
all data structures makes it possible for the user to limit
the properties of the data structures and to enforce these
limitations. Finally, changes to the handling of locations

increase the users control over their creation.

A Design Principle

The research presented in this thesis is only an initial
step toward a satisfactory facility for structuring data.
There are many problems, some of which are discussed in the
thesis, which we leave unsolved. The whole area of data
structures is a bottomless pit where each foray raises as many
problems as it solves. Because there are so many paths to
explore it is necessary to adopt criteria for deciding when
to terminate an exploration.

The criteria we have adopted are simplicity and generality.
We have attempted to stop when there is no obvious continuation
to the work and when the facilities we have proposed allow
the user to implement his own specialization. It seems both
futile and impractical to provide special solutions for every
possible viewpoint. Therefore, when there is no one solution
which is clearly preferable to all other sclutions we have
tried to move back one step and to adopt a simple approach
which is general enough to implement the proposed solutions.

Unfortunately, we have not always succeeded in applying
these criteria. We have proposed some additions that appear

to be excessively complicated for the additional facilities




they provide. The area of types is pefhaps where these criterea
have been most successfully applied. However, we have also
avoided introducing many of the specializations suggested

by other authors when they could be implemented within the

existing language framework.

Background

Most existing programming languages include some facilities
for building data structure. However, there is no uniform
agreement on a suitable set of functions to include. Standish[33]
has surveyed most of the work prior to 1967. Hence, we will
only update that survey to the present. The relevant back§round
material caﬁ be_devided into three categories,

‘1) The majority of the work has been in defining
suitable notations for describing the data structures.
Most of this work (Earley([7], Hoare[ll], Standish[33])
has been general purpose and language independent,

but some more formal descriptions (Laski([18],
Lucasi20]) of a particular case occur. It is also
necessary to mention the existance of several

general purpose languages (POP-2[4], BASEL[10,12],
ALGOL68[37], AMBIT/G[5]) which have included powerful

facilities for data structuring.

2) A given description usually has many possible
representations. Several authors have discussed
the problem of representation in both machine dependent

(Earley (7], Laurence(l9}, Vigor[38]) and abstract




9
terms (Balzer([l], Park[26], Reynolds[30]).

3) A limited amount of work in the formalization
of the semantics of daﬁa structures has occurred.
Park [26] explored the formal properties of
assignment in data structure. The majority of the
other work has been incidental to the formalization
of the languages (BASEL[10,12], GEDANKEN[30],
ALGOL68([37]) in which the data stfucturé facilities
are embedded.

In addition to this general background material, several
authors had a particularly strong influence on the form of
the S-PAL ex;ensions. The syntax and content of the structure
definitions is drawn from the work by Landin[13,16,17] in
describing data structures. The representation is a generaliza-
tion of the functional data structures of Reynolds[30]. The
approach was also influenced by the structural facilities
of COBOL[36] and PL/I[{27]. The type system is largely novel,
put the tags used in S~PAL also occur in the work by Standish[33],
and in similar forms in Reynolds([31l] and Morris[25].

The formal definition and the extensions themselves are
based on PAL. Because we must build on previous work we will
assume that the reader is familiar with the PAL language and
its method of formal definition. In particular, chapters 2 and 3

of reference [40] should be sufficient background.

Qverview

The extended languvage is called S-PAL for Structural PAL.
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The extensions are presented both informally with examples
and through modifications to the formal definition of PAL,
Most of the formal definition of S-PAL is encoded in terms
of the R-PAL subset (i.e., assignment is not used). This wa:
done because it did not appear to complicate the definitions
and served as a demonstration that the data structures
required only the R~-PAL subset for their definition. Hence,
these additions could be combined with the L-PAL additions to
create an expanded L-PAL with data structures.

Chapter II of this thesis begins our development with a
description of an extension to the handling of locations. The
current PAL approach is reviewed and an alternative approach
which treats locations as another type of value is presented.
The consequences of this change and some alternative formulations
are discussed.

The facilities for structuring data are described in
Chapters III and IV. In Chapter III the concept of a data
function is introduced and some of its more important attributes
aré‘described. The requirements of a suitable'fepresentation
for data structures are presented. Some alternative representa-
tions are discussed and it is shown that the data functions
meet these requirements. The formal definition of structure
definitions and how they are transformed into data functions
is given in Chapter IV. The full capability of structure
definitions is developed in-sevefal steps, in which each step
adds facilities to those presented in the preceding step. The
chapter ends with a géneralization of the argument list of a

function.
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A novel approach to type checking systems
in Chapter V. The reasons for restricting the
dynamic type checking are presented and a type
predicate functions is formally defined. Some

quences of this approach are discussed.

is discussed
discussion to
system based on

of the conse-

The important ideas and conclusions of the preceding

chapters are summarized in Chapter VI. An approach to

implementing data functions and possible extensions of this

work are also presented and discussed.




Chapter II

An Alternative to Automatically Defaulting.gg Lvalues

Introduction

This Chapter presents an alternative method of handling
memory locations in PAL. The current PAL definition disting-
uishes memory locations from the abstract objects (obs) which
may be contained in the memory locations. The memory locations
are called Lvalues and the objects are called Rvalues because
they are the values required by the left and right sides of an
assignment statement:

It is obvious that an Lvalue is more general than an Rvalue
since the Rvalue may always be obtéined if the Lvalue is known.
However, it is not in general possible to find the Lvalue in
which a particular Rvalue is contained. PAL currently holds
to a design decision which forces Lvalues wherever they are
reasonable to preserve the greatest generality.

The effect of this design decision has been to establish
contexts in which Lvalues or Rva;ues are reguired. It is
unreasonable to alwayé require an Lvalue context since it may
be of no utility or even an inconvenience. For example, in
evaiuating the expression X+3, 'only the Rvalues of X and 3
are needed to compute their sum. Aléo it is not always reason-

able to yield an Lvalue as a result. If the above sum occurred

12
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in another sum, say y+(x+3), then there is no need to produce
an Lvalue for x+3. Hence the natural result of a basic func-
~ion such as addition is an Rvalue.

It is to a certain extent a value judgement as to where
the generality of Lvalues shéuld occur. The principle of
consistency is used to give an Lvalue context to anything
which might naturally occur on the left hand side of an
assignment statement. This includes both identifiers and
the components of a tuple. 1In this way almost everything
is updatable. |

While the context of an expression determines what mode,
Rvalue or Lvalue, is required, the form of an expression
determines which mode actually results from the evaluation.
wWhen the contextual mode differs f;om the resulting mode a
transfer function is automatically;inserted to give the correct
contextual mode. The mode contexts are given in Table II.l
while Table II.2 gives the modes resulting from the expressions.

Since Lvalues are used when variables are bound it is
possible for two variables to designate the same Lvalue. This
is called sharing. To make it possible to avoid sharing, the
operator "s" is used to extract the Rvalue from its single
afgument. Whgn $ is.appliea to an Rvalue the result is that
Rvalue. But when $ is applied to an Lvalue the Rvalue contained

in that Lvalue is the result. Note that when $ occurs in an
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Table l: The current mode context table

RaR BR §$ R L % <variable> L
Raug L L { , L }7
RL R->B | B
test R ifso B ifnot B
test R ifnot B ifso B
if R do L while R do L
goto R R; B L :=R
let <definition> in L

L where <definition>
valof L res L
(B) 83
fn <bv part> . L
'<variable> { , <variable> }: =L
<variable> <bv part> = L

Table 2: Current table of resulting modes

R~type expressions

<guotation® <pumeric> <literal>
$ E E o E g E
E{.® 7 E aug E
fn <bv part> . E

E := E
L-type expressions
EE <variable>
E & <variable> E | valof E

The symbol R indicates that an Rvalue context occurs
and similarly L indicates an Lvalue context. B indicates that
there is no automatic conversion of values performed.
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Lvalue context a new Lvalue is created to hold the resulting

Rvalue so unsharing is accomplished.

An Alternative to Automatic Handling of L and Rvalues

The main thesis of this chapter is that it is not
necessary always to force Lvalues to be created in certain
contexts. In fact, it is possible to leave the decision on
Lvalue creation strictly to the user. This latter approach
has several advantages.

1) If Lvalues are not always forced then it
would be possible for identifiers to be bound

to Rvalues. This has the advantages that less
storage space may be needed and that the value
of the variable will remain constant. Hence

it will be possible for the compiler to optimize

references to that variable.

2} Since the value of variables bound to Rvalues
is fixed, it provides data integrity. The
variable cannot be updated by assignment because

no location is associated with the variable.

3) Allowing Rvalues as well as Lvalues as para-
meters to functions gives greater control over

the possible effects of the function. It is not
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possible to update an Rvalue parameter.
With the above advantages as motivation it appears that
the natural way to put locations under user control is to add
the locations to the set of basic obs. To do this it is nec-

essary to axiomiatize the desired properties of locations.

Ax II.1 There exists a countable set of locations which are
distinct from all other obs.

These 1ocations are distinct from each other and
by the countable property it is possible to assign to each
location an integer which identifies that location. In normal
terminology this integer is called an address.

The main use of a location is to hold a value. Therefore,
the remaining axioms are primarily concerned with the relation-
shi@ of locations to other obs. The term memory is introduced
to represent the relation "location & holds Rvalue g".

Because the computations we are interested in are of necessity.
finite processes, memories are defined only on finite subsets
of the set of all locations.

Definition A memory is a finite set of (location, Rvalue)

pairs with the property that each first component is distinct
from every other first component in the memory.
The memory can be viewed as a finite function from a

subset of the set of locations into the set of Rvalues. Since
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every two pairs have distinct first components, a location
may "hold" only one Rvalue in any particular memory. Hence,
the function is well defined over the set of locations in the

memory.

Ax II.2 There is a function Contents such that if u is a
memory and a¢ is a location in the memory then

Contents (u,a)= uc
and is otherwise undefined.

This function is used to obtain the Rvalue currently
held in location a. It is undefined on locations not in the
memory for practical reasons. As noted above, memories are
finite because the computations of interest are finite. This
restriction to finiteness is analogous to the use of a
Turing machine storage tape. At any particular step in the
computation only a finite number of squares have actually been
scanned. Hence, even though the computation is unbounded and
may eventually use an infinite amount of tape, at any instant
it depends only on a finite amount of tape. Therefore, it can-
not distinguish whether the tape was initially infinite or if
instead a new tape square is appended whenever the Turing
machine is about to use the last square of the current tape.
This latter approach more closely models a physical machine

and justifies the restriction to finite memorics.
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The contents of the tape squares which have not been scanned
are unimportant. They only becéme important when they are
about to be scanned. Hence, it is only necessary to initialize
them when they are appended to the tape. This justifies the
decision to define the Contents function only on the locations
in the memory. The question of initialization of memory loca-
tion is delayed until the axiom for memory extension are
presented.

Since a memory may associate only one Rvalue with a
location it is necessary to provide a function which will
produce memories with the locations holding different Rvalues.
This function complements the contents function. Referential
transparency is preserved by creating a new memory instead

of modifying the old one.

Ax II.3 There exists a function Update such that if
p is a memory
a* is a location
w is an Rvalue(i.e., not a location)
Then y=Update(y,a*,,) is a memory such that
Contents(y ,q )= Contents (11 ) i€E4#ax
w 1f ga=q*

This funct on produces a new memory in which the location
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«* holds a new Rvalue w. It is important to note that a
location is intentionally prohibited from holding another
location as its Rvalue. Or in other words, a location is
never an Rvalue. This is certainly not the only possible

way to treat locations. Many current languages which have the
concept of locations allow locations to hold other locations.
For example, this is the case in ALGOL 68 [37], BASEL (10,121,
and GEDANKEN [30]. The main reason for not allowing locations
as Rvalues is motivational. The memory location is a place
which holds a value. It is analogous to the piece of paper on
which a value can be written. Since it does not appear to
make much sensé to talk about a piece of paper which holds
another piece of paper, the analogy leads to restricting loca-
tions from holding other locations. The implications and
alternatives to this choice will be discussed in greater detail
later in the Chapter.

The locations are metalinguistically distinct by defini-
tion. However, it is possible to bind different names to a
single location, so the user must be able to test when two names
are bound to the same location. For this purpose we will say
two locations ¢ and B are distinct if and only if ¥ is a memory

and wl and w2 are Rvalues such that
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i) Contents{;aa)#wl and Contents (u,B)#ﬁz
ii) Contents(Update(u.s.ml)-ﬂ)=C°nt6ht5(u.d)
and cOntents(Update(u,a,mz),B)=Contents(u,5)
Hence, two locations are distinct when updating one loca-

tion does not affect the contents of the other locations.
Ax 1I.4 There exists a memory ¥ with an empty domain.

Ax II.5 There exists a function Extend such that if M is
a memory
Extend (1) =(v, o¥)
where
{i) domain{v)sdomain(h)u{a*}
(ii) o* is distinct from every location in the domain (¢ )
(iii) Contents(v,a)= Contents(k,®) if ay ax

v if g= a%*

These axioms introduce the concept of a memory extension.'
The memory begins as an empty function and through the use of
Extend the memory function is augmented with new locations
distinct from all the other locations already in the memory.
Each new location is initialized to hold a special value
designated by #. The Extend function returns two vaiues

(a 2~ tuple ) since both the new location and the new memory
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ére needed.

Actually, the.above‘axicms-are almost the same as ﬁhe
~axioms for memories'in the cuiieht PAL definition. The main
change was the introduction of‘a‘specifié prohibit ion agaiﬁst'
locations hoidiné locations. The:important Changes to PAL -
are made in the context rﬁieé'which detefmined'when Lvalues
will be creétéd}-Giviﬁg_iocations the status of obs means
there is no lohger-a need'ta~festrict thg-binding of identifiers
solely to 10cations. In cqn;equence, the results of
expressions thch do not produce Lvalue results will not be
automatically conve:te& to Lyalues. Since it is unreasonable
to do without Lvalues altogether, a neQ qperafer‘igg is
introduced to allow explicit creation of L&alues. The_opérater
' loc obtains a néw location using Extend and puts the Rvaiue
_which is its afgument into'the-new location. The result ié
the updated ldcation. Sinde‘tﬁé argumeﬁtrot 1oc must be an
Rvalue, an Rvalue éonteXt is f@rced. Theréfore, an expresSion
such as loc(loc 3) creatés two new 1ocations each of whiéh
holds a 3 sinée an automatic application of Conﬁents is used 
to obtain the Rvalue 3 after'the first application of,égg-
fhe locatioﬁ reéulting from the first application of 1OC
becomes inaccessable Because the Contents functiqn does not

- pass on the Lvalue of its argument. Thus, loc pérforms the
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same function as $§ performs iﬁ an Lvalue context in the
current PAL.

While Lvalues are not autométically created it is still
necessary and reasonable to in#ert automatic transfers from
Lvalues to Rvalues. For example, the-right hand side of an’
assignment statement and the argument of 1loc both requife-
an Rvalue. The relaxation of Lvalue contexts has produced.
mére contexts which force neither L or Rvalues. Therefore, the
operator val is introduced to extract explicit Rvalues. Ther
argument of val may be.either an Lvalue or an Rvalue. If it
ié an Rvalue the result of val is that Rvalue. If the.
argument is an Lvalue, the result is the Rvalue which is the 
contents of that Lvalue. The modified context and form rules

are given in tables II.3 and I1.4

The Implications of The Change to

Location Generation in PAL

One of the primary functions of locations beyond that of
allowing assignmentsris to allow several identifiers to share
the same location. lSharing means that an update to one
identifier changes the Rvalue associatéd with the idehtifiérs
that share #ith)it. .In the current PAL, sharing occurs

naturally and the $ operator must be used to prevent sharing
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Table 3: The new mode context table

R o R B R val R B % <variable> B
Raug B B { , B 17
RB R->B | B
test R ifso B ifnot B
test R ifnot B ifso B
if R do B while R do B

9’_9{_:_911 R : B L := R
let ‘definition in B
B where definition
valof B res B
( B) [e1 |
fn <bv part> . B
<yariable> {, <variable>}§ =B

<variable> <bv part> = B

Table 4: New table of resulting modes

R-type expressions

<guotation> <numeric> <literal>
val E E o E g E ‘
E Lo Boly E aug E
fn <bv part> . E
E ;= E

L-type expressions

loc E

B-type expressions

E E <yariable>
E % <variable> E valef E

The symbol R indicates that an Rvalue context occurs
and similarly L indicates an Lvalue context and B indicates
tnat there is no automatic conversion of values.
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from occurring. Because locations must bé explicitly created
in S-PAL, sharing occurs only when a location is bound to tﬁe
identifiers.

The above statement is somewhat deceptive since sharing
is defined solely by #he effeét of an update operation. The
real reason that sharing does nét occur unless identifiers
are bound to Lvalues is that updates are not possible to
variables which are bound to Rvalues. The update function
is only defined in Lvalues. Hence, it is reasonable ﬁo
introduce the term consﬁant (or manifest constant [29])) for
identifiers which are bound to Rvalues and to reserve the
term variableé for identifiers bound to Lvalues. Because
there are no Lvalue contexts, it is necessary to define what
happens when an Rvalue occurs on the left hand side of an .
assignment. This problem does not arise in the current PAL
because the Lvalue context aiways assures an Lvalue wiil occur
on the left hand side of an assignment. This means that the
assignment 3:=5 will have no effect because a new locatidn is
created to hold 3_and the assignment changes its contents tp
.5. However, the location is inaccessable following the
assignment so no noticable effect occurs. There.a:é
essentially two thoices'on what to do with Rvalugs on the left

of assignments. One action is to simulate the effect of
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creating a new location, assigninglto it and forgetting the
location. This form of assignment is nugatory on all constants
and constant identifiers. Thé other alternative is to raise

an error condition whenever an Rvalue is_on the left of an
assignment. I feel the latter action is better since with

the generality of PAL it is very simple to make horrible
mistakes and any action which helps to find these misﬁakes
sooner 1is very useful.

Removing tﬁe‘automatié creation of Lvalues from PAL also
has an effect on the construction and aﬁgmentation of tuples.
Preyiously the range of a tuple was réstficted solely to
Lvalues. This meant every component of é tuplé could share
énd.was updatéble. In é-PAL the range of a tupie is éxtended
to be any ob in the uniﬁerse of discourse. This meané‘ﬁhat it
is possible to create tuples Qhose components are éli Rvéiﬁés
or evén mixed Rvalues aﬁd Lvalues. Therefore, certain components
of a tuple may not be updatable.

The_ggg operatidn does not modify,éreviously con;tructéd
tuples since tﬁié would destroy referential transpgrancy.
Instead, Egg'produces'a qew‘tuple of leﬁgth n%l whdéé first.n.
components are the "samé" as those of the previous tuple énd

_the n+lst component ‘is the augmented coﬁpbnenﬁ. To be complete
it is necessary to specify what is meant by "whose first n

components are the same as those of the previous tuple'g",
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This is simply solved in the current PAL by reguiring that all
components of a tuple be Lvalues. Then the first n components
of the new tuple share with the corresponding components of
the old tuple. Hence, the components designate the "same"
values.

The same solution works for Lvalued components in S-PAL.
It 1s the Rvalued components which raise problems. An Lvalue
or more explicitly a location is a very simple data object.
Two locations are equal if and only if they share. However,
Rvalues are both simple, such as reals or integers, and complex
such as tuples or functions. While equality is defined
naturally for simple Rvalues, the PAL programmer must define
what he means by equality fof the complex Rvalues. There is
no built in definition of equality for functions or tuples.

One alternative for handling Rvalues in tuples is to
copy the Rvalue and use the copy in constructing the new tuple.
We‘choose to define a copy to be the "same" as the original if
and only if it produges the same result as the originallunder
every operation which is applicable to the original. 1In par-
ticular, this definition requires that assignment to any subpart
of an Rvalue must affect the copy and the original in the same
way. This means that the copy is made by copying the structure

only as far as locations or simple Rvalues. This is natural
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since equality is defined for these simple values, so if tte
structure connecting the values is identical, the copy and
the original must be the "same".

If the structure is identical up to the locations it
cannot be modified by any subsequent operations. Updates can
only affect the caontents of a location, and the copy and
original Rvalue share the same locations. Therefore, it is
unnecessary to copy the Rvalues in the first place. This
facilitates implementing S-PAL since much less than a full copy
is needed to perform the aug operation. The new tuple is
a)nstructéd'by copying only the map between the n integers of
the original and their associated values and extending it to
include the new value as the n+lth component. Thus, a one
level copy suffices to duplicate the original tuple.

Because the tuple is copied before being augmented, it
is impossible to modify a tuple occuring as an Rvalue in
another tuple. This is consistent with the treatment of
othér constants. It also means that it is impossible to put
loops into data structures without using an assignment operation.
This is because no previously aefined object can refer to the
newly constructed tuple unless the new tuple is assigneﬂ to

that object.
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Alternatives for Passing Arguments

Distinguishing between variable and constant bindings
makes possible a number of different ways of passing arguments
and handling formal parameters. Whether an argument will be
modified or not can be controlled by either the calling or
the called function. When constant arguments are used, the
called function can not produce side effects by assigning to
the formal parameters. Within the called function, the formal
parameters may be either bound to the argument or to a location
which holds the argumeﬁt. In the former case assignments. to
the parameter are impossible since it is bound to an Rvalue and
updates are no£ allowed. 1In the latter case, the formal para-
meter is more like a local variable which is initialized to
the Rvalue of the argument. 1In this case assignments only
change the local value and have no affect on the argument.

If the passed argument is an Lvalue more alternatives
are possible. If the formal parémeter is bound to a new loca-
tion containing the argument as in the second case above; the
called function cannot distinguish between Lvalues and Rvalues
aréuments. In either case the affects of the formal parameter
are local to.the function: This corresponds to the ALGOL form

of "call by value."
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If updates to formal parameters are to be forbidden
" as in the first case above, #he formal parameter may be bound
to val of the passed argument; Then no matter whether an L
or Rvalue was passed the binding is always to the Rvalue.
This way guarantees that the arguments to a function will
remain constant for the duration of the function invocation.

The final alternative is to bind the formal parameter to
the argument just as it was passed. Then if an Lvalue was
passed, side effects through updates are possible. This
corresponds to what is called "call by reference" by Strachey [35]
There is a slight difference, however, because the caller
has control of whether an Lvalue is passed.- Therefore call by
reference becomes a cooperative effort between the calling and
'the called funcﬁion.

The handling of free variables is another aspect of functions
that is discussed by Strachey. The value of a function definition
is a Aclosure. The iclosure contains all the information
necessary to evaluate the function. This consists of the text
of the function and the values to associate with any free
variables in the function. There are a variety of ways of
handling free variables, two of which are used in CPL[2].

The values for the free variables in the )-closure form the

free variable list. In CPL and other languages a free variable



30

list is built when the A-closure is made and the identifiers
associated with the free variables ére bound to the values on
the free variable list. This is, they are bound to offset
in the free variable list. If the function is defined with
the operater "=" the Lvalues of the associated values are put
into the free variable list. Alternatively if the operator
"=" is used the Rvalues of the free variables are used to build
the free variable list.

In PAL the identifiers are not bound to the values in
the free variable list, but instead the free variable list con-
sists of all the free identifiers and their bindings when the
function was defined. When a PAL function is invoked the
values of the free variables are obtained by searching for the
identifier in ﬁhe free variable list and using the value that
identifier is bound éo. Since the current PAL only allows
Lvalues in bindings, all definitions have the same affect as "= "
definitions in CPL. However, in S-PAL Rvalues may also occur,
so definitions fall somewhere in between the "=" and "="
definitions of CPL.

It is difficult to create "=" type definitions in S-PAL.
Even using val will not help because the argument of val
is not evaluated until the funétion is invoked and the current

value of the argument will be used. The only way to achieve
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the affect of Rvalues on the free variable list in S-PAL is
to define the function in an environment where all the free

variables are already bound to Rvalues.

Modifications to the L-PAL Gedanken Evaluator

Relatively few modifications are necessary to make Lvalues
objects in L-PAL. The main change is to remove the Lvalue
contexts as has been already noted. The Lvalua contexts are
forced in only two places in the gendankenmachine, namely, in
the Extendtuple function and the ApplyAclosure function.

These are the only places where any form of binding occurs

in the gendankenevaluator. These functions are simplfied by
removing the test for Lvalues and the associated invocation of
NewLval to build an Lvalue_if none was present. See appendix
B for the modification.

The above modifications remove all uses of NewLval but
it is used in the new definition for loc. Similarly a definition

for val replaces the $§ operator. The two new steps in Transform

are
| x eq 'loc’ + NewLval (A)
| x eq 'val’ + Stepcontrol (A)
replacing
| x eq 's" » Stepcontrol (A)
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Note that since the action for loc occurs below the R context
forcing, NewLval will always be acting on an Rvalue.

The final change is not as clean as the preceding changes.
In the current PAL all basic functions have an Rvalue céntext.
This is reflected in Applybasiq which automatically extracts
the Rvalue before applying the basic function. This is not
possible in S~PAL since there are basic functions such as Isloc
which require that automatic applications of val be inhibited.
There are two possible solutions to the problem. The first
solution is to allow basic functions to take both Lvalues and
Rvalues as érguments. This would make basic functions more
like user defined functions which no longer have contekt rules.
However, this solution seems to introduce a certain amount
of inefficiency in any implementation since every basic func-
tion using Rvalues would first have to check its arguments. If
they were Lvalues it would have to extract the contents. This
suggests an alternative solution which distinguishes two
classes of basic functions. The first class of functions always
takes Rvalue arguments so transfers are automatically performed.
The second class of basic function tests its arguments so
transfer functions are not needed and should not be inserted.
This solution allows a compiler for PAL to insert transfer
functions wherever they are allowed and needed. It can be

affected by modifying the Applybasic function to Dbe:
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def Applybasic (c,S,E,D,M)=
let x = IsRfen(t g) Rval(M,2nd S)

| 2nd s

in r C,Push [apply(t 8)x,r2 S, E,D,M

The main disadvantage to the second solution is that the

function Applybasic is relatively more complex. It now must test
which type of basic function is to be applied. Of course,

it is the possibility of making this test which allows the

automatic insertion of a transfer function.

Other Alternatives for Handling Assignment

The literature is filled with a number of different
proposals for formally defining the affect of assignment'
[3,4,12,26,34,39]. Some of the proposals are based on
locations, while others either ignore the concept or modify
it so it is unrecoénizable. This section explores a subset

of possible alternatives to S~PAL and discusses the differences.

Syntactic Conveniences

In S-PAL a location is never created without the expiicit
use of the loc operator. On the other hand in the current PAL
a location is automatically created by defining a name. For
example, the phrase

let X=2 in M



34

Creates a new location, puts the value 2 into it, and binds
it to the name X. In S-PAL this phrase would bind the name X
directly to the value 2. If the user desires a variable which
can be updated he must insert a loc operator as in

" let X=loc 2 in N
Thus, it is syntactically easier to define “"variables" in
the current PAL than it is in S-PAL.

This distinction is more clearly seen in_the gquivalent
lambda expressions. The first phrase is equivalent to
(AX.M) 2 while the second is (AX.N) (loc2). Currently in PAL
the argument of a A expression is forced to an Lvalue so the
desired location is c:eated. But without forcing an Lvalue
the binding of X will be to the constant 2.
| There is an alternative solution to the probiem which is
found in CPL. 1Instead of associating an Lvalue context with
the argument of a A expression the right ﬁand side of an "="
sign is desugared with the loc. That is "let X=2 in M"
becomes (AX.M) (loc2).

If this were the only form for defining a binding tﬁen
sharing and constants could not be obtained. Therefore, it is
necessary to introduce a second definitional operator, such as
the " = used in CPL, which does not force the creation of a

location but just binds the name to the value (R or L) on the



right hand side of the definition.

The above alternative was not chosen primarily for
pedagogical reasons. There is a great value in making location
creation explicit. Since they alone have side effects, pointing
out their occurrences makes it easier to debug the programs
and restricts unnecessary uses of locations. Also, having only

one form of definition reduces the complexity of the language.

Should Locations be Able to Hold Other Locations?

In many languages where locations exist in the language
it is possible for locations to be the values of other
locations. This is specifically prohibited in PA# in part for
reasons given earlier in the Chapter. However, it is uséful
to explore the other alternatives.

The reason given most often for allowing locations to
hold locations is that of generality. The language designer
can find no reason why locations must be excluded from the set
of Rvalues so they are allowed in the name of generality.
However, generality is a vague concept in many applications.
Often generality means allowing an object to appear anywhere
it makes sense. Obviously all contexts do not make sense.

For example, the sum of two strings of letters does not usually

make sense. However, if the letters are assigned numeric
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values then, the sum might occur in some coding scheme. The
problem is that what makes sense is a value judgement on the
part of the language designer. It is my belief that locations
holding other locations does not make sense. The main reason
for this was given earlier in the Chapter using the analogy
between a storage location and a piece of paper.

This analogy can be extended somewhat further to show a
reasonable alternative to locations within locations. While
a piece of paper cannot really hold another piece of paper
it can hold a reference to-another piece of paper. For example,
a manuscript may hold the statement "for further discussion
see page 257". This is a reference to another page and is a
proper value for a page to hold. Hence by analogy a location
should be allowed to hold a reference to another location.
This is in fact possible in S-PAL or even the current PAL for
that matter. In the PAL definition only the locations themselves
are available to the user not their names. This allows greater
freedom in choosing a pﬁrticular implementation of the memory.
If a programmer wishes to refer to a location he must give it
a name. He can do this by binding the location to an identifier,
but identifiers can not be the values of locations.

The other way a location is made accessable is by being
a component of a tuple. It is possible to view the tuple as

a generalization of the idea of pointers as found in PL/I[27].
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While a pointer can only identify a single memory location the
tuple can designate many distinct memory locations. Each
component of the tuple can be a different location. The pointer
corresponds to a l-tuple. References to other locations can
be implemented by assigning to the location a l-tuple whose only
compenent is the location being referenced. Thus, the tuple is
also a means for "naming"” locations.

It may appear that it is awkward to evaluate a tuple to
be able to use the referenced location. However, this is really
a problem inherent with references. Consider the following
small excerpt of code for a language which allows locations
to hold locations.

let X = loc 2 in
X:= loc 3;
X:=5

When the block is entered, X is bound to a location holding
the value 2. The first assignment changes the value held by
the location X to another location which holds the value 3.
Now does the second assignment modify the contents of the
location X or does it modify the conﬁents of the location
refered to by location X? Because assignment requires an
Lvalue and X is bound to an Lvalue it is natural to do the
least amount of work necessary and update the contents of
location X. This is what happens in most languages with this

probelm. Therefore, to update the referenced location it is
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necessary to write the second assignment statement as
"val X: = 5". Then the Lvalue which is the contents of X is
updated. Using tuples in PAL the program becomes

let X=loc 2 in

X: = nil aug loc 3;

X 1l: =5
It is easy to see that except for the inconvenience of
creating a l-——tuple there is little difference between the two
languages. They both have the problem of distinguishing which
location is to be updated.

An analogous problem occurs in defining equality for
locations. In S-PAL two 1§cations are equal if and only if
they share. This corresponds to equality defined by the eg
predicate in LISP. However for arithmetic operations, it is
desirable to define two locations holding the same value as
being equal. This corresponds to the equal predicate in LISP.
The distinction between these two definitions is discussed at
some length in park [26]. The S-PAL definition was choosen
because locations are values in S-PAL and the polymorphic
opérator "=* ig defined over all other values. The affect of
equal can be achieved by using val to extract the contents
before equality is tested. However, the need for two approaches

is inherent in the concept of location.
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Dynamic Variation of Bindings

S-PAL like GEDANKEN, CPL and other languages requires
that once a variable is bound to .an object that binding is
fixed for the duration of the execution. However, BASEL[10,12]
allows the programmer to vary the bindings of variables
dynamically. The reason for this appears to be connected
with the concept of "type" found in BASEL. Both variables and
locations may have associated types. A typed location maf
hold any value which is consistent with the type. A typed
variable may be bound to any object which is consistent with
the type. Suppose X is a variable which can either be a loca-
tion of an integer (loc int) or a location of a real (loc
real). Then, at any time X may be bound to a loc int or a
loc real but nét both. That is,;"1f X is a ;ég.égg, then the
assignment X: = 3.1417will fail. If both types of values
should be assignable to X, then X should be of type loc union
(int,_real) and in that case X is bound to a location which
can hold either integers or reals.(union lists alternaﬁive forms)
Then either X:=2 or X: = 2.7 is a legal assignment. Allowing
variable bindings makes the distinction between locations and
binding a little more obvious. These topics are discussed

again in context of types in Chapter V.
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The most obvious affect of this alternative is to increase
the amount of confusion a compuﬁer must handle. It becomes
difficult to insert type validity tests for variables if
the binding is unknown. Since it is in general impossible to
predict program flow, it is necessary to assume the worst
and test for the type of object to which the variable is
bound. This is unnecessary if bindings are fixed since
the type is determined when the variable is defined and
bound.

Variable bindings also affect how the processing of free
variables is done. In BASEL the free variable list is built
from the values currently bound to free variables. Hence,
any future rebindings will not affect the values of the free
variables when the function is applied. However, in PAL
where the free variable list is kept by name, a rebinding

would affect the value cbtained in future function invocations.



Chapter III

Representing Data Structures by

Functions over Symbolic Domains

The only tool for building data structures in the curreéent
PAL is the tuple. The major properties of the tuple were
discussed in the previous chapter in connection with locations.
The tuple is a perfectly general device for building and
referencing collections of data. Therefore, any new technigue
for data structuring will not expand the capabilities of the
language. stever, the tuple is a "natural" representation
primarily for data which has some order to it. That is,
there is a natural integer index associated with each data
element. This data may be a vector of points, a string of

characters, etc.

Representing Data without a Natural Ordering

When the data is without:a natural ordering, as is the
case in a number of data collections, the tuple is a much less
attractive form of representation. Consider for example the
representation of the control items in the gedanken interpreter
for PAL. It is possible to represent these elements as tuples
but it is awkward because many convéntions must be introduced.

41
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For example, the control item for a A-closure has tﬁree componé
ents which can be succinctly described in the notation of
Landin's [13] structure definition as
A A-closure has
a bound variable part
and a A-body
and an environment.
When this-is translated into a tuple representation, it is
necessary to estaﬁlish conventions such as the first component
will be the bound variable part, the second component will be
the A-body, ‘etc. Furthefmore, it is necessary to be able
tq recognize the type of the control item SO an addi;ional
convention is required to store the type information. Thus,
a JAclosure might be represented‘(as %% is in R-PAL) by the
following set of definitions' |
def 1Is aclosure X =
Istuple X +X 1 eq'l'l| false
and BV X = X2
gggj Body X = X 3
and Env X = X 4
-The structure definition is-simpler because only the
necessary information is supplied. Irrelavent information such

as the order of the components is not needed. Thus, the tuple
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definition suffers from overspecificity: it is necessary to
stipulate conventibns which are not strictly required to define
the structure.

Obviously, this is only one of a number of possible
representations in terms of tuples. Other representations
may be used to make the processing of the data structure easier.
For example, in the abstract syntax of PAL [40] the structure
type is represented as the last component of the tuple.
Another variation is used in the representation of control
items in GEDANKEN [30]. However, in all these representations
in terms of tuples or vectors, the definitions have more struc-

ture than is needed.

Difficulties with Tuple Representations_gg Data Structufes

One of the most unnatural aspects of tuple representations
of data structures is the haﬁdling of the structure type infor-
mation. This is most often represenﬁed by a taé which is stored
in a standard location in the structure and identifies;the type
or class of the structure. Since it is part of the tuple it
becomes necessary to program around it for various actions on
the tuple. For example, the tag is the final component in
the PAL abstract syntax structures. Hence it must be removed

and replaced whenever the tuple is augmented.




44

Another unnatural aspect of using tuples is that they
have too many properties. It.is impossible to restrict action
on a data structure only to operations applicable to‘tha£
data structure. Since it looks like a tuple, it can be manipu-
lated as a tuple as well as the data structure it represents.
This leads to confusing programs. It also inhibits optimiza-
tion which depends on the structure since all the tuple properties
must be preserved whether or not they will be used. The tuple

gives a weak representation of the data structure. It has the

properties of the data structure and also its own tuple pro-
perties. To have more control it is necessary to have a strong

representation. That is, a representation which has only the

properties of the data structure and no others.

The Properties a Data Structuring Facility Should Possess

The above discussion indicates a set of ptoperties_which

a data structuring extension should have to be more natural
and convenient.

1) The representation of the data structure

should be strong to allow optimal storage

and to‘reduce confusion.

2) The type of a data structure should be

easily accessable and independent of the

data in the structure.
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3) It should be possible to access the data

using its natural identifier..

In addition to the above pfoperties the data structurihg
capability should be convenient to use. This means that the
syntax should be relatively simple, not too verbose and in
general natural to read and write. It should also, if possible,
provide documentation on the attributes and form of the data
'structure.

The facility should also provide a number of different
ways to build data structures. 1In some problems it is impossible
to predict the form of the data structure.and it must be possible
to construct it dynamically. This type of data structure is
available in languages like LISP [21], ALGOL68[37] and is
discussed in a humber of papers, in particular that of Hoare [1l1].
The dynamic form ié perfectly general but there is a real cost
associated with constructing and storing the data structure.

For some problems, such as payroll management, it is
possible to define a fixed format for the data. In this case
the relationship of data items is not varied during the processing.
- Therefore, it is possible to optimize the storage_and'érocessing
of such data structureé. COBOL, [36] is typical of languéges
which providé this static data structuring capability. Obviously

these two forms are extremes and a general purpose facility
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should allow a wide range of possibilities between these forms.

Landin'’s Structure Definition

A modified form of Landin's structure definition was
chosen as the basié for the daté'structuring facility which we
shall discuss. There were two feasons for this. First it
satisfies many of the above goals. Secondly since many of the
ideas of PAL were derived from Landin's'ISWIM[l7], it appeared
that the structure definition syntax would fit in well with the
rest of the PAL syntax. It is not yet clear how well the
actual formalization of Léndin's syntax meets such goals as
simplicity and naturalness. Only actual use will be able to
resolve these questions.

What features are needed in a facility.ﬁor structuring
data? This quéstion is discussed at some length in Landin [13,16]}.
Only the conclﬁsions will be reproducéd here. If you have
a data structure i#_must be possible to recover the individual
data items which make up the structure. Therefore, thgre-
must be a set of selectors.which can be used to ektréct fhe
aata items. Conversely given a sétrof data items it must be

possible to build a data structure whose components are that

set. Thus a éonstructor which takes sets of data items into

data structures is required.
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Finally when processing a data structure it must be possible
to distinguish between glternative forms of that structure.
For example, a component of a structure might itself be one
of several data structures or primitive values. Which form

occurs can be determined using a set of predicates for the

alternative types. Each predicate is a function on the universe
of discourse which yields true whenever‘its argument is
of the specified type. Therefore, the structure definition
must provide at least enough information to define

l) a set of selectors

2) a constructor

3) a predicate

An Additional Property of Landin's Structure Definitions

Actually Landin's definitions provide slightly more
information than we have discussed thus far. Our earlier
definition of a Aclosure provided only enough information
to define the selectors and the predicate. A more complete
definition of Aclosure would be

A )closure has
a bound variable part which is a variable
and a Abody which is a Xexpression
and an environment which is an environment.
The difference is that now each component also has a type
associated with it. This makes it'poésibie to check the type
of each component before the data structure is constructed.
This makes it possible to provide a stronger represéntation

than is possible without the type information. It prevents
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unexpected data from occuring in the structure. If any data
item is allowed as a structure component it is impossible
to restrict the properties of the data.

The addition of type information for the components
complicates the description of the structure definition.
Further discussion of the problem involved is therefore delayed

until Chapter V.

Other Formalizations for Data Structures

Data structures have been formalized by several methods.
A good commentary on previous formalizations is given in
Standish [33]. He presents a mefhod which is similar
to Landin's structure definition but has a more concise
syntax. In recent work Vigor [38] proposed a definition
which included the selectors, constructor, and predicate, and
also added some. functions to force different modes of
evaluation (applicators) and to change representations
(designators). Similarly, Burstall and Popplestone [4] add
an inverse (destructor) to the constructor which produces
the components of the object.

Another approach to formalizing data structures is to
represent them as graphs. These graphs have nodes which
represent the structures and the edges of the graphs represent
the relationships between the structured objects. AMBIT/G(S5]
and VERS[7] are typical of languages which use this approach.

In the case of VERS the graphical form must be converted
into a machine representation by using a set of primitives

for manipulating the structure. The primitives are machine
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independent and are derived from operations for constructing
and manipulating the graph. Efficiency is obtained by
substituting different machiné oriented definitions for the
primitive operations. That is, a single primitive may have
a different implementation for each structure type. This
makesrit possible to tailor the primitive action to the
manner in which the data will be used. This idea of
defining “code” to implement a particular instance of a
primitive is also present in the work of Laurence [19].
Machine independence still exists since it is only
necessary to redefine the primitives for the new machine,
The structures are coded in terms of the primitives so

they are uncﬁanged.

Unfortunateiy, the primitives that are used in VERS
seem to force a particular form of implementation. It
appears that all data structures must be created and linked
dynamically at rﬁn time. This makes it impossible to
group several substructures into a single major structure
with fixed links and then use the fact that the link
relationships are fixed to optimize references to components
of the substructures. This type of optimization is seen;
in PL/I and COBOL where components of substructures can
be given fixed offsets from the address of the major structure.
One advantage of the structure definition is the lack of

commitment to any particular implementation.
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The S-PAL Representation of Data Structures

The formalization of data structures should be chosen
to maximize implementation.independence. That is, formaliza-
tion which unnecessarily restrict the implementation should
be avoided. If this were the only requirement on the
formalization, then the only way to avoid introducing extraneous
restrictions would be to axiomatize the desired properties.
However, it does not seem possible at this time to develop
a meaningful set of axioms which fully characterize a datastructure.
Axiomatization also makes it difficult to build on previous
definitional work. There is a definite pedogogical advantage
in defining new features in terms of the existing language
structure. This reduces the amount of work needed to relate
the new features to the rest of the language. Part of the
design philosophy of PAL was to devélop the language in
several "logical bootsﬁrap" operations. In each step the
new features were formalized in terms of the language defined
in the previous sfep.
We have chosen. to formalize data structures in S-PAL in
terms of a specific R-PAL representation. Although this is
more restrictive than is theoretically necessary, we believe
the pedogoical advantages outweigh the other costs. A structure
definition is basically a description of a labelled node in a
directed graph with label edges. Hence the choice of syntax
has already restricted the set of possible representations.

The representation which will be used was chosen because it
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appears to add very few additional constraints to implementing

the structure definitions.

The process of formalizing data structures in terms

of the chosen representation can be divided into four parts.

1) Defining a syntax in which it is convenient

for the user to define, create and manipulate his

data structures (the concrete syntax)

2) Defining an abstract representation for the

information contained in the above syntax

abstract syntax)

(the

3) Describing the translation of the syntactic

information into a representation of the data

structure (the interpretation of the parse or

the standardization process)

4) Presenting the properties of the chosen

representation (semantic clarification)
The approach to part 1 has already been discussed.
the description with an informal discussion of part

it is basic to the other parts of the formalization

A Functional Data Structure Representation

We continue
4 because

process.

In Landin's approach, data structures are treated

as a new class of constructed objects. The predicates

and selectocrs are functions whose domain includes these
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cbjects. 1In particular a selector returns a component of
the data structure as its value. In S-PAL data structures
are instead represented by a special class of functions

called data functions. These functions are defined over

the set of selectors for the data structure. A component
is obtained by applying the data function to the selector.
To make the distinction between the two forms of
representation clear, consider the functionality (i.e.,
domain and range) of the traditional [4,13,33] form
predicate € objects + truthvalue
selector € data structure -+ component
constructor ¢ set of components » data structure
In the S-PAL répresentation the functionality is
constructor € set of data components +» data functions
data function € selectors » data components
predicate ¢ objects » truth value
This approach of using functions for representing data is
not original. It is used in Gedanken[30] and by Park([26] and
Balzer[l]; However this formulation differs in several
aspects from their approaches.
The functional approach is a natural generalization
of the tuple. 1In the tuple the constructor is aug, the
selectors are integers and the predicate is Istuple. To
ge£ data functions we extend the domain (selector set) to 3
symbolic names so the componenté of a data structure may

have descriptive selectors. The constructor will build a
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more general class of functions and a whole set of distinct

predicates will be created.

Data Functions Provide Flexibility

The reason for choosing a functional representation
is the flexibility it gives to program construction. The
program can be written with functions representing the data.
Then when the algorithm is clear the functions defining the
data structures can be written in a form best suited to the
way the data is used. For example a sequence of elements can
be represented as either a list or an array depending on
how the data will be referenced and manipulated. The important
point is that it is possible to change the representation
whithout changing the algorithm.

The user may choose to use the functional representation
created by the translation of the structure definition
or he may define his own function to represent the structure.
In the latter case it is possible to choose the representation
to suit the problem. For example, it is possible to
define the values of a subset of the components in terms of
the values of the other components. Then it is necessary to
store only the independent components in the environment of
the function. The dependent components can be qalculéted‘
from the stored values. This is a way to save storage when
the components are related and it illustrates one of the
possible ways a data structure can be varied within a

functional representation.
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Consider for example a collection of data indexed by
the integers from 1 to N in which the values on the odd
integers are the squares of the values on the even integers.
If we assume that there is a function Evendata which holds
the values of the function for even integers, then the
whole collection can be reéresented by

def Datacoll X = |
0odd X + [Evendata ((X-1)/2)]1%*%*2
| Evendata (X/2)
Thus, only the even values need be stored. The functional
form of representation makes it easy to replace
the data with an algorithm which calculates the

" data.

Atoms

The integers make very good selectors. They can be
computed, they are ordered and their meaning does not v#ry
from occurrance to occurrance. To extend the domain of data
functions, it is desirable to use symbolic selectors with
properties similar to the integers. There is no strong
argument for being able to compute symbolic selectors and
we have noted earlier that an ordering of symbolic selectors
is not important. Therefore, the only property of an integer
which is important for symbolic selectors is the invariance
of its interpretation. For example, the numeral 2 always
designates the integer 2. The designated value does not
depend on the context of the designation; in other words

it is a constant.
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The idea of invariance is important because a data function
is given only the value of the selector to use in selecting
a component of the represented structure., If the same
selector designation specified different values in different
contexts then applying a data function to what appeared to
be the same selector could.produce different results depending
on the context in which it-occured. Therefore, it should be
possible to designate a symbolic value in a manner which does
not depend on the context of the designation. An example
of such a designation is the character string constant
found in PAL and many other languages.

Although a string constant satisfies the invariance
pioperty it is not completely suitable for use as a selector,
The reason for this is that strings have too many properties.
The only property a symbolic selector must have is that it
must be possible to test any two symbolic selectors for
equality. This property is used in the data function to
identify which component is being selected. However, character
strings have many additional properties such as the ability
to be concatenated, decomposed, etc. This means that
any representation of character strings must preserve these
properties. On the other hand if equality is the only
property required of symbolic selectors it should be poSsiblé
to use an encoded representation. - For example, they might
be represented by a type code (tag) and an integer identifying
the selector. This representation uses much less space than
a full character string and is much easier to manipulate on.

more computers.,
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To take advantage of the simpler representation require-
ments of the symbolic selectors, a new class of objects called
atoms is introduced. Axiomatically their properties are

AxIII.1l) The class of atoms is distinguishable from

all other objects in the universe of discourse.

AxIII.2) Any two atoms are either testably equal

of distinct,

AxIII.3) There are no other properties.

Because atoms are normally represented in an encoded form it
is necessary to specify how the correspondance between the
external designation and the encoded internal representation
is established. To preserve invariance this correspondance
should be 1-1 and should depend only on the external designation.
In most implementations this is accomplished bylencoding the
atom by a type code and the address of a copy of the external
designation. Therefore, the character string for the
external designation need be stored only once. If this copy
of the external designation is unique, then any occurance of
the atom in its external form can be uniquely converted

into the internal representation. Conversely, each occurance
of the internal representation uniquely identifies the

external designatidn. Therefore, the correspondance is 1-1.

Alternative Definitions g£ Atoms

The atoms defined here differ from the atoms defined
in both LISP[21] and GEDANKEN[30]. In GEDANKEN the atoms
are objects without an external designation. They only have

an internal representation which consists of a type code and
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an integer value. There is a primitive operation which
generates new atoms whose identifying integer is distinct
from those of all previously generated atoms. In this case
the representation of the atom has no significance other
than to distinguish different atoms.

' To use these atoms for selectors it is necessary to
give them identifiers which can be used as external designators.
This is accomplished by binding names to the atoms used
as selectors. However, this approach does not provide
invariance of selectors., It is possible to bind the same name
to two different atoms in different contexts. Therefore, it
is possible to have two atoms with the same designation which
are not equal. In addition, this approach does not allow atoms
to be output on a printer or a removable storage device because
there is no external designation. This also means that an
atom cannot be referenced by name in another program using
the same data base.

In LISP there are both named and generated (unnamed)
~atoms. But these atoms have too many properties for our
purposes. Each LISP atom also represents a value. The value is
stored with other descriptive information in a property iist
which is attached to the atom. This is a list of attribute
and value pairs. The only LISP attribute that an S-PAL
atom haé is its external designation or prinﬁ name. This is
determined by the 1-1 correspondance between atom values and
names. so there is no need to have a property list. 'Althpugh

S~PAL atoms are more primitive than LISP atoms, it is possible
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to define an S-PAL data structure which represents the LISP
atom if the additional properties are needed.

In LISP all names are atoms so there is no problem with
syntactically distinguishing the atoms. However, in PAL
names which are not atom names already exist., In fact, since
S-PAL atoms do not have associated values, non-atomic names
are necessary to identify locations and other objects.
Because selectors will be used fairly frequently it is
desirable to have a convenient and easy syntax for atoms.
This is another reason why character strings were not used
as selectors. Quotes are too cumbersome, especially for
short nameé. _ Several different schemes were proposed of
which the best appeared to be to use strings of two or more
capital letters or numerals with at least one capital letter.
This seemed more convenient than using a special marker such
as the guote in a character string. It does, however, mean
that names which were previously available for variable
identifiers are no longer usable for that purpose; Thus,

existing PAL programs may be invalidated.

The Special Properties of Data Functions

Why is it necessary to identify a special class of func-
tions to represent data? The main reason is that an unrestricted
function has too many properties éo that it is possible to
build an efficient representation and so that some basic
guestions about the function are decidable.

An example of an undecidable gquestion for general functions

is what is the domain of definition of the function. However
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all data functions have finite domains. In the case of tuples
it is possible to find the entire domain with the Ordér function.
This allows the user to write algorithms which process every
element of a tuple by sequencing through the domain of the

tuple. This property is also necessary for symbolic domains.

I'or example, a user might test two instances of a data structure
for equality by applying the two functions to each of the
possible selectors and comparing the results. Obviously he

must know the selector set to do this.

The Order function is applied to a tuple to get the domain
information. However, it is as we noted above impossible to
extract that information from an arbitrary functibn. Therefore,
it seems more natural, following the approach used by Reynolds [30],
to require a data function to producelits domain when it is
asked.

It is not feasible to predict every question which might
be asked about a function so we will restrict our attention to
question§ which appear to be useful for manipulating data
structures. This rélatively small set of guestions can be

encoded by a set of special selectors which are recognized by

all data functions. These special selectors will be designated
by built in atomic keywords (e.g., domain). These are built-

~in constants just like true or false.
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This leads to a natural definition of a data function. A

data function is any function whose domain includes the set of

special selectors and which gives correct information akout the
function when applied to those selectors. Note that this defin-
ition makes it impossible to decide if an arbitrary function

is a data function. However, this is less important than the
fact that a user may define his own data functions if he so
chooses. He need only check for the special selectors and
produce the correct results. Such user defined functions Qill
be operationally indistinguishable from the functions produced

by structure definitions.

The Selector Set

The result of applying a data function to the special
selector domain-is a tuple consisting of all the selectors
in the domain of the data function. Because there is no way
to compute the selectors from a smaller amount of information
it is not possible to produce an abbreviated form of the domain
information such as that given by the Order function. fhe only
complete specification is the set of atoms themselves. The
special selectors are not included in the tuple produced in
response to domain because all data functions are assumed to

be defined on these selectors.
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Predicates

The predicates are functions which extract a different
type of information from the data functions. Since the
predicate will most often be used in a functional context it
is unreasonable to replace the predicate with a selector.
However, it is reasonable to réquire the function to produce
information which the predicate can use in deciding if its
argument is of the correct type. Defining the type of an object
is a very complex subject. The most natural definition of two
objects having the same type is that they can not be distinguished
(except for.values) within the language. This definition is,
however, impossible to implement. Therefore, S-PAL has left
the decision on type equivalenée up to the user. But we
provide facilities which the user can use to build a type
predicate.

One way to type a data object is to attach to every instance
of the data object a tag which identifies that object. Hence,
a primitive definition of type equivalence is that two objects
are the same type if they have the same tag. This means_that
it is possible to have two data structures which would be oper-
ationally equivalent, but are not considered equal because the
tags differ. The loss of this equivalence capability is a small
price to pay for the simplification it provides in handling

types (see Reynolds[31], Morris[25]). The tag can be viewed
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as a characterization of the data structure in a single
symbol.

It should be noted that the tag is often insufficient to
characterise the structure fully. For example, a user may
want to consider two arrays to be of the same type if and only
if they have the same dimensions and bounds. This means that
it is necessary to use the domain information to fully validate
the type. Another approach to type equivalence is that two
structures are.equivalent when they are constructed by the same
constructor_function. However, both of the alternatives imply
that the tag information is identical.

Because the tag appears to be the most primitive form of
type information it is the sole attribute that will be tested
by the predicates which are éutomatically generated by the
translation of the structure definitions. If the user wants
to define more complex type tests he can program them. The
predicate function extracts the tag info:mation by applving
the data function-to the special selector tag. The result is
the atom which was uséd to tag the structure. This can then
be compared against the tag expected by the predicate and the

result of this comparison is the result of the predicate.

The Constructor and Constructed Objects
Since the data structures are represented by data functions

Y
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in S-PAL the constructors are function producing functions. A
constructor function is automatically generated for each struc-
ture definition. It takes as its only argument a tuple whose
components are the components of the data structure. The order
0of the components in the tuple determines the selector with
which they are associated. The selectors are ordered by the
order in which they occured in the definition. The selectors
and tuple components are then paired in their order of occurrence.
The result of applying the constructor is a function which will
produce the appropriate component of its argument when it is
applied to a selector in its domain.

There is a special selector constructor which will produce

the constructor of a data function. As we noted above this is

useful when defining the type of an object. However, there is

a more important reason for including this as a special selector.

In some applications it may be necessary to change a component

of a structure. If the component is an Lvalue there is no

problem. If, however, the component is an Rvalue it cannot

be replaced by assignment. Therefore, the only alternative is

to build a new copy of the structure with the component replaced.
This is only possible if the constructor which was used

to build the original function is available. If it can be

determined solely from the data function, then it is possible
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to write a general purpose update function. This function

would take a aata function, a selector, and a value as arguments .
and would return an updated data function. The result could

e computed by constructing the tuple of components of the data
function using the selector set. Then the appropriate component
could be replaced with the new value. Finally a new copv of

the data function is produced 5y applying.the constructor
obtained‘from the original data function to the new tuple of
components; This function is used in Chapter V and justifies

the inclusion of the constructor selector.

Universal Constructors

If one of the major uses of constructors were in rebuilding
data functions, it might be simpler to have a universal constructor
function‘which'fook as én argument the type of function to be
consﬁructed as well as the components to use. This universal
function would look up the type and build-the data function
corresponding to that type from the components. This way the

special constructor selector would not be needed because tag

would provide the required information. This approach is
developed in greater detail in the formal definition of GEDANKEN.
There are, however, several disadvantages to this approach.
First if aﬁomic types are used it is necessary tc search the
entire list of all defined types to find the information for

constructing a representation of a particular type. This
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could be very inefficient although hashing techniques might help.
Also because there is a need to keep this list of defined tvpes,
dynamic declarations of new types are more costly since each

new definition makes the list larger. Another problem is that

the atomic tag may not uniquely identify the type of the structurec.
It might be necessary also to include the selector set in the
arguments to the universal constructor.

Thus, it appears that a universal constructor is only
practical if the argument which specifies the form of the structure
contains all the information necessary to build the data object.
This approaéh was used by Standish[33]. He defined data descrip-
tors which are Rvalues which encode the description of the structure.
Then to build a structure there is a constructor which takes
a set of values and a descriptor and produces the constructed
object. However, it appears that it is better to build the
constructors directly since in that case it is possible to optimize
them for the particular data structure they are building. The
S-PAL constructor is analogous to Standish's descriptor because
it must contain all the information necessary to build the
constructed object.

We complete the informal description of the desiderata
for the data functions with a few comments on two of the special
modifiers Standish introduced into his descriptor definition.

These modifiers are used to attach additional attributes to the



66

structures. The predicate modifier makes it possible to add an
additional predicate function to the predicate generated auto-
matically. The generated predicate then yields true if and only
if the structural propertieg are satisfied (e.g., correct tag)
and the modifying predicate is also satisfied. This appears

to be strictly unnecessary since it is always possible to include
the generated predicate in a user defined predicate which has

the additional tests.

The constructor modifier is a function which is invoked
after each construction and can be used to initialize values in
the constructed object. For example, it can be used to close
a ring of pointers which can not be done with a purely functional
dgsqription. Like the predicate modifier this effect can be
achieved by including the constructor in a function which uses
the constructor, then performs the initialization on the result,
Because these modifiers can be easily programmed in S-PAL they
will not be included in the structure definitions defined in the

next chapter. They are primarily useful abbreviations.
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Chapter IV

The Formal Definition of Data Functions

simple sStructure Definitions

Landin [13,16] used an informal syntax for structure
definitions and for naming the various functions the definition
produced. Selectors and predicatés received explicit names
while the constructor name was derived from the predicate name.
A slightly different approach is used in S-PAL. The selector
names are all explicit in the definition and are given as atoms.
The definition for Aclosure would be written as

def LAMBDA CLOSURE which has
BND_VAR_PART

(1) , also LAMBDA BODY

also ENVIRONMENT
This definition is intended to define a constructed object or
data structure of type LAMBDA CLOSURE. "“LAMBDA CLOSURE" is
an atom and would be the result of applying an instance.of the
data function ﬁo the special selector tag. The names for the
predicate and‘constructor are derived from the type by using the
prefixes "Is" and "Make" respectively. For example the above
definition would yield the two functions IsLAMBDA CLOSURE and

MakeLAMBDA_pLOSURE.
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The eventual goal of the above definition is to define two
functions, the constructor and the predicate. It would be
possible to write this in the forﬁ

def IsLAMBDA CLOSURE = ...

(2) .
and MakeLAMBDA CLOSURE = ...
where the ellipsis represeﬁt function definitions. However,
we have chosen to use the structure definitions as syntactic
sugaring for the above forms. Therefore, it will be necessary
to define an abstract syntax for structure definitions and to
.expand the standardizing section of the gedanken interpreter

to convert the abstract structure definitions into the desugared

form.

The Syntax for Simple Definitions

Since the results of a structure definition is to be
definitions like phrase (2), it is natural to extend the class
of <basic definitions> (D3 ip the abbreviated syntax). Hence,
D3 becomes

D3:; = NAME{,NAME}:-—-'E | NAME V=E
| @ | (D] |s
Where S stands for <naméd—structure>. The eleﬁentary structure
definition syntax is
<named-structure>;;=ATOM which has <anonymous-structure -

(3) <anonymous-structure>::={<selector> also}] <selector-

| only <selectors
<selector>: :=Atom
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In abbreviated form this becomes

S::= ATOM which has sl

Sl::= {S2 also}] S2 | only S2

S2::= ATOM
The interpretation of the syntax is as follows. The <named
structure> gives a tag to a collection of components given by
the “anonymous structure>. We shall see that the .anonymous
structure>can occur elsewhere in the syntax, so it must be a
recognizable syntactic entity. Therefore, it consists of either
two or more components separated by also or‘a single component
prefixed by only. Each component is a selector specification
which is an atom.

The abstract syntax for the above concrete syntax will be
represented pictorially and by R-PAL programs following the
method established in Wozencraft and Evans [40] . Figure 1
shows the graphical abstract'syntax for (3). The abstract

syntax tree for definition (1) is given in figure 2.

The Primitives for Defining the Constructor and Predicate

The next step in the processing is to build a gtandardized
definition like definition (2). The details of this process
are delayed until later in the chapter. The expected form is
a simulataneous definition whose righthand side defines
functions representing the constructor and predicate. These

two functions are defined by two new primitive functions,
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S

| Sl
o] e )

A Sl 821 522

Sl s2
s2 A

figure IV.1l Abstract syntax for simple structure
definitions

82
n

which has

LAMBDA CLOSURE

BND_VAR_PART ENVIRONMENT

LAMBDA_BODY

figure IV.2 Typical abstract syntax tree for a
simple structure definition
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MakeStr and IsStr. These constructor and predicate building
functions take the tag and selector set information and produce
functions with these parameters as "own" variables. These
functions are then bound to the constructor and predicate names
when the definition is evaluated. The standardized tree for
definition (1) is shown in figure 3.

The functions MakeStr and IsStr could be defined in terms
of R-PAL in a manner similar to that used by Standish [33] to
define a constructor given a description of the structure.

The main reason this is not done is that defining the constructor
and predicate in terms of a primitive function allows more
flexibility in the implementation and hence greater efficiency.
Before describing a representation of these functions, it is
useful to expand the syntax of structure definitions.

Predicates for Types with Alternative Forms

It is often the case that a particular structural type
will occur in several different forms. For example, following
McCarthy [22] we can define the abstract syntax of a term in
an expression as

def TERM which

——

is (sSuM which has

ADDEND

(4) also AUGEND)




MakeLAMBDA CLOSURE IsLAMBDA_ CLOSURE

figure 1IV.3

MakeStr
LAMBDA'-___CLOSURE ° LAMBDA_CLO SURE nil

BND VAR _PART | ENVIRONMENT

LAMBDA BODY

The standerdized form of the syntax tree for definition (1).
It is composed of a simultaneous definition of the constructor

and predicate which result from the application of MakeStr and
IsStr respectively.

cL
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else is (PROD which has
MPLIER
also MPCAND)

else ISCONSTANT

else ISVARIABLE
In this definition a TERM can have four structural variants.
It can be one of the two constructed objects SUM or PROD or
it can satisfy one of the previously defined predicates

IsVARIABLE or IsCONSTANT.

The Differences Between Predicate and Structure Definitions

There are several important facts to notice about this
definition in contrast to the previous definition. First the
definition begins with which* instead of which has. The phrase
which designates that the type being definéd is not'a constructed
object, but instead defines a class of constructed or elementary
objects. That is, there is no way to construct a TERM.- It is
only possible to construct the two variant forms SUM and PROD.
Therefore, there is no constructor associated with a which
definition. Only the predicate which recognizes members qf the
class TERM is defined.

The various alternatives in the class TERM are separated
by the connective else. These alternatives may be constructed

objects such as SUM, or elementary or previously defined

*The is following which is a noise word which improved readability.
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objects such as ISVARIABLE. If an alternative is a constructed
object, a constructor and a subpredicate must be defined.
This is indicated by thelggighlggg which designates that the
type to its left is a constructed object. Thus the phrase
SUM which has
ADDEND
also AUGEND

defines a constructor and predicate just as if it appeared
alone in a definition. The parentheses are necessary to make
clear the scope of the alternatives.

Thus, ﬁe'see that the two forms of structure definitions
have different purposes. The which has form defines both a
constructor and a predicate from the set of component selectors.
The which form defines a new class predicate from the set of
predicates which are alternative forms of the class members.
We note in passing that it was necessary to use also and else
instead of the more natural and and or used by Landin because

and and or already have meanings in PAL.

The Syntax for Predicate Definitions

To add predicates to the syntax it is necessary to modify

D3 once again.
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D3::=NAME{.NAME}:=E | NAME V = E
|(E]1 | (E) | s | P
where P represents a <named predicate>. The syntax for simple
predicates is analogous to that for simple structures.
<named-predicate>: : =ATOM which <anonymous-predicate-
<anonymous-predicate>; ;=<predicate designator,{else
<§redica£e designators>}:
<predicate-designator>:.=<function>lig(<named-structure\)
(5) or in abbreviated form:

P:: = ATOM which Pl

Pl::= P3 {else P3}:
P3::= P2 ]_;g (s)

The corresponding abstract syntax is gi#en in figure 4, and
figure 5 is the abstract syntax tree for definition (4).
The interpretation is that a <named predicate> defines a class
from an <anonymous-predicate> which is a list of alternative
<predicate-designator,s or predicates from <named-structure.s.
The standardized form of definition (4) is more complex
than that of definition (l). The problem is that not only is
a predicate being defined but so are two constructed objeéts
and theif associated constructors and predicates. Therefore,
the lefthand side of the simultaneous definition has become a

tree of functions. This form is similar to that which occurs
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P P23 P3
A Pi P31 P32 P3n S R2

figure IV.4 Abstract syntax for predicates

which

TERM

IsVARIABLE

which has which has ISCONSTANT

SUM ' PROD

ADDEND AUGEND MPLIER MPCAND

figure IV.5 Typical abstract syntax tree for predicate
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when definitions are nested in the current PAL. The standardized

form of (4) is given in figure 6.

A Representation for the Primitives MakeStr and IsStr

It is now time to describe the primitives for building
the constructor and predicate. This will be done by showing
a representation for the data function in terms of an R-PAL
program and indicating how the constructor (pfedicate) for that
data function is built. An R-PAL representation is used to show
data structures are basically applicative. The previous chapter
gives a set of pro§erties the representation must have.
1) It must provide a type indicator such as a gag
2) it must be able to generate the selector set
- 3) It must provide its own consﬁructcr
4) It must be able to produce the data component
corresponding to each selector
These constraints can be satisfied by using a function which has
available as own variables the selectors and the type, and étores
the data cémponehts in a tuple. A component is selected by
searching for the selector in the selector list and finding‘the
index of the component in the data tuple.
This is certainly not the only possible representation of
a data function. There are many cther possible representations.

The reason this approach was chosen is that it takes advantage
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- TERM |
IsTERM _ ; : :
IsSUM ISVARIABLE o
ISPROD ISCONSTANT ° - B3 /

¥ MakeSUM IsSUM MakePROD IsPLOD

MakeStr MakeStr

SUM SUM  nil PROD o PROD  nil

ADDEND false MPLIER false
AUGEND ‘ ' MPCAND .

figure IV.6 The standardized tree for definition(4). An extra selector
indicated by false has been added to indicate the selector

set is fixed. This will be explained under mixed domains
later in the Chapter.
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of the powerful data representation properties of tuples

and has very little extra complexity. Furthermore, the conver-
sion of a selector to a tuple index can be speeded up by
hashing the atom name to get a tuple index. The particular
hashing scheme may depend on the data structure to get a 1-1

correspondence between atoms and tuple indices.

The Predicate Building Function IsStr

A predicate is defined from two sets of data. First
there is the tag by means of which the data function describes
itself. Secondly, thére is the list of predicates for alter-
ﬁative types which define a complex predicate. The function
IsStr takes these two arguments.and returns a predicate function.
This predicate function tests the validity of its argument
by first applying the set of alternative predicates. If any of
these yield true then the predicate function yields true.
If none of the predicates yield true then the tag of the argu-
ment is compared against the tag built into the predicate.
In this case the result of the predicate‘is the result of that
comparison. fhe R-PAL representation of IsStr is given in
figure 7.

Throughout this thesis, definitions and representations

will be written to emphasise their structure rather than to
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def IsStr (Name,Predicates) =
{ fn y. [ Istuple Predicates - >
( Q (Order Predicates)

where rec Q k =

k eq 0 -> false
| @ (k-1) or Predicates k y )
| Predicates y ]
or ( y tag eq Name )

figure IV.7 The representation of IsStr. This function
; returns the function of y which makes up
the body of IsStr. The arguments of IsStr
. become "own" variables for the predicate
function.
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provide efficient implementations. For example, testing for
nil tuples might'speed up the function but it would only
complicate the program unnecessarily. For this reason many of
the function definitions will not be optimal. Any implemen-
tation could of course recognize these special cues and

simplify the resulting functions.

The Constructor Building Function MakeStr

It is natural to assuﬁe the argument to the constructor
will be a tuple of components. In this case this tuple can be
used as ﬁhe tuple which represents the data. The selector
decdding consists of finding the index of the selector in a
tuple of selectors in the proper order. The selected component
is generated by applying the argument tuple to this index.

The épééial-seleétors—(tag, domain, constructor) are handled

by'téststor ﬁﬁeif,occurrance before the selector is decoded.
The decoding procedure and constructor builder are given in
figure 8.

'Sinéé.tﬁé MakeStr function produces a function producing
function, it is easier to see how it works from a picture of the
environment of each function. 1In figure 9 there is a repre-
sentation of what happens when MakeStr is applied to an argument

tuple consisting of a tag (argl) and a selector set (arg2).
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def Decode (y,Sel) = D (Order Sel)
where rec D k = _
keg0->0 | yeg (Sel k) => k | D (k-1)

def MakeStr (Tag,Sel) = Constructor
where rec Constructor (Tuple) =

fn y. y eq tag -> Tag

figure 1IV.8

| v eq domain -> Sel .
| vy eq constructor -> Constructor
| ( let k = Decode (y,Sel) in
k eq 0 -> undef | Tuple k ) }

The representation of MakeStr. This

is a function producing function which
produces the function Constructor.

When Constructor is applied to a tuple
it returns the function of y which
represents the data. The tag and selectors
are "own" to the function Constructor
and these plus the data tuple are "own"
to the data function. The result of the
data function is the special atom undef
if the selector is not defined.
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The constructor is created in step 1) and this is used
in step 2) to build an instance of a data function
Stack

= MakeStr )r-closure

1

arg] arg2 bv A -body environment

o | | |

U Tag - Sel MakeStr envl

= (Constructor X-closure

VL R
!

v Ax—body enviiiément ‘
: envl
Tuple Constructor //\\
Constructor Tag argl Sel arg2

-

2)| -
_~+—> data tuple

—T———>data function )-closure

’ ' bv r-body environment 44)

/ l \

Y data functio

Tuple
c C
1 C2 3

figure IV.9 The environment of the constructor and
data function
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The result of this application is the constructor which is a
Aclosure with an environment containing the tag, the selector
set and a self reference. When this constructor is applied to
a tuple of data components, the result is a function of one
argument (a selector). The Aclosure for this data function

has the data tuple, the selector set, the tag and the construc-
tor in its environment.

From this figure it is possible to see that the data tuple,
selectors, tag and constructor are like own variables to the
data function. Since the environment of every data function
instance points to the environment of the constructor, it is
necessary to store only one copy of the selector and tag
information. The constructor is defined recursively so that
it is also defined in the environment Qith the tag and selectors.
Thus, the information used by th§ special selectors is stored
as efficiently as possible.

The Decode function returns a zero value if the argument
to the data function is not in the selector set. Whgn the data
function finds a zero result ‘it returns a special atom undef
to indicate that its argument (the selector) was not in the

domain of the data function.
A Syntactic Abbreviation which Defines a Constructor and

- Complex Predicate

So far the syntax defined allows simple data structures
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to be constructed. We begin extending this facility by intro-
ducing an abbreviation for a special case of the predicate
definition. Consider the definition
def LIST which is
(6) - (HEAD also TAIL)

else isNIL
In this definition there are two alternatives‘exactly one of
which is a constructed object. However, the constructed
object is without a name of its own and is indicated only by
the <anonymous-structure> HEAD also TAIL. If a list of
alternatives for a predicate definition includes exactly one
constructed object, the name (tag) for that constructed object
may be elided; In such a éase the tag of the constructed
object will be‘taken from the predicate name. For the above
definition (6) the tag of the constructed object will be "LIST"
and the constructor for it will be "MakeLIST."

Syntactically, this is facilitated by changing the syn-
tactic rule for «named predicate> as given in (5) and by adding
‘another rule

<named predicate>::=ATOM which <anonymous predicate>
| ATOM which <structured predicate>
<structured predicate>: :=is(<anonymous structures)

{else <predicate designator>}]
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or, in abbreviated form
P::=ATOM which P1 | ATOM which P2
P2::=zis(S1) {else P3}]

Since a <named predicate> with an <anonymous structure> as the
sole alternative would be exactly eguivalent to a <named struc-
ture>, it appeared to be_leés confusing if additional predicate
alternatives were required. Therefore, at least one <predicate
designator> must'appear after the <anonymous structure->.
The new abstract syntax is gifen in figure 10. Note that the
node tag for "ATOM which P2" has been changed to "is/has"
to make it possible to distinguish the two forms of P when they
are encountered. This information is used in the standardization
process.

The abstract syntax tree for definition (6) is given in
fiégre 11. Note that else is used to designate both Pl and
P2 and only by examining the form of the syntactic variable
preceeding the first else are they distinguished. This
double use of else is possible because theltwo forms of P are
distinguished. The processed form given in figure 12 defines
only a predicate and a constructor but the predicate builder has

a one tuple with the single predicate IsSNIL as an argument,
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P P
A P2 Sl P31 P3n

figure IV.10 Abstract syntax for abbreviated
predicate-constructor

LIST

IsNIL
HEAD : TAIL

figure IV.1l1l Abstract syntax tree for definition (6)

MakeLIST IsLIST LIST

HEAD false
TAIL

IsNIL

figure IV.12 The standardization tree for definition (6)
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Data Functions with a Mixed Domain*

A careful reader may have noticed that in the standardized
form of the above defunctions an extra,éelector, false, was
always appended to the selector set argument of MakeStr.

This argument is needed to allow for data functions defined
with both atomic and integer seiectors. These are refered to

as mixed domain data functions.

As an éxample of such a data structure we borrow an
example from Standish[33]. Suppose we wish to represent
a molecule. Before we can do so we must have a representation
for a chemical atom. For molecﬁle building there are three
properties we require of our chemical atoms. They must have
a name, a valence and a set of bonds to other atoms. The
number of bonds depends on the valence. Hence, it will vary
from atom to atom. At the risk of great confusion we will
call the data structure for ﬁhe chemical atom, ATOM

def ATOM which has

(8) | NAME also VALENCE also tuple

* Mixing integer and atomic selectors appears to complicate
the representation of data functions, perhaps unnecessarily.
The solution given here is presented only for completeness;
a discussion of how this problem can be evaded occurs in the
conclusions. This section is logically independent of the
others and car e omitted on first reading.
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We have used the keyword tuple to indicate that an
indefinite number of integer indexed components will be part

of an instance of the data function for atoms.

The Syntax for Mixed Domain Selectors

The syntax for mixed domains is created by modifying the
<anonymous structure> syntax (3).
<anonymous-structure>::={<selector> also}T<selector*

| {<selector> alsoly tuple

| only <selector>
or in abbreviation

Sl::={S2 alsol};s2 |{s2 alsol, tuple | only S2

The reader may notice that a tuple may occur without any
symbolic selector being specified. Because it is a reserved
word no syntactic ambiguity occurs in this case. The abstract
syntax for the modified rule is given graphically in figure 13.
Figures 14 and 15 give the abstract syntax tree and the

standardized tree for definition (8).

The Reason Why the Integer Selectors Follow the

Atomic Selectors

As wé noted above different chemical atoms have different
numbers of bonds depending on the valence. Therefore, it must be
possible to construct data structures where the extent of the tuple
part is variable. As the use of tuple suggests, the tuple part

is variable in extent and the integer selectors associated with
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tuple
Sln

S2

figure IV.13 Abstract syntax for mixed and singular
definitions

VALENCE

figure IV.14 Abstract syntax tree for definition (8)

=)
MakeATOM IsATOM ATOM

NAME
VALENCE

true

figure IV.15 Standardized tree for definition (8)
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any instance of a mixed domain data function range from 1 to
the order of the tuple part. Of course, the tuple part may also
be nil.

It is no accident that the tuple part of a structure follows
the symbolically selected parts. The components of the tuple
part are included in the tuple of data on which the structure
is defined. Since the number of tuple components may vary,
it is necessary to have a way of identifying the tuple part
components. There are always a fixed number of components
with atomic selectors and these must always be present.
Therefore, the simplest way to identify the tuple components
is to put them after the ordered set of symbolically selected
components. Then the length of the argument to the constructor
defines the length of the tuple part.

For example, consider the construction of a typical chemi-
cal atom, say carbon. The carbon atom has a valence of 4 so
four bonds, represented by pointers, are required. A typical
construction using definition (8) might be

MakeATOM('CARBON',4,ptrl,ptr2,ptr3,ptrd)
where ptri represents a link to another chemical atom. The
bond pointers would be selected by 1,2,3 and 4. |

Putting the tuple last is convenient for a second reason.

It makes it possible to augment structures just as tuples are
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augmented. For example, it might be desirable to construct
only the symbolic part of an atom initially and to add the
bonds later. This can be doné by defining a function which
first extracts the components of the existing structure and
puts them into a tuple. The new component is added using aug
and finally a new copy of the structure is constructed (see
figure 17). Since the tuple part is last, the added component

becomes the last component of the tuple part.

An Alternative Mixed Domain Definition

The S~-PAL approach is certainly not the only way of de-
fining a mixed domain data structure. Another alternative is
given by Standish [33]. He chose to allow the user to refer
to a component either by its selector name or by the ordinal
for its position in the data Structure definition. Therefore,
a component might have two seiectors. If a user wanted only
the integer selector, the component was defined by a place
holder and the selector name was qmitted. The place holder
he used was the type specification for the component. lHe did
not, however, allow for augmenting a data structure. Instead
he p#ovided families of data structurgs where each structure
had a different number of components.

The main advantage to a non-augmentable set_of selectors

is that it is possible to specify distinct type information



for each component in the definition. When an indefinite
number of components may occur it is only possible to speciiy

a type which every component must have. This question will be
treated in more detail in chapter V. It would be possible to
include a fixed set of integer selectors in S-PAL data functions
by allowing integers as well as atoms as <selector>s. However,

this point will not be persued.

The Extension of MakeStr to Allow Mixed Domains

It is now possible to interpret the truth value which was
appended to the selector set. If this value is false, then
the data function is of fixed sized with atomic selectors.
If the value is true, then the data function has a variable
tuple part and different instances may have different size.

Unfortunately, this simple extension makes the function
MakeStr much more complex. It is now necessary to have the
data function representation recognize two different types
of selectors. The atomic selectors are still looked up in
the selector list while the tuple representing the data is
applied to the integer selectors directly. The variable
components are selected by adding the length of the fixed
(atomic) part to the selector value. Since only the atomic

selectors are stored in the constructor, it is necessary to
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build the full selector sets when the special selector doma:.n
is given. This is done in the auxilliary function Buildset.

The new form of MakeStr is given in figure 16.

An aug-like Operator for Data Functions

Because the mixed domain data functions may grow in size
it should be possible to write a function which will augment
the tuple part. This function will produce a new augmented
data function just as aug produces a new tuple. This is

.necessary to avoid side effects when the original structure is
used. That is, augmenting the structure should not affect
other uses of that structure.

The function AuG in figure 17 uses two of the special
selectors. It first decomposes the current data function into
its components using the auxiliary function Destroy. The tuple
of components is then augmented and the constructor is applied
to the augmented tuple to give the augmented data function.
The function Destroy is implemented as a primitive in some
languages such as POP-2 [4]. It is called a destructor and
produces the tuple which was originally used to construct the

function.

Structures with Explicitly Enclosed Substructures

The structure facilities defined so far provide for con-

structing one level structures. If a multilevel structure such
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def MakeStr (Tag,Sel) =
let n = Order Sel - 2 in Constructor
where rec Constructor (t) =
[ fn y. ISATOM y ->
Y eq tag -> Tag
| y eq domain -> Buildset (Sel,t)
| ¥ eg constructor -> Constructor
| { let k = Decode(y,Sel) in
k eq 0 -> undef | t ki}

Sel (Order Sel) -> t (n+y) | undef ]

def Buildset (Sel,t) = R (Order t - Order Sel + 1)
k e 0 -> Q (Order Sel - 1)
| aug (R (k-1)) k
and Qm =meq 0 -> nil
| Aug (Q@ (m-1)) (Sel m)]

where rec [ R k

figure IV.16 MakeStr function for mixed domains. This
MakeStr is almost identical to the
previous one except for the non-atomic
selectors which are used to select the
tuple part. Buildset has two recursive
searchs. Q builds the tuple of atomic
selectors and this is augmented by R to
include the integer selectors.
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def AuG (Structure,Object) =
Istuple Structure -> Aug Structure Object
| £(Aug [Destroy Structure] Qbject)
where f = Structure constructor

def Destroy (Structure) =
let A = Structure domain in Q (Order A)
where rec Q k =k eq 0 -> nil
| | Aug [Q(k-1)] [Structure(a k)]

figure IV.17 A function for augmenting data functions
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As a binary tree is desired, it is necessary to use a multistep
construction. This can be done by first constructing all lower
levels of the structure and then constructing the next higher
level using the previously constructed structures as arguments
to the constructor for the higher level. Alternatively, the
construction can be done from the top down using loc's and
updating pointers to the lower levels when they are constructed.
In general, there are no bounds on the size or complexity of
such a structure. It can grow dynamically at run time. It
is also impossible to predict the storage requirements for

such a structure at compile (translate) time.

A Different Approach

This section presents an alternative method for defining
multilevel structures. This technigue, which might be called

static structuring, is useful when the substructures have a

fixed relationship to the major structure and this relationship
is known at compile time. If each substructure has a well
defined position in the structure, is of a known type, and is
always present, then it is possible to predict the storage
requirements for the structure with its substructures. It is
also possible to use such techniques as contiguous stoiage to
reduce the neéd for pointers within the structure. This in
turn makes references to parts of the structure simpler. When

the user provides the static or fixed structuring information,
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the compiler can use this to optimize resource usage for that
structure type.

If the main idea of static structures is that all of the
information should occur together, why not represent it by
a single structure with many components? This certainly could
be done but it would inhibit one of the main uses for data
structures. One of the reasons for grouping data into a
structure is that the components all have some relation to
each other which the user finds convenient to make explicit
by grouping them and giving the grouping a name. If he is forced
to use a large structure with all the components at the same
level, he is unable to group subsets of these components.
This grouping of subsets is important because he may wish to
specify operations on subsets without having to list all the

members of the subset.

Reducing Naming Conflicts

When a large data structure such as a binery tree is created
dynamically there is no problem in refering to a subpart of the
structure. If the anchor node of the structure is known, then
any substructure can be éccessed by applying the data function
for the anéhor node to a string of selectors which indicate

a path to the desired substructure. Therefore, any such sub-
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structure is referenced by an anchor data function and string
of selectors. This is a computed reference.

In the case of staticaliy defined substructures, it is
also possible to use a computed reference to access substructures.
However, as we shall see when some additional properties of static
structures are presented, it is convenient to have a name for
the static substructures. Since the names of structures are
derived from the tag, this creates a problem of possible name
conflicts in structures with similar substructures. Two
substructures may have the same tag because the data they contain
is related. For example, one such substructure may contain a
subset of the information contained in another. Howevér,
it must be clear which is intended in any particular use
because their actual structure may differ.

This problem can be solved by qualifying the name of the
substructure with the names of all the structures and substruc-
tures in which it is embedded. This produces a tag or name
which identifies the substructure as belonging to a particular
place in a particular structure. This name is formed by
concatenating all the names in the path to the substructure.

This is analogous to a compile time evaluation of a computed
reference to that substructure. However, the gualified name,

since it is defined at compile time, may be used as a bound
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variable which is not possible with computed references.

This becomes important in defining constructors and predicarces.

An Example of a Static Structure and Its Use

The utility of static substructures may become more apparent
from a simple example. Consider a typical payroll file which
might have a structure or record consisting of an identification
substructure, an address substructure, a salary substructure and
a year to date substructure. Each of these substructures has
a different function, but is always present for every employee.

Now consider a typical weekly update operation. A set of
time records which have the time worked by each employee will
be used to find the employee's record, update it, and produce
a paycheck record. The time record will typically have an
identification substructure and an hours worked substructure.
The identification substructure would probably contain a subset
of the payroll identification substructure. For example, it
might contain an id number and a name while the payroll identi-
fication substructure might also have the social security
number.

In practice, the identification substructures would be
used to find the payroll record corresponding to the update
record. For example, the search program would compare the id

number of the identifiéation 5ubstructure in the current payroll
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structure with the id number if the identification substructure
of the update structure. Since the elewment names are identical
they are only distinguishable by the structure in which they
occur. Thus, a comparison can only be written with the
gqualified names.

A second point to notice is that all the substructures
of the payroll record are used when the structure is updated.
The identification substructure is used to find the correct
record. The salary substructure is used to compute the amount
to be paid. The year to date field is updated and copied
into the paycheck information and the address is used to
mail the paychéck. The substructure groupings correspond to
different operations performed on the payroll record, but
they are all accessed in the update process.

Optimizing such data accesses is particularly important
on computer systems with multilevel stores (e.g., paging
systems). In this case there is usually a large cost associated
with a reference to data which is not currently in the top
level store. Therefore, techniques, such as contiguous storage,
which keep a structure with frequently accessed substructures
on a single page increase the operating efficiency of the

programs which process the structure.
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Properties which Make Static and Dynamic Substructures

Compatible

Before presenting the syntax for substructure definiticns
it is necessary to discuss several properties a substructure
facility should have. First, from an operational point of
view it should not matter whether a substructure was declared
statically or was dynamically inserted at run time. For example,
a subsoutine should not be able to distinguish whether an argu-
ment is a static or dynamic substructure or even if it is a
substructure at all. In either case, the argument should appear
to be a structured Rvalue. This makes it possible to use the
static substructures as if they were defined independently as
major structures. That is not embedded in another structure.

If substructures are to be truly independent of the major
structure in which they are embedded it must also be possible
to construct the substructures‘and use the results of these
constructions to build the major structure. For example, it
should be possible to build an-hours substructure and an
identification substructure and combind these into a time
structure. ThiS'capabiliﬁy is needea when various components
of a structure are computed or constructed in different sub-
routines.

This is made possible by defining a subconstructor for each

substructure in the structure definition. The name of this
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subconstructor is qualified by the name of the major structure
and substructures in which it is embedded. This makes it
possible to specify which of several substructures with the
same simple name is to construcﬁed. This is also one reason
why the name of a constructor is derived from the structure
definition rather than letting the user bind his own name to
the constructor.

It is also possible to construct a major structure and
all its substructures in a single operation. The argument to
the constructor is still a tuple of components but when a
component corresponds to a substructure in the major structure,
that component can be a tuple of components for the substructure.
The components of the substructure might also be tuples of
components for lower level substructures. If the constructor
for a structure finds a tuple of components where it expects
a substructure, then the constructor for that substructure is
used to build a constructed object from the tuple. This process
is recursive, hence it may occur to any depth. With this de-
finition it is possible to mix previously constructed substruc-

tures with implicitly constructed ones.

An S-PAL Definition of the Payroll Update Structure

The following is one possible definition of the update

structure mentioned above
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def TIME vhich has
(ID which has
(10) ID_NO also NAME)
| also
(HOURS which has
WORKED also SICK also VAC)

This definition defines a major structure which will be
tagged by TIME and two substructures with tags TIME.ID and
TIME.HOURS. As we noted above, the qualificétion of the sub-
structure tags makes it possible to distinguish substructures
with the same ungualified name. This property is used in the
predicates for these substructures which will only yield true
for a structure with the correct fully qualified tag.

However, the ungualified name of a substructure is used
for the selector name of the component of the major structure
corresponding to the substructure. For example, the ID NO com-

ponent is accessed by TIME ID ID NO. This first produces the

substructure TIME.ID from which the component ID NO is selected.

An Alternative Notation for Functional Application

Sometimes it is more convenient to list the selectors in
reverse order to indicate you want the ID NO component of the
ID component of TIME. . Therefore, an alternate notation for

functional application is provided. This expands the current
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notation for functional application and has lower precedence.
R::= R2 of R | R1
Rl::= Rl R2 | R2
(11) R2::= NUMERIC | QUOTATION | TRUTHVALUE

| NAME | nil | (E) | [E] | ATOM

For example, "ID NO of ID of TIME" is equivalent to "ID NO
f TIME ID" which is equivalent to "TIME ID ID NO." However,

sty

parentheses are needed to say " (ID of TIME) ID NO".

The Syhtax for Static Substructures

The syntactic extension for substructures is trivial.
All of the actual work is done in the standardizing routines.
We also include here the change which éllows subpredicates.
<selector>::= ATOM | (<named structure>)
<predicate designator>::=<rand> | is(<named structure>)
| is(<named predicate>)
(12) or in abbreviated form
S2::= ATOM | (s)
P3::= R2 | is(s) | is(P)
The interpretation of the expanded «selectors is that the
<named structure> is defined as a substructure and the name
becomes the selector for that component. The tag of the sub-

structure and the name of its constructor are qualified by the

names of all statically containing structures.
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The interpretation of the subpredicate <named predicate>
is much simpler. It defines an additional disjunctive predicate.
Basically it allows a subset of the alternatives in a disjurctive
pfedicate to be given a name of their own. There is no
constructor or tag to be concerned with, so the name of the
subpredicate is not qualified by the predicate name. The
complete abstract syntax for the structure definitions is
given in figure 18.

The abstract syntax tree for definition (10) given in
figure 19 is not too much more complex than that given for the
previous definition. Basically it shows the nesting relation-
ship of the substructures. It is the standardized version of
definition (10) which shows the additional complexity of sub-
structures. This tree, given in figure 20, is in the form of
a complex simultaneous definition similar to that which occurs
in the standardization of definitions connected by and. Thus,
the constructors and predicates for the structure and all
contained substructures are defined simultaneously.

This is not the only alternative. It would also be possibl-
to define the structure in.a context where the substructures
were already defined. From the viewpoint of simplicity of
specification of the standardization process, this is not a

good choice because it means inverting the tree structure and



107

S2

P3

figure IV.18 The complete abstract syntax for structure
definitions. The syntactic categories which
are not defined by nodes are
A which represents an atom
and R2 which represents a function or
more explicitly a predicate.
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TIME

VAC

SICK

figure IV.19 The abstract syntax for definition (10)
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CI IsStr [> (IMakeStr> Cl IsStrl)

TIME.ID nil TIME.HOURS AL TIME.HOURS nil

MakeTIME IsTIME
’ TI

MakeTIME.ID IsTIME.ID

MakeStr

MakeTIME.HOURS IsTIME.HOURS
TIME.ID

WORKED alse
Ib_NO false SICK VAC_
NAME

figure IV.20 The standardized form of definition (10)
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defining the lowest nodes first. And if the substructure
definitions are local to the structure definition, much like
own variables, then the names of the constructors for these
substructures are not known outside the primary constructor.
Hence, it is not possible to construct the substructures
iﬁdependently. This approach can be useful, however, when it

is desirable to keep substructures anonymous.

The Standardization Process

Throughout the development of the syntax for structure
definitions, we have shown the standardized form of the examples.
This emphasises the function of standardization which is to
extract the information presented by the abstract syntax tree
and to convert it into a set of calls to the constructor and
predicate builders. This process is sometimes called interpreting
the parse. It also builds definitions for the names of the
constructors and predicates. The purpose of this section is
to introduce the method used in standardizing the abstract
syntax tree. The complete standardization fo; structure de-~-

finitions without component types is given in Appendix C.

Extending the Concepts of Definition Standardization

There is a very strong similarity between the standardization
of definitions (D) in current PAL and the S-PAL structure stan-
dardization. This was done intentionally to avoid introducing

too many new techniques. We have already remarked on the
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similarity between substructures and simultaneous definitions.
This will be developed in greater detail below.

The structure standardization is added to the definition
standardizer D. There are three new alternatives, a structure
definition (NS), a predicate definition (NP), and a combined
or abbreviated'predicate and structure definition (NB). These
routines are a#plied to standardized versions of the components
of the corresponding abstract syntactic node just as AD is
applied to standardized versions of the components of the "and"
node. In fact, the routines NS, NP and NB are used recursively

for substructures the same way D is used for subdefinitions.

A Pictoral Representation of the Standardizing Process

To help explain the action of the standardizing routines,
we will use.a'pidtoral representation of the transformations
being performed. These .only indicate the steps of the standar-
dization process and do not always correspond exactly to the
operation of the standardizing functions. The major difference
is that some structures shown as a single object are actually
handled as separate components in the functions since it wa§

simpler to remember implicitly theconnections between the parts.

Standardizing Definitions without Sublevels

The major portion of the standardizer is needed to handle

substructures. A simple structure such as definition (1) is
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converted to standard from relatively directly. The first
step is to collect the set of selectors into a tuple. This is
performed by the unnamed structure processing function (US).
Figure 21 shows the result of US for a set of atomic selectors.
If the tuple option was present the final component would be

trug.

The next step is to build a simple definition for the
constructor and predicate. This is separated into the two
steps shown in figure 22. The first step is to create the
names of the two functions from the tag of the structure.

This is done using the metafunction "QualN" which concatenates
the string which is its first argument with the string or atom
which is its second argqument. If the second argument is an
atom it is converted to the printable representation of the
atom before concatenating.

The second step is performed in the function simpleNS
and consists of building argument lists for MakeStr and IsStr.
The functioh SimpleNS actually constructs combinations wherein
MakeStr and IsStr are applied to their arguments, but to save
space this is represented by the nodes MakeStr and IsStr in

the pictoral form.
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figure IV.21 Simple selector processing. The final
component is false to indicate the tuple
part was not present in the abstract

syntax tree.

MakeA IsA

SimpleNS Ay ' A

MakeA

figure IV.22 Standardization of name structures
without substructures
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The processing for the simple forms of named predicates
(NP) and combined predicate and structure (NB) is very similar
to the simple structure case. The only major difference is in
NB. In this function the last argument to Simple NS, the
list of alternative predicates, is not nil but consists of

the predicates from the <structured predicate>(P2).

Standardizing Definitions with Sublevels

This brings us to the standardization of definitions
with substructures. This process would be just like the
processing of simultaneous definitions except for two properties
of the structure definitions. First, requiring qualified
names for the substructures means that the name prefixes
constructed for statically enclosing structures must be made
available to the embedded substructures so they can build the
appropriate qualified name. Therefore, the name prefix, which
may be nil, is passed as an extra argument to all the structure
standardizing functions.

The functions which process unnamed objects (US, UP, AP)
merely pass the prefix on unchanged. However, the functions
which process named structures (NS, NB) need a modified prefix.
For these functions the prefix is augmented with the name of
the structure (substructure) being processed. Note that the

named predicate processing function (NP} does not require a
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gqualified name, so the prefix is not changed. Actually two
names are provided to the routines for named objects (NS, NE,
NB). The first is the unqualified name which is used in the
context of selection and the second is the qualified name.

The second reason why processing of substructures differs
from simultaneous definitions is that information collection
~is being done concurrently with the definition of the construc-
tors and predicates for the substructures. That is, the
gnqualified names of the substructures also serve as selector
names for the components of the enclosing structure. Therefore,
it is convenient to build two tuples of information for
substructures and subpredicates. The first tuple consists
of the selector set and the second tuple consists of the tree
of simultaneous definitions of substructures below the anonymous

structure currently being processed.

Processing Each Component Definition
Since a substructure has the same syntax as a major structure
the processing function Sub is introduced to mimic that part
of D which deals solely with structure or predicate definitions.
Since Sub may be invoked from either a predicate or a structure
definition and in general different information is needed,
its result is a 3-tuple. The first component is the unqualified

name of the substructure or subpredicate processed by Sub.
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This is used for the selector name. The second component is
the name of the predicate for the substructure or subpredicate.
It is used in constructing predicates and will be used in the
type system introduced in Chapter V. The final component

is the simultaneous definition for the substructures below the
current one. This process is represented pictorially in figure
23. Only a single level is shown because of space considera-
tions. The label "Subs" is introduced to give a name to the

3-tuple. Note that the prefix for name gqualification is used.

Combining Individual Component Definitions

Using the analogy with the standardizing of simultaneous
definitions the next step would be to combine the definition:s
of all the substructured components of the current substructire
into a single simultaneous definition. However, this must be
done in two steps because the component definitions must be
separated from the other information produced by Sub.

Since we want to collect both the selector set and the
set of all structures defined at lower levels, two tuples of
information are constructed. The function Split is used to
call Sub for each component and to put the resulting information
in the corréct tuple. Since Sub always returns a 3-tuple, the

selector for the current component is obtained from the first
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Makeprefix.A Isprefix.A

figure IV.23 The result of processing substructures.
The transformation is performed by Sub
and uses the name prefix which is
indicated as an argument to Sub. This
prefix is used to qualify the constructor
and predicate names as shown.
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component of the Sub result and the lower definitions, if any,

from the third component. The third component may be nil :.n
which case nothing is added to the tuple of definitions.

This process is shown as the first transformation in
figure 24. For simplicity, it is assumed that Sub was already
invoked and the results are shown schematically. L is used
to represent the lefthand side of a definition and R represents
the righthand side. Both L and R may be complex trees. Also
prefixes are omitted to reduce the size of the diagram. The
processing for a predicate would build a tuple of predicates
instead of a tuple of selectors.

The next step is unique to substructures and consists of
determining the value of the final component of the selector
set. If the tuple option was present in the abstract syntax
this would have been recognized by Sub and a true selector
would have been returned. Therefore, if the final component
is not true the tuple option must be absent and a false valu:
is appended to the selector set.

The final step is to build the simultaneous definition for
the subobjects and to combine the selector set (predicate set)
with the simultaneous definitions. This is performed by the
routine Combine. It first checks to see if any substructures

{subpredicates) were defined at a lower level and if not, it
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figure IV.24 Standardization of a structure with
substructures. The components A and A
of the also node should alsoc be 3~ tupzes
but since the other two components are nil
they are depicted as single atoms for
simplicity.




120

simply makes the selector tuple an SV node and returns it. If
there are subdefinitions they are.put into standard form by
AD and the two pieces of information are returned as an SS

node. This is shown in the final step of figure 24.

Assembling the Collected Information and Defining the

Constructor ﬁnd Predicate

Thus far we have only defined the packet of information
necessary to build a predicate and/or constructor. This in-
formation forms one of the arguments of. the named object
processing routines (NS, ﬁD, NB). If the packet of information
is a simple SV node then the processing is as above for
simple structures. However, when the argument is an SS node,
it is necessary to build a simple object using the first
tuple in the SS node and then combine this simple object
into a éimultaneous definition with the definition of the
enclosed substructures. This process is shown pictorially
in figure 25.

This completes the description of the standardizing
process. While.only structures were treated in detail, the
processing for predicates and combined predicates and structures
is similar so they will not be described further. The most
important point to notice is the concurrent operation of two

processes. One is collecﬁing information for and building
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figure IV.25 Standardization of named structures with
substructures.
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predicates and/or structures. The other process is collecting
the definitions of all enclosed structures and predicates and

building a single simultaneous definition.

An Alternative to the Ordered Tuple as the

Constructor Argument

In structures with a large number of arguments it is
often difficult to remember the exact sequence in which the
arguments to the constructor must be specified. In fact, it is
unreasonable to force any particular order on the components
of a structure. Therefore, an alternative method for specifying
the arguments to a constructor by name is presented. The
constructor function as it hés been defined up to now takes
as an argument a tuple of objects which are assumed to corres-
pond (in order) to the ﬁuple-of selectors owned by the constructor.
If there are extra arguments and the constructor allcws a tuple
part then the extra arguﬁehts form the tuple part. The onliy
reason for assuming an order to the components in the argument
tuple is that it is necessary to know which object corresponds
to which selector. The order restriction can be removed if
there is another way to effect this correspondence.

The most natural way to build the correspondence, given
that a'set of selectors exists; is to match the objects to

the selectors by name. This means that it must be possible to
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attach a name to each object being sent to the constructor.
This is done with a new object called a "name qualified valae"
(ngv). This object has two parts. It has a name which in

the case of data structures will be an atom and it has a

value which could be any object. This new object can be repre-
sented by a 2-tuple with a special tag, say ngv. The first
component is an object and the second component is the name

which qualifies the object.

A New Class of Objects

These new objects can now be used to build the corres-
pondence between components and arguments. Obviously if the
name of an ngv is a selector then the associated object is
to be the component corresponding to that selector. An error
occurs when the same name is used as a qualifier more than once
in the same argument tuple. It is also an error if the name
of the ngv is not in the selector set of the constructor.

These name qualified values will most often gccur as
components of tuples, so they should occupy approximately the
same position in the syntax heirarchy as a tuple component.
This suggests the following syntax:

T2::= T3 at T3 | T3

T3z

where the first T3 is an expression which produces a value and
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the second is an expression which produces a name. Notice

there is no need to restrict names to being atoms.

A Formalization of the Matching Procedure for Normal Values

In the syntax we have just defined there is nothing which
prohibits named and unnamed values within the same tuple.

Therefore, it is necessary to extend the matching procedure

given above to handle mixed argument tuples. There are several
possible extensions. The function Canonical in figure 26
was chosen because it seems to be one of the most flexible
ones. It has two arguments, the set of selectors and the
argument tuple and it produces a tuple in canonical order for
that selector set. That is, it produces the tuple the user
would have had to write if he hadn't used named values.
Bésically it performs a two step process. The first step
is to find the indices of the named components. Each name is
checked against the selector set and if the name is found the
index of the named component is put in a tuple at the position
of that name in the selector set. That is, this tuple of name
indices is sorted into the order of the seléctors. Since
this is basically a sorting process it is easier to describe
in L-PAL although it could be written in R-PAL. The indices

of the unnamed components are collected in a second tuple in
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def Buildvec (n,v) = S(l,nil)

where rec S (m,t) =megn -> t [ S[m+l,Aug t (loc v)]

def Cstepl (u,Sel) =
let Chk = Buildvec (Order u,0)
and Nam = Buildvec (Order Sel-1l,nil)
in [Chk,Nam,Q(1l,nil),u]
where rec Q(k,Un) =
k > Order u -> Un ,
| Istag (u k) 'ngv' -> Q[k+1l,Sort(Un,k)]
| Q[k+1,Aug Un k]
where Sort (Unn,m) =
[let n = Decode(u m 2,Sel) in
neq 0 or Chk n eq 1 -> undef
|(Chk n := 1; Nam n := k; Unn)]

def Cstep2 (Chk,Nam,Un,u)
‘.‘hﬁ% rec R(i,j,t) =
i eq Order Chk -> t
| chk i eq 0 -> R[i+1,j+1,Aug t (u (Un j))I
| R[i+1l,j,Aug t (u (Nam i) 1)]

R (1,1,nil)

def Canonical (u,Sel) = Cstep2(Cstepl (u,Sel))

figure IV.26 The function which builds a canoical tuple.

Since the named values may occur in any
order, L-PAL is used to sort the indices
of the named components in Cstepl. The
sorted indices in Nam are used in Cstep2
to select the appropriate name qualified
value for the named components indicated
by 1's in the Chk vector.
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the order in which they occur,' The tuple Chk is used to
remember which components of the canonical tuple were given
by name. There is a 1 in positions corresponding to the named
components.

The second step uses the two index tuples and the Chk
tuple to assemble the canonical tuple. By using Chk it can
tell which index tuple to use in selecting the next component
of the canonical tuple. Since the named component indices are
sorted and the unnamed indices are in their original order,
this procedure has the affect of distributing the unnamed
components into the spaces between the named components.

Thus, a user need only name thosé components whose relatiVe
position he does not recall.

Oonly the indices of the components are manipulated in
L-PAL to avoid losing any loc's which may be in the data tuple.
This approach preserves the components as they were written
since Aug in S-PAL does not force any mode changes. Therefore,
all loc's will rémain‘;ggs énd all Rvalues will also be unchanged

in the canonical tuple.

Additional Uses for Named Values

Obviously this scheme could also be used in normal function
invocations. - The names would then correspond to the formal

parameters of the function. This would be very convenient for
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functions with a large number of arguments.

This name qualified value has a strong resemblance to the
keyword parameters which are used in some macro systems and
in various command languages. This leads to the idea of
default values associated with the parameters or selectors.
In the case of data functions, default values could be specified
in a second tuple which was in 1-1 correspondance with the
selector set. The default value would only be used when the
canonical argument tuple was too short to match all the
selectors. However, further consideration of this proposal 1is
beyond the scope of this thesis.

Another use for named values that we can see is to rescind
the rule which prohibits unused names in the argument list.
If instead these values are just ignored, it is possible to
implement the concept of "by name" assignment found in PL/I
and COBOL. A "by name" assignment is a component by component
assignment between two structures whose formats differ. Only
those components whose qualified name is the same in both
structures are changed. This could be mimicked with @ by name
construction which first destroys the righthand structure and
attaches the appropriate selector name to eéch component.
Then the left hand structure could be constructed from these

named components.
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This short section has only explored some of the possibilities
for named values. Unfortunately time prevents a more thorough

study.

Modifying MakeStr to Allow Named Values

It is very simple to modify MakeStr to allow named values
in the argument list. The current form of the constructor
produced by MakeStr expects the argument tuple to be in
canonical order. Therefore, it suffices to invoke Canonical
in the argument to the existing constructor. The modified

form of MakeStr is given in figure 27.
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MakeStr (Tag,Sel) =
let n = Order Sel - 2

in Constructor

where rec Constructor (u) =
fn y. IsSATOM y ->

figure IV.27

y eq tag -> Tag
| v eq domain -> Buildset (Sel,t)

| v eg constructor -> Constructor

| [let k = Decode(y,Sel) in
k e 0 —>undef | t k ]
| Sel(Order Sel) -> t(n+y) | undef

where t = Canonical (u,Sel)

The MakeStr function has two embedded
functions which produce functions. The
first is the Constructor which is produced
on applying MakeStr. The second is an
anonymous function in a single variable y
which is produced when the Constructor is
applied. It has as "own" values the
canonical form of the constructors argument
tuple. Only the last line of the MakeStr
definition is new in this figure.




Chapvter V

A Type System for Structures

One of the major goals of this thesis is to define a
system in which it is possible to build strong representations
of data structures. This means that it must be possible to
restrict the range of values which may be assumed by the com-
ponents of a data structure. If any object may be substituted
fof a componant, extra or irrelevant properties could creep
into the representation.

For example, consider the structure definition for an
algebraic term given in Chapter IV (IV(4)). 1In this case a
term is either a constant or a variable, or it is one ofrtwo
constructed objects, a sum or a product. If the components of
the sum or product could be any two objects in the universe of
discourse, then it would be impossible to say much about the
structure of terms beyogd the fact that they have two components.
In fact, the components of é sum or product are not free to be
any object, but must be other instances of terms. This makes
it possible tolattach a very definite structure to a term. It
represents the top node of a binary tree whose leavés are
variables or constants and whose other nonterminal nodes are
binary sums or products.

From this example it is easy to see that it is necessary
to verify or validate the components of a constructed cobject

130
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before constructing it. Since a data structure will in general
be a collection of constructed objects which are linked toget-

her in a specific way, a strong representation is possible cnly
if the structure is validated as it is being built. The extent
to which validation is performed determines the strength of the

representation.

Other Reasons for Type Verification

There are two other reasons for verifying the type of
components. Both of these reasons are related to optimization.
If the type of an object is known or is at least restricted to
some range of types, then the fact that the excluded cases
will not occur can be used to improve the efficiency of a
program using that object.

This type of optimization comes.in two forms. The first
form might be called applicative optimization because it deals
with function application. Most functions have limited
domains of applicability. For example, in PAL the operator
"+" is not defined on tuples or functions. Therefore, it is
necessary to test the operands of a function before applying
it to determine if it is a legal application. 1If it is
known that the operands are already restricted to a-range
within the legal domain of the function this validity test

can be omitted. Hence a single test at construction time can
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replace many tests which would have occured when the component
was used.

The second form of optimization is storage optimizatior.
In most computers it is necessary to allocate storage space
to hold values. 1In S-PAL the Rvalues are held in locs. If
nothing ié known about the range of values which might be
stored in a loc, then it is impossible to pre-allocate storage.
However, if the range of values is limited to a set of types
with similar storage requirements, it is possible to pre-allocate
storage for the loc and merely to assign the value to the
existing storage. In this way storage is allocated only once
instead of on every use. Both forms of optimization use the
type information to compute something only once instead of

many times because its value is known not to change.

Dynamic Versus Static Type Systems

There are two extremes in type checking systems. Some

- languages require that all type information be available at
compile time_and all type checking is done at that time.
ﬁxamples of this type of language are PL/I, COBOL and FORTRAN.
More recently languages which have no compile time type infor-
mation have been developed. These languages rely on run time
type checking to validate operations. PAL and APL are examples

of this approaéh. The former kind of type checking is called
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static type checking, while the latter is called dynamic type
checking. |

As with many absolute distinctions, there are languages
which are neither totally statié nor totally dynamic. Typical
of this class are ALGOL68 and BASEL. These languages have
extensive facilities for static type checking, but allow the
user to have dynamic types if he chooses. 1In theserlanguages
the range over which a dynamic type can vary is normally
limited in any particular use. However, this is no restriction
on what types may be in the range. There are language facilities
for testing which of the possible types actually occur.

In the case of BASEL and ALGOL68 the type testing facility
makes it:possible to generate type test free compiled code even
for the identifiers with dynamic types. The basic idéa is to
define a conditional statement which is conditional on a tvpe
test rather than on logical or arithmetic test. For example,
in BASEL there is a statement of the form

when identifer is type then statementl else statement2 end
This is interpreted as follows. First the value of the
"identifier" is tested agaihst the "type". 1If the type matches,
then "statementl" is executed; otherwise, "statement2" is
executed. However, the difference here is that for the duration

of "statementl" (which could be a group of statements) the type
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of "identifier" is known to be "type". Hence, the generatec
code for “statement” can be free of type tests on "identifier".
If "statement2" is executed then nothing is knowﬁ about the
type except that it is not “fype". It may be the case that
"statement2" is another when statement.

why are both dynamic and static type systems necessary?
Even though static type systems allow greater optimization of
the generated code they do so at the cost of flexibility. The
static type systems perform early binding on the range of values
on identifier may denote. There are cases, such as data
structures like TERM (IV(4)), where an object may have one of
several alternative forms. It is therefore necessary to be
able to determine for each instance which form actually
occurs. That is, fhe binding of the type must be delayed
ﬁntil run time. This implies that some form of dynamic type

checking is necessary.

The Simplicity of Dynamic Type Checking

There is a second reascn for.the popularity of dynamic
type checking. It is in general a much simpler task than static
type checking. With dynamic type checking the value to be
validated is known. Therefore, type checking is just a

‘question of set membership. With static type checking the
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particular value is unknown and only the range of attributes

the value may have are known. Therefore, it 1s necessary lo

test if the set of objects whose attributes are known 1s

contained in the set of objects that are valid. This chanycs

a question of set membership into a question ol sct containment.
The set containment question is in general much more

difficult to answer. For example, consider the context frce

languages. It is possible to decide il a word w 1is in an

arbitrary context free language,.but it is undecidable whethor

an arbitrary regular set is contained in a context |(ree language.

Thus, the set containment problem is seen to be more difficult

then the set membership problem, and a static type system

will need careful specification of the range of values in a type

class.

A Type System Based on Predicates

The type systems presented in this chapter is suitable
only for dynamic type checking. The primary reason for this
is that static type systems are much more difficult to construct.
In fact, even the limited goal of a dynamic type system is not

particularly simple to achieve as we will see below.

Verifiers in Structure Definition

As we noted in Chapter IV, Landin included more than the
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selector set in his structure definitions. He also included
type information with every component selector. That information
was primarily descriptive. It tells the reader what to expact
as a value for that component.' For example, the declaratior
of "\A-closure" has three components.
A-A;closure has
a bound variable part which is a variable
(1) and a A-body which is an )-expression
and an environment which is an environment
The phrases beginning “"which is" describe the type of the
component. Notice the similarity with the predicates of S-PAL.
When we consider constructing such objects it is easy to
see that the type information can be used to verify that the
intended components are indeed of the correct form. The type
checking can be done dynamically when the components are
presented to the constructor. In this case, type checking
consis;s éf testing the objects in the constructor argument
for fhe properties ;equired of the corresponding component.
This can be done in general by a predicate function which

tests the required properties and returns true or false. If

the results of all the component tests are true, then the
argument is suitable and the construction is done. If any

component test fails, then the construction is aborted.
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The Concept of Type in S-PAL

The above discussion leads to a natural definition of
type in S-PAL. A type is a predicate, usually called a
verifier. As used here a predicate means a function of cne
argument which is defined over the universe of discourse and

which for every object yields a value true or false. Those

values for which it yields true are said to have the type
it defines.

This is a very general concept of type. It includes
tests for the simple built in types such as integer, real and
chafacter using the built in predicaﬁes ISINTEGER, ISREAL and
IsCHAR. Hence, it includes the normal concept of primitive
type. It is also possible to perform complex tests which define
such types as "binary trees of depth less than or equal to n".
Such a predicate would have to know the representation of
the tree and could scan the tree to check the depth condition.
The major problem with defining types this way is that it is
too general. This will be discussed in greater detail in the

sequel.

The Syntax for Verifiers

While it might be possible to restrict the verifiers to
previously defined S-PAL predicates, there are times when

this is inconvenient. In fact, there are times when the
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type must be defined simultaneously with its use. For examnple,
consider the definition of LIST (IV(6)).
def rec LIST which
(2) is(HEAD which ISLIST else ISATOM
also TAIL which ISLIST else ISATOM)
else IsNIL

In this definition both the HEAD and the TAIL component
have the same verifier. It ié-;n unnamed predicate which
yields true for any ATOM or alternatively for another instance
of LIST. Because rec was used, the instance of ISLIST in the
verifier definifion refers to the predicate ISLIST defined
by the standaxdizatiog of the LIST definition. However, thé
predicate ISLIST only checks the tag of a structure for equality
with "LIST" (See Chapter III). It does not make tests on
the components which would cause itself to be invoked again.
Hence, the recursion always terminates after one step. ISLIST
will also yield true if the argument is nil since ISNIL is
given as an a;ternative type for a LIST.

This definition of LIST was written with an explicit rec.
This is consistent with the general PAL philosophy which requires
rec to be written for all recursive functions. However, in
S-PAL it was decided not to use rec in structure definitions,

but rather to assume an implicit use of rec in all structure
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definitions. It should be eﬁphasized that the implicit use of
rec was not done to make it more convenient to define self
referential structures.

The reason rec is implicit in a structure definition is
that it is a simple solution to the problem of needing to use
a single predicate definition in two different places. When
a structure contains a substructure (or subpredicate), the
predicate associated with that substructure becomes the
verifier for the component represented by the substructure.
However, that predicate must also be given an external name so
that it is accessable to the user. Since these two uses of
‘the predicate definition occur at different places in the
standardized tree, the same copy of the predicate construction
cannot be used in both places.

This problem admits to two solutions. First, two copies
of the predicate definition could be made. Then one copy
would become an argument to MakeStr for the definition of the
enclosing structure and the second copy would be bound to the
subpredicate's external name. However this solution has two
disadvantages. The process of copying the definition is messy
to specify formally and it involves unnecessary replication of
information.

A much better solution is to give a name to the predicate
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and to use that name to refer to the predicate from both
places in the standardized tree. This name can be an arbitrary
local name for the predicate which is only defined on the
righthand side of the simultaneous definition for the whole
structure. This name would never be accessable to the user,
but would be used in place of the predicate construction in

the argument to MakeStr and in the definition of the external
name.

Unfortunately the process of defining such local names
greatly complicates the already complex standardization process.
Furthermore, at the cost of making every structure definition
implicitly recursive it is possible to use the external name
of the predicate instead. This name must be defined anyway
and with the implicit rec it can be used in the MakeStr argument
to identify the verifier. Therefore, the simpler solution to
the problem was chosen. This solution does not reguire any
changes in the standardization process'except those required
to 5ui1d the tuple of verifiers for the construcgor to use.
Without the use of rec the external name used in the verifier
tuple woﬁld be undefined or would refer to some previously
defined name.

This problem is not just restricted to substructures. It

also occurs when subpredicates are defined in either structures
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or as alternatives in predicate definitions. Therefore, ttis
solution is also needed with the typeless structures definei in
Chapter IV.

. 'The Syntax for Verifiers

Because types are restricted to structure definitions,
the syntactic additions are very simple. The definition of
<selector> is extended to include a verifier, as is the tuple
option on the <annonymous structure>.

<anonymous structure>::={<8elector{§;§g}T <selector?>
| {<selector> alsol, tuple <anonymous
predicate>
| only <selector>
<selector>::= <atom>
| (<named structure>)
| <named predicate>
or in the abbreviated form

Sl::= {S2 also}; S2 |{S2 also}, tuple Pl | only S2

S2::= ATOM | (S) | P
The <anonymous predicate> in the tuple option is the
verifier for every component of the tuple part. The <named.
structure> is still interpreted as a substructure definition
but in addition, the predicate it defines becomes the verifier.
The <named predicate> form will be more common. It defines

both the selector and the verifier. The unqualified name of




142

the <named predicate> is the selector and the predicate it
defines is the verifier.

A new interpretation is given to the ATOM occuring alone.
This defines the selector name as before. However, it is élso
used as the base on which the name of a predicate is constructed
by prefixing "Is". It is assumed that a predicate of that
name has been previously defined. For example, if the user
wished to build the TIME structure (IV(10)) without gqualifying
the substructures he might use

def ID which has

ID_NO which ISINTEGER

also NAME which IsSCHAR

(4)
def HOURS which has

WORKED which ISREAL
also SICK which ISREAL

also VAC which ISREAL

to define the substructures and then define TIME by
(5) def TIME which has ID also HOURS

o

In this case the vefifiers for ID and HOURS are the predicates
IsID and. IsHOURS defined in (4).

This new syntactic extension requires only a small change
to the abstract syntax. It allows S2 to be rewritten as P as

‘well as ATOM and S. The abstract syntax tree for the definition
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of ID given in (4) is shown in figure 1. The changes reguired
in the standardizing procesé are a little more complex as can
be seen from the standardized tree for ID which is given in
figure 2.

There are two things which increase the work of the
standardizing routines. The primary addition is to use the
tuple of predicates returned by Split as the verifiers for
the corresponding selectors also returned by Split. These two
tuples are combined with the tag naﬁe to form a 3-tuplé which
is the argument to the extended version of MakeStr described
below.

The other addition is sligbtly more complex. The problem
which it solves arises because not all predicates are given'
names. In particular, predicates defined solely as verifiers
remain anonymous. This is a result of a design decision to
avoid proliferating names when they had no apparent use.

This means that the MakeStf function cannot reference the
verifier by name.as described above for substructures, but
instead must use the predicate construction directly. It also
means that the generation of names in such standardizing
functions as NS, NP and NB must be controlled.

The solution to this problem is to identify the contexts

in which names are and are not generated. Then an additional
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ID

ID_NO IsINTEGER NAME IsCHAR

figure V.1 Abstract syntax tree for the structure
ID in definition (4)

MakelD

figure V.2 The standardized tree for the structure ID
in definition (4)
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argument can be added to the standardizing routines to carry
the context information. Before specifying the contexts it is
necessary to define several terms carefully. We will use the

term abbreviated definition for the definition which defines

both a constructor and a complex predicate. An example of. an
abbreviated definition is the definition of LIST given above (2).

We will say that a definition is immediately contained

in another definition if there is a path in the abstract syntax
tree connecting the two structure, predicate or abbreviated
definitions and if there is no other structure, predicate or
abbreviated definition on that path. For example, the definition
of ID in Chapter IV.(10) is immediately contained in the
definition of TIME. We will use the term contained when we
only require that there is a path between the two definitions
in the abstract syntax tree.
The contexts for name generation can be described as
follows.
lj A structure, predicate or abbreviated definition
which is not contained in any other structure, predi-
éate or abbreviated definition is said to be in a
type 1 context. 1In this case the unqualified tag
name is used as the base name for generating the construc-

tor and predicate names. In the above examples (4)
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and (5) the structure definitions for ID, HOURS and.

TIME are all in a type 1 context.

2) A structure, predicate or abbreviated definition
which is immediately contained in a type 1 predicate
definition or another type 2 predicate definition,

is said to be in a type 2 context. 1In this case

the unqualified tag name is also used as the base

for the function names. However, the name of the
predicate is also used as an argument to IsStr in
defining the predicate for the immediately containing
predicate definition. The definitions of SUM and PROD
in example (4) of Chapter IV are structure definitions

in a type 2 context.

3) A structure or abbreviated definition which is
immediately contained in a type 1, 2 or 3 structure
or .abbreviated definition is said to be in a type 3
context. As we noted in Chapter 1V, the name base
of such a definition is made by qualifying the tag
name with the tag names of all the structures in
which it is contained. This qualified‘name is then
used to define the external names of the predicate

~and constructor. The name of the predicate is also
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used to represent the verifier for the corresponding
component of the immgdiately containing structure.

In the definitidn for TIME in Chapter IV, example (10),
the structure definitions for ID and HOURS are in

a type 3 context.

4) A definition is said to have a type 4 context
if it is either
a) a predicate definition which is immediately
contained in a type 1, 2 or 3 structure defini-
tion, (i.e., it is a verifier definition)
or
b) a predicate, structure or abbreviated
definition.contained in é typel4 definitioh.
In either case, no name is created for the object
being defined. Instead the constructed predicaﬁe is
used directly as the verifier for the corresponding
component of the immediately containing structure.
The predicate "HEAD which ISLIST else ISATOM" in the
definition of LIST in e#ample (2) is in a type 4
context.
The context information is passed from level to level as
the abstract syntax tree is standardized. It begins with a type 1

context and the argument is modified in US, UP and AP to establish
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the correct context for the components of these anonymous
objects. The information packet (selector, predicate and lower
level definitions) is built in NP, NS and NB which use the
context information to decide whether an external name is
defined. These routines also decide whether the predicate
component of the information packet is the name of the predicate
or the result of applying IsStr. Other than this the processing
is basically the same as that described in Chapter IV. The
complete geéanken interpreter for S-PAL with typed components

is given in Appendix B.

Using Verifiers in the Constructor

One of the main advantages to defining types by predicates
is the simplicity of the validation process in the constructor.
"It is performed by applying each component predicate in the
verifier tuple to the corresponding component of the data
tuple. . The results of the individual verifications are andeid
together to produce the combined result. If the result is
false, the constructor returns thg special value undef. Otherwise,
the constructor produces a data function defined on the components
of the argument tuple.

The version.of MakeStr with verification is given‘in figure 3.

It uses an auxilliary function Verify to validate the components
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def Verify (v,t) = Q(1,true)
where rec [ Q(k,Tv) =
k ge Order V -> Isnil (V k) ->Tv
| R(kx,Tv,V k)
| Q(k+1,Tv & V k (t k))
and R(m,Tv,Vr) = m > Order t -> Tv
| R(m+1,Tv & Vr (t m),Vr) ]

def MakeStr (Tag,Sel,Ver) =
let n = Order Sel -2
in Constructor
where rec Constructor (u) =
not Verify (Ver,t) -> undef
|{fn y. ISATOM y ->

eqg tag -> Tag
eg domain -> Buildset (Sel,t)
eq constructor -> Constructor

=i b bt g

let k = Decode(y,Sel) in
k eq 0 -> undef | t ki
| Sel(order Sel) -> t(n+y) | undef }
where t = Canonical (u,Sel)

figure V.3 The Makestr function which verifies the
component values. The only change is to
make the result of the constructor conditional
on the verification of its argument. If the
argument is not verified then the result is
undef, otherwise is is a data function as
before. The argument is put in canonical
form before the verification.
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of the canonical form of the data tuple. The only complicat.ion
in verify is the processing of the tuple part of a mixed domain
structure when it is present. If the final component of the
verifier tuple is nil then no tuple part exists so the truth
value is returned. If, however, the final component of the
varifier tuple is not nil then it is the verifier for all the
components of the tuple part. In this case the tuple verifier
is applied to every component of the tuple part and the results
of these applications are combined with the results of the sym-
bolic part to give the function result.

Because a tuple has a variable number of components it
is not possible to specify individual types for more than a
fixed initial segment of the tuple;‘ Therefore, it is necessary
to define the types of the components in a manner which will
allow arbitrary extensions of the tuple. One way to do this
is to provide a function which given the index of a component,
would produce the verifier for that component. This would
allow a wide variety of mixed types in a tuple. For example,
it would be possible to describe a tuple in which the even
components were real numbers and the cdd components were their
character representations.

However, this approach to types is probably more powerful

that is really needed. 1In general, fancy combinations of types
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do not occur in tuples. This is particularly true when the
data functions are included since most mixed type structures are
easier to define in terms of symbolic selectors. Therefore,

we chose to limit the types of tuple components to a single
verifier which validates every component. This is consistent:
with most other programming languages. If the user wants

to mix types, he can use a verifier which will accept several
alternatives or he can use the verifier IsANY which always
returns true. This latter Verifier allows him to cqnstruct
tuple parts which are like the unverified tuples of the current
PAL system.

This completes the description of the representation for
data functions. The ‘camplete set of programs is collected
together in Appendix D. Whiie there are a large number of aux-
illiary functions used in defining MakeStr most of them are used
only during the construction of data functions or for the
special selectors. Therefore, a simple data reference is

reasonably efficient.

The Problems Associated with Unrestricted Verifiers

Even though we have restricted S-PAL to dynamic types,
there are a number of problems which arise in checking types.
The most obvious of these is the handling of locs. All other

objects have a fixed Rvalue. Thus, it is sufficient to test
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that Rvalue at construction time to verify that the component
it occurs in is correct. However; the Rvalue associated with
a loc can be changed by aﬁ assignment statement. This means
that verifying the appropriateness of the Rvalue contained in
the loc at construction time is insufficient to insure the
validity of that component at later times.

There are.two solutions to this problem. One solution is
to make the problem disappear by treating all locs as a single
indistinguishable type. In this case the verifier would only
check whether or not the component was a loc. Because the con-
structor binds the data function to its components, a component
which is a loc will remain a loc forever. Hence, the verifi-
cation is valid at all times after the construction.

The other solution is to attach a type predicate to the
location. This predicate would be used to verify the validiuy
of any assignment. Then as long as this predicate-is at least
as restrictive as the verifier for the component whose value is
the loc, all valid assignments will also satisfy the verifier.
Hence, this construction is also valid at all later times. The

properties of these solutions are developed in detail below.

Treating all locs as a Single Type Class
Certainly the locs form a type class because they are obs

and there is a predicate ISLOC which distinguishes them.



153

However, ﬁhe idea of this solution is to prevent.$gg§ from occuring
except where a‘;gg was expliéitly indicated in the structure
definition. That is, a loc containing a real number would not
be a valid component for a verifier which requires a real
number. This solves the validation problem bv preventing all
updates when an Rvalue typed object is required bv the verifier.
Conversely if a loc is allowed as a possible value of a component
then no other type checking is performedron that component.
Therefore, the value of the loc may have any type except Loe:
This means that the only way to build a structure with a
strong representation is to build it solely from Rvalues. This
would appear to prevent updates to structures with a strong
representation. Actually, it is possible to perform a limited
form of updates and still have propér validity checking. It is
possible to decampose the structure into a tuple, update a
component, and rebuild the structure from the updated tuple
using the constructor obtained from the original structure. If
the structure was the value of a loc then the updated copy
can be made accessable by assigning it to that loc. Because
the same constructor was used to build the new structure the
updated component must satisfy the same verifier as the original
component. Hence, the strength of the representation is

unchanged.
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The generalized update oéerator Update is given in figure 4.
"The auxilliary function Index is used much like Decode (See
Chapter 1IV) to get the index of the component of the data
tuple to replace. If the value is zero then no such component
exists and no update is done. Otherwise, the function Insert
is used to decompose the data function and replace the component
to be updated. The constructor obtained from the original
structure is used to construct a new data function on the
updated tuple. Note that all the components of the new data
function, except the updated component, share with the components
of the old data function. Hence, this function acts much like
the function AuG. (Chapter IV, figure 17)
Thus, we see that this solution is practical and even
allows most of the operations that one would want to perform
on a data structure. The only real problem occurs when the
structure to be updated is referenced as an Rvalue in some
other structure. 1In this case there is no way to update the

structure and preserve the sharing.

Shaped Locations

The alternative to limiting type checking on locs is to
make the locs check the values being assigned to them. This
can be done by attaching to each loc a predicate which is used

to test whether or not an assignmentAis valid. If the value

being assigned satisfies the predicate, the assignment
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def

def

Update (D,s,v) =
let C = D constructor

and i = Index(s,D domain)

——

in i eq 0 -> D' | C(Insert(D,i,v))

Index (s,t) = R(Order t)
where rec R k =
Keg-0'-= 0
| s eqtk ->k
| R(k-1)

Insert (D,i,v) =
let A = D domain in Q(1,nil)
where rec Q(k,t) =
k gt Order A -> t
| k eg i -> Q(k+1,Aug t v)
| Qlk+1,Aug t (D (A k))]

figure V.4 The Rvalue update function.
The Index function yields the index of the
data tuple component to replace. The :
Insert function decomposes the data structure
into its components replacing the component
to be updated. This new data tuple is then
used to construct the new data function
returned as the result of Update.
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is valid. Otherwise, the value is rejected and the assignment
is aborted and an error message is given. This action is
similar to what happens when an operator such as "+" is applied
to a data object, such as a qharacter string, for which no
result is defined. This also produces a run time type error.

The locs with attached predicates will be called shaped locs

because only values of the correct type (shape) can be assigned
to them.

The only problem with this solution to the wvalidation
problem is that it is necessary to insure that the predicate
attached to the.shaped loc defines a type class contained
within the type class defined by the verifier the loc must
satisfy. There are two solutions to this problem:; each has
a different disadvantage.

It is possible to ensure that the predicates of component
locs are.consistent with the verifiers for these components by
creating the locs as the structure is built. These created
locs would receive the verifier as their attached predicate.
Therefore, only legal assignments would be allowed. In general,
a new loc would be created for every component of the data
tuple which is a loc. Then the Rvalue of each original loc

would be assigned to the correspoﬁding new loc. The assignment

and hence the construction would only be done if and only if
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the Rvalue wés of the correct type.

This has the advantage tha; it is not necessary to insure
that the domain of the original shaped loc is contained
within the domain of the verifier. The only requirement is
that the current Rvalue be within the domain of the verifier.
However, it has the disadvantage that it is impossible to create
data structures which share loes.

If the sharing of locs is to be allowed a different
solution is needed. In this case it becomes necessary to be
‘able to decide when the predicate on an existing location
defines a type class that is contained in the type class of a
verifier. As we have already remarked, this problem is'in
general undecidable. Thus, loc brings us back to the set
containment problem we sought to avoid with a dynamic type
checking system. However, this seems to be the only reasonalkle

solution to the problem of shaped locs in structures.

why Restrict Shaped locs to Structures?
if we allow shaped locations in structures then why not
allow them anywhere in S-PAL. There is certainly no reason
to restrict them solely to structure definitions. 1In most
places in the language the problem of checking set containment
doesn't even arise. It alsc has the advantage that it makes

assignment more like the other operations in the language.
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Since "+" will raise an error when its arguments are mismatched,
it is reasonable to expect the assignment operation to fail
when its type constraints are not met.

There is some gquestion as to what objects should be given
types. Should they be restricted to locs and the components of
structures or should they also be definable for other linguistic
features such as names. In most languages it is possibkle to
give type restrictions to formal parameters which are really
only dummy names. They are bound to values only when the
procedure in which they occur is called. At that time the
type conditions could be verified and the calling argument
rejected if the type test failed. 1In BASEL, which allows
variable bindings, all names can be giveh types which will be
verified when the name is bound.

The main problem with typed names is that the set contain-
ment problem occurs again. Since a name may be bound tc a
location, it is necessary to ensure that the type of the
location is consistent with the type of the name. This 1is,
in particular, a problem with parameter names in proéedure calis,
In any case it is not too difficutt to visualize syntax for
typed names which is similar to the S-PAL predicate syntax.

In addition the loc operator would have to be extended tou make
it bossible to create.shapedliggs. Thu;. we see that very

little extra work is required to extend the type facility to
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the whole language once it is defined for locs in structures.

Function Types

The locs are not the only obs which cause problems in
the type system. Functions are also difficult to handle.
When a function is a component of a data structure, it is
necessary to verify that the domain and range of the function
are valid. This is, of course, undecidable in general.

One way to solve this problém is to embed the component
function within a checking function. This checking function
first tests its arguments to see if they conform to the
| types allowed by‘the verifier. If they do, they are passed
on to the component function. When it returns, the checking
function makes sure the result is in the correct range and
if so returns it. The operation of embedding the component

function in a checking function is called projection by

Reynolds [31] . The problem with this approach is that while
it guarantees that nothing outside the domain and range will
work, it does not ensure that the componegﬁiwithin the projected
domain and range.

An alternative to the projection function is to require
every function to have a description of its range and domain in
terms of a very simple language. For example, the language of

regular expressions might be appropriate. Then the domain and
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range condition could be evaluated by checking these descriptions.
The language must be simple for otherwise it is impossible to

test for the equality of two different descriptions.

The S-PAL Solution

The problems discussed above are just some of the more
obvious complications that result when types are defined by
unrestricted predicates. For example, it is undecidable when
two alternatives in a predicate definition define intersecting
type classes. Therefore, it would appear that the appropriate
solution to the problems defined above would be to define
restrictions on the predicates which would make questions
such as set containment answerable. This would make it
possible to solve the problem of strong representations which
included locs by using shaped locs.

Unfortunatély the design of such a type system is beyond
the scope of this thesis. Some steps in this direction can be
found in the work of Morris [25], Reynolds [31], Jorrand [12}
and van Wijngaarden [37]. But designing a ;ype svstem which
provides for static type checking, but is not too restrictive,
is still an open problem. Therefore, we choose to alloQ the
user the ability to‘use any predicate as his verifier.

This makes it possible for him to solve the above problems.

He can ensure strong representations by putting a test for loc
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in the predicate for every component. If the component should
be a loc, this predicate would check to make sure the comporent
is a loc. If the component should be an Rvalue the predicate
would check to make sure that a loc did not occur. The problem
of checking functions is more difficult.

One solution is to make every function which could be
assigned to a component provide descriptive information when a
special argument is given. This is analogous to the information
prévided by the data functions when they are applied to a special
selector. This information could be used in the predicate to
accept or reject the function.

These solutions are not as pleasing as a suitably restricted
type system and shaped locs. 1In particular, they put most of
the work ih doing type checking on the user. However, allowing
the unrestricted predicates provides the generality needed to
define different type constraints. This seems to be the best

solution when no particular type system is accepted by everyone.




Chapter VI

Conclusions_and Analysis

The preceding chapters have presented a data structuring
facility feor PAL. This facility makes it possible to describe
the nodes of a.data structure in a natural way. It provides
a wide range of possibilities for connecting and referencing
these nodes.. In particular, it makes PAL more flexible and
gives the user greater control over the form and processing
of his data. In this chapter we sumﬁarize the salient and
novel aspects of S-PAL, we discuss a possible implementation

and we also discuss possible directions for extending this work.

Treating Locations as Values
Locations or Lvalues should be obs. It does not seem

useful to isolate the loc from the other values in the system.
It shares many properties with other values. For example, it
can be the result of a function, used as an argument to a
function, used in an expression, etc. It also has some special
properties which other obs do not have. For example, the
value of the left hand side of an assignment statement must bhe
a loc. However, addition is only defined for integer or real

values. Thus, other values have special properties too.

162
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Another reason which is given for the special treatment of
loc is that there are no location constants. However, there is
at least one very reasonable interpretation for a location
constant. 1In BCPL [29] and other languages there is the con-
cept of a global variable. In BCPL this is a variable which
is located in a vector which is external to every block of the
program. This variable can be.referenced from any block by
declaring the name to be global to that block. Then any refer-
ence to that name will refer to the unique copy in the external
vector no matter what names are defined in the environment of
the block. This is similar to the EXTERNAL variable of PL/I.
These variables are often the only wéy for separately compiled
procedures to share values.

The natural way to implement this feature in S-PAL is to
introduce location constants. A 1ocation'conétant is a name
for a particular location which always designates the same
location no matter in what environment it is used. That is,
two location constants designate the same location when and
only when their representations in the concrete syntax are
identical. They can be viewed as locs with explicit addresses.
Because they always designate a unique location, they serve

exactly the same purpose as the global variable in BCPL.
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Perhaps the most important argument in favor of making locs
a class of obs is the flexibility it adds to the language.
It gives the user control over how the names he defines will
be used. He can prevent the misuse of the assignment operation
by binding names to Rvalues and building structures with fixed
iinks. He need only use a loc when he wants to be able to
modify a value. We conclude that the benifits of treating locs

as obs outweigh any disadvantages.

Functional Data Structures

There is a very definite need to be able to describe the
structure of a data element in terms of mnemonic component names
énd without forecing an ordering on the components. In S-PAL -
this facility is provided by the introduction of daﬁa functioné.
This represents an extension of the ideas of the PAL tuple and
the functional data structures of GEDANKEN. 1In particular,
the domains of the data functions were e*tended to include
symbolic selectors in the form of atoms. These atoms, like
integers, are constants.with a f;xed value which is indepeudént
of the environment in which they are used. Therefore, the
data functions cén be saved on a secondary storage device and
used by other programs.

We have defined a particular syntax for defining a constructor

and predicate for a data structure. This makes it easy to
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define a set of data functions and it documents their format..
However, we do not restrict ﬁhg class of data functions to the
results of the constructors produced from the structure
definitions. We intentionally defined the class of data functions
as those functions which produce the correct information when

applied to the special selectors tag, domain and constructor.

Therefore, if the user cannot express his data elements in
terms of a structure definition he can always write his own
data function.

The special selectors‘were chosen as a useful set of at;ri-
butes that every data structure should make accessible. We
have given examples which show how thése attributes are used.
However, we do not claim that these attributes are necessary
or sufficient for characterizing data structures. Our only
claim is that the attributes we chose appear to be present in
every data structure and making them available makes it possible

to define very general operators on the class of data functions.

A Type System Based on Predicate Functions

A type system is a necessary part of any data structuring
facility which provides for strong representations-of the data.
This is perhaps the weakest aspect of S-PAL because the type
system we chose does not allow static type checking. In fact,

due to its generality, the relationship of two arbitrary type
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classes is undecidable. However, the novel approach of defining

a type class by an unrestricted predicate function provides

the user with a very flexible concept of type. He can define

very restrictive type classes by writing very complex programs
which test a wide variety of conditions. Alternatively, he can

use the predicates created bylstructure definitions or the built-in
primitive predicates when only the general range of values of

an object is important.

The predicates defined by structure or predicate definitions
are very elementary. They will accept any data function which
returns the correct tag or which satisfies the alternatives
of a predicate definition. This definition of type was chosen
because it seems to be the simplest condition which defines
a set of data functions of the same type. The user may use the
other information provided by the special selectors to define
more restrictive fype sets.

One of the main uses for the type information is to
distinguish several alternative data structures which might
occur in a particular context. In most cases, each of the
different data structures is processed in a different way. In
the current PAL the proper proéessing code is selected by using
a sequence of conditional expressions. This is inefficient

since it requires that a sequence of tests be made to find the
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correct processing code.

It is more efficient to use the type value to select :the
correct code directly. Since the tag is a single value which
represents all the type inforﬁation, it is possible to use it
to determine which one of a set of expressions is to be used
in processing the data structuré. .Each possible tag value
would be associated with an expression which would process the
data structure with that tag. Then the multiway choice would
be evaluated by executing the expression whose associated
tag matched_the tag of the data structure.

This is a generalization of the conditional expression
which removes the need for sequentially testing the type to
find the right_expression to use. 1It, therefore, can be imple-
mented by techniques, such as hashing, which make it possible
to choose the processing expression with only one type test.
This facility can be generalized to allow multiway choices on
any value, not just tags. It is similar to the case expression
in ALGOL 68 or in a statement form to the switchon statement
in BCPL. The ability to use this'featufe is one of the main
reasons that tags are values in S-PAL and are included in every

data function.

A Possible Implementation for Data Functions

It would be unreasonable to propose an extension for data
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structures without giving some thought to the implementation
of those structures. Since data structures in S-PAL are repre-
sented by functions, it would seem natural to implement them
as functions. 1In fact, in the general case there is no other
alternative. However, the data functions created in structure
definitions, let us call th;se SDDF's, have many more properties
than an arbitrary data function. They are all represented by
variations on the same function which is produced by the con-
structor created by MakeStr. 1In fact, the only parts of the
function which vary are the data tuple, the tag and selector
set.

This suggests that it is only necessary to store the varying
parts with each instance of the SDDF. - A special type code
can be stored with the varying parts to indicate that the
standard SDDF accessing function is to be used to access the
information. In fact, the tag and selector set only vary among
SDDFs with different types. They are constant for different
instances of a single type of SDDF. Hence, every instance of
a particular type SDDF could refer to the same tag and selector
set informafion.

Therefore, we propose that SDDFs be represented like tuples
with an extra component. In the current implementation of PAL

a tuple is represented by a type code and a list of pointers
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(addresses) to the component values. Hence, the SDDF woﬁli

be represented by a type code identifying the value as an

SDDF, a zeroth component which is a pointer to the selector

set and tag, and a list of pointers to the components of‘the
data tuple. This internal representation is just as efficient
as the current PAL representation for structufes which consists
of a tuple of data components with an extra component to hold
the tag.

This defines an internal representation which uses storage
efficiently. However, MakeStr is a complex function with several
auxilliary functions so it is‘not clear that the construction
and use of data functions are also efficient. Actually, most
of the complexity of MakeStr is in the construction of the
data function. VThe data tuple must be put in canonical form
and verified. While these functions are necessary they are
used only once for every instance of a data structure. Note
also that with this representation the canonicalization can be
dbne by permuting the list of pointers in the data tuple. It
is necessary to create a copy of the pointers to the values in
the argument tuple because that tuple cannot be modified. Hence,
very little extra work is required to create the copy in the

canonical form.
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In a reference~to a created data structure only the Decode
function is used. This was specifically isolated so that the
lookup processes for Eonverting symbolic names to integers
could be done by hashing or if an associative memory is
available by associative lookup. In the cases where the data
function is applied to an atom directly, the decoding process
can be performed at translate (compile) time. Then the resulting
iﬁteger can be used to select the correct component of the SDDF
at run time. This conversion to a relative offset in the
SDDF tuple can save a lot of time if the selector is frequently

used.

Possible Modifications to S-PAL and Future Directions

In the preceding chapters we have compared S-PAL with
various aspects of other‘languages. These comparisons were
directed at language features that are in both S-PAL and the
other languages. In this section we wish to explore some of
the language features of these other languages which are not
in S-PAL. These are candidates for possible extensions or

modificationé to S-PAL.

Allocation and Initialization

One major deficiency in S-PAL is the lack of control over
the allocation of data. Since all data is nct used in the same

way, it is possible to perform more efficient storage management
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if the data is separated into classes with similar storage
utilization. For example, ALGOL 68 defines two classes of
storage. There is local storagg which is allocated in a stack
and is released whenever the procedure in which the sto;age
‘was allocated terminates. There is also global storage which
is allocated from an amorphous collection of storage called
'the heap. As the name indicates values allocated in the
heap are retained as long as there is a reference to them.
Therefore, the heap must be garbage collected. It is obvious
that by having the user separate out the storage which can be
allocated with a stack discipline, the heap is exhausted less
frequently énd, therefore, fewer garbage collects are needed.
PL/I has an even larger set of storage allocation classes.
It has both implicit stack étorage (AUTOMATIC) and explicit
stack storage (CONTROLLED). It also has a set of classes called
areas. These are to the heap what named common is to blank
common. These named regions are all distinct and storage
can be allocated from anyone. One use for multiple areas would
be to have different storage c¢ontrol mechanisms. Storage
allocated in one area might have use counts while storage
allocated in another would be garbage collected. Another
use for areas is to give a name to a data base that was allocated
in that area. It could then be saved with a single area I/0

statement. Areas provide a great deal of flexibility in the
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storage allocation process.

Control over the allocation of storage could be added io
S-PAL by providing a new argument to the constructor function.
This argument would specify the spaée from which the data
function should be allocated. However, there are many problems
to solve. For example, is only the SDDF allocated in the
specified space or is it necessary to copy in the values it
points to. If so, how far does such a copy go. It also
might be convenient to add an extra special selector which
would produce the name of the space in which the data function
resides.

Initialization is almost always linked with allocation.

The reason is that it is impossible to initialize something before
it is allocated and it must be done before the object is referenced.
However, there are times when it becomes necessary to delay
initialization. For example, when a ring structure is being
created it is only possible to initialize pointers to previously
created nodes. Therefore, the ring can only be closed after

all the nodes are allocated.

The problem in S-PAL is that the only way to delay initiali-
zation is to use a loc. For example, the above ring could be
closed by assigning a reference (l-tuple) to the last node to
a loc in ﬁhe first node. This type of initialization was one

of the uses for Standish's constructor modifier. However, it
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should be possible to close the ;ing with a permanent, non-updatable
link. Therefore, we might include a new type of loc which acts

‘as a place holder for an unresolved value. This loc could be
updated as above but the first update would replace the loc with

a permanent connection to the value which was aséigned. This

might be called a one shot loc. This would allow delay initiali-

zation to values that were not again updatable.

Load-Update Pairs and Implicit References

There is a basic and disturbing assymetry to S-PAL. It is
possible to replace eQery reference which loads or uses a value
with a function which calculates the value. However, it is
not possible to replace the lefthand side of an assignment
with a function which decides how to store a value. To solve
this problem it is ﬁecessary_to introduce a generalization of
the Lvalue. This is calied a Load-Update Pair (LUP) by Strachevi35]
and an Implicit Reference by Reynolds[30].

The basic idea is to represent the Lvalue as a pair of
functions. One of these, the load function, is a function of
no arguments and it produces the value contained in the
generalized Lvalue when it is used. The other function, the
update function, is a function of one argument and when it is
used it updates the value of generalized Lvalue with its argument.

It should be pointed out that both functicns may perform a large
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amount of computation to produce or store a value. For example,
the update function might encode its argument before storing

it into the internal Lvalue and the load function would deccde
it. This might be a way to save storage space.

A number of uses for a LUP are given in the paper by
Reynolds[ 30] . However, several obvious S-PAL uses are given here
for completeness. One very good use for LUPs would be to imple-
ment the idea of shaped locs. Although the set containment
problem would not be solved, it is possible to build a verifier
into the update function. The update would only be completed
if the object being assigned satisfied the verifier.

The LUP also allows the implementation of the SUBSTR
pseudovariable of PL/I. This aLlows assignment to an internal
segment of a string without affecting the surrounding part of
the string. It is a character for_character replacement opera-
tion. This could be implemented in S-PAL by a function of
three arguments, which, when applied to an Lvalue holding a
string (a tuple of characters) and two integers delimiting the
segment to be replaced, would produce an LUP. When the update
function of this LUP is invoked, it would check to_make sure
the segment was of the correct size and would compute a new
string with its argument replacing the old segment and would
assign that to the Lvalue. If the string was.a tuple cof locs

of characters, then the update function would not need to compute
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a new string but could instead replace each character of the
segment of the old string with the corresponding character »>f

its argument.

Computing Descriptors

It should be possible to give several different structures
to the same set of data objects. This is useful when some
subroutine a user wishes to use requires a slightly different
format than the one in which the data is currently stored. 1If
this alternative format is not too different from the existing
format it should be possible to define the alternative structure
on the same data. For example one might want to define a tuple
which is composed of the even indexed components of another
tuple. This implies multiplying every index for the new tuple
by .two to get the old tuple index. This type of alternate
description is like that found in the DEFINED attribute of PL/I
and the REDEFINES verb of COBOL.

In some cases the new description will be built on the
original data and in other cases the new description will be
phrased in terms of the existing structure. In the latter
case, it is possible to build some alternate descriptions by
embedding the original data function in a new function which

maps its selectors into the selector set of the original function.
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This could be done in the tuple example above. Further research
is needed to decide if this wiil always suffice and how much
efficiency is lost this way.

There is one other way to compute new descriptions
or structures. This is the method used by Standish[33]. He
provided modifiers which customiéed existing structures for
particular-uses. He also provided operators for combining

several different structures into a single structure.

Syntactic Conveniences

There are several syntactic sugarings which might be
considered for extensions. Two of these are trivial and one
is more complex. One useful sugaring would be a facility for
abbreviating long selector chains. One way to do this would
be to give a name to a chain of selectors and to use the name
instead of the chain. A second useful facility would be the
ability to embed constants.in a étructure definition. They would
be used to define components which never varied. That is, these
components would always be filled in by the constructor and
it would not be necessary to specify values for these components
in the argument tuple.

The third sugaring is actually the most useful. It is
often the case when large static strﬁctures are being defined

that the various substructures are identical in format to
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previously defined structures. Therefore, it would be nice
to be able to refer to those previous definitions to save copying
the whole definition into the new structure. This function is
provided by the LIKE attribute in PL/I and COBOL.

Basically, the idea is to copy the text of the previous
definition into the place in the new definition. A textual
copy is used so that the names of the constructors and predicates
will be properly qualified for the new structure. This idea
can be extended to provide modifiers, like those of Standish}
which would make small modifications on the text as it is
substituted into the new definition. One might be able fo
change the tag, the name of a selector, to fill in a constant

value, etc.

Parameterized Definitions

There is one special case of the LIKE attribute which is
worth separating out. This is the parameterized structure
definition. This concept was used by both Standish [33] and
Reynolds([31]. It is used for structure definitions which
define a set of different data structure with very much the
same description. For example, the set ofn x m matrices forms
a parameterized set of data structures where the parameters
are the number of rows and the number of columns. It should

be possible to write one definition for a matrix and to fill



178

in the bounds at construction time.

It is important to note that this is not the same as ¢
tuple which can vary in size. The tuple may be augmented at
any time. Each member of a parameterized set has its parameters
fixed when it is constructed and they may not vary after that.
The values of these parameters complete the type information
for the data structure. Because the parameter values are often
needed when the data structure is processed, Reynolds provides
dummy variables positions in his type checking predicates.
These dummy variables are set as part of the type verification.
They can then be used in the processing algorithm. This saves
an extra reference to the data structure to find the bounds

after the structure is verified.

Mixed Domain Data Functions

There is one feature of S-PAL which does not seem to be
worth the complications it introduces into the formal definition.
This feature is the capability of-mixing symbolic and integer
selectors. Most languages do not provide this feature. One
reason might be that it is very-easy to get almost the same
effect by inserting an extra 1evgi in the structure at the point
where the tuple part wouldrbggiﬁé This extra level would contain
the tuple part of the one level form. for example, the étructure

for chemical atoms given in Chapter IV (8) could be rewritten as

A
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def ATOM which has

NAME which ISSTRING
also VALENCE which IsSINTEGER

also BOND which IsTUPLE

Then if Carbor was an ATOM you would refer to the second bond
by Carbon BOND 2 instead of Carbon 2 which would be used for
the definition in Chapter IV. Because the extra level does
not seem to be at all 6ffensive, it is suggested that mixed
domain functions not be allowed,

This, however, is not all there is to the problem. While
the above example does not show it, it must be possible to have
substructures below a tuple level. Therefore, the syntax for
the tuple option must be modified to remove the symbolic
alternatives and to allow structure definitions within the

components of the tuple.

Where will the Future Lead

Almost all the languages which have a capability for struc-
turing data have what might be called a middle level data struc-
turing capability. It is not as low as the machine dependenﬁ
bit oriented languages, but it is not quite at the level of
some of the other features of higher level languages. They can

be charactorized as being node oriented and algocrithmically
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connected. By this I mean that the user must allocate the
nodes of the structure individually and construct a whole
data base piece by piece.

This is still a relatively primitive facility. It should
be possible within the near future to free the user from
writing the algorithm which connects the nodes together. Instead,
he should be able to specify (allocate) a set of nodes and for
this set of nodes provide a list of all the connections the
nodes should have. The machine would theﬁ make the connections
‘given in the list in some optimal order and in parallel if
possible.

This is only a first step. Many of the information manage-
ment systems now in development go beyond this simple level.

In these systems it is possible to specify data nodes and the
relationships that these nodes should have to other nodes.

The system tﬁen constructs a representation for those relation-
ships and builds the data base with that representation.

The ultimate goal might be a system where the user specifiszs
several sets of data, a set of attributes possessed by that
data, and a set of constfaints or relations between the data
items. The system would take this information and build a
data base where the constraints were satisfied. It is easy

to visualize all kinds of problems with this approach. For
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example, when does a set of constraints have a solution? Wwhen
is the solution unique? There is still much work to be dcne

in the field of data structures.
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Appendix A. The Complete S-PAL Syntax

Abbreviated S-PAL Syntax

El
E2

cl
c2

c3

Tl
14
T3

Bl
B2
B3

Al
AZ
A3

R1
R2

ol
D2
D3

s se es
*s se ae
nuwu

oo

8% 58 pe wa
s se P&
Hunu

*5 e e
ot on o0 L L]

s e 3w

ee 05 88 M
nH BA

se ee
oe we
B M

{def DT | E

et P InE | fo¥ . E |1 E}
E2 where D2 | E2

valof C | C

€f; € | <Cx

{ NAME : }: c2

test B ifso C2 ifnot C2 | test B ifnot C2 ifso C2
| if Bdo Cl1 | wunless B do Cl

| while B do C1 | wuntil Bdo Cl1 | C3

T:=T | gotoR | dummy | res T | T

3L T2 TLE

Tl aug T2 94 712
T3 at T3 | T3
B =>T3BAR T3 | B

Bor B1 | Bl
Bl & B2 | B2
not B3 | B3

ARLA | A

A+ Al | A=Al | + Al | =-Al | Al

Al = A2 | Al / A2 | A2

A3 *+ A2 | A3

R | val R | loc R | A3 % NAME R

R2 of R | Rl

R1 R2 | R2

NUMERIC | QUOTATION | TRUTHVALUE | NAME | nll
] $ EJ ) E

D1 within D | DI
D2 {and D2}

rec D3 | D3

NAME {, NAME }7 = E | HNAME V = E
| (D) | D i (8 § #®

vvil | Vvl

NAME | ( NAME ({, NAME}® ) | ()
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Sl
S2

Pl
P2
P3

&5 se o8

es oo 8@

se

s as o8

now

nnonon

gr

ATOM which has S1

ge

| eq

{S2 also }f S2

ATOM

(s) |

ATOM which P1 |
P3 { else P3}5
is £ .81 )

ATOM

P

ATOM which P2
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ne | 1s

{ S2 also}j

{ else p3 17

is ( S )

is ( P)

le

tuple

only S2
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Appendix B. The Gedanken Efvaluator for S-PAL

NDefinitions Concerning Lists

def t x = x 1

and ¢ x = x 2

and Push (x, s) = x, s
def 2d x =1t (r x)

and r2 x =r (r x)

and r3 x =r (r (r x))
and rec Prefix (x, y) =

Hull yv => x
| Null x => v
| [t x; Preflx (r x, v)]

def Tag n s = Aug s n

and Istag s n =n eq s (Order s)
and Sons = Orcder s = 1

and Segment (x,i,j) = 0(i,nil)

where rec 0(k,t) =
k gr § =3 ¢ | Olk*l, Mz £ (x k))

Definitions Concerning A-expressions

def bV x = x 2
def Body x = x 3
and Env x = x &
and Isiexp x =

Istuple x => x 1 eq "x' | false

Ishclosure = |sxexp

2 E

MakelXxlosure x v = Aug % y
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def rec Lookup (n, e) =
neqgel=>e 2 | Lookun (n, e 3)

dof  Islahel x
Istunle x

-=> Order x eg 4

-> x 4k aq 'A!

| false
| false
def Tagof x = x (Order x)
def rec Decompose (n, v, e) =

test lIsvariable n
ifen A, V, & -
ifnot ;
[Order v ne Order n => error | . N 1 e
where rec 0 k s =
k gr Order n => s
| 0 (k+1) Decompose (n k, vk, s)]

Definition of Makecontrol and subsidiary functinns
The subhsidiary functions for structure definitions

def MakeS (q, s) =
Tag 'v' (MakeStr, Tag “t' (o, s 1, 5 2))

and MakeP (g, p) =
- Taz v (1sStn, Taz *v* g, p))
"and SimpleNS (q, s, p) =

let Lhs = (OualM 'Make' q, “ualt 'Is' q)
and Ms = MakeS(g, s)
and Is = MackP(qg, ») in

[Lhs 2, Tag '=' (Lhs, Tag 't' Ms, Is )l

and SimpleMP (q, p) =
lgt Lhs = Bualirdig" g
and |Is = MakeP(q, p) in
[Lhs, Tap: *=* (lhsyds)]

ef HNS (x, n, q, ¢c) =
¢ eq 4 -> (n, MakeP(q, nil), nil)
| Buildpack (x, n, Simple'lS(a, x 1, nil)

and MNP (X, n,; 9, ¢) =
ceqg l -> (n, MakeP(a, x 1), nil)
| Buildnack (x, n, SimplellP(g, x 1))

ekt

)
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and ™8 (x, n, 9, c) =
c eql =-> (n, MakeP(q, x 1 2), nil)
.I Buildpack (x, n, Simple!S(q, x 1 1, x 1 2))

and MT (p) = Tag 'SubS' (true, p 1, nil)

and Buildpack (x, n, s) = Tasg "SubS' (n, s 1, y)
where y = Istag x "SV' => s 2 | AD(s 2, x 2)

def Combhine (a, d) =

A eq nil => Tag 'SV' (Auz nil a)
| Tag ¥55' (a;) AP )

_'!_g_ﬁm uUs (Kr q, C) =
let s,p,d = Split (x,a0,€ eqg & =¥ L_| 3)
in Combhine (Arg, d)
where Arg = s (Drder s) => (s, n)
| (Aus s false, Auz p nil)

UP (x, q, ¢c) = Combine (p, d)
where s,p,d = Split(x, q, c eal => 2jc ea 3 => U4]c)

g

AP (X, g, &) =
lets,n,d = Split Seement(x,2,0rder x),n,c eqa 1 =>2\c
and w = US (x 1, g, ¢c)

in Combine [Tag 'Pair' (w 1, p), DI]

where D1 = Istag w 'SS' => Prefix(w 2, d) | 4

and Split (x, q, ¢) = 0 (1,nil, nil, nil)
where rec 0(k,s,p,d) = :
k gr Order x => (Tag 't' s, Tae "1' n, d)
I[ let m = Sub(x, a, c) in '
Q(k+1l, Aue s (m 1), Auz p (m 2), M)
where Nl =m 3 eq nil => 4 | Aus 4 (m 3)]

and Suh (x, q, c) =

let Type = Istar x in
Type 'which has' => NS[US(x 2,

E

cl,x 1, m, ¢l

-
3
LS

| Type 'which' -> NP[UP(x 2, m, ¢),x 1, n, c]
| Type 'is/has' -> NB[AP(x 2, m, ¢),x 1, m, c]
| Type 'tuple' => NT{UP(x 1, m, 4]
.| Type 'atom' => Tae '"SubS' [x, Nual® 'Is' x, nil}
'

Tag 'Subs'[ nil, x, nil)
where m = ¢ 1s 3 => x 1 | Nuall q (x 1)
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£ The remaining definition standardizinz functions
def WD u v =
Tag '=' [v 1, Tag "v' (a, u 2))
. where a = Tag "A' (ul, v 2)
and RD w =

Tag '=' [w)l; Tag "%%,; ('¥Y«'; a)]
where a = Tag '"A' (w1, w 2)

FO u v = 0 (Order u) v
where rec 0N k s =
k eq 1 => Taz '"=' (u, s)
| @ (k=1) [Tag "A', (u ks 8]

:

A w =01 nil nil
where rec 0 k s t =
k gr Order w => Tag '=' (s, Tar "t' t ) 1
| 0 (k+1) [Aum s (w k 1)] [Au= t (w k 2)]

g

def D

rec X = _
let Type = lstag x

<
I

-

Type '=! -> x
Type 'within' => WD [D (x 1)]1.[D (x 2)]
Type 'rec' => RD [D (x 1)]
Type '7f' < iE0 (x 1)} €x 2)
Type ‘and’ =>AD (0 1 nil
where re¢c Q k To=
k eq Order x => t
, | D(k+l) Aue
Type 'which has' =-> NS US(x 2,x 1
Type 'which!' -> NP UP(x 2,nil
Type 'us/has' -> NB AP(x 2,x 1
error ;

m—

. % &
ey
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def rec S x =

test lIsidentifler x

lfso x

ifnot
let Type = |Istarm x
in

Type '=>! =% Tae "8Y [S (x 1); 5 (x 23,5 (x 3))

| Type 'test' => Tae "8!7[Si(x11)s Ss:(x 2), 5 (x 3}
| Type 'y'! a¥ ' Jagate =S (%23, S (x 2)]
| Type "' =y Tae "2Y {5 1, & (% 271
| Type 'let' - Tae Yy ioiBaen'st [fw i, S.tx M), S (w 2)

where w =D (x 1)]
| Type 'where' => Tag 'y' [Taz "\' [w 1, S (x 1)} S (v 2)

where w =D (x 2))

| Type "¢ -> (let n = Sons x
J0
R =1 :n k)

where réc N k t =
' kegrn=->1¢
| D (k+l) Tae 'y' (Tar 'y
[Aues £l S5 [x %131)
Type ‘aug’ => Tag 'aug' [S(x 1), S(x 2)]

|

| Type 'S$' => Tag '$' [nil au= S(x 1)]
| Type :;'l => Tag ';' [S(x 1), S(x 2)]
| Type ":= =2

{test Istag (x 1) '1°

jfnot Tae ':=' [S(x 1), S(x 2)]

I1fso Tag 'v' [Tag 'Y' ['Assien#*', S(x 1)], S(x 2)]
I.;ype CLet => Tae '"B' [S(x 1), S(x 2), 'dummy']
) Type ‘while' =) Tax 'w' [S (x 1), S (x 2)]
| Type ‘until' =>i1Tas “wubdlw, Sw(x -2)

where w = Tae 'Y' ['not', S (x 1)}]

| Type 'soto' => S (x 1), 'soto'

| Type ':! -> (Jet w =5 (x 2)
in
Istag w 'A' => Tae 'A' (w1 au~ x 1 aue

w ?2)
| Tae *A" [(x 1:; 3, .
where =y, '#'])
| error

def Combine (s, t) =Q 1 s

where rec 0 k w =
k gr Order t => w | O (k+l) (w auz t k)
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def rec L x =
test Isidentifier x

ifso x
ifnot
[let Type = Istag x
in
Type 'A' => [let u, v=x1, L (x 2)

in
test Istag v 'A'
1fsa Taz 'A) Combimef[Cu, v 1). ¢ 2 ]
[fngt Tag 'a" (u, v)]
I Type *w' =3 et uav = L. {x 1), L-{x )
in ,
test lIstag v 'a'
lfso Tae "A' [v 1, Tag * * (u, vw2)1]
ifnot Tar 'w' (u, v)]
| Tybr '3' =3 (Jep v, ve LUz 1), L {x 2)
- in
test Istaz u 'A'!
ifso
test Istas v 'A!
ifso Tar '"A' [w, Targ ';' (u 2, v 2)
: where w = Combire (u 1, v 1
ifgot Tap "A" [u 31, Tem ";' (w2, W)
ifnot
test Istag v 'aA!
150, Fag 'at.[v 1, Tae ";' (u, v 2]
Ifpet. . Taz ;' u, v )]
. Evpe "B =3 [1et wet.nv™ Eoolx|1), L Ox 23, & {x 3)
in
tast. Istagiu 'A’
T :
test Istags v 'A!
1%s0 Téae "AY [s,..Tarp '8! (w,m 2, v 2)

where s = Combhine (u 1, v}
lthet Tag "&Y [ 1, Tase '8 (@ 9 2, v)]

ifnot
test Istas v "o’
iT8a TFae "2t iv A, Tam "6 U 0. ¥ 2]
8 £ s V1)

. - ]
| Type '#' => [l_q;': = La{’l)
in _
test Istag u "2’
[fsa Ix 1= u 2, "#';
Tag T Y du 1, %0
ifoot (x = u, “#%;

x)
| Tvpe A" => Tag Y [x 1, L (x 2}
| Sons x eq 2 -> L (x 1), L (x 2), Tagof x
| Sons eq 1 =-> L (x 1), Taszof x
| error ]
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def rec F (x, c) =
test Isidentifier x
ifso Push (x, ¢)
ifnot
let Type = lstag x
in
Type '"#' => [x :1= F

| Type 'aA' => Push ('
| Type 'B' => (let 6 =

Fix 1, Push ('B', 8)])
| Type 'w' => [let 8, s = nil, ('dumny', ¢)
in
1= Fige2, (V;', )1

40

§ s B (i JVBY, Lt, 5)]1))
| Type *A' =3 Push T"™'," (1, Subl),; ¢

where SubC = F (x 2, nil)]

Type Y2t => FUx A,°Pushdi:* FE {x 2, €)1}
Sons x eq 2 => F (x 2, F{x 1, Pusk (tagof x, c)))
Sons x eq 1 => F [x 1, Push (Taecof x, c)]
error]

% ¥i-€) ;- x] "
;, Push[ x 1, Push (F [x 2, nil]l, c)l)
F#42, ¢), F {x 3, c)

def Makecontrol P = F[L (S P), nill
def Contents (Memory, Address) =
Look (Memory 2)

where rec Look Mem =
Address eq Mem 1 => Mem 2 //Found,
| Look (Mem 3) //¥%een lonkinz

and Update (Memory, Address, Value) =
: Memory 1, (Address, Value, Merory 2)

and Extend Memory =
lJet Nextcell = 1 + Memory 1

lat MNextMemory = HNextcell, (Nextcell, nil, !‘emary 2)
in
NextMemory, Nextcell

def €, S, E, D, M =nil, nil, PEs M

def Store x =
lJet m. a = Extend M
in
M := Update (m. a. x);
a

def Lval x =

Isaddress x => x | Store x
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State Transformations

def Subprobaxit ()

¢,S, E, 0 :# p 1, Push [tS, P 2], B 3, B 4,

def Evalconstant () =
Cs 8 2= ¢ €, Push {w, 5]
where w = val (t C)

def Evalvariable (C, S, F, D) =
Co S 2 ¢ B, Push [w, §]
where w = Lookuo (t C, E)

def Evaliexp () = ;
C, S :=r C, Push [NewAclosure, S]

where ‘lewiclosure = Makexclosura (t C) E

def Evalconditional () =
G 5 2= (¢t § > 2d 8] #2-€); .5

def Applybasic () =
, C, § 2= r C, Push [w, r2 S§]
where w = IsLfen(t S) => at#pply (t S) (24 S)
] apply €t S) Rval[(M,24 S5}]

def Newlval () =
let m, a = Extend M
in , .
S, M := Newstack, HewMem
where (Newstack = Push [t S, Push (a, r2 S)]

Newlen = Update [m, a, 2d S )]

def Applyrclosure () = :

let Newenv = Decompose [bV (t S), 2d §, Fnv (t S)I

and Newdump = r C, r2 5, E, D
in : ,
C, S, E, D := Body (t S), nil, Mewenv, MNewdunp

def Assien () =
test Isaddress (t S)
Jfnot €, 5 = v Ly Push (dummy, r2 S)
ifso [c, S, M := r C, Push (dummy, r2 S5), ‘ewMem

where NewMem = Update (M, t S, Rval (M, 24 §5))]

def Popstack () =
E; .S ee r €, ¥S

A
s
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Extendtuple () =
[C, S := r C, Push (Mewtunle, r2 S)
where ‘ewtunle = Aucs (t 5) (24 5)]

A

LtoR() =
S := Push [Contents (M, t S), 24 S]

Stencontrol () =
G s= r €

B

Makelabels ( ) =
let 6, P = $E, 2d C-
and Mewdumn = r3 C, $§S, %E, 8§D
and j, k =1, Order (2d C)

while j le k do
(let Labelval = P(j+l), 6, Mewdump, 'A’
in

I%
-n

, Labelval, § §;
, L, D := t(r2 C), nil, &, Hewdump

I Main Programs

def Transform () =

test Null C
- ifso Subprobexit ()
ifnot
( let x =1+t C
in
Isconstant x -> Evalconstant ()

| Isvariable x => Evalvariabhle ()
| Is exp x => Evaliexn ()
| % my Tt -> Ponstack ()
| x eq ':=! -=> Assign ()
| Isaddress (t S) => LtoR ()
| x eq 'g! -> Evalconditional ()
| x eq ‘val' -> Stepcontrol ()
| x ea 'loc'! -> Newlval ()
| x eq 'aug' _=> Extendtuple ()
| x #q *&°

-> Ishclosure (t S)
=> (Opplyrclosure ()
- | Applybasic ()
| Islabelval x -> Makelabels()
| error
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—Aocpendix C. The Standardizine Functions for Ivoeless S=PAL

_sﬁ rec D x =
4;; Type = lIstasg x
in
- Type '=! -> X
Type 'within' <> wD. LD (x 1)  [n (x 2)]

|

| Type 'rec' <> Rp D (x 1)]

| Type 'ff¢! -3 ED {x 1) (x 2)

| Type 'and’ => AD (N0 1 nil)
where rec 0 k t =

k ea Order x => t

| Nn(k+1) [Aug t (P (x k)]
| Type 'which has' ->» NsTus(x 2,x 17, x 1, x 1] 3
| Type 'which! -> NPLUP(x 2,nil1), x 1, x 11 3
| Type 'is/has' -> MBEAP(x 2,x 1), x 1, x 1] 3
| error

def SimpleNS (m,x,p,1) =

let Ms = Tag 'v' (MaleStr, Tag '®' (m,x))
and Is = Tag '¥' (1sStr, Taeg '=' (m,p))
in

lras '=' 1, Tae ' ' (Ms,Is)]

and SimpleMP (n, x, 1) = , : -
let s =7fag ' (IsStr, Tag "' (m,x))

LTag '=' 1,15s]

def NS (x, n, m) =
let 1= LQualM 'Make' m, Ouallh 'is' m]
in Istaa x 'SS => (n,1 2,APLSimpleNS(m,x 1,nil,1),x 2])
I L, l Z; Slmpie”S(m, Ko T nfl)

and NP (x, n, m) =
let 1 ={0ualN 'Is' m]
in Istag x 'SS' => (n,1,ADISimnleMP(m,x 1
| (n, l, SimpletP(m, x, 1

and NB (x, n, m) =
let 1 = [oualy "Make' m, QualM 'Is' ml
in Istag x 'SS' -> (n 1 2,ADESimpleNS(m,x 1 1,x 1 2,1),x 21)
| CE;1 2, Simpledsim,x 1.0 2 1))

- def Segment (x, i, j) =0 (i, nil)

where rec 0 (k, t) =
k gr ] =3 €] D (ksel, Aup £ {x k})

and Combine (a, d) =
d eq nil =>» a | Tae 'SS' (a, Al d)
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ub (x, q) =

= QualN q (x 1)

rec S

let Type = Istag x
~and m

in

Type 'which has' => Taes 'SubS' MSLUS(x 2,),< 1,m]

| Type 'which' => Tag 'SubS' MPLUP(x 2,0),: 1,17

| Type 'is/has' => Tag 'SubS' MNBLAP(x 2,m),» 1,m]

| Type 'tuple <> Tag 'SubS' ttrue,nil,nill

| Type 'atom' ~>-Tag 'SubS' Lx,RualM gt x,nill
|

Tag 'SubsS' [nii x,nill

Us (x, q) =
let s,p,d = Split (x, a)
1ln Combine (Tag '?*' a, d)
where a = s(Order s) => s | Aug s false

UP €, ) =
Combine (Tag '+' p, d)
where s,p,d = Split (x, a)
AP (x, q) =
let s,p,d = Split(Segment(x,2,0rder x), o)
and w = US(x 1, a) .
‘in Istag w 'SS' > CombinelPr(w 1,p),Prefix(w 2.4)]
| Combinel Pr(v, p), 4l '
where Pr y = Tag 'pair' v
Split (x, @) = 0 {l.,.ndd, mdl ndl)

where rec ¢ (k,s,p,d) =
k eq Order x -> s,p,d
| [let m = Sub(s k, a) in
n (k+1,Aug s (m 1),Aug p (m 2),D1)
where D1 = m 3 eq All => dlAus 4 (n 3)]
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Appendix L. The Representation of S-PAL Data Functions

Decode (y,Sel) = D (Order Sel)
where rec DL k =

keg0=->0|yeg (Sel k) -> k | D (k-1)

Buildset (Sel,t) = R(Order t - Order Sel + 1)
where rec [ Rk =k eq 0 -> Q(Order Sel - 1)
| Aug [R(k-1)] k
and Qm=meq 0 -> nil
| Aug [Q(m-1)] [Sel m] ]

Buildvec (n,v) =S (1,nil)
where rec S(m,t) =megn -> t | S[k+l,Aug t (loc v)]

Cstepl (u,sel) =
let Chk = Buildvec (Order u, 0)
and Nam = Buildvec (Order Sel-1,nil)
in [Chk,Nam,Q «1l,nil) ,u]
where rec Q (k,Un) =
k gr Order u => Un
| Istag (u k) ‘'mgv' -> 2[k+1l,Sort (Un,k)]
| Q[k+1,Aug Un k] '
where Sort (Unn,m) =
[ let n = Decode(u m 2,8el) in
negq o0or Chk n eq 1 ~> undef
| (Chk n := 1 ; Nam n := m ; Unn)]
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def Cstep2 (Chk,Nam,Un,u)
where rec R(i,j,t)

R {1,1,nil

i eg Oxder Chk -> &
Chk i eq 0 -> R(i+l,j+1,Aug t [u (Un j)1)
| R(i+1,j,Aug t [u (Nam i) 1])

def Canonical (u,Sel) = Cstep2(Cstepl(u,Sel))

def Verify (V,t) = Q (1,true)
where rec [ @ (k,Tv) =
k ge Oxder V => Null {V k) => Tv
| R(k,Tv,V k)
| Q(k+L,Tv & V k (t k))
and R (m,Tv,Vr) = m gt Order t -> Tv
| R(m+1,Tv & Vr (t m),Vr)

def MakesStr (Tag,Sel,Ver) =
let n = Order Sel = 2
in Constructor
where rec Constructor (u) =
not Verify(Ver,t) ~> undef
| fn y. IsATOM y ->

Y eq tag -> Tag
| Yy €3 domain -> Buildseti(Sel,t)

| vy eg constructor ->Comnstructor

| [ let k = Decode(y,Sel) in
k eq 0 -~ undef | t k]
| sel(Order Ssel) -> t(n+y) | undef
where t = Canonical (u,Sel)
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Q (Order Pred)

Test (Pred,v)
where rec Q k =
k eq 0 -> false | Q (k-1) or Pred k v

IsStr (Tag,Pred) =
fn y. [Istuple Pred -> Test (Pred,y)
| Pred yl

or y tag eq Tag
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