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ABSTRACT

The purpose of tIt (# is t give41F 41tetative proof to the

decidability of the emptiness problem for tree automata, as shown in

Rabin [4]. The proof reduas ths e;,ptpess problem for automata on

infinite trees to that for autdta of finite trees, by showing that

amy automata definable set of infinite trees must contain a finitely-

generable tree.
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Section 1: Introduction

The analysis of finite automata on infinite trees is the basis for

Rabin's remarkable proof of the decidability of S2S (the monadic second-

order theory of two successors) [5]. Rabin's proof follows the now

standard form of Buchi and Elgot's proof for WSlS (weak, single successor)

[1, 3] and Thatcher-Wright's proof for weak S2S, and requires demonstrating

effectively that the automata are closed under union, projection, and

negation, and that the emptiness problem for the automata is decidable.

As in the case of SlS, the main technical difficulty in the case of S2S

lies in proving closure under complementation of sets accepted by non-

deterministic automata on infinite trees. The problem is complicated by

the fact that nondeterministic infinite tree automata are known not to

be equivalent to any of the likely definitions of deterministic infinite

tree automata.

Curiously, the emptiness problem, which is easy for the other kinds

of automata, turns out to be nontrivial for (nondeterministic) infinite

tree automata. Rabin subsequently improved his original proof of the

decidability of this emptiness problem, but even the second proof [4]

used an involved induction and consequently does not yield a simple

effective criterion for deciding emptiness.

In this paper we provide such a criterion by showing that an

infinite tree automaton accepts some valued tree if and only if there

is a computation of the automaton containing a certain simple kind of

finite subtree. Moreover, the set of finite subtrees of the kind we
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require are recognizable by finite tree automata, and in this way we

reduce the emptiness problem for infinite tree automata directly to that

for finite tree automata. This also yields a simpler proof of another result

of Rabin about "regular" runs by automata (see below).

The hardest part of Rabin's proof -- the complementation lemma --

remains a difficult combinatorial argument which has yet to be simplified.

Reducing this problem to the corresponding problem of complementing

finite-tree automata (which is easily resolved by the usual subset

construction) might lead to such a simplification. Our results on

emptiness suggest that there is hope for this approach.

Section 2:

For this paper the appropriate way to visualize the infinite binary

tree T is as follows. At the top is the root t". Every x E T has a

left son xO and a right son xl. Hence, T = (0,1}

0

00 01 10 11

We define a partial ordering on T by x : y (x is an initial of y)

if y = xz for some z E (0,1) . If x y and x y, then we will write

x < y.
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A path T of T is a set 7r C T satisfying 1)AE r; 2) for y E r,

either yO E 17 or yl E r, but not both; 3) 1r is a minimal subset of T

satisfying 1 and 2.

Definition: If for some path T, x E 7T and y E TT, then we denote by

[x,y] the set (wix w y). Note that when y < x, [x,y] =.

For a set B we denote the cardinality of B by c(B).

Definition: A set B C T is called a frontier of T if for every path

Tr C T we have c(r n B) = 1. By K'O'nig's Lemma every frontier is finite.

A finite tree is a set E = (yly 9 w, for some w E B}, where B is a fixed

frontier of T. For E as above, B is called the frontier of E and is

denoted by Ft(E).

Definition: A F/-tree is a pair (v,T) such that v: T - E. A finite

P-tree is a pair (v,E) such that v: E -+ E, where E is a finite tree.

Definition: For a mapping 0: A -+ B. In (0) = (b c(9 1(b)) : w ) .

Definition: Let 0: A -+ B and let.= ((L., U.)) be a sequence

of pairs of finite sets. We say that _ is of type 1, denoted by

9 E f[], if for some i, 1 i n, we have In(O) n L. = and In(9) n U.

Definition: Al f.a.t. is a system 0(= < S, E, M, s0 ,1>, where S is a

finite set of states, 1 is a finite set, M: S X E -+ P(S X S), s0 E S is

the initial state, and .Cl= ((L., U ))1 i n'
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If t = (v,T) is a E-tree, then an t-run on t is any mapping r: T 4 S

such that:

1) r(6) = s0, and

2) for all y E T,

(r(yO), r(yl)) E M(r(y), v(y)).

If e = (v,E) is a finite E-tree, then an Ol-run on e is any mapping

r: E 4 S such that:

1) rA) = s0, and

2) for all y E E - Ft(E),

(r(yO), r(yl)) E M(r(y), v(y)).

The set of all 0 7-runs on t(e) will be denoted by Rn(O{,t)(Rn(O,e), respectively).

An accepting OJrun on t is any r E Rn(01,t) such that for every path

17 C T, (rI,1r) E La]. T(Or) = (tI there is an accepting (-run on t). T(m)

is called the set defined by OL.

Given an f.a.t. 01= < S, E, M, s0 ,£L> we wish to determine whether

or not T(Or) = O. Consider the automaton Oi= < S, (a), R, s0,f1>, where

for all s E S, R(s,a) = U M(s,o). Clearly, T(OO = 0 iff T(i) = O.

Thus the emptiness problem is reduced to the case of automata over

the single letter alphabet (a). Henceforth we restrict our attention to

this case. Since there exists just one (a)-tree, (v,T), and for every finite

tree E just one finite (a)-tree, (v,E ), we will omit mention of the

valuation v and talk about OT-runs on T and E, Ot accepting T, etc.
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Theorem 1: Let(t= < S, {a), M, s0, ((Li, U )) 1  n i > be an f.a.t.

TO 1 0 : for some finite tree E there exists an r such that

1) r E Rn(Or,E),

2) there exist mappings J: Ft(E) -4 E-Ft(E) and H: Ft(E) 4

E-Ft(E) such that for all x E Ft(E)

a) H(x) J(x) < x,

b) r(J(x)) = r(x),

c) r([H(x), J(x)]) = r([J(x), x]),

d) for some i, 1 i n, r([J(x), x]) n L = 0 and r(x) E

Before we prove Theorem 1, we show that Theorem 1 easily yields the

following theorem.

Theorem 2: The emptiness problem for f.a.t.'s is decidable.

Proof of Theorem 2: Let O be as in the statement of Theorem 1.

Definition: Let E be a tree (finite or infinite). Let r be an 01-run

on E. Let x E E. Since x E {0,1) we can write x = a1C2 ' a . Define

a to be the following member of S : a = r(N)r(a 1)r(a 1a ...r(x).

Notation: Let a' be a string. Let n and m be positive integers, n < m.

Then by a(n) we will mean the nth element (from the left) of a. By

a([n,m]) we will mean the set of elements between and including the nth

and the mth places of a'.
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*
Definition: Let ac E S . We say that a' is Good if there exist positive

integers H and J such that H : J < N = length(a), a(J) a(N), a([H,J]) =

ct([J,N]), and there exists an i such that a(N) E U. and a([J,N]) n L =0.

Note that good is defined with respect to our f.a.t. 07.

Lemma 1: The set of good strings is a regular set, i.e., it is

recognizable by a finite state machine on finite input strings.

Proof of Lemma 1: Obvious. C)

Lemma 2: Let G be a regular set of finite strings on S. Let H =

(EIE is a finite tree and there exists a run r on E such that for all

x E Ft(E), a'r E GI Then H is recognizable by a finite automaton on

finite trees as defined in [6].

Proof of Lemma 2: Fairly obvious. E3

Completion of proof of Theorem 2: By Theorem 1, Lemma 1, and Lemma 2,

the emptiness problem for 01 can be reduced to the emptiness problem

for a particular finite automaton on finite trees. But by Theorem 7 in

[6], this problem is decidable.

Proof of 4 in Theorem 1: Let r be an accepting Ct-run on T. By the

definition of accepting run and of good string, it is clear that for

every path TT of T there exists an x, x E TT, such that ar,x is a good

string. Let B = (xla is good and for all y < x, a isn't good).
r,x r,y

Then B is a frontier. If we let E be the finite tree with frontier B,

then there exist mappings J and H which, together with rE, satisfy

conditions 1 and 2 of Theorem 1. This completes the proof of :.
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Proof of4 in Theorem 1: Let E, r, J and H be as specified in 1) and

2) of Theorem 1.

We define a mapping Ti: T 4 E inductively as follows. Let rl(^) = A.

If TI(x) has been defined, then for a E (0,1}, define •r(xa) as follows.

Case 1: If 'r(x) E E - Ft(E), then let 'l(xa) = 'r(x)•c.

Case 2: If 'r(x) E Ft(E), then let •r(xa) = J('r(x))•cr.

Define r: T 4 S by r(x) = r('r(x)), for all x E T. Clearly by 2)

b) of Theorem 1, r E Rn(O, T) so that it suffices to show that for all

paths r C T, (v T) E [0], because then T E 'I(G() and hence T(g() # O.

Let Tr C T be a specific path. Let y0 ' yl' Y2, ... be the infinite

subset of rr (listed in increasing order under s) consisting of exactly

those members of 7r whose images under 'r are in Ft(E). Define Vr to be

the following infinite sequence of members of Ft(E) X Ft(E):

V= ('n y ), 0' 11('(y1), ry2)), (y2N)' ri(y3))'

For all i < we have by the definition of 'r, J('r(y )) < TI(Yi+l)

and r([y , yi+1] r([J(•1(y )), •r(yi+1)]). Hence, In(iT) =

U r('J(x), z]).
(x,z) E In(V )

Clearly there exists a finite sequence (possibly with repetition)

of members of Ft(E), xi, x2 ' 3' '''' xm, such that
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x = x and
1m

(I) In(V,) = ((x 1, x2), (x2 2x 3) , (x3  x' '

(xm-1  m )

From now on we will denote J(x ) by J1 and H(x ) by H , for all

1 i m.

We have from the preceding paragraph

for all 1 i < m, J. < xi+1'

(II) m-1
and In(r I TT) = U r( (J , xi+1J)

1=1

(r I r) E .] is immediate from the third of the following three

lemmas.

Lemma 3: There exists an M, 1 : M : m, such that for all i, 1 : i ! m,

HM S H.

That is, HM = min(Hi, ... , H m.

Proof: Our induction

hypothesis at stage h is that there exists an integer M', 1 g M' S h,

such that for all i, 1 ! i S h, HM' H i. Clearly the basis case is

trivial. We assume the induction hypothesis for h and prove it for h+1.



11

HM, H h

H h J
h h

Jh h+1

, by the induction hypothesis.

by 2) a) in Theorem 1.

by (II).

Hence, HMI' xh+l

By 2) a) of Theorem 1 we also have Hh+1 < +1.

+1 are comparable (under ). Clearly for all i, I

min(HM I, Hh+l) H .

If M # m, we can rename x,, x2 ' '' x so that

true and Hm = mi-n(H, ... , H ). Henceforth, without

we assume that M = m.

Therefore, HM and

i 5 h+1,

(I) and (II) remain

loss of generality

Lemma 4: If Hm = min{HS, ... , Hm}, hen for all i, I i . (m-1),

r([Hm' x +1]) ' r([H m, x ]l).

Proof: Let i be any integer such that 1I

hence we have the picture:

H

H.

11

J.

< m. Hm < H J < xi+1'

x i xi+1
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Hence, r([H m x ]) 2 r([H , H ]) U r([H., J ]). By 2) c) of Theorem 1,

r([H , J.]) = r([J , x ]). Hence, r([H , x+]) a r([J., x.]), and
1~ 1 1. i) an

therefore, r([Hm' x ] i+ r([H , x ]l).

Lemma 5: If Hm = min(Hi, ... , Hm), then for all i, 1 s: i (m-1),

r([Hmx m]) : r([Jm x ]).

Proof: Let i be any integer such that 1 s: i (m-i).

By Lemma 4 r([Hm, m]) r([H , x 1 ]), r([Hm xm1 ]) r([Hm, xm-2])'

in'r([Hm x 2 r([Hm' n i+i]). Hence, r([H ,m r([Hm' i

We have H m H. : J. < x. . That is the picture:
in 1 1 1+1

H

H.

J.

xi+•

Hence, Hm , i' xi+1. Hence r([Hm , x m]) r([J, x + .

Completion of the Proof of Theorem 1: Without loss of generality we

assume Hm = miin(H1 , ... , H). By Lemma 5,

m-1

r([Hm' , xm] UL r([J , x ]+1).
i=1

By part 2) d) of Theorem 1 we have for some i, 1 i n, r([Jm'l m

L. = 0 and r(xm) E U . By part 2) c) of Theorem 1, r([H , x m

r([Jm, xm]). Hence,
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m-i

U r([J, xi+i]) nl L = 0,
1=1

and
m-1
U r([Ji, xi+1) n ui 00.
i=1

Therefore, by (II) (r r) E [f2].

0

Section 3: Remarks

In r5] Rabin uses the following definition.

Definition: An f.a.t. with designated subsets is a system 0l =

< S, Z, M, s l >, where S is a finite set of states, E is a finite

set, M: S X 7+ P(S X S), and 9 9 P(S) is the set of designated subsets.

An Ol-run on t = (v,T) is as defined in Section 2. 01 accepts t if

there exists an r E Rn(C,t) such that for all paths r C T, In(r I 17) E Y.

The proof of Theorem 1 can be extended to show that r([Hm , x M
m-m

U r([Ji, xi+11), where Hi, x,, etc. are as in the proof of Theorem 1.
i=1

Hence for Ot= < S, (a), M, so, F >, where c(S) = q, we have:

T(01) 0 * 0 for some finite tree E there exists an r such that

1) r E Rn((,E),

2) there exist mappings J: Ft(E) 4 E-Ft(E) and H. Ft(E) 4 E-Ft(E)

such that

a) H(x) : J(x) < x,

b) r(J(x)) = r(x),

c) r([H(x), J(x)]) = r([J(x), x]),

d) r([J(x), x]) E Y.



14

The appropriate definition of a good string with respect to O1

is a simple modification of the definition of good string used in the proof

of Theorem 2. For either definition of good string we can design a non-

deterministic finite automaton on finite strings, ", which recognizes

the set of good strings and which has at most 22q (q+1) states. By the

subset construction we can design a deterministic automaton ' equivalent

to D such that 9R' has at most Q = 222q(q+1) states. Using n' we can

easily construct a finite automaton on finite trees, 01', such that T(O1')

0 if and only if T(01) # and such that the state set of O,' is the

cross product of the state sets of O[ and P'. Hence OX' has at most qQ

states. We can determine whether T(O') J 0 in (q Q) computational

steps.

Hence given a finite automaton M[ on infinite trees which has q

states and uses either notion of acceptance, we can determine whether or

not T(Oy) # 0 in q 22 (q+l) ) computational steps.

Remark 2: If we have a finite s-tree (v,E), and a function J: Ft(E) 4

E-Ft(E) such that for all x E Ft(E), v(J(x)) = v(x), then we can

generate a unique D-tree (v,T) as in the proof of Theorem 1. Call any

r-tree which can be generated in this way a finitely-generable D-tree.
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Rabin in [4] defines a E-tree, (v,T), to be regular if and only

if for each a E E, v (a) is a regular subset of (0,1} . It is easily

shown that a E-tree is finitely-generable if and only if it is regular.

Remark 3: From Theorem 1 it is easily shown that if an f.a.t. accepts

any E-tree, then it accepts a finitely-generable E-tree. Rabin shows

this in (4]. In [2] Buchi and Landweber prove that if P(X,Y) is a

finite-state condition and X has a winning strategy, then X has a winning

finite-state strategy. Rabin and Rackoff have independently observed

that the set of winning strategies for X corresponds in a natural way

to a set of {0,1)-trees defined by a (deterministic) infinite tree

automaton. Hence, it easily follows from Rabin's result in [4] or from

the results in this paper that if X has a winning strategy then X has a

winning finite-state strategy.

C. Rackoff has observed the following. If X does not have a winning

strategy, then by our Theorem 1 we see that X does not have a "partial"

strategy of a particular kind. From this one can show that Y has a

winning strategy for P(X,Y), thus showing that P(X,Y) is determined.

This is another result of [2].

We thank Albert Meyer for his assistance in writing this paper and

for pointing out the relevance of finite tree automata to our work.
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