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Abstract 

Dataflow graphs are described as a machine language t6fparall 1 machines. Static and dynamic 

damflow architectures are presented as. LV o implementation of Lhe abslract d:u.aflow mode]. Stacie 
dataflow allow at most one token per arc in datanow graphs and thus only approximates the 
abstract model where unbounded token storage per arc i assumed. Dynamic arch hectu res ·~ eacb 
token and keep them in a common poof of swrnge, thus pe1TI1itting a betler appro imation of the 
absnact model. The relative merits o the u o approaches are discussed. FunctionaJ da:ta strucwres 
and I-structures are presented as two iew of data structures \ hich are both compatible with the 
dataflow model. These view are contrasted and compared in regard to efficiency and exptoitation 
of paten Lia 1 para lleUsm in programs. A discu ion of major dataflow projects and a prognosis for 
dataflow architectures are al o presented. 

Keywords~ Dataflow. Dataflow graphs. Detenninacy. Dynamic Dataflo architect:u1es 
unctional data: structures. J-structures. Multiprocessors. ParaHeJ computation. Pa:raJle] computers., 

Static Dataflow architeclures, Structu e storag.e. Tagged-To en Dataflow architectures Token 
storage. 



Dataflow Architectures 

1.. Datanow Mod.el 

The dataflow model of oomputation offers a simple, yel powerfuJ. formalism for describing 
. araHel con-iputation. Ho, e er .. a. number of ubtle issu arise in de eloping a practica computer 
based on th is mo el. and dataflo\i architectures exhibit substa.nf al variation reflecting different 
tandpoints taken on certain aspec of the model For ,exampl , in the ab.1ract datal:l.ow mode] 

data a1u _ ar carri.ed oa .tokens which tra el along lhe arcs connecting variou instructions 1n the 
program graph. and it is assumed that the arcs are First~in-Flr t-out (FIFO , queues of unbounded 
capaciLy [36. This gives ri e Lo tv o riou , pragmatic con, ems: (I) Ho hould the tokens on arcs 
be man a ed? (2 , How should data sm1cture:. which are essential composite of man,, tokens, be 
r . pr,esented? The mann r in hi h these concerns ar,e resolved has major impact not on y on the 
machine organization. but also on me amount ofpara1ie1ism that c.an be exploited in programs. ln 
this paper. wee amine the major variations in dataflow arcbi~ecrures with regard to token storage 
mechanism and data structure storage. 

Th paper i organized as fo11ows. The re:l ofSectioo 1 introduc dataflow program graphs and 
the rules which d lermine when and how operations are performed. AJso. it explains why data 
sLTUcture can not be iewed as they are in oonventionaJ programming languages without seriously 
compromising the suitabilily of the datallm approach for paralle processing, -eclion 2 examines 
th two token storai?e mechanisms adopt d in ,currem da:taflow architectures.. Th . SJatic ·dataflaw 
approach places the .restriction that t most one token can r id on an arc at any time. whUe the 
tagged& 1oken dataflo approach Uow , , en ti aUy unbounded queue on Lh e arcs. with no ordering. 
but with each to ·.en carrying a tag 10 identify its ml in the com utatton. ection 3 presents two 
alternatives IO th _ iew of data strucrure embodied in convention a.] languag . . Th fir L alternative 
lfea ad ta structure as a value-. hich i . concepruaJly carried on a token. "Functional" structure 
op r tions. such cons, are pro ·aed to rea e new strucm:res out of old ones. Thi approach is 
,elegan . buL cxpensi _ e to imp1ement ,(even i the data ructure is actually left behind in storage. so 
th _ to . en carrie: only a pointer) and res nets parallelism.. The se,cond altematiiv,e creats a data. 
tructure as a ooJl.ecti.on of slo . ea. h of which can be written onl once. An auempt to read a sloe 

b. fore ·1 is written is deferred until. the rorr sponding write occurs. Section . g· , an over/ew of 
dle major d ta flow projects. finallJ7• Section 5 gives our vi · of what the future ho'lds for data · ow 
computers. 

I J. Ac, die. ondition:111 and Loop Prornim Graphs 
dam/low program L d · cri ed by a directed graph \/ •h . re the nod - denme operations. e.g. . 

addition ~ nd multipJication. and th arcs d nme data depend .ndes b lw en -op · ration (22]. As an 
e11.amplc. F1gu . l how 1.he ac. H datall w pmgram graph lbr th . o. m ing e press·on. 

tet x = a* b: 
y =4•c 

in (x •. ) * ,(x-y) I c 
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Any anthmetic ,or logical ex.l'ressio:n can be uansiated into an acyclic dat.aflow graph in a. strai.ght:­
forwa d manner. Data vaiues are earned ,on lokens which now along the arcs. A node· may execute 

.(or fire) when a token is available on each: input arc. When it fires. a data token is ·removed from 
each · nput airc, a resl!Jlt is computed using these data values. .and a wken containing the result is 
produced on each output arc. 

a b C 

sl: 

s4: 

Figure 1: Acyclic Dataflow Grapb 

. odes s1 and s2 in Figure l are both enabled for execution as soon as tokens are placed •OD the 
input arcs ab and c. They may fire simultaneously, or one may fire before the other: tbe results are 
the same in e1tber case. The result of an opera.lion is purely a funcion of the input aJues~ there are 
oo impHcit interactions between nodes via side-effects. say through shared memory. n·s example 
illustrates two ey properties of the dataflow app,roach: (1 paralleltsm. i.e.. nodes may potentially 
execute in parallel unless there is an explicit data dependence· between them. and (2) de.terminacy.,, 
le.. results do not depend on the :relative order in which potentiaHy paraHel nodes execu1e1• 
further, notice mac by supplying several: sets of input wkens. distinct comp tations can be 

1Thc u11.boundtd FIFO queue modd pr,~med in this paper is a genernlicz:ltion of I.he d:uaflow model originall.y 
fonnulated by Dennis. His, model [22] requm=s Lh..111 lhe oulpul ms of a node be ,e:mp1y before· il fires, implyi11s thal at 
lllltl!St 0111: lOken <..'ru:I reside on an W'C. Kahn' paper £36] implil.'S lhat the derermi:n:a ·· of daudlo !f.!Phs is p1l.'Served 
t,·en withom this resuic ·on. Kllhn's ~ult ubo pc.nni!S nodes to ha e mte:mal S!l.aie. but w do no consider this 
gc ncr.dization. 
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pipelined through the graph. ]n lhis example. a sing .e wa e of tok,ens on the input. arcs produces a 
single ,ave of token on tile oulput arcs. Graph . " bi h ha I.hi propeny are caned well-behaved. 
All acycU graph for arithmetic and logical expressions are well-behaved. 

1n order to build conditional and loop program graphs. we introduoe two control operators: switch 
and merge. UnHke the plus openuor. switch and merge ar . not well-beha ed in isolation. but yi.e]d 
w II-behaved graph when u ed in conditional and loop hemas [24]. Consider first the 

conditional graph in figure 2.a which represents the expre.s ion ir x(J1 lthen x+ y ele x-y. The 
initia1 to ens pro ide the data input to the switches as · U ,· input to lhe redicate graph. The 
predicat:e graph yields a single boolean value which supplies lhe control input to all the switches and 
merges, A switch routes its data input to the output arc on the True side or Fal e sMe. according to 
the alu of the com ol in:puL Th1Us. the v a e o ·nput to en i directed to the True or the False 
arm of the conditional As long as. the arm of the conditional are weJl- eha ed graphs • .a single 
wave of tokens wm ev ntually anive at the data input of Lhe appropria:te side of the merge.. Toe 
merge e1ecrs an input token from the True or the False side iapm arc. acco-rding to the value of the 

control input. and reproduces the data input token on the output arc. To s e that the conditional 
heha ve appropria ]y when wa es of in puts are presented ID i . consider the tricky case in which 
the fi:rst wav,e ,of input tokens is S\lfitche-0 to the rue side. the second wave to the False side and the 
mk n on the False ide of the merge arri e before the tokens on the me side .. The sequence of 

control tokens t the merge restores the proper order among the tokens on the output arcs. 

To loop graph bown in Figure 2.b computes .~ F(i). The figure is oome hat stylized in that the 
i =] 

dots are used to indicate that the output of the predi.cate is oonnected i:.O each of the switches and 
merges, and the graph oorres:po ding lo funct~on F is indicated by the ,,, bio-b" containing F. The 
initia] values of i an sum . mer th loop from th.e · al:se sides of me merges. and provide data ro the 
predicate and swirches. lf the predicate e aluate to True, the data values are ro,ured co the ]oop 

body. Assuming the body is a well-b . ha ed graph.· · venruaUy a single wav~ of 11, uJts: is produced 
providing token on the True side of the merges. In this w y. a ues circulate tllrough the loop until 
the predicate rums to Fal ·e. · hich caus the final valu robe routed out of the Joop and restores 
rne initia] al ,e valu . on the contra inputs to th•e merges. me that if many wav,es ,of inputs are 
provided .. only one a e i aUowed o enter the loop at a dm : the second wave enters the loop as 

soon the first corn.pfotes. and so on.. Also nme that Joop alu n ed nm drcutaie in clearly 
defined waves~ Supp e Fis a ve , complicated graph. or · mphr doe-s not fire for a long time. The 
inde variable i may con inue to circulate. causing many computations of F lO be initiated. This 
beha i r i inform.ally referred lo as dynamic unfolding of a loop. 

1.2. Data: tr:uctures 
TI1 d111.anow m de] in roduced Lhu: far i fuUy general in a formal. compuLalional sense [34],, but 

has fonitcd practical utiliry bec::iu · of the ab.:-1,;nce of data mctur . up we introduce a data 

tru Lure ;onsuucmr cons, hU · "glu tor> ·th r" two d·'.tl valu . producing a pair. and selectors 
jirsr and reJl which cess Lhe mp nents or a pair. Sin . l.h ·· new opt:rators are nmcti ns. they 
fil ea!;ily in lhe data m model. provided · -. um ok n:· C-J.11 carry composit . d· ta 1alu . Note 
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Fi ur,e 2: Con i lonal and Loop Graphs 

that a componem of r.hc pair might be a pair .. and so on; thu e must a11ow arbitrarily ]a:rge 
trucmre to b Tried on a tok -n. Onl. in the abstract mode'I do we think ,of structures as being 

carried on t kens: in practice tokens carry pointe to · tructur which ar left behind in storage. 
The cons operation can be extended to a general array ope ation append which takes an arr-ay ~ an 
ind :i. i. and an element v. and produ new array y such that y[;] i.e., the j1' element of y, is the 
sam a -1411 for all j not ual to i. and such that y{1] is v. 

f. • n though d.na tnJcLures ill aside in stor· ge. we must . car,efu no-t 10 treat them as we do 
array or records in a convention 1 langua_ uch , Pascal or onrnn. Consider the effect of a 
on , ntional tore opcrat ion \ hi h mo Hie: a:n I mem of a darn strucmr,e. In ::ien r:.d there may 

be man) m , _n .iJl) ·ng. poim to th ructur . uppose on i dcslincd for am dif)• op ration 
·md :.moth r i de tined br '.! s, leer c p r· lion , ith th me inde '. Th cwo operations can 
p l ·miall e:\.ecutc in paral lel b au - l11 r i n c,,pli it d to d p nd nc:y fr m n t I.he other. 
H w \' ·r. lhe valu produ ed h) -h • ~1oct operation d p nd upc n whit:h p r·1ti n happen to 
• xc ·ut fi L Thi ' feat · th d t m1in _ y of the mod I: 111 no long r m1 Lhnt instruction can 



execute in any order consistent with me data dependencies and the re uhs remain unaffected by the 
order. Append~ ho e . r. do nol change 1h data tructure: it rodu e. a new tructure that i 
similar to the oM one. Consider the earlier scenario. in wh"ch a to en is de tined for a select and 
another carrying a pointer to the same structure i. de tined for an append. the select operates on tlle 
old structure and hence js not affected b the append. 

These observation · rai ea tough quesdon. I it possible to suppon. data structures efficiently and 
still maintain the elegance and sim· Hcity of the dataflow modeJ? We retum to this question. in 
ection 3 

1.3 . . ser·ddined Functions 
Another high] d irable property of a model of computation i the abUity to support user­

defined function . Each of our e ·amples represents a function which. given a set of input values 
produces a set of re ults. Any good high-level ]anguage provides a wa}r of abstracting variabh~s so 
that an expression can be tum d into a procedure or a function. Ar the dataflov graph Jevel, a 
user-defined function is no more than an enc.aps11lation of a graph which allows arguments and 
results to be transmitted properly. on-re.cursive function can be handled by graph ,expansion at 
compile time. However, to support user-defined function more generally. w,e need an apply 
op rator which rakes. as inputs a function-value. (i.e.. description of an encapsulated data.now 
graph) and a set of arguments, and invokes tbe function on the specified arguments. There are 
subtle issues imolved in t.he implememaLion of apply. For e ample. \\h .n should the graph 
corresponding to the function actuaUy be created? After aU the argumenls have arrived?' As soon 
as. a pankular argument has arrived? Often the semantic: of function application in high-level 
Ian· uages requires the apply to be implemented in a panicular ay. Howe er. all imp]ementations. 
must u. pon dynamic e.xpan ·ion of graph and a method to rouce roken to · nput arc of the newly 
created graph. If a oopy of the unction graph is to be reu d, tllen a. mech:i.nism is equired to 
distinguish token belonging to different invocation . In thi iatt r case the FJFO queueing of 
tokens on arc wm not :u ffice. A mechanism for user-defined functions develops naturaHy out of 
the tagged~token approach,. so e will return to mis topic after discu ing various implementations. 

1.4. Dat:aftow Gr.aph :a a ParaHel -achine Laaguag,e 
e can vtev dalaflow graph as a machine language fo:r a para.lie] machine where a node in a 

dmanow graph repre en . a machine in tmcLion. The instructron fom1at for a da:tafl.ow machine is 
essentially an adjacency i t representation of the program graph: . ach inslil.J.ction contains an 
op-co-de and a list of dest"nation instruction address . R_-call. an in Lruction or node may xecute 

hene er a token ts avai nb1e on each of its input arcs. a11d wh n il fire.s the inpu.L tokens ar~ 
con umcd. a. resull alue is comput d. and a re ult to en is produced on each output arc. This 
di l.h foHo,.vins basic instrn tion y le; (]) det t h n an operation is ,enabled {this is 
tamamount LO conect"ng operand valu s. ( d ~ rmine the operation to b p rfonned. i.e.. fetch 
lh · in Lmcl.ion. 0) compute re ults. and (4) gencrmc r ulit lok 11 . Thi· i rhe b:.tSic instruction 
q • l of any da1afi machine; hm er. th re remains Lrerncnd u · n xibilhy in the d lails of how 
Lhiscyck is perfonned. 



lt is int resting w oontrast dataflo instructions whh those of con entional machines. ln a von 
1eumann machine. in tru.cLion specif the addresses of the operands explicitl and the next 

·nstruction impliciL1 via r.he program coumer {except for branch instmctio□s)1 • In a dataflow 
machine. opeI'. :nds ·(token ) carry Lhe addre. of the instruction for which the. are destined. and 
instructions contain the addresses of he destination in uucticms. Since the e:ecution of an 
instruct.ion is dependent upon the arrival of operands. the managemeat of to en storage and 
inslruction scheduling are intima.te]y related in any datafkn computer.. 

Dataflow graphs ex.hi bit two kinds of parallelism in instruction execution. The first we might call 
spatial parallelism: any t.wo nodes can potentia.Uy execute concurroently ff there is no data 
dependence between them. The second fmm of paralJelism results from pipelining independent 
'aves of computation through the graph. In the next section we show that it is possible to e.1:ecute 

several instances of the same node ooncurremly thereby exploiting Lhi temporal parallelism. 

2 .. Token Storage Mechanisms 

The essential point to k.eep in mind m ooosidering ways to implemem me data.flow model is that 
mkens imply storage. The token storage mechanism is the key feature of a data.flow architecture. 
\Vhi!e the dataflow model assumes unbounded flFO queues on the arcs and F"IFO behavior at the 
nodes. :it wrns out to be very difficult to imptement this model exactly. Two alternative approaches 
have been researched exH:nsively. The first we call sraric dataflaw. it pro ides a fixed amount of 
tomge per arc. The other approach we call dynamic or tagged--wken da1aflow; it provides dynamic 

allocation of token storage out of a common pool and assumes that tokens carry tags to :indica~e 
their logical position on the arcs. 

2.1. t:atic Da taDow Machine 
The one-mk.en-per-arc festrktion can be incorporated in the mode] by extending rhe firing rule to 

require Lhat all output arc of a node be empty befor,e lhat node is enabJoo. With mi restriction. 
storage for tokens can be allocated prior to e ecution. si nee the n umber of arcs is fixed for a given 
gr,;1ph. The bas]c instruction fonnat is ex.panded to inc1ude a slot fa each operand. Distributing 
tokens to destination instrucdcms involves Htde more tha:n storing data values in the appropriate 
·lots. Th,e slots ha e presencejl!ll.gs to indicate whetlleror nm a alue has been stored. Thus. when a 
token is tored. it i straightforward to determine if the oth r inputs are all presenL This idea 
underHes the static dataflow machines proposed by DennlS and his co-workers 121 13 25] (see 
figure 3}. 

lnstru tion tcmpknes re ide in tfle a.rtivit_y store and addre . of enabled ·n tructions reside in the 
instnic:lion queue. The fe1ch un.il remove the first entry in th in truclion q eue. fetches lhe 
oorre:spc n ding. op-cod . data. and des(naiion Ii J_ fmm the ,ICli v il _ stor . fonn Lh em into an 
Dpcr<.ition pocket. forward the p ration pa kel to an a\·,1il· bl op ration unil. and finally clcm'S the 
ope .md sims in Lhe u:mpkne. Th op rati 11 unil compuLes a resu1L g ncr l a re ult packet for 

;,1ch de tin :n ion. and . n ds Lh . r su l L pac.:kc LS to me updcu e unit. n stru ction av id n tin d by their 
· I re ' jn lh a t.i ity tore. ' > the upd. L u11iL stores em.:h r ·ulL ~nd ch ·k. th pr n bi . 10 
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Fi,gure 3: Static Daiaflow Archhec ure 

detem1~ne if cbe co 'esponding activit i enabied. U so .. I.he address of the instruc-ion is placed in 
the instruction queue. The e units operate concurrenll.y. so instructions are processed in a pipelined 
fashion. 

It i poss;ible to conoect man --ch 1n1eesoors mg ther vi a pa k t communicati.oo network. The 
activity store of each proce~ or can be loaded with a pan of a datatlo, graph. otioe. drnt iai:ge 
d _ la in th-e oommuni.cation neLwork do not affect the performance. le.. lh:e numbe of operations 
p rformed per second, as long as enough nabled nodes ar pr _ sent in each pmc-esso . This i· an 
important characteri tic of d·nafiow machines; they _ n use parallcfo;m in progr-ams to hide 
communication latcnc between prooessors. 

2. LL Enforcin° th.e One· okcn-·Per- re Re tri:ction 
TI1e above description of tl1c tatt m3 hin · kips o er a \'ery impona:nt and rather ubtl.e po·nt: 

the on ·LOl<.en-pcr-·arc restriction of D .nnis' model. uppo 1h unil communtcal ilh a fu-1 
, ndaad:.n ledge protocot le.. a mken mov s o th n x un· only after that unit has ignaJled 
that it ci.ln ac:cl!pL the lOk n. and ·l.h Update uniL writ im .m , p rand loL cm r if the lot i empt}' .. 
-vcn , ilh Lh assumptions. multiple 10kcn b [omdne to th~ s. me nr may >-.ist in the 
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mach·ne., since there may be buffering in the units and communication network. 1t is infeasible for 
the update or fetch units to deLermine that mere is no mken in lhc ystern for a particular arc. If 
multiple token can coe ist on an arc then the F! FO assumption may be vioJated, because two 
firings of a node may execute on different operation umts within a P.E and the one that is logicaUy 
second in the queu may finish fi L ~e communication system wUJ ultima.tely direct these r:esul 
mkens to the same descination node. but in the wrong order. To see how the dataflow modeJ 
m:ilfunction if tokens on an arc get out of order. consider the e ample in Figure 2.b with the plus 
operator replaced by minus. The results of F(l and F(l can potentially reside on the 'left input to 
the minus ooncurrently, but ifF(2) is processed before .f(l) the answer wil] be wrong2. 

If the one-t:ok.ewper~arc restriction can be enforced. then the problems due to reordering of 

to ens win not arise. :h restriction cannot be enforced at the hardware le\1el but ics effect can be 
achieved by executing only graphs whk:h have the pmpeny mat no mor-e than one token can r~side 
on any arc at an stage of execution. lt is possible to transform any dataflow graph in to a dataflow 
graph with thi pmpeny. Jn the simple . . transfonnation. for each arc in the grapb. an 
acknowledgment arc is added in the opposite direction. A ·token on an acknm ledgrnent arc 
indicates that the co:rresponding data arc i empty. Initially. a token is pfaoed on each 
acknow]e:dgment arc. A node is enabled to fire when a token is present on each input arc and each 
incoming acknow]edgment arc. At the hardware e el, the onJy dirference bet\ een the two kinds of 
arcs is chat r.he value of a token on an acknow leclgment arc i ignored. nstead of lhe presence bits 
fur operand. a coumer is associated with ,each insm1ction. The counter is initia]ized to the number 

of operand plus lhe numh r of incoming acknow]edgmem arcs and deer mented b. the update 
unit whenever an operand or .admowledgmem arrives. The node is enable-d. \\'hen the ro:u.nter 
reaches zero. otioe that the generation of acknowledgrnems must be defayed enough aft.er the 
operation packet is fanned so that there is no way for resu]ts of the second firing to overtake the 
first. 

The one-token-per-arc restriction f aot entirely satisfactory. Even though many of ·me 
acknowledgment arcs in a program graph can be eliminated :[40], th amount of token traffic: 
increases by a factor of l.S to 2. the Lime between sucoessi e firings of a node increases drastically 
and moot impon.amly. the amount of parallelism that can be exploited in a program is reduced. In 
panicular. the dynamic unfolding of loops is everely constrained, as sho n by Lhe followilng 
exampie. Suppose Fin igure 2b is replaced by the acyclic graph in Figure l (perhap we ta e the 
inpuLS a. b, and c to be t). h should b po ible to pipeline four di tinct computations through this 
graph. buL unfonuna~cly. ,,·ith lhe static approach the cand initiation mu l w., it until the di,;ide 
nod fire • clearing the input arc for c. This pmbtem has r,ecei ed ubstantial auem.1on [20) and can 
b partial yo eroome by introducing xtr-a identity oper.1wrs to alnnce I.he path length in a graph.. 
Fore; ::impl . ff thre idcmiLy nodes ar added on th nght input t th divide in Figure 1, Lhe path 
l nc,1.Jls would be pcrfocUy halanced. Th baancing apprmch assumes that e:\ccmion times for all 
opcra.lors ar~ Lhe me and mmunicalion defa rs b l ecn opcmtor · re c nsLan.L , ·1iler 
assumption is roaHsti and balancing ecomes compuu.uionally intractnbl . ithout these 

2 
'll~mis hlm · ["9] that mulLiplc wkcm µ r ilf caJ1 rn~ cause th ma hint: to cleacHock. 



assumptions. 

We no,te in p ing, that model'ng unbounded-FIFO data Iow graphs b fi ed swrage datafiow 
graphs (introduction of acknowledgment arcs is one xarnple of such modeling). changes the 
"meaning" o , a data flow graph in a ubtle wa .. A graph ma · be d ad lock fr.ee in the unbounded 
ca e. but Its oorresponding graph with ackno\! ledgment arc may deadlock under certain 
drcumstainces. Thee shonooming.s. in addition to the inabnit m handle use!i&defined functions, 
motivated work on lhe rnor generat dynamic dataflow approach discussed next. 

l.2. Dynamic or T agge.d-Token Datafl.o,w 
Each mken in a sta : c dat- flow machine must carry th address of the instruction for v h • ch k is 

destined. Thi is alread a tag. uppose. in addition to specifying the destinatioo node. the tag aJso 
pecifie a pan::icular tring o the node. Then. two tokens participate in the same firing of a node if 

and onl if their tag are the same. An.other way of look"ng at tags i simply as a means of 
maintaining the iagical flFO ord r of ,each arc. regardless of the physical arri,•al order of tokens. 
To.e token whkh is supposed to be the z-01 value to flo\! along a given arc carri.es i in its tag. The 
trick is to give simpl,e ta , generation ru!es for the control operators. switch and merge. Arvind and 
Goste1ow [7] ha e given such rule for Dennis' operators . 22]. However, ·r only weH~behaved 
graphs are con idered, then it is possible to develop even simpler tag manipulation rutes [9]. We 
briefly explain these Janer rules as ell as the effect of tagging on the dataflo mode] presen ed in 
'ection 1. 

2.2.L Tagging Rules 
W intend the tagged~t:oken approach to pport user defined. functions. so a program is vi.ewed 

as a collection of grnphs. caUed code-blocks. where each graph is either acydic or a single loop. A 
node is identified b•y a pair <:code-block, instruction addrc ). ags have four pans: <invocation JD. 
iter-ation m. ood -bloc . instruction addr: > .. where the latter two identif-y the destination 
instruction and the fonner two identify a particular firing of that instruction. The iteration JO 
di tinguishes bet een differ m it rations of a particu 'ar in oca.tion of a loop code--block. while the 
invocation 1D distinguj hes be ween differ-em invocations. All the token for one firing of an 
insrnuction must. have id n ica.J ra ... and enabl.ed instructions are detected by finding sets inf tokens 
wilh i.d mical UJigs .. Token also rry a pon number whi h specifies the input arc of the destination 
node on . hich the token resides: thi i not part ,of th tag, and lhu does not panicipate in 
matching. 

Consider rst the execution of an acydic graph such as ·n Figure 1. A set of tok n whose tags 
di rrer only in the in tm cti on .. dd part L p aced on the in put arc . When an in~ tructton fires it 
generates ta_g for · ch rc~ulL okcn by using the d 1inmk1n ·1ddr in th instruction as the 
inslru tion address part and op •ing the r, ·t fmm Lhe inpm rng. For condilion.ils the scenario is 
imihr. but there are t\ o deslin.ilion Ii l -. A ingl , a of input , i · t t:red th n'"'h one am1 or 

the mb r. e ill ensure. ho v v r. 1.hat no two av of input<. carry tJ1 ~me in ocalion and 
itcralinn IDs in lhdr t g . Thu . for any gi en a~. a d,lt..i it m c, rryin that 1ng ,i]I arri,,e on at 
most on~ idc of Lh merge:. 1n · the order O•I Lok n , on th..: ar · is immaterial, Lher ~ i no need to 



orchestrate the merge via the output of the predicate as in the FIFO model: the streams of tokens 
produced by the: two a:nns can be merged fn an arb[tra fashion. Thi modified conditional schema 
is hown in Figure 4.a. The ® is not an operator: it merely denores that. two ar-cs converge on the 
samepon. 

1 0 

X ,I Y 

r 
j som 

switch 
T F 

~ -- , swilch 
T F 

result 

Figure 4: Conditionru and Loop Graphs for 'fagged Approach: 

The loop requires a control operator. named D. to increment the iteration ID onion of the tag 
(see Figur,e 4.b . The iteration m of each initial input to the: loop is Z1ero. Li ~e t.he oonditi.onal 
schema. the merges, can be el.iminated from lhe ]oop schema because the tags on the r kens on the 
Tme and False sides of a merge will be disjoint The 0-1 operator is used to reset the i~ ration JD m 
z m. To implement nested ]oops and u er-de lined function · an additional op rator i · required to 

assign unique in vocation m's. The app(~• operator L1k e a cod . -block nam . and an argument. as 
inpuL and forward the argument m the designated code-block · fl • assigninP it a new invocation 
m and sc tti ng its ·iteration ID to zero. he mg or the output arc of the .apply node i also sent to the 
in oked graph so me n:su Ir. can be rem m d L th e "ti naLion or the app(r nod . as if it were 



generated by the apply node itse]f. One may visualize the action of an apply as coloring input 

to~en in such a manner th at. che y do nol mi;; with Lok.ens belonging lo other in vocru.ions of the 
same code-block. Of course there must be a complementary operator to restme the original color 
· for the result tokens. The interested reader is referred to [lOJ For more detail. 

The tagged-t!oken approach e1imina£es the need to maintain FIFO queues on the a:rcs (though 
unbounded storage is Lill assumed . and commquendy offers mme parnlleli m rhan tlle abstract 
mode] presen~ed in Section 1. ln fact. it has been shown mat no inrerprerer can offer more 
paraUelism than the tagged-token approach f8]. 

2.2.2. Tagged·Token Dataflow Machine 
A machine pmposed by Arvind et al .. [4] is depicted in Figure 5. lt comprises a roHection of 

process.ing elements (PE's) connected via a packet oommunicadons network. Each PE is a complete 
data.flow computer. The waiting,,,natchin.g tore i a. key compone:n of chis architecture. When a 
wken enters the waiting~matching stage. its ta.g is compared against the tag of the tokens resident 
'n the store. Jf a match is found the matched token is purged from the st.on, and is fol"'Narded to the 
·nstru.ction fetch stage. along with the encering token. Otherwise the Incoming roken is added to 
the matching store to await its. partner. (Instructions. are restricted to at most two operands so a 
singl!e match enab]es an activity,) Tokens which require no partner i.e., are destined for a monadic 
operator bypass the waiting~matching stage. 

Once an activity is enabled. it is processed in a pipelioed fashion wirhout furdler delay. Toe 
·nvocation ID in the lag designates a triple of registers (CBR. DBR.. aind MAP which contain all the 
information associated with the in vocation. C BR contains the base addre of the oode~ b]ock in 
program memocy: DBR contains I.be base address of a da:ta area which hoJds values of loop 
variables that behave as constants. and MAP contains mapping infonnation describing how 
activitie of the invocation are to be distr:ib:uted over a coUection of PE"s. The instructicmfetch stage 
is thus able ro locate the instmction and any requi.red oon tanlS. The op-code and data values a:re 
passed to the ALU for processing. ln parallel with the LU. lhe compute tag stage accesses the 
destination Hst of the insm.1.cdon and prepares resu]t tags using the mapping information. Res.ult 
values and tags are merged into tokens a:nd passed to the network. where.upon they are rou,ed to the 
appropriate waiting-matobing ~ore. 

It is impon:ant to rearz.e thal if the waitlng·matching store e ,er gets fu.11 the machine will 
immediately deadlock: tokens can leave the waiting;matching section ont by matching up with 
incoming token . A rmilar argument can be made to show thal if the total storage between the 
omput of the waiting-matching section and the path feading tc) its input is hound d. a deadlock can 
occur [I 7]. Th . r, fore. in addition to th functional units d cribed in Figure 5. eaoh PE must have a 
token buffer. Thi burn r can b placed al. a .:uicly of points. including aL I.he omput Lage or tile 
inpul stage. dcp ndins on the relati e speed . of th,e various stages. Both 1he waiting-matching Store 
~ind Lile klkcn buffi r have to be large enough to rnak the probability ofo rtlo acceptably smaU. 

The apptv op rator i imJ1 lemcm d as a small graph. The in vocaLion req ue: t i passed to a 
ysl m-wrd re urc.-e miJnager so Llrnl re ource such . a ne, ·n aca.Lion m. pro~r:1m memory etc. 
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Figu:re 5,: Proce ing El meot of the MIT ag~ed Token Daraflow Machine 
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can be a11ocat d for the new in ocation. A code-block invocation can placed on essentia11y any 
coUection of rocesso . arfou instanc . i.e.. firin . of instruction are igncd to P ·s within. a 
collection by "hashing•• the 1.ag.s. A variety of mapping schem _ ha b en de e ped to distribute 
the mo t frequ nLI encountered program , tRJCLures effid ndy. The MAP re i l r assigned to a 
cod -b1ock in ocation keeps the h hing function to b u d for mapping acthdti of tile oode­
bloc. 



Efficient handling of "loop constants" is a fairly tow-1.evel optimization. but important enough to 
deserve mention. In the abstract. model variables which are invariant over al!l iterations for a 
particular in ocation of a !oop. bul ary for different. in . ocations. must be circulated. Variable Nin 
Figure 2.b is an example of such a variab]e. Values of such · aria:bles cannot be placed in the 
instructions withou making the graph non-reentrant To avoid this overhead, most dataflow 
machines provide a mechanism for efficient handJing of Joop constants. As an example of the 
importance of this optin ization, note that tlle inner loop of a straighLforward matrix multiply 
program has seven toop vanables. five of, hic-h are loop constants. In the MIT tagged-token 
machine.. storage for such constants i allocated in program memory when a loop code~ block is 
invoked~ DilR points to this a.rea. aUowing rthese constanis ID be fetched along wim me instruction. 
The constant area i deaHocated when the invocation ~ermmates. If the loop invocation is spread 
over multiple PE's. setting up constant areas is a little tricky. since an image must be made in each 
PE before the first iteration is aHowed to begin. 

The tagged-token arcbitecture cir--wmvents the shortcomings identified in the static architecture. 
but il also presents some difticuJt issues. [n the static machine the storage has to be allocated for all 
arcs of a program graph though tokens may coexist on]y ,on a small fraction of them. Jn contrast. 
10ken srorage is used more effidently in the tagged-token approach, because storage requirement ·is 
determined by the number of tokens that. am coexist However. programs exhibit much more 
parallelism under the tagged-to .en approach (actuaUy even more so than the unbounded-FIFO 
model). and consequently. can dri e me token storage requ·rement so high that lbe machine may 
deadlock (17]. Thjs has tuim.ed out to b .. a serious enough problem in pr:1ctice that we now generate 
on]y those graph in which the paralle]ism is bounded. In lhe dynamic machine. the mechanism for 
derncting enab]ed activitiei appears more complex. since marching is requi.red as opposed to 
decrementing a ooumer. Fun:ber, tokens carry more raggiag .information though no 
acknow Jedgment tokens are needed lf tags ar•e to be kept refati veiy sma.11. the re must be facilities 
for reusing cags. This in tum requires detecting me oomplecion of code-block mv·ocation:s an 
action , hlch generally invo]ves a nontrivial amount of computation. This task would be virtmtl1y 
impossfbie if the graph were not 0 self~cleaning". which i.s a consequence of ,graphs being well➔ 

behaved. Fina11y an efficient mechanism i:s required for aUoc:ating resouroes to new code-b]ock 
invocations. 

2.l. Tags a Mem:ory Addres es and vice: ,,ersa 
The performance o a ragg d-token machine is cruciaHy dependent upon the rate at which the 

, aiting-matchinn section can process tokens. Though the size of the waiting-matching store 
dep nds upon man· factors. based ,on our preliminary studie we e,xp ct that it win be ia tbe range 
of IOK lo lOOK rokens. l:i this size rang . a completely associative memory is ruled out, but a hash 
tabl.e. pos ibly augmemed with a small · ·.ociaU\1e memory is viable. and the waiting-matching 
sections •Of the machin" discu d in Section 4 are organized as such. H hing basic.aJly ·n olves 
calculating th .iddress of u lot in the hash tab.le by applying some ''hash" function to the lag of the 
token (see [J3] or rm I . of the hashing fonctions us din a tagged-machine). 

Gino Maa. member of our group. has s.uggesk:d th t uig hould iewoo · uddres5cs for a 



inual menmry in~ hich the primiLi e operation is store-exuact. Gi en a data and an address the 
s.core-,r!xtract operation stores the data in lhe lot specified b me address if the lot is empty, 
otherwise the contentS of the slot are read and the lm is considered ,empty. A page of virtual 
memory may comai n. for e ·ample. mkens with identica] rontex ts. [t is clear tha r only a tiny 
fr-action of me virtual address space ill be occupied at any given time and physical swrage is 
requi.re.d only for thi fracUon. Thus. the problem of me design of the wailing-matching section 
becomes the problem of implementing a ery large vinua] memory (40-bit addresses oe larger). 
where a non-existam page i allocated automaticaUy upon an anempt to access it and deallocated 
when al] its entrie are empty. Cache may be effective in organ.iz.ing such a memory as there is 
e idence lO uggest that when an incoming token finds hs panner. the panner is usually among me 
most re,ee□tly arrived tokens [15]. The difference bet\ een the Implementation of a huge vinual 
address space and 1he hashing approach discussed earUer ma be minimal. however . i.ewing ta_gs as 
addresses allows us to place many variation of static and d_ namic machine on a continuum. in 
which the address on a mken in me sratic machine becomes the tag on a token in the dynamic 
macb·ne. 

Consider extending me static machine b operators to allocate acti ity sto e dynamically. thus 
allowing procedure c.alJ to be impl mente,d In aU such implementations. a pan of the address 
serves the purpose of the "context'" ·p·art of the tag in the dynamk machi.ne, and me task of 
allocating a new context is subsumed by the task of allocating acti . ity storage. A common 
optimization in such schemes i to separate Ille operand slots of an instruction from the rest. and to 
allocate a new template com.aining operand slots for a code-block at. the lime. of invocation. To 
achieve sharing of a oode-block among several invocations requires relocation registers like CBR 
DB!R. etc. of rhc MJT tagged-token machine. Anotlier variation discussed in the ]iteratu.r-e 
eliminates the need for acknowledgment arcs by allow·ng only acyclic graphs (26. 44). Since a loop 
can be modeled as a recu ~ive proc dure. mi offers a trade-off between the cosL of extra procedure 
calls and the sav·ngs due 10 me elimination of acknowiedgmems. As discussed earlier there are 
subtle issues associated with the implemematian of the apply operator. e.g .• the time of storage 
allocation affects the amount of para lleHsrn that can be exploited by the machine. 

Coming from the other direction. a variation of the tagged-wken machine that has been proposed 
by David Culler and Greg Papadopoulos (also of our group) L to replace the waiUng~matching 

section of the Lagg · d-mken machine by a toke 11 st.orage that i exp licitly al located a1 ihe ti me of 
procedure ·nvocalion. It is possible ID do so if t:he storage r,equirement of a code-blook can be 
denmnined prior to invoking it The cype of bounded-roop graphs that we propose to run on the 
machine ha e lhi propeny . 

. fter examining some of th _ variation di cu ed here. I.he distinction between lhe static and 
dynamic datano beoon1 mewh~t fi1uy. Choosing a good design among lh ones proposed (or 
on _ c:1 lo be prop -. d · is an :i tiv research topic in Lhi fi ld. Th o:n! g n ml tat n1ent we can 
make is Lhat gi\·ing m progr.m m r or the compiJcr a greater control over th management of 

rcsouv incre:.-1 hi respunsi bi lily and burden.. bul may provide significam · erfmmance 
impmv~me111:s and may simplify lhc d ign of Lhe m· chine. 



. Data Structures 

eccion 1 described ho, data structures can be incorporated in Lhe dataflow mode] without 
sacrific'ng its ele ance or utilit · for parallel compucaLion. We now inuscra1e the difficulties in. 
implementing 'Tunctional" dar·t structures emciently and describe an allema.tive view known as 
1- tructures. Thi bi:rmr approach offers an efficient implementation without sacrificing 
determinacy, and allows more para11eiism to be exploited in programs than the "functional 1 

approach. 

3.1. Fmi:ctiona.l Operation On Data Stmctures 
The si rnp lest . ,orm of" function al" data structure · s reflected in the operation cons. first. and rest. 

Cons glu two values together to fom1 a pa.ir: first and rest select values from uch pairs. Cl.emiy, 
we cannot allow .aTbitrarily Jarge aloes to be carried on a 10 en. so pairs must be maintained ia 
storage with tokens carrying the address of th pal . To Lh" end data.flow machines provide 
slructure storage. , hich should be considered as a special operation unit with internal storage. The 
unil i shared by all PE's and is capable of perforrn.ing many concurrent structure operaUon.s. 

To see how the structure store and its associated operations behave. we can step through the 
execution of a flr.sr operation.. A jil'. l operation is enabled by the arrival of a token carrying a 
pointer. either the fetch unit m the static machine nor the ALU in the tagged-token machine can 
access the structure storage rurectly.3 Thus a new packet con 'ning the read request and tbe 
address or tag of tl1e destination node of t:he first operation is sent to me structure stora.ge.. Upon 
receipt of such a request. the structure stor~e con:i:roner produces a mken containing the left. value 
of the pair and sends it to the appropriate destination insLruction: this is depicted in Figure 6. 

imil ari . for the cons operator. n o iapur data values together with the destination node address 
,(or tag) are sent Lo a structure storage unit. The strucmre oontroller a11ocates SIOrage for the pairt 

writes the elements and sends a poim:er for the ne ly allocated storage to the destination 
instruction. 

11,e implementation of large. nat data structu:r s. uch as arrays, presen difficult desi,gn trade­
offs. If array . are implemented as linked ljsts using cons. lection operations are inemc·ent. If. 
instead. array elements are stored contiguously. as a generalization of Lhe pairing op ration, the 
append operation become costly.. This i because append invo]ves creating a new array and copying 
all e. cept one element from the old array. .Efficient imp1ementations of array · have been 
researched extensi ely [l. 31] and two key ideas have emerged to reduce cop}'ing. First. if the array 
descriptor for pointer fed to the append operator is the onl_ descriptor ·n existence for the 

3
1 ot nrnvidin~ direct aco:ss to a large stomsc sh:il'~d b m:m PE'. ts certai.ih· a design cholc-~. but a fund..1.mental one. 

I u :1 n,;1diu1c \ ilh m,.1ny prore-~n. and m:11w strucwrc coriu-ollcffi. lhe umc m an:ess a pardcular m~1nor~· contmll ·r ma;­
he \Cn large. Ir the in. trunion proof'~,;;cog pip •line bl id.as or stmc:rnrc or~r.Jtinn . lile pcrtom1:ut · of lhc inad1i11c:: wilJ 
ht: !1fl'.1H!.'" ;11 •~1.:•cd the lJtenn or the t·oinmm1it·:JLioh .\'stem . 011 , blJUty o da1.:1flow ma Mn ~ is lht'~ ::tn be mude 
c.~[n:rnel.' l ill-ranl ul" lrncnej,'. :Ill u,u~ {.':m ~ J~t:irn hLgh perlhmumte l!Ul 1mm} pro:.x-ssor:, wori.ing an .l illr)c prublcm. 
DLrn il ·I.I· rgum,.:n[s to Um, account ·m Ix'. 1i,um:l in /\n•ind am.I Ian.n u i [l l]. 
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corresponding array. the array can be updated in place , ithout risk o causL11g a read-write race. 
Second. if the array is represented as a tree. then only the nodes along th pa.th t-O tlie appended 
lement need be regenerated: the rest of the tree can be shared. This reduces the amount of 

allocation and copying. but increases the time for se1ection. 

3.2. 1-slructures 
The 'tfunctional'' vfew of suuctures imposes unnecessary restrictions on program execution 

regardless of how efficiently it i implemented. Consider die simple example cons(f{a).g(a)): the 
cons win not be enabled unlil bm.h f{a and g{a) have oomple~ed. Thus .. anoiherpan of the program 
which u ei the first e1cment of the pair. but noL me second. must wail until both elements have 
been compmed. uch data structures are calJed stricl in programming language jargon. ln contras 
cons can be treat d as a non~strict operator [27}. allowing an element of a pair 10 be used regardless 
ofwhe;cher the otner ,e[ement has be n produced. The resultant increase in paraUelism js far greater 
man one rn igh t naively imagine. 

The firing rule for non-strict cons is di fficu It to implement One way to d rcu m en t this difficulty 
is o treat cons as a. triplet of operations. as hown in Fig11re 7. The irn lidt storage allocation of 
strict cons becomes visi b]e as a new type O node · n the dataflow graph. The descriptor produced by 
the allocate operator is passed to th two store operation-• in add i ti n to the sub eq uent select 
oper.uions. Thi · allows consumption of a mcture to proceed in paraUel with production. but also 
raises an awk ard problem: a first or rest operation may be executed before the corresponding 
store. This seemingly '.ata trophic situation can be re.so! ed with th 11 Ip of a smart slructure­
storage con troll r. H" a read r q ue t a:rri e . for a lor gc cell which has not been wriu.en. Lhe 
oontroUer d fers the ad until a v.•riL" arrives. Thi · is the basic i ca behind [~structure storage. 

Referring to Figur • • each torJge c 11 mrnain: latu, bits to indi lte th.i.t the ell i in one of 
thrc ~ ~ ible states. (.l )i PRE· T: The ord mmain ·aUd data M,-hkh .. 11 h rli I read as in a 
convemh nal memory. Any ~JU rnpL m \\'rite rt win be signalled ns an ermr. ( "") .BSE : olhing 
h·iS been wrin n imo Lhc cell jna: iL \\ · Iai:;t alkx:au:d. lo ~mcmpl has h 11 m,1dc lo read Lhe oo11~ 
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Figure 7: Impl.ementation of ·On-stri.ct Cons 

it may be writreo as for conventional memory. (3) WAlTl G: othing has been written imo the 
ceU. but at least o,ne attempt has been made w read it When it is written. all deferred reads must be 
satisfied. CeUs change srate in the obvious ways when pre-emed with requests. Destina:tion tags of 
deferred read requests are .stored in a pan. of the 1-strucmre stora e specialty reserved for that 
purpose. 

Whme I-structure storage can be used to implement non-strict cons, ro expJoi the full potential of 
lhis form of s1.0ra e. functfonaJ languages can be au, mented w.ilh explicit a11.ocate and store 
opera ion From a -rogrammer's perspective .. an 1-structur i an array of lo (42] whi.cb are 
initiaily erupty. and which can be written at most once. Regardless of when or how many times a 
sele~t instruction fur a pan:icular Im i ecuted. the valu rerumed is always the same.. This 
preserves the detenninacy propcn . of I.he mo el. . ~suuctures are not ''.functional" d ta structures· 
they are "monotonic objects" which are con tructed increme:ntaUy. hence their name. 

I-structures: provide the kind of sym:hronization needed for e ·ploiting producer-consumer 
paraU.e]ism hhout ri k of read-write races. 1-st.rucrur-e read requests for which th data is present 
require aboul th same tim. as ronvemional reads. and wiLh special hard, are [3,2] deferred reads 
can b pr-oc"' quickly. Thu . as long most read requests foUo the ,corresponding write lh•e 
ov, rhead of ]-structure memory i mall. and the utllity is enormous. 

Th benefit. of non·sLrict s1:rucmres in term. of Lhe amount of parallelism c hibited by programs is 
surprisingly Larg • For xample. method in which tar _ m h i repeatedly tran formed into a 
new ersion b performing som calcu1ation for each point are common in num ricai computing. 
ame uch mclhods show trernendou par n lism because all m.esh points can be computed 

:irn uhaneou. b. H w er. •even "i hen hi i n ossible beau e o . daw. dcp nd nci . it i usua11y 
po_ sihle to overl p I.I omputation of · _ -ral version of lhe me h. Thi I.au r fonn of parall•eH m 
c-an · ploiLed only i the m h 1 rcpr ·en Led a · a non-strict structure. 
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Figure 8: 1-Structure Storage 

We nm pre ent an o rview of some of the more important datanow p:rojecl.S, regtricting our 
attention to, Om e that have built or are currently building a dataflow machine. ln panicu1ar we do 
nol add:re.ss hm dataflow concep have iaflu need high-perfonnance van eumano computers 

being designed today. 

4. . Static Mac binc Project 
lt is no xagg . ration to ay that all dataflow projeCL~ smn:ed in th se en.tics , ere directly base-di 

n Dennis· cminal work r221. uch projects, besid . Denni . . own proj,ect. indude the LAU projecil. 
in oulous Fran e [16]. lhe Te ., In trum nts datan w project [35). Lhc H ughc: dut.aflm. machine 
[2 ]. and \' ral projec in Japan 14 ,. I]. Even the , ork on La!!.gcd·token machines at the 
Uni versity of M:mche~ter in England and the Uni e ~1ty of Cali'tomia at Ir rin w • inspired by 
)cnni · work. 
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4.1.J. The MIT ta.tic Machine Datanol'r· Project 

Denni ·· group at M ff h:is proposed and refined se ral static dataflow architectures over the 
years (21. 46. 19. 25). and h.i e implemented an eight-processor engineering model of the static 
machine shown in : igure 3 [19]. The processing elements (P ) were buHL ma of AMO bit"Slice 
mic:ro-proc ors and were connected by a packet-switcbed buuerfly ne!work composed of 2x2t 
b;rte- eriai routers v ith s nd-acknowledge protocot The strucnrre oontm11er was not imp~emented. 

Dataflnw graph for the machine ere compiled from lhe language VAL [2]. A PDP-11 served as a 
front end. While the ma hine operated successfuUy. it was only large enough to run toy programs. 
A1so. becau e of microcoding, the PE" ere far slower than the routers. The Texas Jnstrument:i 
machin [35]. which was architecturaUy similar to Dennis' machine. was bui]t by modifying four 
con cntional processors. E en Lhoug,h lhese macltines proved to be too slow to generate 
oomme:rcia1 interest in dataflow machines they have had marked influence on instruction 
scheduling in hig,h~perfornumce machines intended for scientific computing. 

4.1.2. The · EC Datano aclliines 
The latest. machines which may be classified as static machines are ECs EDIPS [48] afild 

lmage Pipe]ined Processor (IPP iJ,PD7281 [4-1]. NEDIPS is a 32-b1t machine intended fo.r scientific 
computation and uses high-speed ]ogic, while the IPP is a single chip processor of similar 
archit.ecture intended as a building block for highly paraliei image processing systems. We focus 
on the latter machine. Generally. image processing invol es af'.)plying a succession of filters w a 
si:ream of image dam. Thus, each lP.P chip may be .loaded with a dataflow program for a specific 
filter or several filters, 

The EC designers have generalized the machine described in Section 2.1 by allowing multiple 

token per arc. . o see how th is is done. oonsi dcr once again the srntic machine i□ Figure 3. 
Instruction templates must be enlarged to include a. coUection of operand lots. lf we assume that 
the operand of an enabled instruction are immedtate]y remm•ed from th aclivity store and 
forvmrded to the operation units. then tokens cannot accru in me sloLS for both the left. and right 
arcs simultaneously. Thus. both arcs can sh a.re the same lots as long as a flag is provided m the 
instruction template to indicate on hich arc Oeft. or right) t.he current tokens reside. Further. the 
coHection of lors in fill instruction are managed as a cyclic buffer. with two poimers marking the 
head an:d tail of the queue. When an incoming token i for the same arc· the arc m which the 
pre iously arriv,ed tokens in the instruction belong. the update unit adds the data value of the 
incoming token LO the 1.ail of the queu . Otherwise. th.e data aJu at the head i.s removed and 
placed in Lite insuuc:rian queue. alon with incoming token. otke it is not necess3ry for all 

in Lmc:Lion templates m comain the 1me num er of operand slots. 

In th JPP implementation. lhe three components of the instruction tern late. op-,code. operand 
lou and d tinalion 'j t are pku:ed in th re sep. r tc memories so mey can be ac,eessed at 

con ccuti e 1·.g - of lhe instruclion pip rinc. Each P · provides storage for 64 instructions. 128 
res. :in 512 l6-bi1 d La ,elements. which can be partiti n "d imo queues of up to 16 slots, per 

in:mictinn. The rPP also aUo s ree.ian. of th d~tta m m rv to he u cd rt r txm. ant. and tables. In 
~ ~ . . 

add" ltun. spcdnl hard\ ar operation are provid d ror genernting. co·1lescing. split ing, and merging 



streams of token . A no el technique i employed to gm,•em the level of acli ity in the instruction 
pipeline: instruc1ttons with multiple destination are ueued eparate]y rrom those with single 
destinations. so , hen t.h pipeline is starved the multiple-destinaLion instruction queue is given 
-priori.ty, and when me instruction pipelin is full the other queue i favored. Buffered input/output 
ports which uppon a furl send-aclmm ledge protocol are provided. aJlowfog up to 14 IPP s, to be 
connected in a ring. The system relies on a host processor m provide input/output, bookkeep,ing, 
and operating system support. 

IPP does nm handle ac,knm Jedgments pedaUy and requires thaiC operand storage is aUocated 
statica]ly. i.e.. by the progrn.mmer or compHer. The programmer must tune the program graph to 

a oid buf er m••erflow and ensure lhat to en do not get out of order. Thi makes program 
d velopment or lhi · machine a tedious: task. The bufFer ,overflow roblem is much less severe in 

DrP because it pro ides rnuch more data memory (MK word ), lhan IPP. S iU the problem is 
seriou enough to cau e I.he designers to modify EDlPS so operand uffers can be e tended or 
hnmk dynamicall~r in 12 word increments. As discussed in eccion 2.3. this extension also mak " 
difficul to cl sify EDI PS as a stati.c machin.e. 

EDlPS and IPP are me first commerdally avai1able dataflo,w pr;ocessors and regardl.ess of their 
commercial success,. which only time wil te]I. they ar major milestones in n.on-von ,immann 
arch itecwres. 

4.2. Tagged-Token Machine Pr,ojects 
lbe tagged-token dataflow approach was conceived indep ndently by tw,o research groups. one at 
anches1er Unh1e ·1y in Manchester. England and one at he Univ . rsity of California at Irvine .. 
e tagged-lo ·Em architecture pr em din ection 2.2 is bas don work b_ the 1atter group. which. 

has since moved m the - assachu ens In itute of Technology. Tile prototype ~gged-token 
machine completed at the Uni rsity of nchester in 1981 [29] is an ·mportan mile-stone and 
presents some interesting variaLions on the mach·ne described aoo e. A number of other pro otype 
efforts are in rogr in Japan. most notabJy in Amamiya•s. group at NTI [3. 47]. and Sigma-I at 
ETL II hich is discussed 1a1er in tllis section. 

4.2.1. The anche ter Datanow Project 
The Manchester machine is entially Hk,e the instruction processing section shown in figure 5. 

Jt j a single ri11g con isting o · a token queue, a matching un ·r. an in truction store. and a bank of 
ALU' . The LU'. arc microcoded and fairly , low. lt ha-; demonstrated reasonable perforrnance 
(1.2 M iPS} wilh this arrangement. allhough the choice of man_ s}ow A; U has received some 
criticism be.ca 1.se an the ALU·s ,m b easil replaced by a single fasl A U. To ·ens are 96 bits 
~ id . indudin"': 37 bits for daLa. 6 for la'"'. and 22 for des in lion addre. C. The matching, unit is a 
lwo-level SlOTt!a ·n1e n l I.. I h· a capa iLy of 1· token and u -. a paraUcl h. hing scheme to 
map an in oming g into a s t of eight lol . Th. c nl n of the s.clc.ctcd tots are associa ively 
mm hcd aguin l th . incomi.ng tag. The SCC{)nd-1 ' el o rflo swr uses hashing 1/th linked Usts. 

The Man h ~ 1cr m·1 hine has no suucmrc store per se. In lead. a h ' L of xmi· matching 
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operations are pmvided so that the matching store can function as a stmcture store as weU [49). The 
analog of an invocation ID can be treated as an array dcscripror. and the iteration ro can function as 
the index, so a tag can represent an array elemenl A store operation generates a token which goes 
to lhe matching unit and sticks there. A read operation generates a token which matches with an 
element stuck in the store. extracts a copy of it. and forwards the copy m the desi!.ination •Of r.he read 
operation, but leaves the slicky element in the st.ore. l f the read mken fai]s to find a panner in the 
store, it cycles through the ring. busy~waiting. When me structure is dcaUocaied. its elements must 
be purged from the store. Th I approach has nm proved very successful. It increases the already 
large load on the matching unit and communication network. degrade the perfcmn ance of the 
matching unit on standard operations. as weU as makes its design much more complex. To resolve 
Lhese problems. the Manchester group is developing a structure-store simi I ar to the 1 -Strucrure 
store. ticky tokens are also used for loop conman ts (discussed in Section 2.2). Tbe iteration pan of 
the tag is ignored in perfonning the match and the sticky tok-en remains in the to:re ev,en when a. 
match Is performed. Cleaning up the matching smre, hen a loop rem1inates. presents difficulties. 

The Manchester machine has provided a target for a. number of dataflow l.anguages and has run a 
number of sizable applications. fu.1errsion.s to multi-ring machin are being tudied through 
simulation. Work continues in areas related to oontmUing paralle.lism and instruction set design. 

4.2.2. '· · igma.-1 a:t Electmtechnica.l LaJbor.atory Japan 
Under the auspices of the Japane. e ational Supercomputer Project. the lectro~echnkal 

Laboramry is developing a machin [50] based on the IT tagged-mken architecmre. The current 
proposa1 is to produce a proLOtype 32-biL machine capable of 100 Mflops, ·by the end of 986. The 
'ndividual processors are pipelined and oper te on a 100n cycle. The network i packet-switched 
and composed of 4 4 muters, The engineering effort invoJved in this project is subst:antiaili. 
including the development of a I-board PE and a l·board structure memory. Together. these wm 
require eight to ten cu tom cMO gate-array c.hips and a cu tom VLS] chip. The PE will contain 
16k words of program memory. 8 words of token buffering. and 64k words of waiting·matching 
store. and tl1e structure memory 256k words. (The memory sizes may be increased by a factor of 
four by the ti.me the machine is buUt) The machine will ha e up to 180 boards. divided roughly 
half and half between the structure memory and ALU boards. A 16-board version of the PE has 
been operational since No ember 1984. 

A num r of inte esting desi.gn choices ha e been made in igma-1. A shon latency two--stage 
processor pip line ·s employed to execute code with low paralleli m effici nu.y. ]n the first stage. 
·nstrticLion fetch and matching are performed simultaneou ly. Jf the match fail • the fetched 
in truction is discarded. 1 □ the second stage. d tin.:i.tion tag are generated in paraUel with the 
A LU op ration. kens arc Hans forred u, rou2h the n l · ork. as 0-bh packers. wo cycles are 
rccp.1·rcct or cch•e a packcL but the firs£ tag f Lhe proce or ipeline operates on the first 40 bits 
of the uck t ti.he Lng) while the con 40 bits are rccei ed. ·111 w iling-mal ·hing store .is 

implem med .ma chain d hash t.thl .. The rirsl operand of a pair i in · ncd in the matching smre in 
cycles! m tch ing ili scmnd l en or :1 r ~1i r h:is an c:i.pectcd Lime of 2.6 ycl . ti ky tokens are 

1;n pl ycd for l p con. tnnls. lkw v r. tlil..'. d .ig.ners of lh rL 11K1c:hinc h;1v imimated thaL I.he 
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utility •Of this approach may not warrant the added complexity m the matching unit. The structure 
commne su ppon deferred read . Rather than up on a g neral heap i.orag.e mode 1. in wbich 
data objects may have arbitrary ·1ifo1imc . structures ar dele1ed when the procedure \ hich created 
the structme term 1n ares. This si rnp Li fies storage management Wl d 1s proba bl. acceptable for writing 
numerical application, the imendcd application area for the machine. 

4.2.3. The IT 'iagged~Token Project 
ot su rp ri ingl'y . the tagged-roken .machine presemed in ection 2.2 reflects the approach of the 

authors' group at IT. This machine developed through a sequence of stages (7. 30.14.13~ 12, 4] 
from theoretical work on the ~interpreter model [8. 9']. 111.e MlT group has focused on devefoping 
an entire dataflow system. rather than on hardware development per se. Two soft prototypes have 
been implemented 10 serve as ehides fur studying archirncmres. program de elopment and 
resmm:e management A imu]ator provide: a detailed model of the machine including internal 
cimings, whUe a dm.afl.o,w emulator is being developed 10 run on lhe Multiprocessor Emulation 
FaciHt [6] (MEF). Lo -Ludy dynamic beha,ior of larger appUcations. The MEF is a. collection -of 
Lisp machines (38 Te as instruments E plorers and 8 ymbolics 3500' which will be connected by 
a high bandw'dth packet-switched network. in the near future. Each Lisp machine emu]ares a 
data.flow PE. Both the simulator and emulator execute graph produced by our compiler from the 
high~leve1 daraflow ]anguage Id [10. 42]. A number of reasonabl large benchmarks are being 

studied on the sofi-prorotypes of the M]T Tagged-Token machine. including a complex 
hydrodynami and heat conduction code. 

5. Prognosis 

ln th is paper 1,ve have outr ned two satienl issue~ in dataflow architectures: token storage 
mecha.nisms and da.ta structures. and surveyed several dataflo machines. We have not attempted 
to cover an the current rese•trch topics: or che imere red reader. these include: demand-driven 
evaluaLion [43]. controlled progrrun unfolding and deadlock avoidance fl 7. 4 • 5). ,efficient 
procedure i:n ocation. storage re.clamalion, re]ationships with paralle] reduction 

architectures [38.18. 37]. network design .and topology. and seman ks of programming languag.es 
with l-st11.1cwre . Howe er. dataflo:w architectures are o more than acaden ic interest, so in 
conclusion we consider their pmemiali in the rea] wor]d. 

Today a vasL ooUection or ing]e-board computers a e a\•aiJable which offer roughl MrPS at 
low cost: Lhese are tout d ouHdin. block for multiprooessors. Can datanow m chines compete? 
lt i not clear if a ing.l d::it...1.f'l'o,i p :iSOr can ac:hi e. lhe performan of a von umann 
processor m the same hardware cot Th da~now in~truction-s heduling mechani m is clear y 
nmre oomplc;,;, th·m incr mcnlin~ a program umer. n engineering effort. subsmmial]y beyond 
an of the curr nt da!aHo · project is requir-cd to make a foir comparison. The Sigrna-1 project is 
an important svp in tMs directi n. The question bcoom more inicrc ting when we consider 

n1i1Ch inc w i lh mu hip le procc ·or . where Lhe dL ta flo h d ul i ng mectrnn i rn y i Id igni fican , 
hen fits. Jn Lhc b. ·ic on eum::inn m. hin Lhi. proce ·or i "U • .i memory r~ 1u t and II r hs for 
lht: rcsuh lO b produced. l11c m m ry cy _ I Lim i · inv ria I;· gre,.u r than th~ pmc: · r cy le 
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time , computer archnects de ote tremendou~ effort to reduc the amount of waiting. This 
prob]em is much more severe in a multiproce or cont . t ecau e th time to process a memory 
reques i generaJly much gre..1ter than in a fogl,e processor and i unpredictable. Further. most 
traditiona] 'l.ec:hniques for ri!ducing th effects of memory latency do not work weU in a 
multiprocessor setting. Theda aflO' approach can be vi.ewed as an extreme -solution to Lhe memory 
latency problem -- the processor ne er waits for respon e · rom memory; it continue processing 
oth r instructions. Instruction are · h dul d based on the ava.ilabilit of data, so memory 
responses are simpl routed along ·~ ith the roken produced by processors. Thu . ,e en if individual 
data.flow prooessors do nm yield the penomrnnce per dollar of· convemicnal processor. we can 
, xpect th m to be better utHi.z.ed th · a conventional processor in a mul6processor se ting. For 
large enough coUectio:ns of processors they should h cost effective as well as show absolute 
performance nm achievab]e b11 comrentiona1 processors. But it is not yet dear wher this threshold 
lie . 

The preceding discussion suggests that dataflow machines are iikel}' to be competitive m high· 
performance range. howe er e · ou]d not make uch a claim [igbtly. It is unlike!,y that a large 
collection of l M[P machine. of any Uk m comp te with a few very high performance processors, 
.e,. p oce~ors whicb can p rform 10 to 100 MFLOPs ,each. To compete amon superoompmers jt 

may be n,ecessacy 10 eng1neer a data o machine with the technology and fines ,emp-loyed in 
conventional upercompulers. Thi is a major un elitak·ng. far beyond any of the dataflow projects 
,currentJ. propo ed. Most supercomputers include vecror acce]erato,rs o improve erforrnance on a 
resLricte<l cJass of · rogram . I l. e main m be seen how e~ ective the e wm be in a mu 1 tiprocess-0r 
oomen and the xten o whtch ana1ogous accel•erators \ m b needed for dataflow machines. 

This paper has focused on architectural issues. and acoordingl.y has scarcely touched on the big.h­
ie el programming model which accompani data ow machin . onelheless. programmahi]icy 
of parallel machines is critical. Con entional programming ]anguages are imperati e and sequentia! 
in nature: do mis. then do that e1c. Effons to u e these lang.ua~es for describing paraUe[ 
computation ha c been ad hoc and unwieldy. gr,eatiy increa in° the difficulty of m. already onerous 
programming cask. The programmer must deL rmine what synchronization is required to avoid 
read-write races. E en so. subtle timing bugs. are common. A dass of lan.guarges. caHedfunctiona/ 
languag,es. completely ay,oid (hcse . nchmniza ·on problem by disaUowing ••updatable .. variables. 

unctional languages employ function compo ition. rather than command sequencing. as the basic 
,concept and can be tr'dll' hued into damnow graphs ea ily. exposing paraUelism. Th languages 
can be augm. nted with t~ 1:rucmres to make data tru rnres more efficient. ihout sacrificing 
dct,ermmac or para? elism. h i our beli . f that datano-w architc tu res togeth r with these new 
languag \Vill ·how the programming ge1n r~Uly, perfi nmmce and cost effecti . ness needed to 
nm · c pa Uel m · hines wide y app icabte. 
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