
LABO RA TORY FOR
COMPUTER S1CIE CE

Dataflow Architectures

MIT /LCS/TM-294

12 Febnrnry 1986

Ar ind

Da 1t'id E Culler

MASSACHUSETTS
I STITUTE OF
TECH 1 OLOGY

To appear in Annual Reviews in Computer Science, 1986

111:i. ork was performed .it Ulc , U.'· . Lahorarnry fo r Computer cicncc under lhe
·1 agi!cd-Tokcn n.u~1no\· pruj1;.'\:L Funding u; pro 'ided in pan b. th · Adnm ed
Jk:,, arch Projects gene} ol lh ·.s. Dcparlmcm of l)cfcnse. comr,u,;1 N000-1483-
K- 0125.

>-15 TE IX 01. G) ·ou Rt·, C i\HHUDGI:;,. 1A Cll U 'J-TI' 02139

Abstract

Dataflow graphs are described as a machine language t6fparall 1 machines. Static and dynamic

damflow architectures are presented as. LV o implementation of Lhe abslract d:u.aflow mode]. Stacie
dataflow allow at most one token per arc in datanow graphs and thus only approximates the
abstract model where unbounded token storage per arc i assumed. Dynamic arch hectu res ·~ eacb
token and keep them in a common poof of swrnge, thus pe1TI1itting a betler appro imation of the
absnact model. The relative merits o the u o approaches are discussed. FunctionaJ da:ta strucwres
and I-structures are presented as two iew of data structures \ hich are both compatible with the
dataflow model. These view are contrasted and compared in regard to efficiency and exptoitation
of paten Lia 1 para lleUsm in programs. A discu ion of major dataflow projects and a prognosis for
dataflow architectures are al o presented.

Keywords~ Dataflow. Dataflow graphs. Detenninacy. Dynamic Dataflo architect:u1es
unctional data: structures. J-structures. Multiprocessors. ParaHeJ computation. Pa:raJle] computers.,

Static Dataflow architeclures, Structu e storag.e. Tagged-To en Dataflow architectures Token
storage.

Dataflow Architectures

1.. Datanow Mod.el

The dataflow model of oomputation offers a simple, yel powerfuJ. formalism for describing
. araHel con-iputation. Ho, e er .. a. number of ubtle issu arise in de eloping a practica computer
based on th is mo el. and dataflo\i architectures exhibit substa.nf al variation reflecting different
tandpoints taken on certain aspec of the model For ,exampl , in the ab.1ract datal:l.ow mode]

data a1u _ ar carri.ed oa .tokens which tra el along lhe arcs connecting variou instructions 1n the
program graph. and it is assumed that the arcs are First~in-Flr t-out (FIFO , queues of unbounded
capaciLy [36. This gives ri e Lo tv o riou , pragmatic con, ems: (I) Ho hould the tokens on arcs
be man a ed? (2 , How should data sm1cture:. which are essential composite of man,, tokens, be
r . pr,esented? The mann r in hi h these concerns ar,e resolved has major impact not on y on the
machine organization. but also on me amount ofpara1ie1ism that c.an be exploited in programs. ln
this paper. wee amine the major variations in dataflow arcbi~ecrures with regard to token storage
mechanism and data structure storage.

Th paper i organized as fo11ows. The re:l ofSectioo 1 introduc dataflow program graphs and
the rules which d lermine when and how operations are performed. AJso. it explains why data
sLTUcture can not be iewed as they are in oonventionaJ programming languages without seriously
compromising the suitabilily of the datallm approach for paralle processing, -eclion 2 examines
th two token storai?e mechanisms adopt d in ,currem da:taflow architectures.. Th . SJatic ·dataflaw
approach places the .restriction that t most one token can r id on an arc at any time. whUe the
tagged& 1oken dataflo approach Uow , , en ti aUy unbounded queue on Lh e arcs. with no ordering.
but with each to ·.en carrying a tag 10 identify its ml in the com utatton. ection 3 presents two
alternatives IO th _ iew of data strucrure embodied in convention a.] languag . . Th fir L alternative
lfea ad ta structure as a value-. hich i . concepruaJly carried on a token. "Functional" structure
op r tions. such cons, are pro ·aed to rea e new strucm:res out of old ones. Thi approach is
,elegan . buL cxpensi _ e to imp1ement ,(even i the data ructure is actually left behind in storage. so
th _ to . en carrie: only a pointer) and res nets parallelism.. The se,cond altematiiv,e creats a data.
tructure as a ooJl.ecti.on of slo . ea. h of which can be written onl once. An auempt to read a sloe

b. fore ·1 is written is deferred until. the rorr sponding write occurs. Section . g· , an over/ew of
dle major d ta flow projects. finallJ7• Section 5 gives our vi · of what the future ho'lds for data · ow
computers.

I J. Ac, die. ondition:111 and Loop Prornim Graphs
dam/low program L d · cri ed by a directed graph \/ •h . re the nod - denme operations. e.g. .

addition ~ nd multipJication. and th arcs d nme data depend .ndes b lw en -op · ration (22]. As an
e11.amplc. F1gu . l how 1.he ac. H datall w pmgram graph lbr th . o. m ing e press·on.

tet x = a* b:
y =4•c

in (x •.) * ,(x-y) I c

- .,.

Any anthmetic ,or logical ex.l'ressio:n can be uansiated into an acyclic dat.aflow graph in a. strai.ght:­
forwa d manner. Data vaiues are earned ,on lokens which now along the arcs. A node· may execute

.(or fire) when a token is available on each: input arc. When it fires. a data token is ·removed from
each · nput airc, a resl!Jlt is computed using these data values. .and a wken containing the result is
produced on each output arc.

a b C

sl:

s4:

Figure 1: Acyclic Dataflow Grapb

. odes s1 and s2 in Figure l are both enabled for execution as soon as tokens are placed •OD the
input arcs ab and c. They may fire simultaneously, or one may fire before the other: tbe results are
the same in e1tber case. The result of an opera.lion is purely a funcion of the input aJues~ there are
oo impHcit interactions between nodes via side-effects. say through shared memory. n·s example
illustrates two ey properties of the dataflow app,roach: (1 paralleltsm. i.e.. nodes may potentially
execute in parallel unless there is an explicit data dependence· between them. and (2) de.terminacy.,,
le.. results do not depend on the :relative order in which potentiaHy paraHel nodes execu1e1•
further, notice mac by supplying several: sets of input wkens. distinct comp tations can be

1Thc u11.boundtd FIFO queue modd pr,~med in this paper is a genernlicz:ltion of I.he d:uaflow model originall.y
fonnulated by Dennis. His, model [22] requm=s Lh..111 lhe oulpul ms of a node be ,e:mp1y before· il fires, implyi11s thal at
lllltl!St 0111: lOken <..'ru:I reside on an W'C. Kahn' paper £36] implil.'S lhat the derermi:n:a ·· of daudlo !f.!Phs is p1l.'Served
t,·en withom this resuic ·on. Kllhn's ~ult ubo pc.nni!S nodes to ha e mte:mal S!l.aie. but w do no consider this
gc ncr.dization.

-3-

pipelined through the graph.]n lhis example. a sing .e wa e of tok,ens on the input. arcs produces a
single ,ave of token on tile oulput arcs. Graph . " bi h ha I.hi propeny are caned well-behaved.
All acycU graph for arithmetic and logical expressions are well-behaved.

1n order to build conditional and loop program graphs. we introduoe two control operators: switch
and merge. UnHke the plus openuor. switch and merge ar . not well-beha ed in isolation. but yi.e]d
w II-behaved graph when u ed in conditional and loop hemas [24]. Consider first the

conditional graph in figure 2.a which represents the expre.s ion ir x(J1 lthen x+ y ele x-y. The
initia1 to ens pro ide the data input to the switches as · U ,· input to lhe redicate graph. The
predicat:e graph yields a single boolean value which supplies lhe control input to all the switches and
merges, A switch routes its data input to the output arc on the True side or Fal e sMe. according to
the alu of the com ol in:puL Th1Us. the v a e o ·nput to en i directed to the True or the False
arm of the conditional As long as. the arm of the conditional are weJl- eha ed graphs • .a single
wave of tokens wm ev ntually anive at the data input of Lhe appropria:te side of the merge.. Toe
merge e1ecrs an input token from the True or the False side iapm arc. acco-rding to the value of the

control input. and reproduces the data input token on the output arc. To s e that the conditional
heha ve appropria]y when wa es of in puts are presented ID i . consider the tricky case in which
the fi:rst wav,e ,of input tokens is S\lfitche-0 to the rue side. the second wave to the False side and the
mk n on the False ide of the merge arri e before the tokens on the me side .. The sequence of

control tokens t the merge restores the proper order among the tokens on the output arcs.

To loop graph bown in Figure 2.b computes .~ F(i). The figure is oome hat stylized in that the
i =]

dots are used to indicate that the output of the predi.cate is oonnected i:.O each of the switches and
merges, and the graph oorres:po ding lo funct~on F is indicated by the ,,, bio-b" containing F. The
initia] values of i an sum . mer th loop from th.e · al:se sides of me merges. and provide data ro the
predicate and swirches. lf the predicate e aluate to True, the data values are ro,ured co the]oop

body. Assuming the body is a well-b . ha ed graph.· · venruaUy a single wav~ of 11, uJts: is produced
providing token on the True side of the merges. In this w y. a ues circulate tllrough the loop until
the predicate rums to Fal ·e. · hich caus the final valu robe routed out of the Joop and restores
rne initia] al ,e valu . on the contra inputs to th•e merges. me that if many wav,es ,of inputs are
provided .. only one a e i aUowed o enter the loop at a dm : the second wave enters the loop as

soon the first corn.pfotes. and so on.. Also nme that Joop alu n ed nm drcutaie in clearly
defined waves~ Supp e Fis a ve , complicated graph. or · mphr doe-s not fire for a long time. The
inde variable i may con inue to circulate. causing many computations of F lO be initiated. This
beha i r i inform.ally referred lo as dynamic unfolding of a loop.

1.2. Data: tr:uctures
TI1 d111.anow m de] in roduced Lhu: far i fuUy general in a formal. compuLalional sense [34],, but

has fonitcd practical utiliry bec::iu · of the ab.:-1,;nce of data mctur . up we introduce a data

tru Lure ;onsuucmr cons, hU · "glu tor> ·th r" two d·'.tl valu . producing a pair. and selectors
jirsr and reJl which cess Lhe mp nents or a pair. Sin . l.h ·· new opt:rators are nmcti ns. they
fil ea!;ily in lhe data m model. provided · -. um ok n:· C-J.11 carry composit . d· ta 1alu . Note

-4-

1 0

y sum

Si itch +-••
T F

result

(a) {b)

Fi ur,e 2: Con i lonal and Loop Graphs

that a componem of r.hc pair might be a pair .. and so on; thu e must a11ow arbitrarily]a:rge
trucmre to b Tried on a tok -n. Onl. in the abstract mode'I do we think ,of structures as being

carried on t kens: in practice tokens carry pointe to · tructur which ar left behind in storage.
The cons operation can be extended to a general array ope ation append which takes an arr-ay ~ an
ind :i. i. and an element v. and produ new array y such that y[;] i.e., the j1' element of y, is the
sam a -1411 for all j not ual to i. and such that y{1] is v.

f. • n though d.na tnJcLures ill aside in stor· ge. we must . car,efu no-t 10 treat them as we do
array or records in a convention 1 langua_ uch , Pascal or onrnn. Consider the effect of a
on , ntional tore opcrat ion \ hi h mo Hie: a:n I mem of a darn strucmr,e. In ::ien r:.d there may

be man) m , _n .iJl) ·ng. poim to th ructur . uppose on i dcslincd for am dif)• op ration
·md :.moth r i de tined br '.! s, leer c p r· lion , ith th me inde '. Th cwo operations can
p l ·miall e:\.ecutc in paral lel b au - l11 r i n c,,pli it d to d p nd nc:y fr m n t I.he other.
H w \' ·r. lhe valu produ ed h) -h • ~1oct operation d p nd upc n whit:h p r·1ti n happen to
• xc ·ut fi L Thi ' feat · th d t m1in _ y of the mod I: 111 no long r m1 Lhnt instruction can

execute in any order consistent with me data dependencies and the re uhs remain unaffected by the
order. Append~ ho e . r. do nol change 1h data tructure: it rodu e. a new tructure that i
similar to the oM one. Consider the earlier scenario. in wh"ch a to en is de tined for a select and
another carrying a pointer to the same structure i. de tined for an append. the select operates on tlle
old structure and hence js not affected b the append.

These observation · rai ea tough quesdon. I it possible to suppon. data structures efficiently and
still maintain the elegance and sim· Hcity of the dataflow modeJ? We retum to this question. in
ection 3

1.3 . . ser·ddined Functions
Another high] d irable property of a model of computation i the abUity to support user­

defined function . Each of our e ·amples represents a function which. given a set of input values
produces a set of re ults. Any good high-level]anguage provides a wa}r of abstracting variabh~s so
that an expression can be tum d into a procedure or a function. Ar the dataflov graph Jevel, a
user-defined function is no more than an enc.aps11lation of a graph which allows arguments and
results to be transmitted properly. on-re.cursive function can be handled by graph ,expansion at
compile time. However, to support user-defined function more generally. w,e need an apply
op rator which rakes. as inputs a function-value. (i.e.. description of an encapsulated data.now
graph) and a set of arguments, and invokes tbe function on the specified arguments. There are
subtle issues imolved in t.he implememaLion of apply. For e ample. \\h .n should the graph
corresponding to the function actuaUy be created? After aU the argumenls have arrived?' As soon
as. a pankular argument has arrived? Often the semantic: of function application in high-level
Ian· uages requires the apply to be implemented in a panicular ay. Howe er. all imp]ementations.
must u. pon dynamic e.xpan ·ion of graph and a method to rouce roken to · nput arc of the newly
created graph. If a oopy of the unction graph is to be reu d, tllen a. mech:i.nism is equired to
distinguish token belonging to different invocation . In thi iatt r case the FJFO queueing of
tokens on arc wm not :u ffice. A mechanism for user-defined functions develops naturaHy out of
the tagged~token approach,. so e will return to mis topic after discu ing various implementations.

1.4. Dat:aftow Gr.aph :a a ParaHel -achine Laaguag,e
e can vtev dalaflow graph as a machine language fo:r a para.lie] machine where a node in a

dmanow graph repre en . a machine in tmcLion. The instructron fom1at for a da:tafl.ow machine is
essentially an adjacency i t representation of the program graph: . ach inslil.J.ction contains an
op-co-de and a list of dest"nation instruction address . R_-call. an in Lruction or node may xecute

hene er a token ts avai nb1e on each of its input arcs. a11d wh n il fire.s the inpu.L tokens ar~
con umcd. a. resull alue is comput d. and a re ult to en is produced on each output arc. This
di l.h foHo,.vins basic instrn tion y le; (]) det t h n an operation is ,enabled {this is
tamamount LO conect"ng operand valu s. (d ~ rmine the operation to b p rfonned. i.e.. fetch
lh · in Lmcl.ion. 0) compute re ults. and (4) gencrmc r ulit lok 11 . Thi· i rhe b:.tSic instruction
q • l of any da1afi machine; hm er. th re remains Lrerncnd u · n xibilhy in the d lails of how
Lhiscyck is perfonned.

lt is int resting w oontrast dataflo instructions whh those of con entional machines. ln a von
1eumann machine. in tru.cLion specif the addresses of the operands explicitl and the next

·nstruction impliciL1 via r.he program coumer {except for branch instmctio□s)1 • In a dataflow
machine. opeI'. :nds ·(token) carry Lhe addre. of the instruction for which the. are destined. and
instructions contain the addresses of he destination in uucticms. Since the e:ecution of an
instruct.ion is dependent upon the arrival of operands. the managemeat of to en storage and
inslruction scheduling are intima.te]y related in any datafkn computer..

Dataflow graphs ex.hi bit two kinds of parallelism in instruction execution. The first we might call
spatial parallelism: any t.wo nodes can potentia.Uy execute concurroently ff there is no data
dependence between them. The second fmm of paralJelism results from pipelining independent
'aves of computation through the graph. In the next section we show that it is possible to e.1:ecute

several instances of the same node ooncurremly thereby exploiting Lhi temporal parallelism.

2 .. Token Storage Mechanisms

The essential point to k.eep in mind m ooosidering ways to implemem me data.flow model is that
mkens imply storage. The token storage mechanism is the key feature of a data.flow architecture.
\Vhi!e the dataflow model assumes unbounded flFO queues on the arcs and F"IFO behavior at the
nodes. :it wrns out to be very difficult to imptement this model exactly. Two alternative approaches
have been researched exH:nsively. The first we call sraric dataflaw. it pro ides a fixed amount of
tomge per arc. The other approach we call dynamic or tagged--wken da1aflow; it provides dynamic

allocation of token storage out of a common pool and assumes that tokens carry tags to :indica~e
their logical position on the arcs.

2.1. t:atic Da taDow Machine
The one-mk.en-per-arc festrktion can be incorporated in the mode] by extending rhe firing rule to

require Lhat all output arc of a node be empty befor,e lhat node is enabJoo. With mi restriction.
storage for tokens can be allocated prior to e ecution. si nee the n umber of arcs is fixed for a given
gr,;1ph. The bas]c instruction fonnat is ex.panded to inc1ude a slot fa each operand. Distributing
tokens to destination instrucdcms involves Htde more tha:n storing data values in the appropriate
·lots. Th,e slots ha e presencejl!ll.gs to indicate whetlleror nm a alue has been stored. Thus. when a
token is tored. it i straightforward to determine if the oth r inputs are all presenL This idea
underHes the static dataflow machines proposed by DennlS and his co-workers 121 13 25] (see
figure 3}.

lnstru tion tcmpknes re ide in tfle a.rtivit_y store and addre . of enabled ·n tructions reside in the
instnic:lion queue. The fe1ch un.il remove the first entry in th in truclion q eue. fetches lhe
oorre:spc n ding. op-cod . data. and des(naiion Ii J_ fmm the ,ICli v il _ stor . fonn Lh em into an
Dpcr<.ition pocket. forward the p ration pa kel to an a\·,1il· bl op ration unil. and finally clcm'S the
ope .md sims in Lhe u:mpkne. Th op rati 11 unil compuLes a resu1L g ncr l a re ult packet for

;,1ch de tin :n ion. and . n ds Lh . r su l L pac.:kc LS to me updcu e unit. n stru ction av id n tin d by their
· I re ' jn lh a t.i ity tore. ' > the upd. L u11iL stores em.:h r ·ulL ~nd ch ·k. th pr n bi . 10

O tput

nput
Update

essage Llnk:

- - --1111• Read/Write Access

----->~· Read Access

-7-

Operation
Unit{s)

Instruction
Queue

Activity

Stor•e

Fetch

OP Code

Flg ~erundJ _
Flg Operand l

e:,n

Fi,gure 3: Static Daiaflow Archhec ure

detem1~ne if cbe co 'esponding activit i enabied. U so .. I.he address of the instruc-ion is placed in
the instruction queue. The e units operate concurrenll.y. so instructions are processed in a pipelined
fashion.

It i poss;ible to conoect man --ch 1n1eesoors mg ther vi a pa k t communicati.oo network. The
activity store of each proce~ or can be loaded with a pan of a datatlo, graph. otioe. drnt iai:ge
d _ la in th-e oommuni.cation neLwork do not affect the performance. le.. lh:e numbe of operations
p rformed per second, as long as enough nabled nodes ar pr _ sent in each pmc-esso . This i· an
important characteri tic of d·nafiow machines; they _ n use parallcfo;m in progr-ams to hide
communication latcnc between prooessors.

2. LL Enforcin° th.e One· okcn-·Per- re Re tri:ction
TI1e above description of tl1c tatt m3 hin · kips o er a \'ery impona:nt and rather ubtl.e po·nt:

the on ·LOl<.en-pcr-·arc restriction of D .nnis' model. uppo 1h unil communtcal ilh a fu-1
, ndaad:.n ledge protocot le.. a mken mov s o th n x un· only after that unit has ignaJled
that it ci.ln ac:cl!pL the lOk n. and ·l.h Update uniL writ im .m , p rand loL cm r if the lot i empt}' ..
-vcn , ilh Lh assumptions. multiple 10kcn b [omdne to th~ s. me nr may >-.ist in the

..:g.

mach·ne., since there may be buffering in the units and communication network. 1t is infeasible for
the update or fetch units to deLermine that mere is no mken in lhc ystern for a particular arc. If
multiple token can coe ist on an arc then the F! FO assumption may be vioJated, because two
firings of a node may execute on different operation umts within a P.E and the one that is logicaUy
second in the queu may finish fi L ~e communication system wUJ ultima.tely direct these r:esul
mkens to the same descination node. but in the wrong order. To see how the dataflow modeJ
m:ilfunction if tokens on an arc get out of order. consider the e ample in Figure 2.b with the plus
operator replaced by minus. The results of F(l and F(l can potentially reside on the 'left input to
the minus ooncurrently, but ifF(2) is processed before .f(l) the answer wil] be wrong2.

If the one-t:ok.ewper~arc restriction can be enforced. then the problems due to reordering of

to ens win not arise. :h restriction cannot be enforced at the hardware le\1el but ics effect can be
achieved by executing only graphs whk:h have the pmpeny mat no mor-e than one token can r~side
on any arc at an stage of execution. lt is possible to transform any dataflow graph in to a dataflow
graph with thi pmpeny. Jn the simple . . transfonnation. for each arc in the grapb. an
acknowledgment arc is added in the opposite direction. A ·token on an acknm ledgrnent arc
indicates that the co:rresponding data arc i empty. Initially. a token is pfaoed on each
acknow]e:dgment arc. A node is enabled to fire when a token is present on each input arc and each
incoming acknow]edgment arc. At the hardware e el, the onJy dirference bet\ een the two kinds of
arcs is chat r.he value of a token on an acknow leclgment arc i ignored. nstead of lhe presence bits
fur operand. a coumer is associated with ,each insm1ction. The counter is initia]ized to the number

of operand plus lhe numh r of incoming acknow]edgmem arcs and deer mented b. the update
unit whenever an operand or .admowledgmem arrives. The node is enable-d. \\'hen the ro:u.nter
reaches zero. otioe that the generation of acknowledgrnems must be defayed enough aft.er the
operation packet is fanned so that there is no way for resu]ts of the second firing to overtake the
first.

The one-token-per-arc restriction f aot entirely satisfactory. Even though many of ·me
acknowledgment arcs in a program graph can be eliminated :[40], th amount of token traffic:
increases by a factor of l.S to 2. the Lime between sucoessi e firings of a node increases drastically
and moot impon.amly. the amount of parallelism that can be exploited in a program is reduced. In
panicular. the dynamic unfolding of loops is everely constrained, as sho n by Lhe followilng
exampie. Suppose Fin igure 2b is replaced by the acyclic graph in Figure l (perhap we ta e the
inpuLS a. b, and c to be t). h should b po ible to pipeline four di tinct computations through this
graph. buL unfonuna~cly. ,,·ith lhe static approach the cand initiation mu l w., it until the di,;ide
nod fire • clearing the input arc for c. This pmbtem has r,ecei ed ubstantial auem.1on [20) and can
b partial yo eroome by introducing xtr-a identity oper.1wrs to alnnce I.he path length in a graph..
Fore; ::impl . ff thre idcmiLy nodes ar added on th nght input t th divide in Figure 1, Lhe path
l nc,1.Jls would be pcrfocUy halanced. Th baancing apprmch assumes that e:\ccmion times for all
opcra.lors ar~ Lhe me and mmunicalion defa rs b l ecn opcmtor · re c nsLan.L , ·1iler
assumption is roaHsti and balancing ecomes compuu.uionally intractnbl . ithout these

2
'll~mis hlm · ["9] that mulLiplc wkcm µ r ilf caJ1 rn~ cause th ma hint: to cleacHock.

assumptions.

We no,te in p ing, that model'ng unbounded-FIFO data Iow graphs b fi ed swrage datafiow
graphs (introduction of acknowledgment arcs is one xarnple of such modeling). changes the
"meaning" o , a data flow graph in a ubtle wa .. A graph ma · be d ad lock fr.ee in the unbounded
ca e. but Its oorresponding graph with ackno\! ledgment arc may deadlock under certain
drcumstainces. Thee shonooming.s. in addition to the inabnit m handle use!i&defined functions,
motivated work on lhe rnor generat dynamic dataflow approach discussed next.

l.2. Dynamic or T agge.d-Token Datafl.o,w
Each mken in a sta : c dat- flow machine must carry th address of the instruction for v h • ch k is

destined. Thi is alread a tag. uppose. in addition to specifying the destinatioo node. the tag aJso
pecifie a pan::icular tring o the node. Then. two tokens participate in the same firing of a node if

and onl if their tag are the same. An.other way of look"ng at tags i simply as a means of
maintaining the iagical flFO ord r of ,each arc. regardless of the physical arri,•al order of tokens.
To.e token whkh is supposed to be the z-01 value to flo\! along a given arc carri.es i in its tag. The
trick is to give simpl,e ta , generation ru!es for the control operators. switch and merge. Arvind and
Goste1ow [7] ha e given such rule for Dennis' operators . 22]. However, ·r only weH~behaved
graphs are con idered, then it is possible to develop even simpler tag manipulation rutes [9]. We
briefly explain these Janer rules as ell as the effect of tagging on the dataflo mode] presen ed in
'ection 1.

2.2.L Tagging Rules
W intend the tagged~t:oken approach to pport user defined. functions. so a program is vi.ewed

as a collection of grnphs. caUed code-blocks. where each graph is either acydic or a single loop. A
node is identified b•y a pair <:code-block, instruction addrc). ags have four pans: <invocation JD.
iter-ation m. ood -bloc . instruction addr: > .. where the latter two identif-y the destination
instruction and the fonner two identify a particular firing of that instruction. The iteration JO
di tinguishes bet een differ m it rations of a particu 'ar in oca.tion of a loop code--block. while the
invocation 1D distinguj hes be ween differ-em invocations. All the token for one firing of an
insrnuction must. have id n ica.J ra ... and enabl.ed instructions are detected by finding sets inf tokens
wilh i.d mical UJigs .. Token also rry a pon number whi h specifies the input arc of the destination
node on . hich the token resides: thi i not part ,of th tag, and lhu does not panicipate in
matching.

Consider rst the execution of an acydic graph such as ·n Figure 1. A set of tok n whose tags
di rrer only in the in tm cti on .. dd part L p aced on the in put arc . When an in~ tructton fires it
generates ta_g for · ch rc~ulL okcn by using the d 1inmk1n ·1ddr in th instruction as the
inslru tion address part and op •ing the r, ·t fmm Lhe inpm rng. For condilion.ils the scenario is
imihr. but there are t\ o deslin.ilion Ii l -. A ingl , a of input , i · t t:red th n'"'h one am1 or

the mb r. e ill ensure. ho v v r. 1.hat no two av of input<. carry tJ1 ~me in ocalion and
itcralinn IDs in lhdr t g . Thu . for any gi en a~. a d,lt..i it m c, rryin that 1ng ,i]I arri,,e on at
most on~ idc of Lh merge:. 1n · the order O•I Lok n , on th..: ar · is immaterial, Lher ~ i no need to

orchestrate the merge via the output of the predicate as in the FIFO model: the streams of tokens
produced by the: two a:nns can be merged fn an arb[tra fashion. Thi modified conditional schema
is hown in Figure 4.a. The ® is not an operator: it merely denores that. two ar-cs converge on the
samepon.

1 0

X ,I Y

r
j som

switch
T F

~ -- , swilch
T F

result

Figure 4: Conditionru and Loop Graphs for 'fagged Approach:

The loop requires a control operator. named D. to increment the iteration ID onion of the tag
(see Figur,e 4.b . The iteration m of each initial input to the: loop is Z1ero. Li ~e t.he oonditi.onal
schema. the merges, can be el.iminated from lhe]oop schema because the tags on the r kens on the
Tme and False sides of a merge will be disjoint The 0-1 operator is used to reset the i~ ration JD m
z m. To implement nested]oops and u er-de lined function · an additional op rator i · required to

assign unique in vocation m's. The app(~• operator L1k e a cod . -block nam . and an argument. as
inpuL and forward the argument m the designated code-block · fl • assigninP it a new invocation
m and sc tti ng its ·iteration ID to zero. he mg or the output arc of the .apply node i also sent to the
in oked graph so me n:su Ir. can be rem m d L th e "ti naLion or the app(r nod . as if it were

generated by the apply node itse]f. One may visualize the action of an apply as coloring input

to~en in such a manner th at. che y do nol mi;; with Lok.ens belonging lo other in vocru.ions of the
same code-block. Of course there must be a complementary operator to restme the original color
· for the result tokens. The interested reader is referred to [lOJ For more detail.

The tagged-t!oken approach e1imina£es the need to maintain FIFO queues on the a:rcs (though
unbounded storage is Lill assumed . and commquendy offers mme parnlleli m rhan tlle abstract
mode] presen~ed in Section 1. ln fact. it has been shown mat no inrerprerer can offer more
paraUelism than the tagged-token approach f8].

2.2.2. Tagged·Token Dataflow Machine
A machine pmposed by Arvind et al .. [4] is depicted in Figure 5. lt comprises a roHection of

process.ing elements (PE's) connected via a packet oommunicadons network. Each PE is a complete
data.flow computer. The waiting,,,natchin.g tore i a. key compone:n of chis architecture. When a
wken enters the waiting~matching stage. its ta.g is compared against the tag of the tokens resident
'n the store. Jf a match is found the matched token is purged from the st.on, and is fol"'Narded to the
·nstru.ction fetch stage. along with the encering token. Otherwise the Incoming roken is added to
the matching store to await its. partner. (Instructions. are restricted to at most two operands so a
singl!e match enab]es an activity,) Tokens which require no partner i.e., are destined for a monadic
operator bypass the waiting~matching stage.

Once an activity is enabled. it is processed in a pipelioed fashion wirhout furdler delay. Toe
·nvocation ID in the lag designates a triple of registers (CBR. DBR.. aind MAP which contain all the
information associated with the in vocation. C BR contains the base addre of the oode~ b]ock in
program memocy: DBR contains I.be base address of a da:ta area which hoJds values of loop
variables that behave as constants. and MAP contains mapping infonnation describing how
activitie of the invocation are to be distr:ib:uted over a coUection of PE"s. The instructicmfetch stage
is thus able ro locate the instmction and any requi.red oon tanlS. The op-code and data values a:re
passed to the ALU for processing. ln parallel with the LU. lhe compute tag stage accesses the
destination Hst of the insm.1.cdon and prepares resu]t tags using the mapping information. Res.ult
values and tags are merged into tokens a:nd passed to the network. where.upon they are rou,ed to the
appropriate waiting-matobing ~ore.

It is impon:ant to rearz.e thal if the waitlng·matching store e ,er gets fu.11 the machine will
immediately deadlock: tokens can leave the waiting;matching section ont by matching up with
incoming token . A rmilar argument can be made to show thal if the total storage between the
omput of the waiting-matching section and the path feading tc) its input is hound d. a deadlock can
occur [I 7]. Th . r, fore. in addition to th functional units d cribed in Figure 5. eaoh PE must have a
token buffer. Thi burn r can b placed al. a .:uicly of points. including aL I.he omput Lage or tile
inpul stage. dcp ndins on the relati e speed . of th,e various stages. Both 1he waiting-matching Store
~ind Lile klkcn buffi r have to be large enough to rnak the probability ofo rtlo acceptably smaU.

The apptv op rator i imJ1 lemcm d as a small graph. The in vocaLion req ue: t i passed to a
ysl m-wrd re urc.-e miJnager so Llrnl re ource such . a ne, ·n aca.Lion m. pro~r:1m memory etc.

)· tr
Storage

-12-

Input

PE
ConLTo11er

Outpu

Wait­
Match

Figu:re 5,: Proce ing El meot of the MIT ag~ed Token Daraflow Machine

Prog
Mem

can be a11ocat d for the new in ocation. A code-block invocation can placed on essentia11y any
coUection of rocesso . arfou instanc . i.e.. firin . of instruction are igncd to P ·s within. a
collection by "hashing•• the 1.ag.s. A variety of mapping schem _ ha b en de e ped to distribute
the mo t frequ nLI encountered program , tRJCLures effid ndy. The MAP re i l r assigned to a
cod -b1ock in ocation keeps the h hing function to b u d for mapping acthdti of tile oode­
bloc.

Efficient handling of "loop constants" is a fairly tow-1.evel optimization. but important enough to
deserve mention. In the abstract. model variables which are invariant over al!l iterations for a
particular in ocation of a !oop. bul ary for different. in . ocations. must be circulated. Variable Nin
Figure 2.b is an example of such a variab]e. Values of such · aria:bles cannot be placed in the
instructions withou making the graph non-reentrant To avoid this overhead, most dataflow
machines provide a mechanism for efficient handJing of Joop constants. As an example of the
importance of this optin ization, note that tlle inner loop of a straighLforward matrix multiply
program has seven toop vanables. five of, hic-h are loop constants. In the MIT tagged-token
machine.. storage for such constants i allocated in program memory when a loop code~ block is
invoked~ DilR points to this a.rea. aUowing rthese constanis ID be fetched along wim me instruction.
The constant area i deaHocated when the invocation ~ermmates. If the loop invocation is spread
over multiple PE's. setting up constant areas is a little tricky. since an image must be made in each
PE before the first iteration is aHowed to begin.

The tagged-token arcbitecture cir--wmvents the shortcomings identified in the static architecture.
but il also presents some difticuJt issues. [n the static machine the storage has to be allocated for all
arcs of a program graph though tokens may coexist on]y ,on a small fraction of them. Jn contrast.
10ken srorage is used more effidently in the tagged-token approach, because storage requirement ·is
determined by the number of tokens that. am coexist However. programs exhibit much more
parallelism under the tagged-to .en approach (actuaUy even more so than the unbounded-FIFO
model). and consequently. can dri e me token storage requ·rement so high that lbe machine may
deadlock (17]. Thjs has tuim.ed out to b .. a serious enough problem in pr:1ctice that we now generate
on]y those graph in which the paralle]ism is bounded. In lhe dynamic machine. the mechanism for
derncting enab]ed activitiei appears more complex. since marching is requi.red as opposed to
decrementing a ooumer. Fun:ber, tokens carry more raggiag .information though no
acknow Jedgment tokens are needed lf tags ar•e to be kept refati veiy sma.11. the re must be facilities
for reusing cags. This in tum requires detecting me oomplecion of code-block mv·ocation:s an
action , hlch generally invo]ves a nontrivial amount of computation. This task would be virtmtl1y
impossfbie if the graph were not 0 self~cleaning". which i.s a consequence of ,graphs being well➔

behaved. Fina11y an efficient mechanism i:s required for aUoc:ating resouroes to new code-b]ock
invocations.

2.l. Tags a Mem:ory Addres es and vice: ,,ersa
The performance o a ragg d-token machine is cruciaHy dependent upon the rate at which the

, aiting-matchinn section can process tokens. Though the size of the waiting-matching store
dep nds upon man· factors. based ,on our preliminary studie we e,xp ct that it win be ia tbe range
of IOK lo lOOK rokens. l:i this size rang . a completely associative memory is ruled out, but a hash
tabl.e. pos ibly augmemed with a small · ·.ociaU\1e memory is viable. and the waiting-matching
sections •Of the machin" discu d in Section 4 are organized as such. H hing basic.aJly ·n olves
calculating th .iddress of u lot in the hash tab.le by applying some ''hash" function to the lag of the
token (see [J3] or rm I . of the hashing fonctions us din a tagged-machine).

Gino Maa. member of our group. has s.uggesk:d th t uig hould iewoo · uddres5cs for a

inual menmry in~ hich the primiLi e operation is store-exuact. Gi en a data and an address the
s.core-,r!xtract operation stores the data in lhe lot specified b me address if the lot is empty,
otherwise the contentS of the slot are read and the lm is considered ,empty. A page of virtual
memory may comai n. for e ·ample. mkens with identica] rontex ts. [t is clear tha r only a tiny
fr-action of me virtual address space ill be occupied at any given time and physical swrage is
requi.re.d only for thi fracUon. Thus. the problem of me design of the wailing-matching section
becomes the problem of implementing a ery large vinua] memory (40-bit addresses oe larger).
where a non-existam page i allocated automaticaUy upon an anempt to access it and deallocated
when al] its entrie are empty. Cache may be effective in organ.iz.ing such a memory as there is
e idence lO uggest that when an incoming token finds hs panner. the panner is usually among me
most re,ee□tly arrived tokens [15]. The difference bet\ een the Implementation of a huge vinual
address space and 1he hashing approach discussed earUer ma be minimal. however . i.ewing ta_gs as
addresses allows us to place many variation of static and d_ namic machine on a continuum. in
which the address on a mken in me sratic machine becomes the tag on a token in the dynamic
macb·ne.

Consider extending me static machine b operators to allocate acti ity sto e dynamically. thus
allowing procedure c.alJ to be impl mente,d In aU such implementations. a pan of the address
serves the purpose of the "context'" ·p·art of the tag in the dynamk machi.ne, and me task of
allocating a new context is subsumed by the task of allocating acti . ity storage. A common
optimization in such schemes i to separate Ille operand slots of an instruction from the rest. and to
allocate a new template com.aining operand slots for a code-block at. the lime. of invocation. To
achieve sharing of a oode-block among several invocations requires relocation registers like CBR
DB!R. etc. of rhc MJT tagged-token machine. Anotlier variation discussed in the]iteratu.r-e
eliminates the need for acknowledgment arcs by allow·ng only acyclic graphs (26. 44). Since a loop
can be modeled as a recu ~ive proc dure. mi offers a trade-off between the cosL of extra procedure
calls and the sav·ngs due 10 me elimination of acknowiedgmems. As discussed earlier there are
subtle issues associated with the implemematian of the apply operator. e.g .• the time of storage
allocation affects the amount of para lleHsrn that can be exploited by the machine.

Coming from the other direction. a variation of the tagged-wken machine that has been proposed
by David Culler and Greg Papadopoulos (also of our group) L to replace the waiUng~matching

section of the Lagg · d-mken machine by a toke 11 st.orage that i exp licitly al located a1 ihe ti me of
procedure ·nvocalion. It is possible ID do so if t:he storage r,equirement of a code-blook can be
denmnined prior to invoking it The cype of bounded-roop graphs that we propose to run on the
machine ha e lhi propeny .

. fter examining some of th _ variation di cu ed here. I.he distinction between lhe static and
dynamic datano beoon1 mewh~t fi1uy. Choosing a good design among lh ones proposed (or
on _ c:1 lo be prop -. d · is an :i tiv research topic in Lhi fi ld. Th o:n! g n ml tat n1ent we can
make is Lhat gi\·ing m progr.m m r or the compiJcr a greater control over th management of

rcsouv incre:.-1 hi respunsi bi lily and burden.. bul may provide significam · erfmmance
impmv~me111:s and may simplify lhc d ign of Lhe m· chine.

. Data Structures

eccion 1 described ho, data structures can be incorporated in Lhe dataflow mode] without
sacrific'ng its ele ance or utilit · for parallel compucaLion. We now inuscra1e the difficulties in.
implementing 'Tunctional" dar·t structures emciently and describe an allema.tive view known as
1- tructures. Thi bi:rmr approach offers an efficient implementation without sacrificing
determinacy, and allows more para11eiism to be exploited in programs than the "functional 1

approach.

3.1. Fmi:ctiona.l Operation On Data Stmctures
The si rnp lest . ,orm of" function al" data structure · s reflected in the operation cons. first. and rest.

Cons glu two values together to fom1 a pa.ir: first and rest select values from uch pairs. Cl.emiy,
we cannot allow .aTbitrarily Jarge aloes to be carried on a 10 en. so pairs must be maintained ia
storage with tokens carrying the address of th pal . To Lh" end data.flow machines provide
slructure storage. , hich should be considered as a special operation unit with internal storage. The
unil i shared by all PE's and is capable of perforrn.ing many concurrent structure operaUon.s.

To see how the structure store and its associated operations behave. we can step through the
execution of a flr.sr operation.. A jil'. l operation is enabled by the arrival of a token carrying a
pointer. either the fetch unit m the static machine nor the ALU in the tagged-token machine can
access the structure storage rurectly.3 Thus a new packet con 'ning the read request and tbe
address or tag of tl1e destination node of t:he first operation is sent to me structure stora.ge.. Upon
receipt of such a request. the structure stor~e con:i:roner produces a mken containing the left. value
of the pair and sends it to the appropriate destination insLruction: this is depicted in Figure 6.

imil ari . for the cons operator. n o iapur data values together with the destination node address
,(or tag) are sent Lo a structure storage unit. The strucmre oontroller a11ocates SIOrage for the pairt

writes the elements and sends a poim:er for the ne ly allocated storage to the destination
instruction.

11,e implementation of large. nat data structu:r s. uch as arrays, presen difficult desi,gn trade­
offs. If array . are implemented as linked ljsts using cons. lection operations are inemc·ent. If.
instead. array elements are stored contiguously. as a generalization of Lhe pairing op ration, the
append operation become costly.. This i because append invo]ves creating a new array and copying
all e. cept one element from the old array. .Efficient imp1ementations of array · have been
researched extensi ely [l. 31] and two key ideas have emerged to reduce cop}'ing. First. if the array
descriptor for pointer fed to the append operator is the onl_ descriptor ·n existence for the

3
1 ot nrnvidin~ direct aco:ss to a large stomsc sh:il'~d b m:m PE'. ts certai.ih· a design cholc-~. but a fund..1.mental one.

I u :1 n,;1diu1c \ ilh m,.1ny prore-~n. and m:11w strucwrc coriu-ollcffi. lhe umc m an:ess a pardcular m~1nor~· contmll ·r ma;­
he \Cn large. Ir the in. trunion proof'~,;;cog pip •line bl id.as or stmc:rnrc or~r.Jtinn . lile pcrtom1:ut · of lhc inad1i11c:: wilJ
ht: !1fl'.1H!.'" ;11 •~1.:•cd the lJtenn or the t·oinmm1it·:JLioh .\'stem . 011 , blJUty o da1.:1flow ma Mn ~ is lht'~ ::tn be mude
c.~[n:rnel.' l ill-ranl ul" lrncnej,'. :Ill u,u~ {.':m ~ J~t:irn hLgh perlhmumte l!Ul 1mm} pro:.x-ssor:, wori.ing an .l illr)c prublcm.
DLrn il ·I.I· rgum,.:n[s to Um, account ·m Ix'. 1i,um:l in /\n•ind am.I Ian.n u i [l l].

a

first

. <remNeft. a>
~

I
_.

..
Structure

. ~ ,. I r-,---------.-....________,

~ Structure

Store Store

D ! a.-

(2)

\l

(3)

I a.-----
i
--.~

Figur 6: Action of afirst operation

corresponding array. the array can be updated in place , ithout risk o causL11g a read-write race.
Second. if the array is represented as a tree. then only the nodes along th pa.th t-O tlie appended
lement need be regenerated: the rest of the tree can be shared. This reduces the amount of

allocation and copying. but increases the time for se1ection.

3.2. 1-slructures
The 'tfunctional'' vfew of suuctures imposes unnecessary restrictions on program execution

regardless of how efficiently it i implemented. Consider die simple example cons(f{a).g(a)): the
cons win not be enabled unlil bm.h f{a and g{a) have oomple~ed. Thus .. anoiherpan of the program
which u ei the first e1cment of the pair. but noL me second. must wail until both elements have
been compmed. uch data structures are calJed stricl in programming language jargon. ln contras
cons can be treat d as a non~strict operator [27}. allowing an element of a pair 10 be used regardless
ofwhe;cher the otner ,e[ement has be n produced. The resultant increase in paraUelism js far greater
man one rn igh t naively imagine.

The firing rule for non-strict cons is di fficu It to implement One way to d rcu m en t this difficulty
is o treat cons as a. triplet of operations. as hown in Fig11re 7. The irn lidt storage allocation of
strict cons becomes visi b]e as a new type O node · n the dataflow graph. The descriptor produced by
the allocate operator is passed to th two store operation-• in add i ti n to the sub eq uent select
oper.uions. Thi · allows consumption of a mcture to proceed in paraUel with production. but also
raises an awk ard problem: a first or rest operation may be executed before the corresponding
store. This seemingly '.ata trophic situation can be re.so! ed with th 11 Ip of a smart slructure­
storage con troll r. H" a read r q ue t a:rri e . for a lor gc cell which has not been wriu.en. Lhe
oontroUer d fers the ad until a v.•riL" arrives. Thi · is the basic i ca behind [~structure storage.

Referring to Figur • • each torJge c 11 mrnain: latu, bits to indi lte th.i.t the ell i in one of
thrc ~ ~ ible states. (.l)i PRE· T: The ord mmain ·aUd data M,-hkh .. 11 h rli I read as in a
convemh nal memory. Any ~JU rnpL m \\'rite rt win be signalled ns an ermr. ("") .BSE : olhing
h·iS been wrin n imo Lhc cell jna: iL \\ · Iai:;t alkx:au:d. lo ~mcmpl has h 11 m,1dc lo read Lhe oo11~

-17-

a b a b

~
~

Figure 7: Impl.ementation of ·On-stri.ct Cons

it may be writreo as for conventional memory. (3) WAlTl G: othing has been written imo the
ceU. but at least o,ne attempt has been made w read it When it is written. all deferred reads must be
satisfied. CeUs change srate in the obvious ways when pre-emed with requests. Destina:tion tags of
deferred read requests are .stored in a pan. of the 1-strucmre stora e specialty reserved for that
purpose.

Whme I-structure storage can be used to implement non-strict cons, ro expJoi the full potential of
lhis form of s1.0ra e. functfonaJ languages can be au, mented w.ilh explicit a11.ocate and store
opera ion From a -rogrammer's perspective .. an 1-structur i an array of lo (42] whi.cb are
initiaily erupty. and which can be written at most once. Regardless of when or how many times a
sele~t instruction fur a pan:icular Im i ecuted. the valu rerumed is always the same.. This
preserves the detenninacy propcn . of I.he mo el. . ~suuctures are not ''.functional" d ta structures·
they are "monotonic objects" which are con tructed increme:ntaUy. hence their name.

I-structures: provide the kind of sym:hronization needed for e ·ploiting producer-consumer
paraU.e]ism hhout ri k of read-write races. 1-st.rucrur-e read requests for which th data is present
require aboul th same tim. as ronvemional reads. and wiLh special hard, are [3,2] deferred reads
can b pr-oc"' quickly. Thu . as long most read requests foUo the ,corresponding write lh•e
ov, rhead of]-structure memory i mall. and the utllity is enormous.

Th benefit. of non·sLrict s1:rucmres in term. of Lhe amount of parallelism c hibited by programs is
surprisingly Larg • For xample. method in which tar _ m h i repeatedly tran formed into a
new ersion b performing som calcu1ation for each point are common in num ricai computing.
ame uch mclhods show trernendou par n lism because all m.esh points can be computed

:irn uhaneou. b. H w er. •even "i hen hi i n ossible beau e o . daw. dcp nd nci . it i usua11y
po_ sihle to overl p I.I omputation of · _ -ral version of lhe me h. Thi I.au r fonn of parall•eH m
c-an · ploiLed only i the m h 1 rcpr ·en Led a · a non-strict structure.

n: p

n+l : A

ll . 2: w
n -,-J; w
n 4:

-18-

Presencci3ilS(P=-Present.A""'A. nt. W= aiitiog)

Data or Deterred Read Pointer

Deferred
R ad Requests n m: I p """"....., ______,.

Data Storage

4. 1Curreut Uatafl0iw Proj,ects

Passi Le cxco.ition SC(j!Llem:e
pmducin this structure:

" ltempt to R D(m 2) fer instruct.im1 A

WRrTE(a + m)

• Au.empt to READ(n + 3) for insuuclion C

WRITE(n)

A trempt to REA D(n + 2) ror imtnicuon B

"'RF.AD(n)

Figure 8: 1-Structure Storage

We nm pre ent an o rview of some of the more important datanow p:rojecl.S, regtricting our
attention to, Om e that have built or are currently building a dataflow machine. ln panicu1ar we do
nol add:re.ss hm dataflow concep have iaflu need high-perfonnance van eumano computers

being designed today.

4. . Static Mac binc Project
lt is no xagg . ration to ay that all dataflow projeCL~ smn:ed in th se en.tics , ere directly base-di

n Dennis· cminal work r221. uch projects, besid . Denni . . own proj,ect. indude the LAU projecil.
in oulous Fran e [16]. lhe Te ., In trum nts datan w project [35). Lhc H ughc: dut.aflm. machine
[2]. and \' ral projec in Japan 14 ,. I]. Even the , ork on La!!.gcd·token machines at the
Uni versity of M:mche~ter in England and the Uni e ~1ty of Cali'tomia at Ir rin w • inspired by
)cnni · work.

-19-

4.1.J. The MIT ta.tic Machine Datanol'r· Project

Denni ·· group at M ff h:is proposed and refined se ral static dataflow architectures over the
years (21. 46. 19. 25). and h.i e implemented an eight-processor engineering model of the static
machine shown in : igure 3 [19]. The processing elements (P) were buHL ma of AMO bit"Slice
mic:ro-proc ors and were connected by a packet-switcbed buuerfly ne!work composed of 2x2t
b;rte- eriai routers v ith s nd-acknowledge protocot The strucnrre oontm11er was not imp~emented.

Dataflnw graph for the machine ere compiled from lhe language VAL [2]. A PDP-11 served as a
front end. While the ma hine operated successfuUy. it was only large enough to run toy programs.
A1so. becau e of microcoding, the PE" ere far slower than the routers. The Texas Jnstrument:i
machin [35]. which was architecturaUy similar to Dennis' machine. was bui]t by modifying four
con cntional processors. E en Lhoug,h lhese macltines proved to be too slow to generate
oomme:rcia1 interest in dataflow machines they have had marked influence on instruction
scheduling in hig,h~perfornumce machines intended for scientific computing.

4.1.2. The · EC Datano aclliines
The latest. machines which may be classified as static machines are ECs EDIPS [48] afild

lmage Pipe]ined Processor (IPP iJ,PD7281 [4-1]. NEDIPS is a 32-b1t machine intended fo.r scientific
computation and uses high-speed]ogic, while the IPP is a single chip processor of similar
archit.ecture intended as a building block for highly paraliei image processing systems. We focus
on the latter machine. Generally. image processing invol es af'.)plying a succession of filters w a
si:ream of image dam. Thus, each lP.P chip may be .loaded with a dataflow program for a specific
filter or several filters,

The EC designers have generalized the machine described in Section 2.1 by allowing multiple

token per arc. . o see how th is is done. oonsi dcr once again the srntic machine i□ Figure 3.
Instruction templates must be enlarged to include a. coUection of operand lots. lf we assume that
the operand of an enabled instruction are immedtate]y remm•ed from th aclivity store and
forvmrded to the operation units. then tokens cannot accru in me sloLS for both the left. and right
arcs simultaneously. Thus. both arcs can sh a.re the same lots as long as a flag is provided m the
instruction template to indicate on hich arc Oeft. or right) t.he current tokens reside. Further. the
coHection of lors in fill instruction are managed as a cyclic buffer. with two poimers marking the
head an:d tail of the queue. When an incoming token i for the same arc· the arc m which the
pre iously arriv,ed tokens in the instruction belong. the update unit adds the data value of the
incoming token LO the 1.ail of the queu . Otherwise. th.e data aJu at the head i.s removed and
placed in Lite insuuc:rian queue. alon with incoming token. otke it is not necess3ry for all

in Lmc:Lion templates m comain the 1me num er of operand slots.

In th JPP implementation. lhe three components of the instruction tern late. op-,code. operand
lou and d tinalion 'j t are pku:ed in th re sep. r tc memories so mey can be ac,eessed at

con ccuti e 1·.g - of lhe instruclion pip rinc. Each P · provides storage for 64 instructions. 128
res. :in 512 l6-bi1 d La ,elements. which can be partiti n "d imo queues of up to 16 slots, per

in:mictinn. The rPP also aUo s ree.ian. of th d~tta m m rv to he u cd rt r txm. ant. and tables. In
~ ~ . .

add" ltun. spcdnl hard\ ar operation are provid d ror genernting. co·1lescing. split ing, and merging

streams of token . A no el technique i employed to gm,•em the level of acli ity in the instruction
pipeline: instruc1ttons with multiple destination are ueued eparate]y rrom those with single
destinations. so , hen t.h pipeline is starved the multiple-destinaLion instruction queue is given
-priori.ty, and when me instruction pipelin is full the other queue i favored. Buffered input/output
ports which uppon a furl send-aclmm ledge protocol are provided. aJlowfog up to 14 IPP s, to be
connected in a ring. The system relies on a host processor m provide input/output, bookkeep,ing,
and operating system support.

IPP does nm handle ac,knm Jedgments pedaUy and requires thaiC operand storage is aUocated
statica]ly. i.e.. by the progrn.mmer or compHer. The programmer must tune the program graph to

a oid buf er m••erflow and ensure lhat to en do not get out of order. Thi makes program
d velopment or lhi · machine a tedious: task. The bufFer ,overflow roblem is much less severe in

DrP because it pro ides rnuch more data memory (MK word), lhan IPP. S iU the problem is
seriou enough to cau e I.he designers to modify EDlPS so operand uffers can be e tended or
hnmk dynamicall~r in 12 word increments. As discussed in eccion 2.3. this extension also mak "
difficul to cl sify EDI PS as a stati.c machin.e.

EDlPS and IPP are me first commerdally avai1able dataflo,w pr;ocessors and regardl.ess of their
commercial success,. which only time wil te]I. they ar major milestones in n.on-von ,immann
arch itecwres.

4.2. Tagged-Token Machine Pr,ojects
lbe tagged-token dataflow approach was conceived indep ndently by tw,o research groups. one at
anches1er Unh1e ·1y in Manchester. England and one at he Univ . rsity of California at Irvine ..
e tagged-lo ·Em architecture pr em din ection 2.2 is bas don work b_ the 1atter group. which.

has since moved m the - assachu ens In itute of Technology. Tile prototype ~gged-token
machine completed at the Uni rsity of nchester in 1981 [29] is an ·mportan mile-stone and
presents some interesting variaLions on the mach·ne described aoo e. A number of other pro otype
efforts are in rogr in Japan. most notabJy in Amamiya•s. group at NTI [3. 47]. and Sigma-I at
ETL II hich is discussed 1a1er in tllis section.

4.2.1. The anche ter Datanow Project
The Manchester machine is entially Hk,e the instruction processing section shown in figure 5.

Jt j a single ri11g con isting o · a token queue, a matching un ·r. an in truction store. and a bank of
ALU' . The LU'. arc microcoded and fairly , low. lt ha-; demonstrated reasonable perforrnance
(1.2 M iPS} wilh this arrangement. allhough the choice of man_ s}ow A; U has received some
criticism be.ca 1.se an the ALU·s ,m b easil replaced by a single fasl A U. To ·ens are 96 bits
~ id . indudin"': 37 bits for daLa. 6 for la'"'. and 22 for des in lion addre. C. The matching, unit is a
lwo-level SlOTt!a ·n1e n l I.. I h· a capa iLy of 1· token and u -. a paraUcl h. hing scheme to
map an in oming g into a s t of eight lol . Th. c nl n of the s.clc.ctcd tots are associa ively
mm hcd aguin l th . incomi.ng tag. The SCC{)nd-1 ' el o rflo swr uses hashing 1/th linked Usts.

The Man h ~ 1cr m·1 hine has no suucmrc store per se. In lead. a h ' L of xmi· matching

-21-

operations are pmvided so that the matching store can function as a stmcture store as weU [49). The
analog of an invocation ID can be treated as an array dcscripror. and the iteration ro can function as
the index, so a tag can represent an array elemenl A store operation generates a token which goes
to lhe matching unit and sticks there. A read operation generates a token which matches with an
element stuck in the store. extracts a copy of it. and forwards the copy m the desi!.ination •Of r.he read
operation, but leaves the slicky element in the st.ore. l f the read mken fai]s to find a panner in the
store, it cycles through the ring. busy~waiting. When me structure is dcaUocaied. its elements must
be purged from the store. Th I approach has nm proved very successful. It increases the already
large load on the matching unit and communication network. degrade the perfcmn ance of the
matching unit on standard operations. as weU as makes its design much more complex. To resolve
Lhese problems. the Manchester group is developing a structure-store simi I ar to the 1 -Strucrure
store. ticky tokens are also used for loop conman ts (discussed in Section 2.2). Tbe iteration pan of
the tag is ignored in perfonning the match and the sticky tok-en remains in the to:re ev,en when a.
match Is performed. Cleaning up the matching smre, hen a loop rem1inates. presents difficulties.

The Manchester machine has provided a target for a. number of dataflow l.anguages and has run a
number of sizable applications. fu.1errsion.s to multi-ring machin are being tudied through
simulation. Work continues in areas related to oontmUing paralle.lism and instruction set design.

4.2.2. '· · igma.-1 a:t Electmtechnica.l LaJbor.atory Japan
Under the auspices of the Japane. e ational Supercomputer Project. the lectro~echnkal

Laboramry is developing a machin [50] based on the IT tagged-mken architecmre. The current
proposa1 is to produce a proLOtype 32-biL machine capable of 100 Mflops, ·by the end of 986. The
'ndividual processors are pipelined and oper te on a 100n cycle. The network i packet-switched
and composed of 4 4 muters, The engineering effort invoJved in this project is subst:antiaili.
including the development of a I-board PE and a l·board structure memory. Together. these wm
require eight to ten cu tom cMO gate-array c.hips and a cu tom VLS] chip. The PE will contain
16k words of program memory. 8 words of token buffering. and 64k words of waiting·matching
store. and tl1e structure memory 256k words. (The memory sizes may be increased by a factor of
four by the ti.me the machine is buUt) The machine will ha e up to 180 boards. divided roughly
half and half between the structure memory and ALU boards. A 16-board version of the PE has
been operational since No ember 1984.

A num r of inte esting desi.gn choices ha e been made in igma-1. A shon latency two--stage
processor pip line ·s employed to execute code with low paralleli m effici nu.y.]n the first stage.
·nstrticLion fetch and matching are performed simultaneou ly. Jf the match fail • the fetched
in truction is discarded. 1 □ the second stage. d tin.:i.tion tag are generated in paraUel with the
A LU op ration. kens arc Hans forred u, rou2h the n l · ork. as 0-bh packers. wo cycles are
rccp.1·rcct or cch•e a packcL but the firs£ tag f Lhe proce or ipeline operates on the first 40 bits
of the uck t ti.he Lng) while the con 40 bits are rccei ed. ·111 w iling-mal ·hing store .is

implem med .ma chain d hash t.thl .. The rirsl operand of a pair i in · ncd in the matching smre in
cycles! m tch ing ili scmnd l en or :1 r ~1i r h:is an c:i.pectcd Lime of 2.6 ycl . ti ky tokens are

1;n pl ycd for l p con. tnnls. lkw v r. tlil..'. d .ig.ners of lh rL 11K1c:hinc h;1v imimated thaL I.he

-22-

utility •Of this approach may not warrant the added complexity m the matching unit. The structure
commne su ppon deferred read . Rather than up on a g neral heap i.orag.e mode 1. in wbich
data objects may have arbitrary ·1ifo1imc . structures ar dele1ed when the procedure \ hich created
the structme term 1n ares. This si rnp Li fies storage management Wl d 1s proba bl. acceptable for writing
numerical application, the imendcd application area for the machine.

4.2.3. The IT 'iagged~Token Project
ot su rp ri ingl'y . the tagged-roken .machine presemed in ection 2.2 reflects the approach of the

authors' group at IT. This machine developed through a sequence of stages (7. 30.14.13~ 12, 4]
from theoretical work on the ~interpreter model [8. 9']. 111.e MlT group has focused on devefoping
an entire dataflow system. rather than on hardware development per se. Two soft prototypes have
been implemented 10 serve as ehides fur studying archirncmres. program de elopment and
resmm:e management A imu]ator provide: a detailed model of the machine including internal
cimings, whUe a dm.afl.o,w emulator is being developed 10 run on lhe Multiprocessor Emulation
FaciHt [6] (MEF). Lo -Ludy dynamic beha,ior of larger appUcations. The MEF is a. collection -of
Lisp machines (38 Te as instruments E plorers and 8 ymbolics 3500' which will be connected by
a high bandw'dth packet-switched network. in the near future. Each Lisp machine emu]ares a
data.flow PE. Both the simulator and emulator execute graph produced by our compiler from the
high~leve1 daraflow]anguage Id [10. 42]. A number of reasonabl large benchmarks are being

studied on the sofi-prorotypes of the M]T Tagged-Token machine. including a complex
hydrodynami and heat conduction code.

5. Prognosis

ln th is paper 1,ve have outr ned two satienl issue~ in dataflow architectures: token storage
mecha.nisms and da.ta structures. and surveyed several dataflo machines. We have not attempted
to cover an the current rese•trch topics: or che imere red reader. these include: demand-driven
evaluaLion [43]. controlled progrrun unfolding and deadlock avoidance fl 7. 4 • 5). ,efficient
procedure i:n ocation. storage re.clamalion, re]ationships with paralle] reduction

architectures [38.18. 37]. network design .and topology. and seman ks of programming languag.es
with l-st11.1cwre . Howe er. dataflo:w architectures are o more than acaden ic interest, so in
conclusion we consider their pmemiali in the rea] wor]d.

Today a vasL ooUection or ing]e-board computers a e a\•aiJable which offer roughl MrPS at
low cost: Lhese are tout d ouHdin. block for multiprooessors. Can datanow m chines compete?
lt i not clear if a ing.l d::it...1.f'l'o,i p :iSOr can ac:hi e. lhe performan of a von umann
processor m the same hardware cot Th da~now in~truction-s heduling mechani m is clear y
nmre oomplc;,;, th·m incr mcnlin~ a program umer. n engineering effort. subsmmial]y beyond
an of the curr nt da!aHo · project is requir-cd to make a foir comparison. The Sigrna-1 project is
an important svp in tMs directi n. The question bcoom more inicrc ting when we consider

n1i1Ch inc w i lh mu hip le procc ·or . where Lhe dL ta flo h d ul i ng mectrnn i rn y i Id igni fican ,
hen fits. Jn Lhc b. ·ic on eum::inn m. hin Lhi. proce ·or i "U • .i memory r~ 1u t and II r hs for
lht: rcsuh lO b produced. l11c m m ry cy _ I Lim i · inv ria I;· gre,.u r than th~ pmc: · r cy le

-23-

time , computer archnects de ote tremendou~ effort to reduc the amount of waiting. This
prob]em is much more severe in a multiproce or cont . t ecau e th time to process a memory
reques i generaJly much gre..1ter than in a fogl,e processor and i unpredictable. Further. most
traditiona] 'l.ec:hniques for ri!ducing th effects of memory latency do not work weU in a
multiprocessor setting. Theda aflO' approach can be vi.ewed as an extreme -solution to Lhe memory
latency problem -- the processor ne er waits for respon e · rom memory; it continue processing
oth r instructions. Instruction are · h dul d based on the ava.ilabilit of data, so memory
responses are simpl routed along ·~ ith the roken produced by processors. Thu . ,e en if individual
data.flow prooessors do nm yield the penomrnnce per dollar of· convemicnal processor. we can
, xpect th m to be better utHi.z.ed th · a conventional processor in a mul6processor se ting. For
large enough coUectio:ns of processors they should h cost effective as well as show absolute
performance nm achievab]e b11 comrentiona1 processors. But it is not yet dear wher this threshold
lie .

The preceding discussion suggests that dataflow machines are iikel}' to be competitive m high·
performance range. howe er e · ou]d not make uch a claim [igbtly. It is unlike!,y that a large
collection of l M[P machine. of any Uk m comp te with a few very high performance processors,
.e,. p oce~ors whicb can p rform 10 to 100 MFLOPs ,each. To compete amon superoompmers jt

may be n,ecessacy 10 eng1neer a data o machine with the technology and fines ,emp-loyed in
conventional upercompulers. Thi is a major un elitak·ng. far beyond any of the dataflow projects
,currentJ. propo ed. Most supercomputers include vecror acce]erato,rs o improve erforrnance on a
resLricte<l cJass of · rogram . I l. e main m be seen how e~ ective the e wm be in a mu 1 tiprocess-0r
oomen and the xten o whtch ana1ogous accel•erators \ m b needed for dataflow machines.

This paper has focused on architectural issues. and acoordingl.y has scarcely touched on the big.h­
ie el programming model which accompani data ow machin . onelheless. programmahi]icy
of parallel machines is critical. Con entional programming]anguages are imperati e and sequentia!
in nature: do mis. then do that e1c. Effons to u e these lang.ua~es for describing paraUe[
computation ha c been ad hoc and unwieldy. gr,eatiy increa in° the difficulty of m. already onerous
programming cask. The programmer must deL rmine what synchronization is required to avoid
read-write races. E en so. subtle timing bugs. are common. A dass of lan.guarges. caHedfunctiona/
languag,es. completely ay,oid (hcse . nchmniza ·on problem by disaUowing ••updatable .. variables.

unctional languages employ function compo ition. rather than command sequencing. as the basic
,concept and can be tr'dll' hued into damnow graphs ea ily. exposing paraUelism. Th languages
can be augm. nted with t~ 1:rucmres to make data tru rnres more efficient. ihout sacrificing
dct,ermmac or para? elism. h i our beli . f that datano-w architc tu res togeth r with these new
languag \Vill ·how the programming ge1n r~Uly, perfi nmmce and cost effecti . ness needed to
nm · c pa Uel m · hines wide y app icabte.

-24-

. ckno ifodgments

We gratcfuUy acknowledge Roben Jannucd's dra ings of variou dataflow arch·tectures. from
which we have "borrowed' liberally. an idem in lhi paper d ri _e from the oommon heritage of
th . Computation tructures Group at M.LT. Labora o for Comp ter cience. and we are
ind bted to its membe _ for providing a timulating research en ironrnent We are gratefu : to
Steven Brobst. Jack D nnis. K. Ekanadham. Bhaskar Guhar-o . Gino Maa. Hiloshi ohmi. Greg
Papadopoulos. ataHe Tarbel and en Traub for their valuable oomm nts on drafts of this paper.
Of course, we take respon ibilit for the op1nion presented and any remaining. errors.

-25-

References

1. A ~kennan. \l . R A Structure Prooe. _ing FaciHty for Dat:aflm Computers. Proceedings of the
1978 Jntemadonal Confer,ence cm ParaHel Processing. Ju]y.1978 pp. 166-]72.

2. Ackerman. W. B .. and J.B. Dennis. L--A Value - Oriented A]gorltlimic Language:
Preliminary Reference Manual. TR-218, Laboratory for Computer Science. MIT. Cambridge MA
December. 1978.

3. Amarniya:, M .• R. Hasegawa, 0. akamuraand H. Mikami. A Llst-orirented Data Flow Machine
Architecture. Proceedings of the .ational Computer Conference. AFIPS. l:982., pp. 143-151.

4 .. Arvind. D. E. Culler. R.. A. Iannucci . Kathail. K. Pingali and R. E. Thomas. The Tagged
oken Dataf!ow Architecture. Laboratory for Computer cience. MlT. Cambridge, MA. July.

1983. (Prepared for MIT Subject 6.83s).

5 .. Arvind. and D. E. Cu11er. Managing Resource in a ParaJlel Machine. Prooeedings of the IFlP
TC-10 Conference on Fifth-Generation Computer Archlteeture anchester U.K .• Ju]y 1985.

6. Anind. M. L Denouzos and R. A Iannucci. A Multiprocessor Emulation Facility. TR-302.
Laboratory for Computer Science. MIT. Cambridge. MA. October.1983 .

• Arvind. and K. P. Gostelow. A ComputerCa.pab]e of Exchanging Processors fm Tune.
Proceedings oflF IP Congress 7 Toronto. Canada, A ugus,L 1977 pp. 849-853.

8. Arvind, and K.P. Goste1ow. ome \Reiationships Between Asyncb onous Interpreters of a
Dataflow Language. Proceedings of the IFJP WG2.2 Conferenc.e on. Formal Description of
Programming Languages. L Andre\, Canada, 1977.

9. Arvind. and K.. P. Goste]ow. 'The U-interpreter". Computer J 5 2 (February 1982). 42-49.

10 .. Arvmd K. P. Goste]ow and W. PJoufTe. An Asynchronous Programming Language and
Computing Machine. 114a. Depanment oflnforrnation and Computer Science, University of
Califom·a. trvine. CA. December 1978.

JI. Arvind. and R. A. Iarmuoci. A Critique of foltiprocessing on · eumann tyfe. Proceedings
ofthe 10th International ymposium on Computeli Architecwre Stockholn1. ·weden. June.1983.
pp. 426~436.

12: .. An-ind. and R. A. Iannucci. Jnsmi:ction Set Definition for a Tagged-token Dataflow Machine.
CSG 2U-3. laboratory for omputer icn . MH. Cambridge. MA. F bruary.1983.

13 .. Arvin .. and V. Kalhail. A Multipl~ Proc or Darnnm: Mn hine that Sup ns GeneraHzed
Procedures. Procecdi n gs of the th n-n ual ymposi um on Computer Arch i Lecture. in neapol is.
MN. May. 1981. pp. 291-302.

14. Arvind. '. Kathaii and K. Pineal]. A Dataflm Architecluve ith · ugg d Tok ns. TM- !74,
Labor.ttury or Computer Science. MIT. ::i.mbrid,6C. A. cpi.ember, 1980.

-26-

15. BrobsL S. . To.ken tnrage Requirements in a Dataflow Superoomputer. Laboratory for
Computer Science. IT. Cambridge. MA. ay. 1986. ''To be pubJi hed".

16. Comt:e. D .. N. Hifdi and J. yre. The Data Driven LAU Mu1tiprocessor S. stem: Resu]ts and
P,erspectives. Proceedings of J F[P Congf s 80, okyo Japan. October, 1980. pp. 175- 80.

17. Culler, D. E. Resource Management for lhe Tagged-Token Dataflow Arcbitecture. TR:-332.
Laboratory for Computer Sci nee. MIT. C~bridge. MA, January, 1985.

18. Dar]ingroa, J.. and M. Reeve. A: JCE: A Multi~Processor Reduction Machine for the Para1Je1
E al.uation of · ppHcati: e Languages. Proce,edin.gs of the 19 1 Conference on Function a]

Programming Languages and omputer rchi~ecture. Portsmouth. H.1981 pp. 65-76.

1'9. Dennis J. R. G. A. Boughton and C. K-C. Leung. Building BJooks for Data Flo , Prototypes.
Proceedings of the 7th Annual ymposium on Computer Ar hitecture, La BouJe. France, May.
1980. pp. I - 8.

20. Dennis. J.B .. and G. R. Gao. ax.imu.m Pipelining of Array Operation on a. tatic Dataflow
· . achine. Proceedings. oft.he 19831ntemationa1 Conforence on ParaUe.l Proce • tng., August, 1983..

21. Dennis. J.B .. and D. Misunas. A Pre1iminary rchitecture for a Basic Data Flo · Processor.
C G Memo 102. Laboratory for Computer Sdenoe,. Mff. Cambridge MA, August. -974.

22. Dennis. J. B. Fir-st ersion o • a Data Row Plioced u e Language. Proceedings of th ColJoq ue
sur l.1. Programmation. - ol. 19. Lecwre - otes in Computer cience. Springer~- erlag.1'974, pp.
362 376 .

. 23. Dennis, J.B. "Data flow Supercompucers•·. Computer 13. 1 { ovember 1980). 48-561.

24 .. Dennis. J .. J. Fosseen and J. Lindelilllan. Data FJow Schemas. Proceedings of the ymposium
on Theorcti a1 Pr,ogramming. ovosibirsk .. USSR.1972. pp·. 187-216.

2"'. Dennis. J.B.. G. R. Gao and K. Todd .. "Mode1ing the W ather with a Data FJow
upercomputer". IEEE Transaclions on Compute.rs Ca33. 1 (Jul 1984). 592~603.

26. Dennis. J. .. J.E. Sm and B.. Guharoy. 'M; An E perimental Multi·User System
upporting Functi nal Programming. Proc ,eding of the 1984 International -- ork hop on High­

Lev I Computer Architecture. Lo Angeles. CA. May 1984, pp.1.1-1.'9.

27. Friedman. D. P .. and D. S .. Wise. CONS Should o · E alua1e 1ts rr>umcnts. In Automata,.
Languages. and Programming. Edinburgh Uni ersit)I Pr . 1976. pp. 257 284.

2 . Gaudiot J .. R. edder. G. Tuck.er. D. Finn and M. Campbell. "A Di tributed . LSI
Architecture for Ef 1dcn Sii:=-na and Data Processing". J EE Transaction on Computers ~34.12
(De cmb r 19 -). 1072· 1087.

29. Gurd. J. R .. C. -. Kirkham. and l ·v a · on. ''TI-1 Man hes,t r Data . , ProLOl. p Computer".
Cammunicatlo11s of the ACM 28. I (January 1985).. 4-52.

-Z7-

30. Oosteiow. K. P .. and R. E. Thomas. "PerfoJ111ance ofa Simulated Data.flow Computer''. JEEE
Tran actions on Computers C-29, 10 (October 1980). 905-919.

31. Guharo~,. B. tructur . Management in a Dataflow Computer. Master Th., Deprutment of
El ctdca! Engineering and Computer Science. Mff. Cambridg~ MA.May 1985.

32. HeUer. S. K. An 1-Suucrure Memory Controller. Master Th. DepartmentofE1e.ctrlcal
Engineering and Computer Science. MIT. Crunbridge, NIA,June 1983.

33. Hiraki K., K. ishida and T. Shimada. "EvaJuation of Associative Memory Using Para] el
Chained Hashing''. IEEE Tran.saciions on. Computers C·33. 9 (September 1984). 851-855.

34. Jaffe. J. M. The Equivalence of R. E. Programs and Data Row Schemes. TM~ lll, Laboratory
for Computer cience, M[T Cambridge, MA, January, 1979.

35. Johnson. D .. el al .. Automatic Partitioning ofProg_rams in Mu]Liprocessor Systems.
ProceedingsofCompcon 80, February, 1980, p,p.175-178.

36. Kahn. G. The eman tics of a. Simple Language for Parallel Programming. Proceedings of the
lFlP Congress 74.1974. pp. 471-475.

37. Keller. R. Rediflow Multiprocessing. Prnceedings ofCompoon 84, IEEE 1984.

38. Keller. R.M .. G. Lindstrom andS. Patil A loosely-Coupled Applicative MuJti~Processing
System. Proceedings of the National Computer Conference. e · York. Y. June. 1979, pp.
613-622.

39. Misunas. D. Deadlock Avoidance in a Data-flow Archite.cture. Proceedings ofthe Milwaukee.
Symposium on Automatic Computa:Lion and Control April.1975.

40. Montz, LB. Safety and Oplimization ransfonnations for Data Flow Programs. TR-240,
Laboratory for Computer Sdence M[T. Cambrid11e. MA January, 1980.

41. NEC. Advanced Product lnformalion Users Manual: µPD7281 Image Pipelined Processor ..
EC Electronics Inc.. Mountain View, CA, 1985.

4.2. Nile hit. R .. and Arvind. 1d/83s. Laboratory for Computer Science,, MIT Cambridge, MA,
J uJ . 1985. {Prepared for MlT Subject 6.83s).

43. Pingali. K.. and Arvind. 11 Effident Demand-driven Evaluation. Part J". ACM TOPLAS 7. 2
(May 1985), 311-333.

44.. Preiss. B .. R .• and • C. Hamacher Data low on a Queue ~ ach ine. Proooedi ngs on.be 12th
Annual Jnternational Symposium on Comput r Archhectur . Bo ton. MA. Jun 1985. pp. 342~351.

4·_ Ruggiero. J ..• and J. · a:rge.mt H.'.lrdware and Software ,hanisrns or Control of Parallelism.
Computer Science Dept.. Unive . il:Y ofManchest r. Man h sl r. En land. April. 985.

46. Rumbaugh. J. "A Data Flow ulfrproc:essor". IEEE Tran action on Computers. C~26. 2
(i-=cbmary 19 7).138-146.

-.28-

47. Takah.ashi .• and M. Amamiya .A Data.flow Proce: r Array System: esign and Analysis.
Proceedings of the 10th lntemationa1 Symposium on Computer Architecture. S~ockholm. Sweden,
June. 1983, pp. 243-250..

48. Temma. T .. S. Hasegawa and S. Hanaki. Datatlow Processor for Image Processing.
Proceedings of the 11th International Symposium on ,, ini and Micmcomputers. _on erey, CA.
1980, pp .. 52~:56.

49. Wa.tson, l., and J. R. Gurd. 11 A Practical Data.flow Compuler". Computer 15 2 (February
.1'982), 51-57.

50. Yuba, T .. T. himada. K Hiraki. and H. . ashiw~gi. Sigma-1: A Dataflow Computer For
Scient"fic Compm.ation. £1,ectrotechn·ca1 Laboratory 1-1-4 mesono Sakurnnmra iiharigun
lbaraki 305. Japan. 1984.

+

Tab le of Contents

1. Dataflow ModeJ
11. Acyclic. Conditiona1. and Loop Program Graphs
12. Data Structures
1. 3. User-defioed Functions
1.4. Data.flow Graphs as a Paralle] Mad1ine language

2. Token Storage Mechanisms
2.L Static Da.taf'low Machine

2.1.1. Enforcing the One-Token~Per~Are Restriction
2 2. D}'narnk or · 2gged-Token Dataflow

2.2.1. Tagging Rules
2.2.2. , agged = ok:en Data.flow Machine

2.3. Tags as Memory Addresses and l'ice versa·
3. Data Structures

3.1. Functional Ope.rations On Data Structllres
3.2. 1-structuies

4. Current Dataflow Projects
4.l. Static Machine Projects

4.1.1. The MIT Static Machine Dataflow Proj,ect
4.1.2. The EC Dataflow Machines

4.2. Tagged-Token Machine Projects
4.2 .1. The Man.chester Data.flow Project
4.2.2. igma-1 at Electrotechnicat Laboratory~ Japan
4 .. 2.3. The MlT Ta_ggerl-To en Project

5. Prognosis
Acknowledgments

l
l
3
s
5
6
6
7
9'
9

11
l3
l5
15
16,

18
18
19
19
20
20
21
22
22
24

Li t ,of Figures

Figure I; Acyclic Dataflow G rapb
figure 2: Conditional and Loop Graphs
Figure 3: Static Data.110\Y Architecture
Figure 4: Conditional and Loop Graphs for Tagged Approach

igu re 5: Proc.essin g Element ofthe M1T . agged Token Data:flow Machine
Figure 6,: Action of a first operation
Figure 7. implementation of · .on-strict Cons
Figure, 8: I~ Structure Storage

2
4
7

10
u
16
17
18

