
LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS/fM-433

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

RANDOMNESS-EFFICIENT
SAMPLING OF

ARBITRARY FUNCTIONS

Mihir Bellare
John Rompel

July 1990

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Randomness-Efficient Sampling of Arbitrary Functions

Mihir Bellare* John Rompelt

MIT Laboratory for Computer Science

545 Technology Square
Cambridge, MA 02139

Abstract

We consider the problem of approximating the average value of an arbitrary function
defined over a large space (say of size 21) in a randomness-efficient manner (i.e. using few coin
tosses). The sampling method generates poly(c 1, log 5- 1 , l) sample points using 0(l + log 5-l •
log I) coin tosses, with the guarantee that with probability 2: 1 - 6, the average of the function
values at the sample points differs from the average value of the function by at most €.

As an application we show how to reduce the error probability of Arthur-Merlin games to
an exponentially small amount in a randomness-efficient manner.

Keywords: randomness, pseudo-randomness, sampling, universal hash functions, interactive
proofs, Arthur-Merlin games.

• Partially supported by ARO grant No. DAAL 03-86-K-0l 71.
t Supported by an NSF graduate fellowship.

1

1 Introduction

The problem of approximating the average value E[J] ~f 2- 1 I:xe{o,i}i J(x) of an arbitrary func­
tion f: {O, 1}1 ----* [O, 1] arises in many applications. We will be interested in randomness-efficient
constructions of a primitive (which we call (l, €, 6)-sampling) for implementing such approxima­
tions. We begin by discussing this primitive and related work . We then describe the application
which motivated its construction: randomness-efficient error-reduction for Arthur-Merlin games.

1.1 (l, t, 8)-Sampling and Our Result

An (l, €, 8)-sampler may be informally described as a randomized, polynomial time process which
outputs a sequence of m sample points x1 , ... , Xm E {O, 1 }1 such that: for any function J :
{O, 1}1 ----* [O, 1] it is the case that

P [I! I:~if(xi) - E[JJI ~ €] ~ 1 - 6.

Notice that we place no restriction (as of polynomial t ime computability, for example) on the
function J - the sampler must be able to approximate any function with high probability. More­
over the sampler is independent of the function fit will approximate - in particular, it does not
evaluate the function. Both these properties are important to our application.

We will be interested in designing samplers which use few random bits. (A related concern is
the number m of sample points which must remain at least polynomial). Previous randomness­
efficient sampling techniques have suffered from one of two drawbacks: either (1) they serve to
approximate only a restricted class of functions (such as boolean functions [AKS],[CoWi],[IZ]),
or (2) they generate a number of sample points proportional to 5-1 (rather than log o-1) and
thus cannot be used when the desired error probability is exponentially small. We present a
construction which suffers from neither of these drawbacks: our main result is the construction of
a (l, €, 8)-sampler which outputs poly(c1, logo-1 , l) sample points using 0(l + log s-1 - log/) coin
tosses.

1.2 Previous and Related Work

The straightforward procedure for sampling is of course to just select m = 0(c 2 log o-1) inde­
pendent and uniformly distributed sample points. This yields an (l, €, 6)-sampler at the cost of
0(ml) coin tosses.

Dramatic savings in the number of coin tosses is possible by selecting 0(c 2o-1) pairwise
independent sample points (cf. [CG]). This yields a (l , E, 6)-sampler at the cost of 21 coin tosses.
However, the number of sample points here grows inversely proportional to the desired error
probability o, and thus this method cannot be applied when this desired error probability is
exponentially small.

An alternative sampling method for the special case of boolean valued functions (i.e. J takes
on only the values O and 1) is based on selecting a random walk on a 21 node explicitly con­
structed expander graph (cf. [AKS],[CoWi],[IZ]) . This method yields a (l, ½, 8)-oblivious sampler
of boolean functions which outputs 0(log s-1) sample points using l + 0(log s-1) coin tossest.

A sampling primitive of a slightly different flavor was recently constructed by Goldreich [G].
He outputs a collection of mk = 0(c 2 log 5-1) sample points x½, ... , x~, ... , xt, ... , x~ grouped

t One can obtain an (l, i:, 5)-oblivious sampler of arbitrary functions by using the ideas of [IZ], but this will
require 0(i:-

2
log 5-1

) sample points generated using l + 0(C 2 log 5-1) coin tosses.

2

into k = O(logb'-1) blocks of m = O(c2) points each wi_th the property that, with probability
~ 1 - b', the average value off on block j (i .e. I:~1 f(xi)) differs from E[f] by at most£ for a
majority of the blocks j . His method uses only O(l + log b'- 1

) coin tosses.
Although potentially weaker than (l, E, 6)-sampling, this primitive does suffice for the applica­

tion to the randomness-efficient error reduction of Arthur-Merlin games which we discuss next .

1.3 Application: Randomness-Efficient Error-Reduction for Arthur-Merlin
Games

An Arthur-Merlin game [B],[BM] is a two-party protocol played by an all-powerful "prover",
called Merlin, and a polynomial-time "verifier", called Arthur. The game is played on a common
input (and its purpose is to convince Arthur that the input belongs to some predetermined
language). Arthur's role in the process is restricted to tossing coins, sending their outcome and
finally evaluating a polynomial-time predicate applied to the common input and the full transcript
of the interaction.

As such they are a special form of interactive proof systems [GMR], but their language recog­
nition power has been shown to be equal to that of interactive proof systems [GS].

Usually we say the a language L possesses an Arthur-Merlin proof system if the error proba­
bility on any input w (the probability that Arthur accepts if w (/.Lor rejects if w E L) is ::; ½­
The error probability can be decreased to 2- k for any k = k(n)::; n°(1). We are interested in
implementations of this error-reduction process which have the additional property of preserving
the number of rounds. Our concern will be Arthur's cost in randomness (per round).

In the standard implementation [B],[BM] one builds a new game in each round of which
Arthur sends O(lk) random bits (where l is the number of random bits Arthur uses per round in
the original game). An alternative construction presented by [BG] reduces the error probability
to 2-k at the cost of O(l + gk) random bits per round (where g is the number of rounds); this
saves random bits compared to the O(lk) per round of the standard method as long as g is small
compared to l.

As an application of our (l, E, 6)-sampling techniques we show how to improve this result to
O(l + k log l) random bits per round. This saves random bits compared to the standard method
for all values of the parameters l, k, g.

Goldreich [G] has recently improved this to only O(l + k) random bits per round using his
block sampling techniques mentioned above.

2 Sampling Using t-wise Independence

In this section we describe how to implement the sampling primitive using few random bits. We
begin with a more precise specification of the primitive. Next we introduce the two major tools
we will use: t-universal hash functions and the t-wise independence tail inequality.

We first construct, as an illustration of our methods, a simple oblivious sampler which nonethe­
less gives a non-trivial savings in coin tosses. We then present an iterated sampling technique
which significantly reduces the number of random bits used. Finally we specify the sampler that
results.

2.1 (l, t, 8)-Sampling

Definition 2.1 Let l : N ---+ N and £, b' N ---+ [O, l]. An (l, E, b')-sampler is a randomized,

3

polynomial time algorithm which on input 1 n outputs a sequence of points X1, ... , Xm E {O, 1 }1(n)

such that: for any collection of m functions Ji, . .. , fm: {O, 1}1(n) -+ [O, 1] it is the case that

P [I~ I:~ifi(xi) - E[Jill ~ c(n)] 2: 1 - <5(n)

(where E[fi] = 2 - l (n) I:xE{O,l}Z(n) fi(x)).

Notice that this definition is slightly more general than what we discussed in §1.1 since we are
talking about approximating a collection of functions rather than a single function . This will be
important for our application.

The points x 1, ... , Xm are called the sample points, and we refer to the sequence of coin tosses
used by the sampler as the seed.

2.2 t -Universal Hash Functions

Definition 2 .2 A collection H of functions mapping n bits to m bits is t -universal if for all
distinct x1, . .. , Xt E {O, 1 }n and all y1, ... , Yt E {O, 1 }m, picking h at random from H implies that
(h(x1), ... ,h(xt)) = (Yl, ··•,Yt) with probability exactly 2-tm.

For the rest of this section, Ht(n, m) will denote at-universal collection of hash functions mapping
n bits tom bits in which the description of a function uses t • max(n,m) bits (cf. [CaWe]) .

2.3 The t -wise Independence Tail Inequality

Definition 2.3 A collection of random variables {Xi}f=1 is t-wise independent if for any a1 , ... , at
and any t distinct indices i1, ... , it it is the case that P(Xi1 = a1, . .. , Xi1 = at] = TI.i=l P(Xi; =
aj] ,

The t-wise independence tail inequality is a Chernoff-type bound for the sum of a collection of
t-wise independent random variables.

Lemma 2.4 (The t -wise Independence Tail Inequality) Let t 2'. 2 be an even integer. Suppose
{Xi}f=1 is a collection oft-wise independent random variables in the range [O, l]. Let X =
X1 + · · · + Xn andµ= E[X], and let A> 0. Then

P[JX - µJ > A] ~ ~ (e:2) t/2 .
Remark: If t 2'. 4 then

~(e:2Y12

< (
nt) t/2

A2 '
and it is this simpler bound that we will use.

Berger and Rompel [BR] prove the same bound for the restricted case of random variables which
are + l or - 1 with probability½ each.

For a proof of Lemma 2.4 see Appendix A.

4

2.4 A Simple Sampler

Using t-wise independent hash functions we can construct a very simple (l, E, 8)-sampler as follows.
The sampler takes as input a randomly selected element h from Ht(d, l), where d 2". lg m, and
outputs h(l), ... ,h(m) (identifying {O,l}d with {1,2, . . . ,2d}). We use the t-wise independence
tail inequality to specify m and t.

Let Y; = fi(h(i)) for 1 ::; i ::; m. It follows from the definition oft-wise independent hash
functions that {¥;}~1 is a collection oft-wise independent random variables in the range [O, l].
Thus the t-wise independence tail inequality will hold to bound Y = I:~1 Y; . In particular,
assume t is an even integer 2". 4. Then we have

p [IY - E[Y]I 2". Em] ::; ((E:)2 y12
= C/m Y12

·

But the left hand side is just

p [lz::Ji(Xi) - z::1E[fi]I 2". Em l = p [I! L~i!i(Xi) - E[fi]I 2". E]

Since we want this probability to be less than 8, it suffices to have

8 >

or equivalently,
t

m 2". E282/t
Restating the above, we have the following lemma.

Lemma 2.5 Let t, m, d be integers such that t 2". 4 is even, m 2". €2 ; 2,,, and d 2". lg m. Then
for any collection of m functions Ji, . .. , fm : {O, 1}1 - [O, 1], picking h at random from Ht(d, l)
implies that

Next, observe that this sampler uses t • max(d, l) bits. This leads us to think that we just make
t as small as possible and m as large as necessary to minimize the number of bits. However, we
have another constraint: m must be bounded by a polynomial in the input size. Requiring that
m be polynomial in n and optimizing, we get t = logs-i and thus use O (llogs- i + log8-1)

log nO(l) logn
random bits.

2.5 Iterated Sampling

In the previous section, we showed how to sample a collection of functions using t-wise independent
hash functions. The number of bits we used to (l, E, 8)-sample, for fixed E and 8, was proportional
to the logarithm of the domain size of the functions and roughly inversely proportional to the
logarithm of the size of the sample. Given a set of functions with a fixed domain size, this
suggested that we simply make our sample as large as is tolerable (i.e. polynomial).

In this section we will improve our bounds by iterating the sampling primitive of the previous
section in a novel manner. Roughly, the idea is to take a large sample and then take a smaller
sample of the first sample. Each of these samples will require many fewer bits than our original
method: the first because the sample is larger; the second because we are sampling a smaller
space. Our sampler becomes the composition of two randomly chosen hash functions. Note that

5

our first sample can be superpolynomial in size-we only sample a polynomial number of its
points. This idea can then be improved by taking a sequence of smaller and smaller samples
instead of just two.

First we need a variant of Lemma 2.5. The reason is that we actually think of sampling each
function individually except for the final sample.

Lemma 2 .6 Lett, d be integers such that t ~ 4 is even and 2d ~ ~2 ; 2 /t . Then for any function

f: {O, 1}1 --+ [O, 1], picking hat random from Ht(d,l) implies that

P[IE[foh] - E[f]l ~ E] ~ 1 - 8.

Proof: Let m = 2d. The probability of failure is

P [IE[f oh] - E[f]I > €] = P [II:~ 1 f(h(i)) - m E [f]I >Em]

By the t-wise independence tail inequality this is bounded by

(_!!!:!_) t/2 = (- t-) t/2 ~ (o2ft)tf2 = 0. □
(Em)2 E2m

Now we can combine Lemmas 2.5 and 2.6 to obtain a new sampling lemma. Our sampler will be
the composition of a sequence of length doubling hash functions . This represents a sequence of
samples in which the size of each sample is the square root of the size of the preceding sample.

Lemma 2. 7 Let r, m, d be integers and t1, . . . , tr even integers ~ 4. Supposed~ lg m and

2r- jd tj tr
2 > 1 (j = 1, .. . , r - 1) and m >

1 - €2 02 ti €2p tr

Then for any collection of m functions f1, . . . , fm : {O, 1}2rd
--+ [O, 1], picking hj at random from

Ht/2r- id, 2r-j+1d) implies that

p [I! I:~1Uioh1 O• · • Ohr)(i) - E[!il l ~ rE] ~ 1 - ro.

Proof: Let f = ! I:~1k We first claim by induction that for O ~ j ~ r - 1

P[IE[(foh1o • •·Ohj)] - E[f]l~j€] ~ 1 - jo .

The base case (j = 0) is immediate, and the induction step is just Lemma 2.6 (using foh 1 o• • •ohj-l
as the function). The final step is to apply Lemma 2.5 (using {fioh1 o• • -ohr- d~1 as the collection
of functions). 0

2.6 Our Sampler

We now optimize the parameters to get a particular sampler. In this optimization, there is a
trade-off between the number of sample points the sampler outputs and the number of random
bits it uses to do this. As we have seen, for polynomially bounded error owe can use fewer random
bits by allowing the number of sample points to grow proportional to o- 1 (rather than log o- 1).
For maximum generality we will thus consider an error of the form o1o2 where we assume o1 is
~ nO(l) .

Theorem 2 .8 Suppose l : N --+ N is~ n°(1) with logn = o(l), and €,o1,o2 : N --+ [O, 1] are
> 0 with c1,o11

,logo21 ~ n°(1). Then we can construct an (l,£,o1o2)-sampler which outputs
m = 0(c 6 log

6
l + o11

log l + log3 o21
) sample points using O (l + log o21 - log l) coin tosses.

6

Proof: We apply Lemma 2.7. Let m = max(c6 log6 l,811 logl,[12(1 + log821)]3) and r
log(l/logm). Let the€ of Lemma 2.7 be E/r and the 8 be 8182/r, and let

t· = . 12
(2r-H1 1ogm+ log 8i1) (j = 1, ... ,r) • 3 2r- J+l logm

The conditions of Lemma 2. 7 can now be verified. D

3 Randomness-Efficient E rror-Reduction for Arthur-Merlin
Games

In this section, we apply the results of §2 to derive a randomness-efficient method of reducing
the error probability of Arthur-Merlin proof systems. We begin with a review of Arthur-Merlin
games and proof systems and the standard method of error-reduction. We then discuss the ideas
of our protocol and the particular (l, €, 8)-sampler it requires, and conclude with a proof of our
randomness-efficient error-reduction theorem.

3.1 Arthur-Merlin Games

An Arthur-Merlin game is a two-party protocol played by an all-powerful "prover", called Merlin,
and a polynomial-time "verifier", called Arthur. The game is played on a common input (and its
purpose is to convince Arthur that the input belongs to some predetermined language) . Arthur's
role in the process is restricted to tossing coins, sending their outcome and finally evaluating a
polynomial-time predicate applied to the common input and the full transcript of the interaction.

Let w denote the common input to the (Arthur-Merlin) game, n = lwl its length, l(n) the
length of Arthur's messages, q(n) the length of Merlin's messages, and g(n) the number of rounds.
We denote by p(w, C) E {O, 1} Arthur's decision on input wand conversation C. The conversation
C can be parsed uniquely into Arthur's and Merlin's messages: C = r1y1 - • • rgyg, where rJ is
Arthur's j-th message and yJ is Merlin's response (we assume that Arthur plays first and Merlin
second in each round) . A strategy for Arthur, A = (p, g, l, q), consists of the decision predicate p,
as well as (polynomially bounded) functions specifying the number of rounds and the length of
messages sent in each round by each party. For sake of simplicity we assume that the length of
the messages sent in each round is independent of the round.

Let M be a strategy for Merlin (i.e. M determines the next message of Merlin based on the
common input and the messages received so far from Arthur). We denote by P[(A, M) accepts w]
the probability that p(w, C) = 1 when C is chosen at random (the probability space is that of
all possible choices of r 1 , . . . , rg(Jwl) taken with uniform distribution, and the yJ being set to

(
1 2 . M x, r r .. . r 3)).

Definition 3 .1 We say that the Arthur strategy A defines an Arthur-Merlin proof system for L
if the following conditions hold:

(1) Completeness: There exists a Merlin strategy M such that P[(A, M) accepts w] 2: ~ for
every w EL.

(2) Soundness: P[(A, M) accepts w] ~ ½ for every Merlin strategy Mand every w (/. L.

The strategy M in the soundness conditions is sometimes called a cheating Merlin, while the
strategy M in the completeness condition is called the honest Merlin. In fact, it suffices to

7

subgame 1 subgame 2 subgame m

Arthur's message: rl
1

rl
2

rl
m

Merlin's response: Yi yJ y~
grounds

Arthur's message: rg
1

rg
2

rg
m

Merlin's response: Yi y~ y'fn

Figure 1: Framework of the Standard Error-Reduction Protocol

consider (in both conditions) an "optimal Merlin", MoptA, that chooses all its messages in a way
maximizing Arthur's accepting probability. Note that MoptA depends on A.

Based on this optimal Merlin strategy we extend the deciding predicate p to partial conversations
as follows:

• p(w, r 1y1 . .. riyiri+l) = ma.Xy p(w, r 1y1 ... riyiri+l .y) = p(w, r 1y1 ... riyiri+l .yi+l) where
yi+l = MoptA (r1 ... ri+1), for j = g(n) - 1, . . . , 0

• p(w,r1y1
••• riyi) = Erp(w,r1y1 ... ri yi.r), for j = g(n) - 1, . .. ,0.

A's accepting probability function is then defined by acc(w,r1 .. • ri) = p(w,r1y1 •. • riyi) where

yi = MoptA(w,r1 .. . ri) (j = 0, .. . ,g(n)), and A's accepting probability on input w is acc(w) ~f

ace(w, A). 0 bserve that

Propos ition 3.2 Eracc(w,r1 ••. ri-1r) = acc(w,r1 •.• ri- 1).

(We will use this later). The error probability of A on input w (with respect to a language L) is
defined as

{
1 - ace(w) if w E L

errL(w) = acc(w) otherwise.

The error probability of A (with respect to L) is eL : N -+ (0, 1] defined by eL(n) = suplwl=n errL(w) .
Thus an Arthur strategy A defines a proof system for L if eL ::; ½-

3.2 Error-Reduction and its Standard Implementation

Error-reduction is the process of reducing the error probability of an Arthur-Merlin proof system
from ½ to 2- k for a given k = k(n) ::; n°(1). We review the standard method of error-reduction
[B],[BM] .

Given A= (p, g, l, q) defining an error::; ½ Arthur-Merlin proof system for L we want to design
A* defining an error ::; 2-k Arthur-Merlin proof system for L. The solution is to play in parallel
m = 0 (k) independent copies of the old game (the one defined by strategy A). The independence
of Arthur's moves in the various "subgames" is used to prove t hat the error probability decreases
exponentially with the number of subgames.

More concre~ely, A* will, in round j, send ml random bits to Merlin. These bits are regarded
as a sequence rf ... rt,. of m different round j messages of 4. Merlin then responds with strings
Yi ... yt,., and yf is regarded as the response of Merlin to rf in the i-th subgame (i = 1, ... , m).
This continues for g rounds (see Figure 1).

8

subgame 1 subgame 2 subgame m

Arthur's message s1 specifies: rl
1 r½ rl

m

Merlin's response: Yi yJ y;,

grounds

Arthur's message s9 specifies: rg
1

rg
2

r9 m
Merlin's response: yf ~ YS/n

Figure 2: Framework of Our Error-Reduction Protocol

Finally, A* will accept in the new game iff a majority of the subgames were accepting for the
original A. That is, A* accepts iff I{ i: p(w,rJy} .. . rf(n)yf(n)) = 1 }I~ m~n)_

The bound on the error probability of the new game follows quite easily from the fact that the
coin tosses used by Arthur in the different subgames are independent. However, the cost of this
argument is in the large number of coin tosses used by A*; namely O(lk) coin tosses per round
(to be contrasted with the l coin tosses used in each round of the original game).

3.3 Over view of Our Protocol

We will run m subgames in parallel (with m appropriately chosen). In each round j Arthur
sends a random seed sj of a sampler G (whose parameters we will specify later). This specifies a
sequence ri ... r?n of messages that will play the role of A's j -th round messages. Although the
same pseudo-random process is used at each round j, it will be with a completely new random
seed sj. At the end, A* will as usual accept iff a majority of the subgames were accepting (see
Figure 2).

We emphasize that Arthur sends a seed sj and both parties then compute the sequence of
messages by running the sampler on input sj.

The difficulty now is that a cheating Merlin might be able to capitalize on the dependency
between the subgames. That is, although an honest Merlin would compute yf based only on
r}y} ... rf-1yf-1 (using the honest Merlin for the original protocol) a cheating Merlin could com­
pute the string Yi_ .. . Y?n based on the entire submatrix above this string. Clearly we cannot
prevent Merlin from following such a strategy. Using the properties of the sampler however, we
can show that no such strategy would help.

We will guarantee that at each round the average accepting probability of them subgames on
the sequence specified by the seed approximates the average accepting probability of a sequence of
independently chosen messages. That is, assuming s1 , . .. , st-l specifying rt .. . r;,, ... , ri-1 . . . r~1

have been chosen, we guarantee that with high probability we have

1 '-'m (1 t - 1 t) ~ 1 '-'m E c(1 t-1) m L...,i=l ace W, Ti .. . Ti ri ~ m L...,i=l raC w, ri .. . ri r

for the random choice of st (where ri .. . r~ is the sequence specified by st). If all seeds selected
provide good approximations in this sense then the rate of accepting subgames (in the new
game) will approximate the accepting probability (in the original game). Hence, it all amounts
to selecting a sampler which guarantees that all g approximations are "good" with very high
probability.

9

3.4 The Samp ler for Error-Reduction

The sampler which we will use to generate the messages at each round is specified by the following

Theorem 3.3 Let g,l,k: N ----+ N bes nO(l) with logn = o(l). Then we can construct a

(l, ia, 2;k) -sampler which uses O (l + k log l) coin tosses.

Proof: Apply Theorem 2.8 with€= f
9

, 81 = } , and 82 = 2- k. D

3.5 Randomness-Efficient Error-Reduction Theorem

Theorem 3.4 Suppose A = (p, g, l, q) is an Arthur strategy that has error probability S ½ with
respect to L. Then we can construct an Arthur strategy A* = (p*, g, 0 (l + k log l), q*) which has
error probability s 2- k with respect to L.

We distinguish two cases. The first is when l = O(logn) for which we may prove the statement
of Theorem 3.4 using just the simple sampler of §2.4. We omit that proof here, and proceed to
the more interesting case oflog n = o(l).

Let G be the (z , f
9

,
2;k) -sampler specified by Theorem 3.3. Let m be the number of sample

points that it outputs and s = 0(l + k log l) the number of random bits it uses. The new Arthur

t t · A* (*) h *(1 1 1 g(n) g(n) g(n)) s ra egy 1s = p ,g,s,mq w ere p w,s y1 .. ·Ym(n) · · · · · · s Y1 • • •Ym(n)

= { 1 if I{ i : p(w,Gi(s1)Y[.. ,Gi(s9 (n))yf(n)) = 1 }I ~ m~n)
0 otherwise

(n = lwl and Gi(si) denotes the i-th coordinate of the output of G on input si E {O, l}s(n)).
The analysis will be round by round. For any fixed seeds s1, ... , st- l the sampler guarantees

that
p [11 .._..m (1 t-1 t) E (1 t - 1)I < 1] > l 2- k m L.,i=l ace w, ri ... ri ri - race w, ri ... ri r _ 69 _ - 9

where rf ... r!n is the sequence specified by si (j = 1, ... , t). By the triangle inequality and
Proposition 3.2 we then have that at the end oft rounds it is the case that

P [I! L ~ 1acc(w,r; .. . r;) - acc(w)I s 6~] ~ 1 - t2;k.
Thus at the conclusion of the game (t = g) we are guaranteed that

P [acc(w) - ¼ s ! I:~1 acc(w, r; . . . rf)::; acc(w) + ¼] ~ 1 - rk.

But ! I:~ 1 ace(w, rl . . . rf) is just the fraction of accepting subgames. We conclude that the error
probability of our game is s 2-k by using the fact that errL(w) s ½-

4 C oncluding R emarks and O p en Problems

Our main result is the construction of an (l, E, 8)-sampler using (l + log 5- 1 • log l) coin tosses. Can
this be improved to 0(l + log8-1) coin tosses?

We point out that although our randomness-efficient error-reduction result has been improved
to use only 0(l + k) random bits per round, it is still open whether the underlying (l, €, 8)-sampling
primitive can be implemented with 0(l + log8-1) coin tosses.

Other tasks are to decrease the number of sample points while keeping the number of coin
tosses the same, and to find more applications of the (l , €, 8)-sampling primitive.

10

Acknowledgments

We are happy to thank Shafi Goldwasser and Oded Goldreich for many valuable comments on
both the materiel and the exposition of this article.

References

[AKS) Ajtai, M., J. Komlos and E . Szemeredi, "Deterministic Simulation in Logspace," Pro­
ceedings of the 19th ACM Symposium on the Theory of Computing (May 1987).

[B) Babai, L., "Trading Group Theory for Randomness," Proceedings of the 17th ACM Sym­
posium on the Theory of Computing (May 1985).

[BM) Babai, L. and S. Moran, "Arthur-Merlin Games: A Randomized Proof System, and a
Hierarchy of Complexity Classes," J. Computer and System Sciences 36, 254-276 (1988).

[BG) Bellare, M. and S. Goldwasser, "Saving Randomness in Interactive Proofs," manuscript
(November 1989).

[BR) Berger, B. and J. Rompel, "Simulating (loge n)-wise independence in NC," Proceedings
of the 30th IEEE Symposium on the Foundations of Computer Science (October 1989) .

[CaWe) Carter, L. and M. Wegman, "Universal Classes of Hash Functions," J. Computer and
System Sciences 18, 143- 154 (1979).

[CG) B. Chor and 0. Goldreich, "On the Power of Two- Point Based Sampling," J. of Com­
plexity 5, 96-106 (1989).

[CoWi) Cohen, A. and A. Wigderson, "Dispersers, Deterministic Amplification, and Weak Ran­
dom Sources," Proceedings of the 30th IEEE Symposium on the Foundations of Computer
Science (October 1989).

[G] Goldreich, 0., private communication (June 1990).

[GMR] Goldwasser, S. , S. Micali and C. Rackoff, "The Knowledge Complexity of Interactive
Proofs," SIAM J. Computing 18(1), 186- 208 (1989) .

[GS) Goldwasser, S. and M. Sipser, "Private Coins versus Public Coins in Interactive Proof
Systems," Proceedings of the 18th ACM Symposium on the Theory of Computing (May
1986).

[IZ] Impagliazzo, R. and D. Zuckerman, "How to Recycle Random Bits," Proceedings of the
30th IEEE Symposium on the Foundations of Computer Science (October 1989).

11

A Appendix: Proof of the t-wise Independence Tail Inequality

The line of reasoning used by [BR] extends to this more general case. First, it suffices to appro­
priately bound the t-th central moment: one shows that

E [(X - µl] ::; v'4ri (:t) t/2

and then obtains Lemma 2.4 by an application of Markov's inequality. Second, observe that by
linearity of expectation, the t-th central moment of the sum of a collection oft-wise independent
random variables is the same as the t-th central moment of this sum under the assumption that
the random variables are fully independent. So our work reduces to showing

Lemma A.1 Suppose X 1 , •.• ,Xn are independent random variables in the range [0,1], X
X1 + · · · + Xn, µ = E[X], and t 2:: 2 is an even integer. Then

E [(X - µl] ::; v'4ri (:tr/2
The proof Lemma A.l is facilitated by the use of integrals to express the expectation and make
the estimates. It also uses standard Chernoff bounds. Let us begin by recalling the relevant facts .

A.1 Facts

The following Chernoff-type bound is well known:

Lemma A.2 Suppose X1, .. . , Xn are independent random variables in the range [O, 1], X
X1 + · · · + Xn, µ = E[X], and a > 0. Then

P [IX - µI > a] < 2e- a2 /2n .

A simple well known expression for the expectation is

Lemma A.3 Let Z be a non-negative real valued random variable. Then E[Z] = J0
00 P [Z > x]dx.

Finally we need

Lemma A.4 Let a> 0 and t 2:: 2 an even integer. Then

{oo e - ax21, dx ::; ,,/ii (-t-) t/2

h 2ea

Proof: With the change of variable y = ax2 ft the integral becomes

(1) t/2 t roo t ; 2 }o y2-1e- Ydy . . (1)

We claim that

1B yce-Y dy = c! (1 - e-BL~~o 1;/) (2)

for B 2:: 0 and integer c 2:: 0, and thus the integral of equation (1) is bounded above by

(±Y12

½ (½- 1} = (±Y12

(½)i ~ ,,/ii (2:aY12
·

12

To establish equation (2) let f(c) = ff yce- Ydy and integrate by parts. We get

f(c) = [yce- Y]~ + 1B cyc-le- Ydy = [yce-Y]~ + cf(c - 1).

Unraveling the recursion yields the desired expression. We omit the details. D

A.2 Proof of Lemma A.1

By Lemma A.3

E[(X - µ)t] = 100

P [(X - µ)t > x] dx = 100

P [IX - µI > x1ft] dx .

By Lemma A.2 this is bounded above by
roo :,2/t

2
10

e- 2ndx,

and by Lemma A.4 (set a = 2~) this is bounded by

(
nt)t/2 (nt)t/2 2-J,ii, - = ~ -
e e

13

