
SecureExecution Via Program Shepherding

Vladimir Kiriansky, DerekBruening,SamanAmarasinghe
Laboratoryfor ComputerScience

MassachusettsInstituteof Technology
Cambridge,MA 02139�

vlk,iye,saman � @lcs.mit.edu

Abstract

We introduceprogram shepherding, a methodfor
monitoring control flow transfersduring program
executionto enforceasecuritypolicy. Shepherding
ensuresthat maliciouscodemasqueradingasdata
is neverexecuted,thwartingalargeclassof security
attacks.Shepherdingcanalsoenforceentrypoints
astheonly wayto executesharedlibrary code.Fur-
thermore,shepherdingguaranteesthat sandboxing
checksaroundany type of programoperationwill
neverbebypassed.Wehave implementedtheseca-
pabilitiesefficiently in a runtimesystemwith mini-
malor noperformancepenalties.Thissystemoper-
atesonunmodifiednativebinaries,requiresnospe-
cial hardwareor operatingsystemsupport,andruns
on existing IA-32 machines.

1 Intr oduction

Thegoalof mostsecurityattacksis togainunautho-
rizedaccessto acomputersystemby takingcontrol
of avulnerableprivilegedprogram.This is doneby
exploiting bugs that allow overwriting storedpro-
gram addresseswith pointers to malicious code.
Today’s most prevalent attackstarget buffer over-
flow andformatstring vulnerabilities.However, it
is very difficult to prevent all exploits that allow
addressoverwrites, as they are as varied as pro-

This researchwassupportedin part by the DefenseAd-
vancedResearchProjectsAgency underGrantF29601-01-2-
0166.

gram bugs themselves. It is also unreasonableto
try to stopmalevolentwritesto memorycontaining
programaddresses,becauseaddressesarestoredin
many differentplacesandarelegitimatelymanipu-
latedby theapplication.

Securityattackscannotbe thwartedby simply in-
serting checksaroundapplicationcode that may
causesystem-widechanges.A maliciousentitythat
gainscontrolcansimply inject its own codeto per-
form any operationthat theoverall applicationhas
permissionto do. Hijacking trustedapplications
suchaswebservers,mail transferagents,andlogin
servers,which are typically run with many global
permissions,givesfull accessto machineresources.

Ratherthan attemptto stop a multitude of attack
paths,wherethe protectionis only aspowerful as
theweakestlink, our approachis to prevent theex-
ecution of malicious code. We presentprogram
shepherding — monitoring control flow transfers
to enforcea securitypolicy. Programshepherding
prevents execution of data or modified code and
ensuresthat librariesareenteredonly throughex-
portedentrypoints.Insteadof focusingonprevent-
ing memorycorruption,wepreventthefinal stepof
anattack,thetransferof controlto malevolentcode.
This allows thwartinga broadrangeof securityex-
ploits with a simple centralsystemthat can itself
be easilymadesecure.Programshepherdingalso
providessandboxingthat cannotbe circumvented,
allowing constructionof customizedsecuritypoli-
cies.

Program shepherding requires verifying every
branchinstruction,which canbecostlywhendone

via instrumentationor in an interpreter. In order
to reducethisoverheadweperformsecuritychecks
onceandplacetheresultingtrustedcodein acache,
whereit canbe executedoverhead-freein the fu-
ture. Our implementationnaturallyfits within the
RIO infrastructure,adynamicoptimizerbuilt onthe
IA-32 version[3] of Dynamo[2]. Our systemim-
posesminimal or no performanceoverhead,oper-
ateson unmodifiednative binaries,andrequiresno
specialhardwareor operatingsystemsupport.Al-
thoughRIO is implementedfor bothWindows and
Linux, this paperfocuseson Linux only. We plan
to extendourwork to Windows.

In Section2 we classify the typesof securityex-
ploits thatarepreventedby programshepherding’s
threetechniques,which aredescribedin Section3.
Section4 discussesmethodsof implementingpro-
gram shepherdingefficiently, and Section 5 de-
scribesthedetailsof our implementation.Section6
discusseshow to preventattacksdirectedatoursys-
temitself. We presentexperimentalresultsandthe
performanceof oursystemin Section7.

2 Security Exploits

This section provides some backgroundon the
typesof securityexploitswearetargeting.Weclas-
sify security exploits basedon three characteris-
tics: theprogramvulnerabilitybeingexploited,the
storedprogramaddressbeingoverwritten,andthe
maliciouscodethatis thenexecuted.

2.1 Program Vulnerabilities

Thetwo most-exploitedclassesof programbugsin-
volve buffer overflows and format strings. Buffer
overflow vulnerabilitiesarepresentwhena buffer
with weakor noboundscheckingis populatedwith
user supplieddata. A trivial example is unsafe
useof the C library functionsstrcpy or gets.
This allows an attacker to corrupt adjacentstruc-
turescontainingprogramaddresses,mostoftenre-
turn addresseskept on the stack[7]. Buffer over-

flows affecting a regular datapointercanactually
haveamoredisastrouseffectby allowing amemory
write to anarbitrarylocationonasubsequentuseof
thatdatapointer. Oneparticularattackcorruptsthe
fields of a double-linked free list kept in malloc
headers[16]. On a subsequentcall to free, the
list updateoperation

this->prev->next = this->next
will modify an arbitrarylocationwith an arbitrary
value.

Formatstringvulnerabilitiesalsoallow attackersto
modify arbitrary memory locationswith arbitrary
valuesand often out-rankbuffer overflows in re-
centsecuritybulletins[6, 19]. A formatstringvul-
nerability occursif the format string to a function
from theprintf family (� ,f,s,sn � printf,
syslog) is provided or constructedfrom data
from an outside source. The most common
caseis when printf(str) is usedinsteadof
printf("\%s",str). Thefirst problemis that
attackersmaybeableto readthememorycontents
of the process. The real danger, however, comes
from the %n conversionspecifierthat writes back
to the argumentthe numberof charactersprinted
so far. The locationand the valueof this number
can easily be controlledby an attacker with type
andwidth specifiers,andmorethanonewrite of an
arbitraryvalue to an arbitraryaddresscanbe per-
formedin asingleintrusion.

In this paperwe assumethat attackerscanexploit
avulnerabilitythatgivesthemrandomwrite access
to arbitraryaddressesin theprogramaddressspace.
Thisability canbeusedto overwriteany storedpro-
gram addressto transfercontrol of the processto
theattacker.

2.2 Stored Program Addr esses

Many entitiesparticipatein transferringcontrol in
a programexecution. Compilers,linkers, loaders,
runtime systems,andhand-craftedassemblycode
all have legitimatereasonsto transfercontrol. Pro-
gram addressesare credibly manipulatedby most
of theseentities,e.g.dynamicloaderspatchshared

objectfunctions,dynamiclinkersupdaterelocation
tables;and languageruntime systemsmodify dy-
namic dispatchtables. Generally, theseprogram
addressesareintermingledwith andindistinguish-
ablefrom data.In suchanenvironment,preventing
a control transferto maliciouscodeby stoppingil-
legitimatememorywrites is next to impossible.It
requiresthe cooperationof numeroustrustedand
untrustedentitiesthatneedto checkmany different
conditionsandunderstandhigh-level semanticsin
acomplex environment.Theresultingprotectionis
only aspowerful astheweakestlink.

Securityexploits have attacked programaddresses
storedin many different places. Buffer overflow
attackstarget addressesadjacentto the vulnerable
buffer. Stackallocatedbuffersallow theclassicre-
turn addressattackanda local functionpointerat-
tack.Heapbuffer overflowsalsoallow globalfunc-
tion pointer attacksand a setjmp structureat-
tack. Simpledatapointerbuffer overflows, mal-
loc overflow attacks,and %n format string at-
tacksare able to modify any storedprogramad-
dressin the vulnerableapplication— in addition
to the aforementionedaddresses,theseattackstar-
getentriesin theatexit list, .dtors destructor
routines,andin theGlobalOffsetTable(GOT) [12]
of sharedobjectentries.

2.3 Malicious Code

An attackercancausedamagewith injectionof new
malicious code or by malicious reuseof already
presentcode. Usually the first approachis taken
andthe attackcodeis implementedasnew native
codethat is injectedin the programaddressspace
as data[20]. New codecan be injectedinto var-
ious areasof the addressspace:in a stackbuffer,
heapbuffer, staticdatasegment,nearheap,or even
the Global Offset Table. Sincenormally there is
no distinctionbetweenreadandexecuteprivileges
for memorypages(this is the casefor IA-32), the
only requirementis thatthepagesarewritabledur-
ing the injectionphase.Pointingany codepointer
to thebeginningof theintroducedcodewill trigger
intrusionwhenthatpointeris used.

It is alsopossibleto reuseexisting codeby chang-
ing a codepointer and constructingan activation
recordwith suitablearguments.A simplebut pow-
erful attack reusesexisting code by changinga
functionpointerto theC library functionsystem,
and arrangesthe first argumentto be an arbitrary
shellcommandto berun.

An attacker may be ableto form higher level ma-
licious codeby introducingdatacarefullyarranged
as a chain of activation records,so that on return
from eachfunctionexecutioncontinuesin thenext
one [18]. A jump into the middle of an instruc-
tion (onIA-32 instructionsarevariable-sized)could
causeexecutionof a maliciousinstructionstream,
althoughthisattackmaybeof very limited use.

3 Program Shepherding

The programshepherdingapproachto preventing
executionof maliciouscodeis tomonitorall control
transfersto ensurethateachsatisfiesa givensecu-
rity policy. This allows us to ignorethecomplexi-
tiesof variousvulnerabilitiesandthedifficulties in
preventingillegitimatewritesto storedprogramad-
dresses.Instead,wecancatcha largeclassof secu-
rity attacksby preventingexecutionof malevolent
code. We do this by employing threetechniques:
restrictedcodeorigins, restrictedcontrol transfers,
andun-circumventablesandboxing.

3.1 RestrictedCodeOrigins

In monitoring all code that is executed,eachin-
struction’s origins are checked againsta security
policy to seeif it shouldbe given executeprivi-
leges.For example,a policy couldallow execution
of codeonly if it is from the original application
or library imageon disk and is unmodified. The
policy couldallow dynamicallygeneratedcode,but
requirethat it executewithin a layer of sandbox-
ing. We describein Section5.1how to distinguish
originalcodefrom modifiedandpossiblymalicious
code.

Restrictedcodeorigins alonecanstopall security
exploits that inject codemasqueradingasdatainto
a program.This coversa majority of currentlyde-
ployed securityattacks,including theclassicstack
buffer overflow attack.

A hardware executeflag for memory pagescan
provide similar featuresto our restrictedcodeori-
gins.However, it cannotby itself duplicateprogram
shepherding’s featuresbecauseit cannotstopinad-
vertentormaliciouschangetoprotectionflags.Pro-
gram shepherdinguses un-circumventable sand-
boxing, describedin Section3.3, to prevent this
from happening.

3.2 RestrictedControl Transfers

Programshepherdingenablessecuritypoliciessuch
as enforcingthe calling convention by preventing
return instructions from targeting non-call sites.
Controlling return targetscanseverely restrictex-
ploits thatoverwritereturnaddresses,aswell asop-
portunitiesfor stitchingtogetherfragmentsof exist-
ing codein anattack.

Anotherusefulpolicy is restrictingtransitionsfrom
onesegmentto another, e.g. from applicationcode
to a sharedlibrary, or from one sharedlibrary to
another. We canpreventmalevolent jumpsinto the
middle of library routinesby restrictingtargetsof
callsandjumpsto beonthelibrary’s export list and
thesource’s import list.

3.3 Un-Cir cumventableSandboxing

Sandboxingallows building customizedsecurity
policies for different typesof code. For example,
checkscanbeaddedbeforeloadsandstoresto en-
surethatonly certainmemoryregionsareaccessed
by applicationcode.

With theability to monitor all transfersof control,
programshepherdingis ableto guaranteethatsand-
boxing checkscannotbe bypassed. Sandboxing
without this guaranteecannever provide truesecu-

rity — if anattackcangaincontrolof theexecution,
it canjumpstraightto thesandboxedoperation,by-
passingthechecks.

Sandboxingcan provide detectionof attacksthat
get pastboth restrictedcodeorigins andrestricted
control transfers.For example,anattackthatover-
writes a codepointer in orderto call thesystem
routinewill not be stoppedif system is allowed
by theexport andimport lists. Programshepherd-
ing’s guaranteedsandboxingcanbeusedfor intru-
siondetectionfor this andotherattacks.Thesecu-
rity policy mustdecidewhatto checkfor (for exam-
ple, suspiciouscalls to systemcalls like execve)
and what to do when an intrusion is actually de-
tected. Theseissuesarebeyond the scopeof this
paper, but have beendiscussedelsewhere[15, 17].

4 Efficient Implementation of Program
Shepherding

Our goalwasto build anefficient systemfor mon-
itoring control flow that runson existing hardware
andrequiresno modificationto applicationsource
codeor binaries. One possibility is instrumenta-
tion of applicationandlibrary codeprior to execu-
tion to addsecuritychecksaroundevery branchin-
struction.However, this imposessignificantperfor-
mancepenalties.Furthermore,anattacker awareof
the instrumentationcoulddesignanattackto over-
write or bypassthechecks.

Anotherpossibilityis to useaninterpreter. Interpre-
tation is a naturalway to monitor programexecu-
tion becauseevery applicationoperationis carried
out by a centralsystemin which securitychecks
canbeplaced.Interpretationvia emulationis slow,
especiallyonanarchitecturelikeIA-32 with acom-
plex instructionset. To reducetheemulationover-
head,interpreterstypically cachethe native trans-
lationsof frequentlyexecutedcodeso they canbe
directly executedin the future. By using a code
cache,we canperformsecuritychecksonly once,
whenwe copy the codeto the cache. If the code
cacheis protectedfrom maliciousmodification,fu-

BASIC BLOCK CACHE
non−control−flow

instructions

TRACE CACHE
non−control−flow

instructions

START basic block builder

dispatch

trace selector

context switch

indirect branch lookup indirect branch
stays on trace?

Figure 1:Flow chart of the RIO system infrastructure. Dark shading indicates application code. Note that the context
switch is simply between the code cache and RIO; application code and RIO code all runs in the same process and
address space.

ture executions of the trusted cached code proceed
with no security or emulation overhead.

4.1 Dynamic Optimization

A dynamic optimization system also utilizes this
code cache design. We decided to build our pro-
gram shepherding system as an extension to a dy-
namic optimizer called RIO. RIO is built on top of
the IA-32 version [3] of Dynamo [2]. RIO’s op-
timizations are still under development. However,
this is not a hindrance for our security purposes,
as its performance is already reasonable (see Sec-
tion 7.5). RIO is implemented for both IA-32 Win-
dows and Linux, and is capable of running large
desktop applications.

A flow chart showing the operation of RIO is shown
in Figure 1. The figure concentrates on the flow of
control in and out of the code cache, which is the
bottom portion of the figure. The copied applica-
tion code looks just like the original code with the
exception of its control transfer instructions, which
are shown with arrows in the figure.

Below we give an overview of RIO’s operation, fo-

cusing on the aspects that are relevant to our imple-
mentation of program shepherding.

4.2 RIO: Runtime Introspection and Opti-
mization

RIO copiesbasic blocks (sequences of instructions
ending with a single control transfer instruction)
into a code cache and executes them natively. At the
end of each block the application’s machine state
must be saved and control returned to RIO (acon-
text switch) to copy the next basic block. If a target
basic block is already present in the code cache, and
is targeted via a direct branch, RIOlinks the two
blocks together with a direct jump. This avoids the
cost of a subsequent context switch.

Indirect branches cannot be linked in the same way
because their targets may vary. To maintain trans-
parency, original program addresses must be used
wherever the application stores indirect branch tar-
gets (for example, return addresses for function
calls). These addresses must be translated into
their corresponding code cache addresses in order
to jump to the target code. This translation is per-
formed as a fast hashtable lookup. Unfortunately

-------- I

indirectbranchperformancewill neverequalthatof
theoriginal code,becausea singleinstruction(the
indirect branch)in theoriginal executionhasbeen
expandedto multiple instructions.

To improve theefficiency of indirectbranches,and
to achieve bettercodelayout,basicblocksthatare
frequently executedin sequenceare stitched to-
getherinto a unit called a trace. When connect-
ing beyond a basicblock that endsin an indirect
branch,a checkis insertedto ensurethat the ac-
tual targetof thebranchwill keepexecutionon the
trace.This checkis muchfasterthanthehashtable
lookup,but if thecheckfailsthefull lookupmustbe
performed.Thesuperiorcodelayoutof tracesgoes
a long way towardamortizingtheoverheadof cre-
atingthemandoftenspeedsuptheprogram[2, 23].

5 Implementation Details

This sectiondiscussesthe implementationof the
componentsof programshepherdingdiscussedin
Section3. Most monitoringoperationsonly need
to beperformedonce,allowing us to achieve good
performancein thesteady-stateof theprogram.In
our implementation,a performance-criticalinner
loop will executewithout a single additional in-
structionbeyondtheoriginalapplicationcode.

5.1 RestrictedCodeOrigins

Theoriginsof abasicblockareeasilymonitoredby
addingchecksat thepoint wherethesystemcopies
a basicblock into the codecache. Thesechecks
needbeexecutedonly oncefor eachbasicblock.

Codeorigins often requireknowing whethercode
hasbeenmodifiedfrom its original imageon disk,
or whetherit is dynamicallygenerated.Thisis done
by write-protectingall pagesthat are declaredas
containingcode on programstart-up. In normal
ELF [12] binariescodepagesareseparatefrom data
pagesandarewrite-protectedby default. Dynami-
cally generatedcodeis easilydetectedwhentheap-

plicationtriesto executecodefrom awritablepage,
while self-modifyingcodeis detectedby monitor-
ing callsthatun-protectcodepages.

If codeand dataare allowed to sharea page,we
make a copy of the page,which we write-protect,
andthenunprotectthe original page. The copy is
then usedas the sourcefor basicblocks. If self-
modifying codemustbeallowed,RIO keepstrack
of theoriginsof every block in thecodecache,in-
validatingablockwhenits sourcepageis modified.
The original pagemustbe kept write-protectedto
detectevery modificationto it. The performance
overheadof this dependson how often writes are
madeto codepages,but we expectself-modifying
codeto berare.

We handlenew or modified codeas specifiedby
the securitypolicy. We envision a seriesof pro-
tection levels, whereoriginal unmodifiedcode is
more trusted,anddynamicallygeneratedor mod-
ified codeis lesstrusted,requiringadditionalsand-
boxing. Legitimatedynamically-generated codeis
usuallyusedfor performance;for example,many
high-level languagesemploy just-in-time compila-
tion [1, 11] to generateoptimizedpiecesof code
that will be executednatively rather than inter-
preted. This codealmostalwaysdoesnot contain
systemcalls or otherpotentially dangerousitems.
For this reason,imposinga strict security policy
on dynamically-generated code(for example,dis-
allowing theexecve systemcall) is a reasonable
approach.

5.2 RestrictedControl Transfers

The dynamic optimization infrastructure makes
monitoringcontrol flow transfersvery simple. For
directbranches,any desiredsecuritycheckscanbe
performedat thepoint of basicblock linking. If a
transitionbetweentwo blocksis disallowed by the
securitypolicy, they are not linked together. In-
stead,the direct branchis linked to a routine that
announcesor handlesthesecurityviolation. These
checksneedonly be performedoncefor eachpo-
tentiallink. A link thatis allowedbecomesadirect

jump with no overhead.

For an indirect branch,the hashtablelookup rou-
tine translatesthetargetprogramaddressinto a ba-
sicblockentryaddress.Transitionsbetweenblocks
using indirect branchesare controlled by censor-
ing the hashtable. We only place targets in the
hashtablethat are allowed by the securitypolicy.
A separatehashtablecanbeusedfor returninstruc-
tionsto ensurethat they only targetcall sites.This
separationhasno effecton performance.

To require that all calls and jumps betweenseg-
ments satisfy the import and export lists, we
can match targets against entry points of PLT-
defined[12] or dynamicallyresolvedsymbols.

Securitychecksfor indirectbranchesthatonly ex-
amine their targets have little performanceover-
head. However, examiningthe sourceandthe tar-
gethasthepotentialto slow down execution.This
must be doneeither by addingexplicit checksin
the hashtablelookup routine, or by indexing the
hashtablebothby sourceandtarget.

5.3 Un-Cir cumventableSandboxing

Whenrequiredby the securitypolicy, RIO inserts
sandboxinginto a basicblock whenit is copiedto
thecodecache.In normalsandboxing,anattacker
canjumpto themiddleof ablockandbypassthein-
sertedchecks.RIO only allows controlflow trans-
fers to thetop of basicblocksor tracesin thecode
cache,preventingthis.

An indirect branchthat targets the middle of an
existing block will miss in the indirect branch
hashtablelookup,gobackto RIO,andendupcopy-
ing a new basicblock into thecodecachethatwill
duplicatethebottomhalf of theexistingblock. The
necessarycheckswill be addedto the new block,
andtheblockwill only beenteredfrom thetop,en-
suringwe follow thesecuritypolicy.

Restrictedcodecacheentry pointsarecrucial not
just for building customsecuritypolicieswith un-

PageType RIO mode Applicationmode
Applicationcode R R
Applicationdata RW RW
RIO codecache RW R (E)
RIO code R (E) R
RIO data RW R

Table1: Privilegesof eachtype of memorypagebe-
longingto theapplicationprocess.R standsfor Read,W
for Write, andE for execute.We separateexecuteprivi-
legeshereto make it clearwhatcodeis allowedby RIO
to execute.

circumventablesandboxing,but alsofor enforcing
the othershepherdingfeaturesby protectingRIO.
This is discussedin thenext section.

6 Protecting RIO

Programshepherdingcould be defeatedby attack-
ing RIO’s own datastructures,including the code
cache,which arein the sameaddressspaceasthe
application.This sectiondiscusseshow to prevent
attacksonRIO.Sincethecoreof RIO is arelatively
smallpieceof code,webelievewecansecureit and
leave no loopholesfor exploitation.

6.1 Memory Protection

To protect RIO we write-protectRIO’s data and
thecodecachewhile controlis in applicationcode.
We divide execution time into two modes: RIO
mode and application mode. RIO mode corre-
spondsto the top half of Figure 1. Application
modecorrespondsto the bottomhalf of Figure1,
the codecacheandthe RIO routinesthat areexe-
cutedwithout performinga context switchbackto
RIO. We give eachtypeof memorypagetheprivi-
legesshown in Table1. RIO dataincludestheindi-
rectbranchhashtableandotherdatastructures.

Initially, all applicationand RIO code pagesare
write-protected. When we enter RIO mode we
unprotect the code cache and RIO data pages.

If a basic block copied to the code cachecon-
tains a systemcall that may changepage priv-
ileges, the call is sandboxed to prevent changes
that violate Table 1. Programshepherding’s un-
circumventablesandboxingguaranteesthat these
systemcall checksare executed. When we enter
applicationmodewe write-protectthe codecache
pagesandRIO datapages.Becausewe do not al-
low applicationcodeto changetheseprotections,
we guaranteethatRIO’sstatecannotbecorrupted.

We protectRIO’s Global Offset Table(GOT) [12]
by bindingall symbolsonprogramstartupandthen
write-protectingtheGOT.

6.2 Multiple Application Thr eads

RIO’s datastructuresand codecacheare thread-
private.Eachthreadhasits own uniquecodecache
anddatastructures.Systemcalls thatmodify page
privilegesarecheckedagainstthedatapagesof all
threads.Whena threadentersRIO mode,only that
thread’s RIO datapagesandcodecachepagesare
unprotected.

A potentialattackcouldoccurwhile onethreadis in
RIO modeandanotherthreadin applicationmode
modifiesthefirst thread’sRIOdatapages.Wecould
solve this problem by forcing all threadsto exit
applicationmodewhenany onethreadentersRIO
mode.Theperformancecostof thissolutionwould
beminimal on a singleprocessoror on a multipro-
cessorwhen every threadis spendingmost of its
time executing in the code cache. However, the
performancecostwould be unreasonableon mul-
tiprocessorwhenthreadsarecontinuouslycontext
switching.Wearestill workingon alternative solu-
tions.

6.3 Interaction with Dynamic Optimization

We will maintainour security implementationas
RIO is enhancedwith classiccompiler optimiza-
tionsto improveperformance.Someproposedopti-
mizationsmaintainstatewhile in applicationmode,

requiringwrite permissionon pagessuchthatRIO
cannotguaranteesecurity. We plan to be involved
in the designof future optimizationsso that they
canbeincorporatedsecurelyinto RIO.

7 Experimental Results

Ourprogramshepherdingimplementationis ableto
detectandpreventa wide rangeof known security
attacks.Thissectionpresentsatestsuiteof exploits
andthenshows theperformanceof our systemand
theperformanceimpactof oursecuritytechniques.

7.1 TestSuite

We constructedseveral programsexhibiting a full
spectrumof buffer overflow andformatstringvul-
nerabilities.Our experimentsalsoincludedthefol-
lowing applicationswith recentlyreportedsecurity
vulnerabilities:

stunnel-3.21 CAN-2002-0002[8] A format string
vulnerability in stunnel (SSL tunnel) al-
lows remotemaliciousserversto executearbi-
trarycodebecauseseveralfdprintf (a cus-
tomfile descriptorwrapperof fprintf) calls
have no formatargument.

groff-1.16 CAN-2002-0003[8] The preprocessor
of the groff formatting systemhasan ex-
ploitablebuffer overflow whichallows remote
attackers to gain privileges via lpd in the
LPRng printing system. The pic picture
compilerfrom thegroff packagealsohasa
formatstringvulnerability[21].

ssh-1.2.31CVE-2001-0144[8] An integer-
overflow bug in the CRC32 compensation
attackdetectioncodecausestheSSHdaemon
(run typically as root) to createa hashtable
with sizezeroin responseto long input. Later
attemptsto write values into the hashtable
provide attackerswith randomwrite accessto
memory.

sudo-1.6.1CVE-2001-0279[8] sudo (superuser
do) allows local usersto gain root privileges.
The vulnerability is triggeredby long com-
mandline argumentsandis causedby an out
of boundaccessdueto incompleteendof loop
conditions.An exploit basedonmalloc cor-
ruptionhasbeenpublished[16].

Attackcodeis usuallyusedto immediatelygive the
attacker a root shell or to preparethe systemfor
easytakeover by modifying systemfiles. Hence,
the exploits in our teststried to eitherstarta shell
with theprivilege of therunningprocess,typically
root,or to addarootentryinto the/etc/passwd
file. We basedour exploits on several “cookbook”
andproof-of-conceptworks[4, 26, 16, 21] to inject
new code[20], reuseexisting codein a singlecall,
or reusecodein achainof multiplecalls[18]. Stan-
dardC library functionswereusedfor existingcode
attacks. Chainedcalls werearrangedby injecting
carefullyconstructedactivation records.On return
from onefunction,executioncontinuesin codein a
functionepiloguethatshiftsthestackpointerto the
following activationrecordandcontinuesexecution
in thenext functionof thechain.

Our testsuiteexploits wereableto get control by
modifyingawidevarietyof codepointersincluding
returnaddresses;localandglobalfunctionpointers;
setjmp structures;andatexit, .dtors, and
GOT [12] entries. We investigatedattacksagainst
RIO itself, e.g. overwriting RIO’s GOT entry to
allow maliciouscodeto runin RIO mode,but could
not comeup with an attackthat could bypassthe
protectionmechanismspresentedin Section6.

All vulnerable programs were successfullyex-
ploited whenrun on a standardRedHat7.2 Linux
installation. Executionof the vulnerablebinaries
under RIO without security checksalso allowed
successfulintrusions. Although RIO interfered
with a few of theexploitsdueto changedaddresses
in thetargets,it wastrivial to modify theexploits to
work underRIO.

Table2 summarizesthe contribution of eachpro-
gramshepherdingtechniquetowardstoppingthese

attacks.Wenow describetheseresultsin detail.

7.2 RestrictedCodeOrigins

Enablingthecodeorigin checksof RIO disallowed
executionfrom addressrangesother than the text
pagesof thebinaryandall mappedsharedlibraries.
All exploits that introduceexternalcodewerede-
tectedandstopped.

A majority of currently deployed securityattacks
would bepreventedby this techniquealone.How-
ever, codeorigin checksare insufficient to thwart
attacksthatchangea targetaddresspointerto point
to existing codein theprogramaddressspace.

7.3 RestrictedControl Transfers

We have evaluatedwhich attackswould have been
preventedby controltransferrestrictions,whichwe
arein theprocessof implementing.

Most of our vulnerableprogramsdid not have any
applicationcodewhich could be maliciouslyused
by anattacker. However, all of themhadthestan-
dardC librarymappedinto theiraddressspace.Fur-
thermore,many of the largeprogramsimportedall
of thelibrary routinesthatourattacksneeded,sore-
strictionson cross-segmenttransitionswould only
stopa few of theseattacks.

Requiring that return instructionstarget only call
sites would thwart our chainedcall attack, even
whenthe neededfunctionsareexplicitly imported
and allowed by cross-segment restrictions. The
chainingtechniquewould becounteredbecauseof
its relianceonreturninstructions:onceto gaincon-
trol at the endof eachexisting function, andonce
in the codeto shift to the activation recordfor the
next functioncall.

Notethatif existing codeusedanindirectjump in-
struction to return insteadof an actual return in-
struction,our specialreturnhandlingwould be of
no help. Suchcodewill probablynot bepresentin

AttackType CodeOrigins RestrictedTransfers Sandboxing

ReturnAddress stopsall policy
InjectedCode

OtherPointer
stopsall

dependent

ReturnAddress stopsmost �
Imported

OtherPointerSingleCall

Not Imported stopsall

stopsexecve �

policy

E
xi

st
in

g
C

od
e

ChainedCalls stopsall
dependent

Table2: Capabilitiesof programshepherdingagainstdifferentattackclasses.�
: Only codeat a returnpointcanberun.�

: Sinceonly asinglecall canbeexecuted,sandboxingexecve shouldprevent intrusion.

mostapplications— it will certainlynot begener-
atedby compilerssinceit breaksimportanthard-
wareoptimizationsin modernIA-32 processors.

7.4 Un-Cir cumventableSandboxing

Single maliciousfunction calls to an importedli-
brary routine are still possibleby modificationof
a function pointer, asarethe simplerdata-onlyat-
tacksthatonly modify theargumentof anotherwise
valid functioncall.

We considerthe readilyavailableexecve system
call to bethemostvulnerablepoint in a single-call
attack.However, it is possibleto constructanintru-
siondetectionpredicateto distinguishattacksfrom
valid execve calls,andeitherterminatetheappli-
cationor dropprivilegesto limit theexposure.

7.5 Performance

Figure2 shows the performanceof RIO with and
without programshepherdingfeatures.The figure
shows normalizedexecutiontime on Linux for the
SPEC2000benchmarks[24] (compiled-O3 and
run with unlimited code cachespace). The first
bargivesthe performanceof RIO by itself. RIO’s
codelayout optimizationsenableit to speedup a
numberof thebenchmarks.Thesecondbarshows

RIO’s performancewhenit checkscodeorigins to
ensurethat only unmodified,original code is ex-
ecuted. This overheadis negligible, as it occurs
only at the point where basic blocks are copied
into the codecache.The third bar gives the over-
headof write-protectingRIO memorypagesonev-
ery context switch. This overheadis againmini-
mal,within thenoisein ourmeasurementsfor most
benchmarks.Only gcc hassignificantslowdown
dueto pageprotection,becauseit consistsof sev-
eralshortrunswith little codere-use.Wearework-
ing on improving our pageprotectionschemeand
completingimplementationof theschemesfor pro-
tecting RIO mentionedin Section6 for multiple
threads.

We areconfidentthat the checksthat are involved
in restrictionson transitionsbetweenmemoryseg-
mentsandon returntargetswill producenegligible
overheads,aswith thecodeorigin checkingthatwe
have shown. We have implementedsandboxingof
systemcalls,which introducesno noticeableover-
head.

8 RelatedWork

Reflectingthesignificanceandpopularityof buffer
overflow andformatstringattacks,therehave been
severalotherworksthatattemptedto provide auto-

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

am
m

p

ap
pl

u

ap
si ar
t

bz
ip

2

cr
af

ty

eo
n

eq
ua

ke

ga
p

gc
c

gz
ip

m
cf

m
e

sa

m
gr

id

pa
rs

er

pe
rlb

m
k

si
xt

ra
ck

sw
im

tw
ol

f

vo
rt

ex vp
r

w
up

w
is

e

Benchmark

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

RIO

RIO + origins

RIO + origins +
protection

Figure 2: Normalized program execution time for our system (the ratio of our execution time to native execution
time) on the SPEC2000 benchmarks [24] (excluding FORTRAN 90). The first bar is for RIO with no program
shepherding implementation. The middle bar shows the overhead of checking code origins. The right bar shows the
overhead of performing page protection calls to prevent attacks against the system itself.

matic protection and detection of these vulnerabili-
ties. We will shortly summarize the more success-
ful ones.

StackGuard [7] is a compiler patch that modifies
function prologues to place “canaries” adjacent to
the return address pointer. A stack buffer overflow
will modify the “canary” while overwriting the re-
turn pointer, and a check in the function epilogue
can detect that condition. This technique is success-
ful only against sequential overwrites and protects
only the return address.

StackGhost [14] is an example of hardware-
facilitated return address pointer protection. It is a
kernel modification of OpenBSD that uses a Sparc
architecture trap when a register window has to be
written to or read from the stack, so it performs
transparent operations on the return address before
it is written to the stack on function entry and before
control transfer on function exit.

Techniques for stack smashing protection by keep-
ing copies of the actual return addresses in an area
unaccessible to the application, are also proposed

in the kernel modification in [14], and in the com-
piler patch StackShield [25] suffer from various
complications in multi-threading environment and
from deviations from a strict calling convention
by setjmp() and exceptions. Unless the mem-
ory areas are unreadable to the application there is
no hard guarantee that an attack targeted against a
given protection scheme can be foiled. On the other
hand, if the return stack copy is protected for the
duration of a function execution, it has to be un-
protected on each call and that can be prohibitively
expensive (mprotect on Linux on x86 is 60–70
times more expensive than an empty function call).
Techniques for write-protection of stack pages [7]
have also shown significant performance penalties.

FormatGuard [6] is a library patch for eliminating
format string vulnerabilities. It provides wrappers
for theprintf functions that count the number of
arguments and match them to the specifiers. It is
applicable only to functions that use the standard
library functions directly, and it requires recompi-
lation.

Enforcing non-executable permissions on the IA-

-
- -

□

•
□

32 via kernelpatcheswasmadefor thestackpages
in [10] andon all datapageswith PaX [22]. Both
providenoprotectionagainstattacksusingexisting
code. Furthermore,our systemprovidesexecution
protectionfrom usermodeandachievesbetterper-
formancefor protectingall datapages.

The systeminfrastructureitself is a dynamicopti-
mizationsystembasedon the IA-32 version[3] of
Dynamo[2]. Other software dynamicoptimizers
areWiggins/Redstone[9], whichemploys program
countersamplingto form tracesthatarespecialized
for the particularAlpha machinethey arerunning
on, andMojo [5], which targetsWindows NT run-
ning on IA-32. None of thesehasbeenusedfor
anything otherthanoptimization.

9 Conclusions

This paperintroducesprogramshepherding,which
employs the techniquesof restrictedcodeorigins,
restrictedcontrol transfers,andun-circumventable
sandboxingto provide strongsecurityguarantees.
We have implementedprogramshepherdingin the
RIOruntimesystemandhaveshown thatit success-
fully preventsa wide rangeof securityattackseffi-
ciently.

RIO doesnot rely on hardware,operatingsystem,
orcompilersupport,andoperatesonunmodifiedbi-
narieson a genericLinux IA-32 platform. By per-
forming securitychecksonceand cachingtrusted
code,ourprogramshepherdingimplementationhas
minimal overhead.

We are expandingthe list of securitychecksthat
shepherdingcan provide without loss of perfor-
mance.Wearealsomaintainingoursecurityimple-
mentationwith updatesto RIO thatimproveperfor-
mance.

Programshepherdingallows operatingsystemser-
vices to be moved to more efficient user-level li-
braries.For example,in theexokernel[13] operat-
ing system,theusualoperatingsystemabstractions

areprovided by unprivileged libraries,giving effi-
cientcontrolof systemresourcesto usercode.Pro-
gramshepherdingcanenforceuniqueentry points
in theselibraries,enablingtheexokernelto provide
its betterperformancewithout sacrificingsecurity.

Webelieve thatprogramshepherdingwill beanin-
tegralpartof futuresecuritysystems.It is relatively
simple to implement,haslittle or no performance
penalty, andcancoexist with existingoperatingsys-
tems,applications,andhardware. Many otherse-
curity componentscan be built on top of the un-
circumventablesandboxingprovided by program
shepherding.Programshepherdingprovides use-
ful securityguaranteesthat drasticallyreducesthe
potentialdamagefrom attacks.

References

[1] Matthew Arnold, StephenFink, David Grove, Michael
Hind, andPeterF. Sweeney. Adaptive optimizationin
theJalapẽno JVM. In 2000 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’00), October2000.

[2] VasanthBala, Evelyn Duesterwald, andSanjeev Baner-
jia. Dynamo: A transparentruntime optimizationsys-
tem. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI ’00), June2000.

[3] DerekBruening,Evelyn Duesterwald, andSamanAma-
rasinghe.Designandimplementationof a dynamicop-
timization framework for Windows. In 4th ACM Work-
shop on Feedback-Directed and Dynamic Optimization
(FDDO-4), December2000.

[4] Bulba and Kil3r. BypassingStackGuardand Stack-
Shield.Phrack, 5(56),May 2000.

[5] Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and
David M. Gillies. Mojo: A dynamicoptimizationsys-
tem. In 3rd ACM Workshop on Feedback-Directed and
Dynamic Optimization (FDDO-3), December2000.

[6] C. Cowan, M. Barringer, S. Beattie, and G. Kroah-
Hartman. FormatGuard: Automatic protection from
printf format string vulnerabilities, 2001. In 10th
USENIX SecuritySymposium,Washington,D.C., Au-
gust2001.

[7] Crispan Cowan, Calton Pu, Dave Maier, Jonathan
Walpole,PeatBakke, Steve Beattie,Aaron Grier, Perry
Wagle,Qian Zhang,andHeatherHinton. StackGuard:
Automaticadaptive detectionandprevention of buffer-
overflow attacks.In Proc. 7th USENIX Security Sympo-
sium, pages63–78,SanAntonio,Texas,January1998.

[8] Commonvulnerabilitiesandexposures.MITRE Corpo-
ration.http://cve.mitre.org/.

[9] D. Deaver, R. Gorton,andN. Rubin. Wiggins/Restone:
An on-line programspecializer. In Proceedings of Hot
Chips 11, August1999.

[10] SolarDesigner. Non-executableuserstack.
http://www.openwall.com/linux/.

[11] L. PeterDeutschand Allan M. Schiffman. Efficient
implementationof the Smalltalk-80system. In ACM
Symposium on Principles of Programming Languages
(POPL ’84), January1984.

[12] Executableand Linking Format(ELF). Tool Interface
StandardsCommittee,May 1995.

[13] Dawson R. Engler, M. Frans Kaashoek,and James
O’Toole. Exokernel: An operatingsystemarchitecture
for application-level r esourcemanagement.In Sympo-
sium on Operating Systems Principles, pages251–266,
1995.

[14] M. FrantzenandM. Shuey. Stackghost:Hardwarefacil-
itatedstackprotection. In Proc. 10th USENIX Security
Symposium, Washington,D.C.,August2001.

[15] IanGoldberg,David Wagner, RandiThomas,andEricA.
Brewer. A secureenvironmentfor untrustedhelperappli-
cations.In Proceedings of the 6th Usenix Security Sym-
posium, SanJose,Ca.,1996.

[16] Michel Kaempf. Vudo - an object superstitiouslybe-
lievedto embodymagicalpowers.Phrack, 8(57),August
2001.

[17] Calvin Ko, Timothy Fraser, Lee Badger, and Douglas
Kilpatrick. Detectingandcounteringsystemintrusions
usingsoftwarewrappers.In Proc. 9th USENIX Security
Symposium, Denver, Colorado,August2000.

[18] Nergal.Theadvancedreturn-into-lib(c)exploits.Phrack,
4(58),December2001.

[19] Tim Newsham. Formatstring attacks. Guardent,Inc.,
September2000.
http://www.guardent.com/docs/FormatString.PDF.

[20] Aleph One. Smashingthe stack for fun and profit.
Phrack, 7(49),November1996.

[21] Zenith Parsec. Remotelinux groff exploitation via lpd
vulnerability.
http://www.securityfocus.com/bid/3103.

[22] PaXTeam.Nonexecutabledatapages.
http://pageexec.virtualave.net/pageexec.txt.

[23] Eric Rotenberg, Steve Bennett,andJ. E. Smith. Trace
cache: A low latency approachto high bandwidthin-
structionfetching. In 29th Annual International Sym-
posium on Microarchitecture (MICRO ’96), December
1996.

[24] SPECCPU2000benchmarksuite.StandardPerformance
EvaluationCorporation.
http://www.spec.org/osg/cpu2000/.

[25] Vendicator. Stackshield:A “stacksmashing”technique
protectiontool for linux.
http://www.angelfire.com/sk/stackshield/.

[26] Rafal Wojtczuk.Defeatingsolardesignernon-executable
stackpatch.
http://www.securityfocus.com/archive/1/8470.

