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Abstract 

We present a translation scheme that allows a broad class of dataflow graphs to be considered under 

the optimization framework of the polyhedral model. The input to our analysis is a Phased Computation 

Graph, which we define as a generalization of the most widely used dataflow representations, including 

synchronous dataflow, cyclo-static dataflow, and computation graphs. The output of our analysis is a 

System of Affine Recurrence Equations (SARE) that exactly captures the data dependences between the 

nodes of the original graph. Using the SARE representation, one can apply many techniques from the 

scientific community that are new to the DSP domain. For example, we propose simple optimizations 

such as node splitting, decimation propagation, and steady-state invariant code motion that leverage the 

fine-grained dependence information of the SARE to perform novel transformations on a stream graph. 
We also propose ways in which the polyhedral model can offer new approaches to classic problems of the 

DSP community, such as minimizing buffer size, code size, and optimizing the schedule. 

1 Introduction 

Synchronous datafiow graphs have become a powerful and widespread programming abstraction for DSP 

environments. Originally proposed by Lee and Messerchmitt in 1987 [18], synchronous dataflow has since 
evolved into a number of varieties [5, 1, 26, 6] which provide a natural framework for developing modular 

processing blocks and composing them into a concurrent network. A dataflow graph consists of a set of 
nodes with channels running between them; data values are passed as streams over the channels. The 
synchronous assumption is that a node will not fire until all of its inputs are ready. Also, the input/output 

rates of the nodes are known at compile time, such that a static schedule can be computed for the steady

state execution. Synchronous dataflow graphs have been shown to successfully model a large class of DSP 
applications, including speech coding, auto-correlation, voice band modulation, and a number of filters. A 

significant industry has emerged to provide dataflow design environments; leading products include COSSAP 

from Synopsys, SPW from Cadence, ADS from Hewlett Packard, and DSP Station from Mentor Graphics. 
Academic projects include prototyping environments such as Ptolemy [17] and Grape-II [16] as well as 
languages such as Lustre [13], Signal [10], and Streamlt [11]. 

*This document is MIT Laboratory for Computer Science Technical Memo LCS-TM-???, August 2002. Our latest 
work on this subject will be available from http://cag . lcs.mit.edu/streamit 
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has resulted in a number of aggressive optimizations that are specially designed to operate on dataflow 
graphs-e.g., minimizing buffer size while restricting code size [25], minimizing buffer size while maintaining 

parallelism [12], resynchronization [4], and buffer sharing [24]. While these optimizations are beneficial, they 

unilaterally regard each node as a black box that is invisible to the compiler. Blocks are programmed at a 
coarse level of granularity, often with hand-tweaked implementations inside, and optimizations are considered 
only when stitching the blocks together. 

In some sense at the other end of the spectrum are the optimization techniques of the scientific computing 

community. These are characterized by fine-grained analyses of loops, statements, and control flow, starting 

from sequential C or FORTRAN source code that lacks the explicit parallelism and communication of a 

dataflow graph. Out of this community has come a number of general methods for precise, fine-grained 
program analysis and optimization. In the context of array dataflow analysis and automatic parallelization, 

one such framework is the polyhedral model [7], which represents programs as sets of affine relations over 

polyhedral domains. In recent years, it has been shown that affine dependences can exactly represent the 
flow of data in certain classes of programs [8], and that affine partitioning can subsume loop fusion, reversal, 

permutation, and reindexing as a scheduling technique [21]. Moreover, affine scheduling can operate on a 
parameterized version of the input program, avoiding the need to expand a graph for varying parameters and 

problem sizes, and it can often reduce to a linear program for flexible and efficient optimization. Polyhedral 
representations have also been utilized for powerful storage optimizations [22, 28, 31, 20]. 

In this paper, we aim to bridge the gap and employ the polyhedral representations of the scientific 
community to analyze the synchronous dataflow graphs of the DSP community. Towards this end, we present 

a translation from a dataflow graph to a System of Affine Recurrence Equations (SARE), which are equivalent 

to a certain class of imperative programs and can be used as input to the affine analysis described above. 
The input of our analysis is a "Phased Computation Graph" (PCG), which we formalize as a generalization 

of several existing datafiow frameworks. Once a PCG is represented as a SARE, we demonstrate how affine 
techniques could be employed to perform novel optimizations such as node splitting, decimation propagation, 
and steady-state invariant code motion that exploit both the structure of the datafiow graph as well as the 

internal contents of each node. We also discuss the potential of affine techniques for scheduling parameterized 

dataflow graphs, as well as offering new approaches to classic problems in the dataflow domain. 
The rest of this paper is organized as follows. We begin by describing background information and related 

work on dataflow graphs and SARE's (Section 2). Then we define a Phased Computation Graph (Section 3) 

and Phased Coinputation Program (Section 4), and give the procedure for translating a simple, restricted 
PCP to a SARE (Section 5). Next, we give the full details for the general translation (Section 6), describe 

a range of applications for the technique (Section 7), and conclude (Section 8). A detailed example that 
illustrates our technique appears in the Appendix. 

2 Background and Related Work 

2.1 Dataflow Graphs 

Strictly speaking, synchronous dataflow (SDF) refers to a class of dataflow graphs where the input rate 

and output rate of each node is constant from one invocation to the next [18, 19]. For SDF graphs, it is 

straightforward to determine a legal steady state schedule using balance equations [3] (see Section 5.1). The 

SDF scheduling community focuses on "single-appearance schedules" (SAS) in which each filter appears at 
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they can't afford to duplicate the inlining, thus leading to the restriction that each filter appear only once. 

They have demonstrated that minimizing buffer size in general graphs is NP-complete, but they explore two 
heuristics to do it in acyclic graphs [2]. 

Cyclo-static dataflow (CSDF) is the generalization of SDF to the case where each node has a set of 
phases with different I/O rates that are cycled through repeatedly [5, 27]. Compared to SDF, CSDF is more 

natural for the programmer for writing phased filters, since periodic tasks can be separated. For instance, 

consider a channel decoder that inputs a large matrix of coefficients at regular intervals, but decodes one 

element at a time for N invocations in between each set of coefficients. By having two separate phases, the 

programmer doesn't have to interleave this functionality in a single, convoluted work function. Also, CSDF 

can have lower latency and more fine-grained parallelism than SDF. However, current scheduling techniques 
for CSDF involve converting each phase to an SDF actor, which can cause deadlock even for legal graphs [5] 

and does not take advantage of the fine-grained dataflow exposed by CSDF. 

The computation graph (CG) was described by Karp and Miller [15] as a model of computation that, 

unlike the two above, allows the nodes to peek. By "peek" we mean that a node can read and use a value from 

a channel without consuming (popping) it from the channel; peeking is good for the programmer because 
it automates the buffer management for input items that are used on multiple firings, as in an FIR filter. 

However, peeking complicates the schedule because an initialization schedule is needed to ensure that enough 

items are on the channel in order to fire [ll]. In [15], conditions are given for when a computation graph 
terminates and when its data queues are bounded. 

Govindarajan et. al develop a linear programming framework for determining the "rate-optimal schedule" 

with the minimal memory requirement [12]. A rate-optimal schedule is one that takes advantage of parallel 
resources to execute the graph with the maximal throughput. Though their formulation is attractive and 

bears some likeness to ours, it is specific for rate-optimal schedules and does not directly relate to the 
polyhedral model. It also can result in a code size blow up, as the same node could be executed in many 
different contexts. 

2.2 Systems of Affine Recurrence Equations 

A System of Affine Recurrence Equations (SARE) is a set of equations £1 ... Ems of the following form [7, 8]: 

Vi E Dt: : X(i) = !£( ... , Y(ht: ,Y(i)), ... ) (1) 

In this equation, our notation is as follows: 

• { X , Y, ... } is the set of variables defined by the SARE. Variables can be considered as multi-dimensional 
arrays mapping a vector of indices i to a value in some space V. 

• Dt: is a polyhedron representing the domain of the equation E. Each equation for a variable X has a 
disjoint domain; the domain D x for variable X is taken as the convex union of all domains over which 
X is defined. 

• ht:,Y is a vector-valued affine function, giving the index of variable Y that X(i) depends on. A vector
valued function h is affine if it can be written as h(i) = Ci+ d, where C is a constant array and l is a 
constant vector that do not vary with i. 

• ft: is a strict function used to compute the elements of X. 
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Synchronous Dataflow [18] X X 
Cyclo-Static Dataflow [5] X X X 
Computation Graphs [14] X X X 

Phased Computation Graphs X X X X X 

Table 1: Models of Computation for Dataflow Graphs. 

Intuitively, the SARE can be considered as follows. Given an array element at a known index i, the 

SARE gives the set of arrays and indices that this element depends on. Furthermore, each index expression 
on the right hand side is an affine expression of i. Note that in order to map directly from an array element 

to the elements that it depends on, the index expression on the left hand side must exactly match the domain 
quantifier i. 

A SARE has no notion of internal state per se; however, state can be modeled by introducing a self-loop 
in the graph of variables. If the dependence function h happens to be a translation ( h(i) = i - k for constant 

k), then the SARE is uniform, and referred to as a SURE or SRE [15]. SURE's can be used for systolic 
array synthesis [29], and there are techniques to uniformize SARE's into SURE's [23]. 

SARE's became interesting from the standpoint of program analysis upon Feautrier's discovery [8, 9] that 
a SARE is mathematically equivalent to a "static control flow program". A program has static control flow 
if the entire path of control can be determined at compile time (see [8, 7] for details). Feautrier showed that 

using a SARE, one can use linear programming to produce a parameterized schedule for a program. That is, 
if a loop bound is unknown at compile time, then the symbolic bound enters the schedule and it does not 

affect the complexity of the technique. Feautrier's framework is very flexible in that it allows one to select 
a desirable affine schedule by any linear heuristic. 

Lim and Lam [22] build on Feautrier's technique with an affine partitioning algorithm that maximizes 
the degree of parallelism while minimizing the degree of synchronization. It also operates on a form that is 
equivalent to a SARE. 

3 Phased Computation Graphs 

We introduce the Phased Computation Graph (PCG) as a model of computation for dataflow languages; 
specifically, we designed the PCG as a model for Stream! t [30]. A PCG is a generalization of the Computation 

Graph (CG) of Karp and Miller [14] to the case where each node has both an initial and steady-state execution 

epoch, each of which contains a number of phases. It is also a generalization of other popular representations 

for dataflow graphs, such as synchronous dataflow (SDF) and cyclo-static dataflow (CSDF) (see Table 1). 
Phases are attractive constructs for the reasons given in describing CSDF in Section 2; also, an initial epoch 

is critical for applications such as a WAV file decoder that adjusts its parameters based on the data it finds 
in the header of the stream. 

Formally, a PCG is a directed graph with the following components: 

• Channels c1 ... Cmc, where each channel is directed from a given node na to a given node nb. 

• A non-negative integer A(c) indicating the number of items that are initially present on channel c. 
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• Non-negative integers U(c, t,p), O(c, t,p), and E(c, t,p), which give the number of items pushed, 

popped, and peeked, respectively, over channel c during the p'th phase of epoch t. 

3.1 Execution Model 

We give an informal description of the execution semantics of a PCG, which is an intuitive extension to that 

of a CG. An execution consists of a sequence of atomic firings of nodes in the graph. The effect of firing 

a given node depends on its epoch and its phase, which are both local states of the node. At the start of 
execution, each node is in phase O of the initial epoch, and each channel c contains A(c) items. 

Let us consider a node n that is in phase p of epoch t. It is legal for n to fire if p E [O, num(n, t) - 1] 

and, for each channel Gin directed into n, there are at least E(Cin, t,p) items on Gin• The effect of this firing 
is to consume O(c;n, t,p) items from each channel C;n directed into n; to produce U(c=t, t,p) new items on 

each channel Caut directed out of n; and to advance the phase p of n to next(t,p). In the initial epoch, each 
phase executes only once and next(init,p) = p + 1; in the steady-state epoch, the phases execute cyclically 

and next( steady, p) = (p + 1) mod num( n, t). If a node n is in phase num( n, init) of the initial epoch, then it 
transitions to the steady-state epoch and resets its phase to 0. 

From the starting state of the graph, execution proceeds via an infinite sequence of node firings. The 

order of node firings is constrained only by the conditions given above. 

4 Phased Computation Programs 

The PCG described above is a representation for a graph, treating each node and channel as a black box. 

Here we introduce some notation for the internals of the nodes, as well as the ordering of items on the 

channels. We refer to the aggregate model as a Phased Computation Program (PCP). Before describing a 
PCP, we will need some additional notation: 

• We assume that all items passed over channels are drawn from the same domain of values V. 

• An array type1 of length n and element type Tis denoted by T[n] . Given a two-dimensional array A 

of type T[n][m], A[i][*] denotes them-element array comprising the i'th row of A . 

• num_in(n) (resp. num_out(n)) denotes the number of channels that are directed into (resp. out of) 
node n. 

• chan_in(n) (resp. chan_out(n)) denotes the list of channels that are directed into (resp. out of) node 

n. 

• pos_in( n, c) ( resp. pos_out( n, c)) denotes the position of channel c in chan_in( n) ( resp. chan_out( n). 
That is, chan_out(n)[pos_out(n, c)] = c. 

1To simplify the presentation, we allow ourselves a slight abuse of notation by sometimes using arrays instead of enumerating 
individual elements. Our definitions could be expanded into strict element-wise SARE's without any fundamental change to 
the technique. 
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channels, and I/0 rates of the program (see Section 3). Each channel G = (na, nb) is a FIFO queue; 

na pushes items onto the back of G and nb consumes items from the front of G. 

• The initial values I(G) that are enqueued onto channel G at the start of execution. Since there are A(G) 
initial values on channel G, I (G) has type V[A(G)]. 

• A work function W(n, t,p) that represents the computation of node n in phase p and epoch t. The 
signature of W ( n, t, p) is [V[E ( Ghan_in( n) [1], t, p)], .. . , V[E( chan_in( n) [ num_in( n)] , t , p) ]] -; 
[V [U(chan_out(n)[l], t,p)], ... , V [U(chan_out(n)[num_out(n)], t,p)]] . That is, the function inputs a list 

of arrays, each of which corresponds to an incoming channel Gin and contains the E ( C;,n, t, p) values that 

n reads from Gin in a given firing. The procedure returns a list of arrays, each of which corresponds to 

an outgoing channel Gout and contains the U(Cout, t ,p) values that n writes to Gout in a given firing. 

5 Basic Translation: CG to SARE 

In order to familiarize the reader with the basics of our technique, we present in this section the translation 
procedure for a simplified input domain. The translation rules for the general case can be found in Section 6. 

Our basic translation operates on computation graphs with all of the channels initially empty. That is, 
we assume that: 

1. No items appear on the channels at the beginning: VG, A(G) = 0. 

2. There are no initialization phases: \/n, num(n, init) = 0. 

3. Each node has only one steady-state phase: \/n, num(n , steady) = 1. 

Given these restrictions, we can simplify our notation considerably. Since we are only concerned with 
the steady-state epoch and the 0'th phase of each node, we can omit some arguments to any function that 

requires an epoch tor a phase p. For instance, the push and pop rates of a channel Gare now just U(c) and 
O(G), respectively; the work function for a node n is simply W (n). 

5.1 Calculating the Steady-State Period 

Let S(n) denote the number of times that node n fires its first phase for a periodic steady-state execution 
of the entire graph. A periodic schedule is one that does not change the number of items on the channels 

in the graph after executing; in other words, it is legal to execute in the steady state. For an SDF graph, 

there is a unique and minimal periodic schedule, of which all other periodic schedules are a multiple [3]. It 

is straightforward to use a set of balance equations to solve for S (n ) given the declared rates of filters in the 
graph. If the graph is invalid (i.e., it would lead to deadlock or an unbounded buffer size) then the balance 
equations will have no solution. See [3] for details. 

We will use the following helper function in our analysis. Given channel G = (na, nb): 

Period(G) = S(na) * U(G) = S (nb) * O(G) 

That is, Period(G) denotes the number of items that are passed over channel G during a single steady-state 
execution of the graph. 
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Variables 

For each channel c = (na, nb), do the following: 

• Introduce variable BUFc with the following domain: 

• Introduce variable WRITEc with this domain: 

(2) 

'DwRITEc = { (i,j, k) I O$ i $ N - 1 /\ 0 $ j $ S(na) - 1 /\ 0 $ k $ U(c) - 1} (3) 

• Introduce variable READc with this domain: 

'DnEADc = { (i,j, k) I O $ i $ N - 1 /\ 0 $ j $ S(nb) - 1 /\ 0 $ k $ E(c) - 1} (4) 

Equations 

For each node n, introduce the following equations: 

• (READ to WRITE) For each c E chan_out(n): 

V(i,j,k) E 'DwRITEc : WRITEc(i,j,k) = W(n)(SteadyJnputs)[pos_out(n,c)l[k] (5) 

where Steady_Jnputs = [READchan_in(n)[O] (i,j, *), . .. , READchan_in(n)[num_in(n)-1] (i,j, * )] 

• (WRITE to BUF) For each c E chan_out(n), and for each q E [O, S(n) - 1]: 

V(i,j) E Dw-a(c,q) : BUFc(i,j) = WRITEc(i,q,j - q * U(c)) (6) 

where Dw-a(c,q) = Dau Fen {(i,j) I q * U(c) $ j $ (q + 1) * U(c) - 1} 

• (BUF to READ) For each c E chan_in(n) , and for each q E [O, lp E(ck )J] : erw c 

'i(i,j, k) E 'Da-R: READc(i,j, k) = BUFc(i + q,j * O(n) + k - q * Period(c)) (7) 

where 'Da-,R = 'DnEADc n {(i,j, k) I q * Period(c) $ k $ min((q + 1) * Period(c), E(c)) - 1} 

Figure 1: Procedure for generating a SARE from a simplifed PCP: one that has only one epoch, one phase, 
and no initial tokens. 
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ized by N, the number of steady-state cycles that one wishes to execute in the PCP. However, it is important 

to note that N does not affect the number of variables or equations in the SARE, as that would require a 

separate compilation and analysis for each value of N. It is a key benefit of the SARE representation that 
N can be incorporated as a symbolic parameter in the schedule. 

The procedure for generating the SARE appears in Figure l. The basic idea is to introduce a variable 

BUFc for each channel c which keeps track of the entire history of values that are transmitted over c (we 

keep track of the entire history since all elements in a SARE must be assigned only once.) The i dimension 
of B UF counts over steady-state periods, while the j dimension holds elements that were written during a 

given period. We also introduce variables WRITEc and READc that write and read from channel c. For 

reasons that become clear below, these variables have a k dimension to index the values that are pushed on a 

given firing, while the j dimension counts firings of a node and the i dimension counts steady-state periods, 
as before. 

Equation 5 expresses the computation internal to each node, whereas Equations 6 and 7 expresses the 

communication of the nodes with the channels. In Equation 5, the node's work function is used to calculate 
all of the WRITE values from all of the READ values, during a given firing (i,j). 

Equation 6 shows the communication from the WRITE array to the BUF array for a given channel. To 
understand this equation, it might help to consider a simpler version which expresses the correct relationship 
but is not a legal SARE: 

'<i(i,j, k) E VWRITEc : BUFc(i,j * U(c) + k) = WRITEc(i,j, k) 

The equation above is simply copying the contents of WRITE into B UF while accounting for the differing 

array dimensions. However, this equation is not valid for a SARE, since there is an affine expression indexing 
the array on the left hand side. 

To deal with this issue, we split up the equation into several pieces, each of which assigns to a different 

portion of the BUF array. In Equation 6, we introduce a variable q that counts up to S(n) , which is the 

extent of the j dimension of WRITEc. For each of these q, we copy over U(c) values from the appropriate 

section of the WRITE array; the domain Vw ..... B(c, q) represents the q'th slice of BUF into which the section 
should be written. This equation is a valid component of our SARE, as the boundaries on each equation's 
domain are fully resolvable at compile time. 

Equation 7 is similar to Equation 6 regarding the slicing technique that is used to parameterize the 

domain of the equation. However, here the motivation is different: the extent of the k dimension of READ 

might exceed the length of the period in B UF ( this is because nodes are allowed to peek more than they pop.) 

Thus, the q variable is used to slice the peek amount E(c) into Period(c)-sized chunks so as to resolve the 
proper source location in B UF. Again, all the variables in the index expressions are compile-time constants 

(except, of course, for the index quantifiers i, j, and k.) 

6 General Translation: PCP to SARE 

In this section we give the formal translation of a Phased Computation Program to a System of Affine 

Recurrence Equations. Again, the SARE will be parameterized by N, the number of steady-state cycles 

that one wishes to execute in the PCP. The translation will use the helper functions shown in Figure 2. We 
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absolute value of an integer i are given by sign(i) and abs(i), respectively. 

• Partial Write( c, t, p) = I:~:6 U ( c, t, r) 

• TotalWrite(n, c, t) = I:;!~(n,t)-l U(c, t, r) 

• Parti~lRead( c, t, p) = I:~:6 0( c, t, r) 

• TotalRead(n, c, t) = I:;!~(n,t)-l O(c, t, r) 

• Given channel c = (na, nb) : 

Period(c) = S(n0 ) * TotalWrite(na, c, steady) = S(nb) * TotalRead(nb, c, steady) 

Figure 2: Helper functions for the PCP to SARE translation. 

also make use of the S(n) function giving the number of steady-state executions of node n (see Section 5.1) . 

Please refer to the Appendix for a concrete illustration of the techniques described below. 

Figure 3 illustrates the variables used for the translation. These are very similar to those in the simple 

case, except that now there are separate variables for initialization and steady state, as well as variables 

for each phase. The equations for the translation appear in Figures 5 and 6. A diagram of which variables 

depend on others appears in Figure 4. Due to space limitations, we discuss only the most interesting parts 

of the translation below. 

Equation 14 writes the initial values of the initial tokens on IE UF, the initial buffer. Equation 15 transfers 

values from the initial epoch of a node to the initial buffer of a channel. Equations 16 and 17 do the work 

computation of the initial and steady-state items, respectively, just as in the simple translation of Section 5.2. 

Equation 18 copies items from the node to the channel, using the same slicing technique as Equation 6. 

Equation 19 copies values from the initial buffer (IEUF) of a channel into the initial read array for a 

node. However, since the node might read more items in the init ial epoch than exist on the initial buffer, we 

restrict the domain of the equation to only those indices that have a corresponding value in IE UF. If it is the 

case that there are fewer items in the initial buffer than a node reads in its initial epoch, then Equation 20 

copies values from the beginning of the channel's steady-state buffer into the remaining locations on the 

node's initial array. The upper bound for q in Equation 20 is calculating the maximum amount that any 

phase peeks in the initialization epoch, so that enough equations are defined to fill the node's initial read 

array. Note that for some phases, the dependence domain of Equation 20 will be empty, in which case no 

equation is introduced. Also, Equation 20 uses the slicing method (see Section 5.2) because the initial read 

array is of lower dimensionality than the steady-state buffer from which it is reading. 

Equation 21 is dealing with the opposite case as Equation 20: when a node finds items on its channel's 

initial buffer when it is entering the steady-state epoch. In this case copying over the appropriate items to 

the beginning of the steady-state read array is rather straightforward. 

Much of the complexity of the entire translation is pushed into Equations 22 and 23. There are two 

distinct complications in these equations. First is one that we tackled in Equation 7: the fact that the read 

array might peek beyond the limits of the buffer, which requires us to slice the domain in increments of one 

period. The second complication is that there could be an offset- an initial buffer might have written into 
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For each channel c = (na, nb), do the following: 

• Introduce variables IE UFc and SB UFc with the following domains: 

num(na,init)-1 

'DrnuF0 = { i I O :Si :S A(c) - 1 + L U(c, init,p)} 
p=O 

'DsBUFc = { (i,j) I O$ i :S N-1 /\ 0 :Sj $ Period(c)- 1} 

• For each p E [O, num(na, init) - 1], introduce variable IWRITEc,p with this domain: 

'D1wRJTEc,p = { i J O $ i :S U(c, init,p) - 1} 

• For each p E [O, num(nb, init) - 1], introduce variable IREADc,p with this domain: 

'DrnEADc,p = { i I O$ i $ E(c, init,p) -1} 

• For each p E [O, num(na, steady) - 1], introduce variable SWRITEc,p with this domain: 

(8) 

(9) 

(10) 

(11) 

'DswRITEc,v = { (i,j, k ) I O $ i $ N - 1 /\ 0 $ j $ S (na) - 1 /\ 0 $ k $ U(c, steady,p) - 1} 

(12) 

• For each p E [O, num(nb, steady) - 1], introduce variable SREADc,p with this domain: 

VsREADc,v = { (i,j, k) I O$ i :SN -1 /\ 0 $ j $ S (nb) - 1 /\ 0 $ k :S E (c, steady,p) - 1} 

(13) 

Figure 3: Variables for the PCP to SARE t ranslation. 

I 

IBUF 

~ 

SREAD 

I \ 
SBUF SWRITE 

...... ;..,.._. 

IREAD
1

~-------➔~ 

Figure 4: Flow of data between SARE variables. Data flows from 
the base of each arrow to the t ip. Dotted lines indicate communi
cation that might not occur for a given channel. 
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For each channel c = (na, nb) , introduce the following equations: 

• (I to IBUF): \/i E [O, A(c) - l] : IBUFc(i) = I(c)[i] (14) 

• (IWRITE to IBUF) For each p E [O, num(na, init) - l ]: 

\/i E [A(c) + PartialWrite(c, init,p), A(c) + PartialWrite(c, init,p + 1) - l ] : (15) 

IBUFc(i) = IWRITEc,p(i - A(c) - PartialWrite(c, init,p)) 

For each node n, introduce the following equations: 

• (IREAD to IWRITE) For each c E chan_out(n), and for each p E [O, num(n, init) - 1]: 

\/i E V1wRITEc,v : IWRITEc,p(i) = W(n, init,p)(InitJnputs)[pos_out(n,c)l[i], (16) 

where lnit_Jnputs = [IREADchan_in(n)[Oj,p( * ), ... , IREADchan_in(n )[num_in(n)-lj,p( * )] 

• (SREAD to SWRITE) For each c E chan_out(n), and for each p E [O, num(n, steady) - 1]: 

\/(i,j,k) E VswRITEc,,, : SWRITEc,p(i , j,k) = 

W(n, steady,p)(SteadyJnputs)[pos_out(n, c)][k], where (17) 

Steady_Jnputs = [SREADchan-in(n)[Oj,p(i,j, *), ... , SREADchan_in(n)[num_in(n)-1],p(i,j, *)] 

• (SWRITE to SBUF) For each c E chan_out(n), for each p E [O, num(n, steady) -1], and for each 
q E [O, S (n) - 1]: 

\/(i,j) E Vsw-sB(c,p,q): SBUFc(i,j) = 

SWRITEc,p(i,q,j- Offsetsw-s8 (q,n,c,p)),where (18) 

Vsw-sB(c,p, q) = VsBUFc n {(i,j) I Offsetsw-s8 (q, n, c,p) $ j $ Offsetsw-s8 (q, n, c,p + 1) - 1} 

and Offsetsw-s8 (q, n, c,p') = q * TotalWrite(n, c, steady)+ PartialWrite(c, steady,p')) 

• (IBUF to IREAD) For each c E chan_in(n), and for each phase p E [O, num(n, init) - 1]: 

\/i E Drn-rn(c,p): IREADc,p(i) = IBUFc(PartialRead(c, init,p) + i) (19) 

where Vrn-rn(c,p) = {i I i E VrnEADc,v I\ i + PartialRead(c, init,p) E VrnuFJ 

• (SBUF to IREAD) For each c E chan_in(n), for each phase p E [O, num(n, init) -1], and for each 

[ L 
argmaxP'. ( PartialReadi_c,init,p')+E(c,init,p')) j] · 

q E O, Period{c} · 

\/i E V sB-rn(c,p): IREADc,p(i) = SBUFc(q, i - Offset88_rn(q, n, c,p)), where (20) 

VsB-rn(c,p) = {i Ii E VrnEADc,,, I\ Offset88_rn(q,n,c,p) $ i $ Offset88_ rn(q + 1,n,c,p)-1} 

and Offset88__.rn(q', n, c, p) = q' * Period(c) + IVrnuFcl - PartialRead(c, init,p) 

Figure 5: Equations for the PCP to SARE translation. 
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Equations (Part 2 of 2) 

For each node n, introduce the following equations: 

• (IBUF to SREAD) For each c E chan_in(n), and for each phase p E [O, num(n, steady) - 1]: 

v'(i,j, k) E 1Jrn-,sR(n, c,p) : SREADc,p(i,j, k) = IBUFc(Readlndex(n, c,p, i,j, k)), where 

Readlndex(n, c,p, i,j, k) = TotalRead(n, c, init) + (i * S(n) + j) * TotalRead(n, c, steady) (21) 

+ PartialRead(c, steady,p) + k) 

and 1Jrn-,sR(n,c,p) = {(i,j, k) I Readlndex(n, c,p, i,j, k) E VrnuFJ 

• (SBUF to SREAD) For each c E chan_in(n), for each phase p E [O, num(n, steady) - 1], and for 

h E [o lE c, steady, p J]· 
eacq, P"d}. erio c 

v'(i,j, k) E 1J1sB-,sR(c,p, q) : SREADc,p(i,j, k) = SBUFc(i + q + lnLOffset(n, c,p), 

j * TotalRead(n, c, steady)+ PartialRead(c, steady,p) + k - q * Period(c) + Mod_Offset(n, c,p)), 

where 1J1sB-.SR(c,p,q) = (VsREADc,p - PUSHED(n,c,p)) n 

{(i,j, k) I q * Period(c) - min(0, Mod_Offset(n, c,p)) :S k :S 

min((q + 1) * Period(c), E (c, steady,p)) - 1 - max(0, Mod_Offset(n, c,p))} 

v'(i,j, k) E 1J2sB-.sR(c,p, q): SREADc,p(i,j, k) = 

SBUFc(i + q + sign(Offset) + lnLOffset(n, c,p), j * TotalRead(n, c, steady)+ 

(22) 

(23) 

PartialRead(c, steady,p) + k - q * Period(c) - sign(Offset) * Period(c) + Mod_Offset(n, c,p)), 

where 1J2sB-.SR(c,p,q) = (1JsREADc,p - PUSHED(n,c,p)) n 

( {(i,j, k) I q * Period(c) :S k :S min((q + 1) * Period(c), E(c, steady,p)) - 1} -1J lsB-.sR(c, p, q)) 

where PUSHED(n,c, p) = Vrn-.sR(n,c, p) 

and Num..Pushed(n,c,p) = (maxj PUSHED(n,c,p)) • (S (n) * TotalRead(n,c,steady), 

TotalRead(n,c, steady), 1) + PartialRead(c, steady,p), and PEEKED(c,p) = VsB-,IR(c,p) 

and Num..Popped(c,p) = IPEEKED(c,p)j + O(c, steady,p) - E (c, steady,p) 

and Offset( n, c, p) = Num..Popped( c, p) - Num..Pushed( n, c, p) 
. abs( Offset(n, c,p)) 

and lnLOffset(n,c, p) = sign(Offset)* l Period(c) J) 

and Mod_Offset(n,c,p) = sign(Offset) * (abs(Offset(n,c,p)) mod Period(c)) 

Figure 6: Equations for the PCP to SARE translation. 

12 

(24) 



Equation 24 provides a set of helper functions to determine the offset for Equations 22 and 23. The result 

is a number Offset that the domain needs to shift. Unfortunately this involves splitting the original equation 

into two pieces, since after the shift the original domain could be split between two different periods (with 

different i indices in SBUF). Each of these equations is clever about the sign of the offset to adjust the 

indices in the right direction. 

7 Applications 

7.1 Node-Level Optimization 

Perhaps the most immediate application of our technique is to use the SARE representation to bridge the 

gap between intra-node dependences and inter-node dependences. Our presentation in the last section was 

in terms of a coarse-grained work function W mapping inputs to outputs. However, if the source code 

is available for the node, then the equations containing W can be expanded into another level of affine 

recurrences that represent the implementation of the node itself. (If the node contained only static control 

flow, then this formulation as a SARE would be exact; otherwise, one could use a conservative approximation 

of the dependences.) 
The resulting SARE would expose the fine-grained dependences between local variables of a given node 

with the local variables of neighboring nodes. We believe that this information opens the door for a wide 

range of novel node optimizations, which we outline in the following sections. 

7.1.1 Inter-Node Dataflow Optimizations 

Once the SARE has exposed the flow dependences between the internal variables of two different nodes, one 

can perform all of the classical dataflow optimizations as if the variables were placed in the same node to 

begin with. For instance, constant propagation, copy propagation, common sub-expression elimination, and 
dead code elimination can all be performed throughout the internals of the nodes as if they were connected 
in a single control flow graph. 

Some of these optimizations could have a very large performance impact; for instance, consider a 2: 1 

downsampler node that simply discards half of its input. Using a SARE, it is straightforward to trace 
the element-wise dependence chain from each discarded item, and to mark each source operation as dead 

code ( assuming the code has no other consumers.) In this way, one can perform fine-grained decimation 
propagation throughout the entire graph and prevent the computation of any items that are not needed. 
This degree of optimization is not possible in frameworks that treat the node as a black box. 

7.1.2 Fission Transformations 

It may be the case that many of the operations that are grouped within a node are completely independent, 
and that the node can be split into sub-components that can execute in parallel or as part of a more fine

grained schedule. For instance; many operations using complex data types are grouped together from the 

programmer's view, even though the operations on the real and imaginary parts could be separated. Given 

2 Fundamentally, this complication ended up in this equation because we chose to define the initial buffer (IBUF) to be the 
same length as its associated initial write array (!WRITE). If we had defined it in terms of the initial read array (!READ) 
instead, the complexity would be in Equation 18. 
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imaginary operations as if they were written in two different nodes to begin with. 

7.1.3 Steady-State Invariant Code Motion 

In the streaming domain, the analog of loop-invariant code motion is the motion of code from the steady
state epoch to the initialization epoch if it does not depend on any quantity that is changing during the 

steady-state execution of a node. Quantities that the compiler detects to be constant during the execution 

of a work function can be computed from the initialization epoch, with the results being passed through a 
feedback loop for availability on future executions. 

7.1.4 Induction Variable Detection 

The work functions and feedback paths of a node could be analyzed (as would the body of a loop in the 

scientific domain) to see if there are induction variables from one steady-state execution to the next. This 

analysis is useful both for strength reduction, which adds a dependence between invocations by converting 

an expensive operation to a cheaper, incremental one, as well as for data parallelization, which removes a 
dependence from one invocation to the next by changing incremental operations on filter state to equivalent 
operations on privatized variables. 

7.2 Graph Parameterization 

In the scientific community, the SARE representation is specifically designed so that a parameterized schedule 

can be obtained for loop nests without having to unroll each loop and schedule each iteration independently. 

The same should hold true for dataflow graphs. Often there is redundant structure within a graph, such 
as an N-level filterbank. However, to the best of our knowledge, all scheduling algorithms for synchronous 
dataflow operate only on a fully expanded graph ("parameterized dataflow" is designed more for flexible 
re-initialization, and dynamically schedules an expanded version of each program graph [l ].) 

We believe that parameterized scheduling would be straightforward using the polyhedral model to rep
resent the graph. For future work, we plan on implementing such a scheduler in the Streamlt compiler [ll]. 
The Streamlt language [30] is especially well-tailored to this endeavor because it provides basic stream prim

itives that are hierarchical and parameterizable (e.g., an N-way SplitJoin structure that has N parallel child 
streams.) 

7.3 Graph-Level Optimization 

The SARE representation could also have something to offer with regards to the graph-level optimization 
problems that are already the focus of the DSP community. The polyhedral model is appealing because it 
provides a linear algebra framework that is simple, flexible, and efficient. 

7.3.1 Buffer Minimization 

Storage optimization is one area in which both the scientific community [22, 28, 31, 20] and the DSP 

community [25, 12, 24] have invested a great deal of energy. Both communities have invented schemes for 

detecting live ranges, collapsing arrays across dead locations, and sharing buffers/ arrays between different 
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7.3.2 Scheduling 

There is a large body of work in the scientific community regarding the scheduling of SARE's [7] . While they 

have not faced the same constraints on code size as the embedded domain, there are characteristics of affine 

schedules that could provide new directions for DSP scheduling algorithms. For instance, when solving for 

an affine schedule, one can obtain a schedule that places a statement within a loop nest but only executes 
it conditionally for certain values of the enclosing loop bounds. To the best of our knowledge, the single 

appearance schedules in the DSP community have never had this notion of conditional execution, perhaps 

because it represents a much larger space of schedules to consider. It is possible that an affine schedule, 

then, would give a more flexible solution when code size is the critical issue. 

Also, there are a number of sophisticated parallelization algorithms (e.g., Lim and Lam [22]) that could 

extract high performance from datafiow graphs. It will be an interesting topic for future work to see how 

they compare with the scheduling algorithms currently in use for datafiow graphs. 

8 Conclusion 

This paper shows that a very broad class of synchronous datafiow graphs can be cleanly represented as a 

System of Affine Recurrence Equations, thereby making them amenable to all of the scheduling and optimiza

tion techniques that have been developed within the polyhedral model. The polyhedral model is a robust 

and well-established framework within the scientific community, with methods for graph parameterization, 
automatic parallelization, and storage optimization that are very relevant to the current challenges within 

the signal processing domain. 
Our analysis inputs a Phased Computation Graph, which we originally formulated as a model of compu

tation for Streamit [30]. Phased Computation Graphs are a generalization of synchronous datafiow graphs, 
cyclo-static datafiow graphs, and computation graphs; they also include a novel notion of initial and steady

state epochs, which are an appealing abstraction for programmers. 

We believe that the precise affine dependence framework provided by the SARE representation will enable 
a powerful suite of node optimizations in datafiow graphs. We proposed optimizations such as decimation 

propagation, node fission, and steady-state invariant code motion that are a first step in this direction. 
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which is a high-level language designed to offer a simple and portable means of constructing phased com

putation programs. We are developing a Streamlt compiler with aggressive optimizations and backends for 

communication-exposed architectures. For more information on Streamlt, please consult [30, 11]. 

9.1 Streamlt Code for an Equalizer 

Figure 7 contains a simple example of an equalizing software radio written in Streamlt. The phased com

putation graph corresponding to this piece of code appears in Figure 8. For simplicity, we model the input 

to the Equalizer as a RadioSource that pushes one item on every invocation. Likewise, the output of the 

Equalizer is fed to a Speaker that pops one item on every invocation. 

The Equalizer itself has two stages: a splitjoin that filters each frequency band in parallel ( using Band

PassFilter's) , and an Adder that combines the output from each of the parallel filters. The splitjoin uses a 
duplicate splitter to send a copy of the input stream to each BandPassFilter. Then, it contains a roundrobin 

joiner that inputs an item from each parallel stream in sequence. The roundrobin joiner is an example of a 
node that has multiple steady-state phases: in each phase, it copies an item from one of the parallel streams 

to the output of the splitjoin. In Streamlt, splitter and joiner nodes are compiler-defined primitives. 
For an example of a user-defined node, consider the Adder filter. The Adder takes an argument, N, 

indicating the number of items it should add. The declaration of its steady-state work block indicates that 

on each invocation, the Adder pushes 1 item to the output channel and pops N items from the input channel. 

The code within the work function performs the addition. 
The BandPassFilter is an example of a filter with both an initial and steady-state epoch. The code within 

the init block is executed before any node fires; in this case, it calculates the weights that should be used 

for filtering. The prework block specifies the behavior of the filter for the initial epoch. In the case of an 

FIR filter, the initial epoch is essential for dealing with the startup condition when there are fewer items 

available on the input channel than there are taps in the filter. Given that there are N taps in the filter, the 
prework function3 performs the FIR filter on the first i items, for i = 1 . . . N-1. Then, the steady state work 

block operates on N items, popping an item from the input channel after each invocation. 

9.2 Converting to a SARE 

We will generate a SARE corresponding to N steady-state executions of the above PCP. 

9.2.1 The Steady-State Period 

The first step in the translation is to calculate S(n), the number of times that a given node n fires in a 

periodic steady-state execution (see Section 5.1). Using S(n) we can also derive Period(c), the number 

of items that are transferred over channel c in one steady-state period. This can be done using balance 

equations on the steady-state I/O rates of the stream [3] : 

Ve= (na, nb) : S(na) * TotalWrite(na, c, steady) = S(nb) * TotalRead(nb, c, steady) 

3 To simplify the equations, we have written the BandPassFilter to have only one phase in the initial epoch. However, it 
would also be possible to give a more fine-grained description with multiple initial phases. 
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void- >void pipeline EqualizingRadio { 
add RadioSource(); 
add Equalizer(2) ; 
add Speaker(); 

} 

float->float pipeline Equalizer (int BANDS) { 

} 

add splitjoin { 
split duplicate; 

} 

float centerFreq • 100000; 
for (int i•0; i<BANDS; i ++ , centerFreq•=2) { 

add BandPassFilter(centerFreq, 50) ; 
} 

join roundrobin; 

add Adder(BANDS); 

float - >float filter Adder (int N) { 
vork push 1 pop N { 

} 
} 

float sum • 0; 
for (int i•0; i<N; i++) { 

sum - pop(); 
} 
push(sum); 

float->float filter BandPassFilter (float centerFreq, 
int N) { 

} 

float [NJ weights; 

init { 

} 
veights • calcimpulseResponse(centerFreq , N) ; 

prevork push N-1 pop 0 peek N-1 { 
for (int i•1; i<N; i++) { 

push(doFIR(i)) ; 
} 

} 

vork push 1 pop 1 peek N { 
push(doFIR(N)) ; 
pop(); 

} 

float doFIRCint k) { 
float val• 0; 
for (int i•0; i<k; i++) { 

} 
val - veights[il • peek(k- 1-1); 

return val ; 
} 

Figure 7: Streamlt code for a simple software 
radio with equalizer. 
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BandPassFiltcr (200000, 50) 
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Figure 8: Stream graph of the 2-band equalizer. 
Channels are annotated with their push (U), pop (0 ), 
and peek (E) rates. Rates with a value of zero are 
omitted. 



stream graph in Figure 8, we have: 

S(RadioSource) * TotalWrite(RadioSource, cl, steady) = S ( duplicate) * TotalRead( duplicate, cl, steady) 

S (duplicate) * TotalWrite(duplicate, c2, steady)= S (BPF1) * TotalRead(BPF1, c2, steady) 

S (duplicate) * TotalWrite(duplicate, c3, steady)= S (BPF2) * TotalRead(BPF2, c3, steady) 

S (BPFi ) * TotalWrite(BPF1, c4, steady)= S (roundrobin) * TotalRead(roundrobin, c4, steady) 

S (BPF2) * TotalWrite(BPF2, c5, steady)= S (roundrobin) * TotalRead(roundrobin, c5, steady) 

S(roundrobin) * TotalWrite(roudnrobin, c6, steady)= S (Adder) * TotalRead(Adder, c6, steady) 

S (Adder) = S (Speaker) 

Evaluating the I/ O rates, this simplifies to: 

S(RadioSource) = S ( duplicate) 

S (duplicate) = S (BPF2) 

S (duplicate) = S (BPF2) 

S (BPF1) = S (roundrobin) 

S (BPF2) = S (roundrobin) 

S (roundrobin) * 2 = S (Adder) * 2 

S (Adder) = S (Speaker) 

Solving for the minimum integral solution for S gives that S(n) = 1 for all nodes n: 

S(RadioSource) = S (duplicate) = S (BPF1) = S(BPF2) = S (roundrobin) = S (Adder) = S(Speaker) = 1 

We can now calculate Period( c) for each channel c in the graph. Using the definition of Period from Figure 2, 
we have the following: 

Period{cl} = S(RadioSource) * TotalWrite(RadioSource, cl, steady) 

Period(c2) = S (duplicate) * TotalWrite(duplicate, c2, steady) 

Period(c3) = S (duplicate) * TotalWrite(duplicate, c3, steady) 

Period(c4) = S (BPF1) * TotalWrite(BPF1, c4, steady) 

Period(c5) = S (BPF2) * TotalWrite(BPF2, c5, steady) 

Period(c6) = S (roundrobin) * TotalWrite(roundrobin, c6, steady) 

Period(c7) = S (Adder) * TotalWrite(Adder, c7, steady) 
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I'eriod(Cl) = I'eriod(C2) = I'eriod(c:JJ = I'eriod(C4) = I'eriod(Cb) = l 

Period(c6) = 2 

Period(c7) = 1 

9.2.2 Variables of the SARE 

Let us consider each variable from Figure 3 in turn. 

IBUF 

The IE UF variables are for holding both initial items and items that are produced during the initial 
epoch. In our example, the only such nodes are the BandPassFilter's, which push 49 items onto c4 and c5 
in the initial epoch: 

DrnuFc4 = { i I O ~ i ~ 48} 

DrnuFcs = { i I O ~ i ~ 48} 

The domains of all the other IE UF variables are empty. 

IWRITE 

The !WRITE variables are for holding items that are produced during the initial epoch. In the general 

case, IWRITEc might have a smaller extent than IEUFc, since IEUFc also holds the A (c) items that appear 

on channel c before the initial epoch. However, in our example there are no initial items, and the domains 
for !WRITE exactly mirror those of IE UF: 

IREAD 

DrwRITEc4 = { i I O~ i ~ 48} 

DrwRITEcs = { i I O ~ i ~ 48} 

The IREAD variables are for holding items that are read during the initial epoch. In our example, each 
of the BandPassFilter's read 49 items during the initial epoch, thereby yielding an IREAD variable on each 

of their input channels: 

DrnEADc2 = { i I O ~ i ~ 48} 

DrnEADc3 = { i I O ~ i ~ 48} 

For all other channels, the domain of IREAD is empty. 

SBUF 

The SEUF variables represent the steady-state buffer space on a channel. They contain two dimensions: 

the first counts over steady-state execution cycles, and the second counts over items that appear on the 

channel during a given cycle (that is, the Period of the channel). In the case of our example, all channels 
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SWRITE 

VsBUFc1 = { (i,UJ I U :'.Si :'.SN - lj 

DssUFc2 = { (i,O) IO::; i::; N - 1} 

DsBUFc3 = { (i,O) I O::; i::; N -1} 

DsBUFc4 = { (i,O) IO::; i::; N -1} 

DssUFcs = { (i,O) IO::; i::; N -1} 

DssUFcG = { (i,j) IO::; i::; N - 1 /\ 0::; j::; 1} 

DssUFc1 = { (i,O) IO::; i::; N-1} 

The SWRITE variables represent temporary buffers for the output of nodes in the steady state. Here c6 

is distinguished because it has two separate phases, corresponding to the cyclic behavior of the roundrobin 

node. Since each phase outputs an item, there is a buffer to hold the output of each: 

SREAD 

DswRITEc, = { (i,0,0) I O::; i::; N -1} 

DswRITEc2 = { (i,0,0) I O::; i::; N -1} 

DswRITEc3 = { (i,0,0) I O::; i::; N -1} 

DswRJTEc4 = { (i,0,0) I O::; i::; N - 1} 

DswRITEcs = { (i,0,0) I O::; i::; N -1} 

DswRITEcG.O = { (i,0,0) I O::; i::; N -1} 

DswRITEcG l = { (i,0,0) IO::; i::; N -1} 

DswRITEc1 = { (i,0,0) I O::; i::; N -1} 

The BREAD variables represent temporary buffers for the nodes to read from in the steady state. The k 

dimension of these buffers represents the number of items that are read at once; this is 49 in the case of the 

inputs to the BandPassFilter's, and 1 for all other channels: 

DsREADc1 = { (i,0,0) IO::; i::; N -1} 

DsREADc2 = { (i, 0, k) I 0::; i ::; N - 1 /\ 0::; k::; 48} 

DsREADc3 = { (i, 0, k) I 0 ::; i ::; N - 1 /\ 0::; k ::; 48} 

DsREADc4 ,0 = { (i,0,0) IO::; i::; N -1} 

DsREADcs., = { (i,0,0) IO::; i::; N -1} 

DsREADcG = { (i,O,k) IO::; i::; N-1 /\ 0::; k::; 1} 

DsREADc1 = { (i,0,0) IO::; i::; N -1} 

Note that channels c4 and c5 have two separate phases, corresponding to the cycle of the roundrobin joiner. 

However, since the roundrobin joiner does not read from c5 during phase 0, and does not read from c4 during 

phase 1, the domains for these arrays are empty. Instead, there is a buffer only for c4 at phase 0 and c5 at 

phase 1. 
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I to IBUF 

In our example, this equation always has an empty domain, as there are no channels with initial items. 
(That is, for all c, A(c) = 0.) 

IWRITE to IBUF 

This equation has a non-empty domain for channels that are written to during the initialization epoch, 

which in the case of our example is c4 and c5. Since both of these channels have only one phase of writing 

during this epoch, these equations specify a simple copy from !WRITE to IE UF: 

IREAD to IWRITE 

\/i E [0,48] : IBUFc4(i) = IWRITEc4(i) 

\/i E [0, 48] : IBUFc5(i) = IWRITEc5(i) 

These equations represent the computation of nodes that fire during the initialization epoch. In our 

example, the only such nodes are the BandPassFilter's, and there is one equation for each of them: 

Vi E [0,48]: IWRITEc4(i) = W (BPF1,init)(JREADc2(*))[0l[i] 

\/i E [0, 48] : IWRITEc5(i) = W(BPF2, init)(JREADc3( * ))[0l[i] 

In these equations, W (BPF1, init) and W (BPF2, init) refer to the prework function defiried in the Band
PassFilter. 

SREAD to SWRITE 

These equations represent the steady-state computation of the nodes. For the BandPassFilter and Adder 

nodes, the computation is according to the user-defined work function W (corresponding to the work function 

in the Streamlt code): 

\/i E [O,N - 1]: SWRITEc4(i,0,0) = W (BPF1,steady)(SREADc2(i,0,*))[0l[0] 

\/i E [0, N - 1] : SWRITEc5(i, 0, 0) = W(BPF2, steady)(SREADc3(i, 0, *))[0l[0] 

\/i E [0, N - 1] : SWRITEc1(i, 0, 0) = W(Adder, steady)(SREADc6(i, 0, *))[0l[0] 

For the duplicate and roundrobin nodes, the work function is simple and compiler-defiried, so we give the 

equations directly without appealing to a work function: 

\/i E [O, N - 1] : 

\/i E [0, N - 1] : 

\/i E [O, N - 1] : 

\/i E [O, N - 1] : 

SWRITEc2(i, 0, 0) = SREADci (i, 0, 0)[0][0] 

SWRITEc3(i, 0, 0) = SREADci (i, 0, 0)[0l[0] 

SWRITEc6,o(i, 0, 0) = SREADc4,o(i, 0, 0)[0l[0] 

SWRITEc6,1 ( i, 0, 0) = SREADc5,1 ( i, 0, 0) [0l[0] 
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buffer for a given channel. In the general case (Equation 18) we need to "slice" the domain into S(n) pieces 

in order to maintain a uniform left-hand side (see Section 5.2). However, in this example, S(n) = 1 for all 

n, and this equation becomes a direct copy between the SWRITE and SB UF variables. There is one such 

copy for each channel in the program: 

Vi E [0,N -1] : SBUFci(i,0) = SWRITEci(i,0,0) 

Vi E [0,N -1] : SBUFc2(i,0) = SWRITEc2(i,0,0) 

Vi E [O, N - 1] : SBUFc3(i, 0) = SWRITEc3(i, 0, 0) 

Vi E [0,N -1] : SBUFc4(i,0) = SWRITEc4(i, 0,0) 

Vi E [0,N -1] : SBUFc5(i,0) = SWRITEc5(i,0,0) 

Vi E [0,N -1] : SBUFc6(i,0) = SWRITEc6,o(i,0,0) 

Vi E [0,N -1] : SBUFc6(i, 1) = SWRITEc6,1(i,0,0) 

Vi E [0,N -1] : SBUFc1(i,0) = SWRITEc1(i,0,0) 

Note that c6 is slightly different because there is one equation required for each phase of writing. 

IBUF to IREAD 

This equation has a non-empty domain for channels which contain items that are both written and read 

during the initial epoch. In the case of our example, none such channels exist, because the only nodes with an 

initial epoch (the BandPassFilter's) do not communicate with each other. Mathematically, one can see that 

the domain of this equation is empty because there is no channel with both a non-empty !READ variable 
and a non-empty IE UF variable, as would be required for Dr B-+I R to be non-empty in Equation 19. 

SBUF to IREAD 

This equation has a non-empty domain for channels which contain items that are written during the 

steady-state epoch but read during the initial epoch. In the case of our example, channels c2 and c3 satisfy 
this criterion. According to Equation 20, we need to introduce 49 equations for each channel (q ranges from 

0 to 49, but when q = 49 the domain is empty). Doing so would give the following: 

Vq E [0,48] : Vi E {q},IREADc2(i) = SBUFc2(i,0) 

Vq E [0,48] : Vi E {q},IREADc3(i) = SBUFc3(i,0) 

In these equations, we have encountered a special case where Period(c1) = Period(c2) = 1, and it is not 
necessary to slice the domain (as the index to the second dimension of SBUF is constant.) Thus, we can 

reduce these 98 equations into just 2, where the domain of each equation is the domain of q above: 

Vi E [O, 48] : IREADc2(i) = SBUFc2(i, 0) 

Vi E [0,48] : IREADc3(i) = SBUFc3(i,0) 

However, in the general case, it might be necessary to introduce a large number of equations in this step. 

The number of equations will grow with the extent of a node's peeking during the initial epoch. Note that 

the number of equations will not grow with the number of steady-state cycles that the SARE is simulating. 
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initial epoch but read during the steady-state epoch. In the case of our example, channels c4 and c5 satisfy 
this criterion. The following equations simply copy the items from the initial buffer into the steady-state 
buffer: 

Vi E [0,48] : SREADc4,o (i, 0,0) = IBUFc4(i) 

Vi E [0, 48] : SREADc5,1 (i, 0,0) = IBUFc5(i) 

Note that these equations are somewhat simpler than those in Equation 21 because no items are read from 

c4 or c5 during the initial epoch. If this were the case, then there would be offsets in the domains above. 

SBUF to SREAD 

These equations represent the copying of items from a channel's buffer to the read array that a node will 

access. There are two equations for this operation (Equations 22 and 23) because, in the general case, offsets 

due to reading and writing in the initial epoch could necessitate two different copy operations. This will 
occur if the offset is not a multiple of the extent of the j dimension of SBUF, in which case the copy of the 

j dimension is split across two different values of i : one equation copies the upper part of the j dimension 
of SBUF for a given i, and the other equation copies the lower part of the j dimension for i + 1. However, 
in the case of our example, the extent of the j dimension is 1 (because the period of each channel is 1) and 

the offset always is a multiple of 1, of course. Thus, Equation 23 always has an empty domain, and we 
consider only Equation 22 below. As the notation for this equation is rather heavy, we consider each channel 
individually. 

First let us examine cl and c2, which are simple because they do not peek and they contain only one 
epoch. In this case, Equation 22 copies items directly from the SB UF array to the BREAD array: 

Vi E [0,N -1] : SREADc1 (i ,0,0) = SBUFc1(i,0) 

Vi E [0, N - 1] : SREADc1(i, 0, 0) = SBUFc1(i, 0) 

Only slightly more complex is the equation for c6, in whi~h two items are read from the channel for each 

invocation of the Adder. This requires an extra subscript q on BREAD, that happens to coincide with SBUF 
since the Adder executes once per steady-state execution of the graph: 

Vq E [0, 1]: Vi E [0,N - 1]: SREADc6(i,0, q) = SBUFc6(i,q) 

Note that the above translation is naively specified as two separate equations (one for each value of q); 
however, as we saw above, we can combine these equations into a single one by considering q to be a domain 
quantifier rather than an enumerator over equations. 

Next, let us consider the equations for c2 and c3, which encapsulate the peeking behavior of the Band

PassFilter's. In this case, BREAD is viewing the channel as overlapping segments of 50 items each, whereas 

SBUF is viewing the channel as a continuous sequence where each item appears only once. Thus, the 

following equations duplicate the data by a factor of 50 as they copy it into the BREAD array: 

Vq E [0,49]: Vi E [0,N -1] : SREADc2(i ,0,q) = SBUFc2 (i + q,0) 

Vq E [0,49]: Vi E [0,N -1]: SREADc3 (i,0,q) = SBUFc3(i + q,0) 
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output in the SB UF array needs to be copied at an offset into the BREAD array so that it does not overwrite 

the initial output. Following Equation 24, we calculate this offset as the number of items that were pushed 

onto the channel in the initial epoch; this is given by the size of the domain of the IBUF to SREAD equation: 

IVrn ..... sR(roundrobin,c4) 1 = IVrn ..... sR(roundrobin,c4)1 = 49. Since the c4 and c5 both have a period of 1, 

this offset does not fall on the boundary between two different i indices in SB UF, and thus we don't need 

to worry about the lnLOfjset and Mod_Offset defined in Equation 24. The resulting equations represent a 

simple shifted copy operation, as follows: 

Vi E [49, N - l ] : SREADc4,o(i, 0, 0) = SBUFc4(i - 49, 0) 

Vi E [49, N - 1] : SREADc5,l ( i , 0, 0) = SB UFc5 ( i - 49, 0) 

This concludes the translation of the Streamlt-based PCP to a SARE. The equations and variables 

defined above are exactly equivalent to an execution of the original Streamlt program for N steady-state 

cycles. 
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