
MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

PROJECT MAC

MAC-TR-3

SYSTEM REQUIREMENTS FOR MULTIPLE ACCESS,
TIME-SHARED COMPUTERS

by

/
F. J. CORBATO

COMPUTATION CENTER

. .

-.C, an•·~•"• a: •••••••-.._..,__.
. ,.. , ·••1•• ••t , ~

•1 ' • • y •

Officre. d ~ ••••••••• :., JJ1!•1 ·';:lll1•~·-•·•·01) •
....... .. iea M .· . • • Ul -- ••. lilJlli.l,fttl·- uY

......... oC , .••• ~.
- . . ' .. . i•:.

Page 1

Introduction

It is now clear that it is possible to create a general
purpose time-shared multiple ac.cess system on most contemporary
computers (especially after minoI but basic modi~ications
are made). Already the IBM 7094, the DBC PDP-1, and the
Q-323 computer have been fully tiae-ahared1 somewhat more limit
ed !orms of time-sharing are done on the CDC G214 , the John-
iac and IBM ,0406 1 and in the future there will probably be
time-sharing on the GE 2157 and the DEC PDP-6.

However, it is equally clear that none of the existent
canputers are well designed for multiple access systems. The
paths of information flow between user and main memory and
between main memory and secondary meaory, tertiary memory,
etc. are not only often difficult to program but in many cases
non-existent. Further, for a variety of reasons, it is
extremely difficult to multi-pn,gram current machines effect
ively, so that much of the equipnent is wasted. At present,
good service to a few dozen simultaneous uaers is considered
the state-of-the-art. But the need at aoat computer install
ations is for several hundred simultaneous users on a single
computer system!

In the early days of computer design, there was an
elementary concept of a single program in a single machine
canputing furiously for large periods of time with almost
no interaction with the outside world. Today such a view
is obsolete. The following phem:nena are typical of contempo
rary computer installations.

. First there are incentives for any organization to have
the biggest possible computer that can be afforded. This is
because only on the biggest computers are there the. sophisti
cated programming systems, c0111pilers and features (such as
main memory space) which make a computer "powerful". This is
in part because it is difficult to do a great deal of system

1. MIT Canputation Center and Project MAC, IBM (A. Kinslow)
2. Bolt, Beranek and Newman (S. Boilen) and MIT (J. Dennis)
3. System Developaent Corporation (J. Schwartz)
4. Carnegie Tech (A. Perlis)
s. Rand Corporation (C. Shaw)
6. Belc0111n, (A. Speckhard), IBM (J. Morrisey)
7. Dartmouth (T. Kurtz)
8. The Digital Equipment Corporation ia the first manufacturer

to announce that they will produce a general-purpoae multiple
console time-sharing system.

Page 2

assistance when limited by computer speed or size and in
part because there is more incentive for all concerned to
provide assistance on the larger systems. Moreover, by
combining resources in a single computer system, rather
than in several, one would expect to get bulk economies
and therefore the lowest computing costs. Finally, as a
practical matter, floor space, management efficiency and
operating personnel provide a strong reason for a single
large computer to minimize administrative requirements.

The second phenomenon of a computation center, is
that currently there is need for capacity growth due to the
increased demand for computers in nearly every aspect of
modern life. Multiple access computers promise to accel
erate this growth since they lower the barrier of man
machine interaction rate by at least two orders of magnitude.
Present indications are that multiple access systems of
only a few hundred simultaneous users generate a demand
for computation which begins to exceed the speed of the
fastest existent single processor computer. Clearly, the
only direction left is that of multi-processors since the
speed of light ~nd the physical sizes of computer components
are an intrinsic limitation on the speed of any single
processor. (Of course, multiprocessors allow more reliabil
ity and easier steps for growth of capacity, but the speed
argument is paramount.)

A third phenomenon that has arisen is that programs
interact frequently with secondary storage devices and with
the on-line users themselves. This c011Dunication traffic
produces two major effects: A need for a variety of input
output channels and a need for multiprogranming to avoid
wasting main processor time while an input-output request.
is being completed. The important thing to note though is
that the individual computer user is ordinarily incapable
of doing an adequate job of multiprogramming since his OW'n
program lacks the proper balance and he probably lacks the
ingenuity (or patience) .

•
Finally, the experience of a year's operation of the

Project MAC system shOW's that the value lies not only in

Page 3

providing, in effect, a private canputer to a number of
people simultaneously, but, above all, in the services that
the system places at the finger tipa of the users. Since
the effectiveness of a syst• increases as the service
facilities are shared, a major goal of future research is
a system with multiple access to a vast connon structure
of data and program procedures:.the achievement of multiple
access to the computer procesaora is but a necessary subgoal
of this broader objective. Thus the usefulness of a multiple
access system depends almost entirely on programs1 correspond
ingly, the memories where programs reside play a central role
in the hardware organization.

In summary, then we see how the original view of a
single program on a single computer, has been replaced by
a large system of many components and a community of users.
Thus, we have a multi-user, multi-processor, multi-channel
system. Moreover, each user of the system asynchronously
initiates jobs of arbitrary and indeterminate duration which
subdivide into a sequence of processor and channel tasks.
It is out of this seemingly chaotic, random environment that
we finally arrive at a public utility-like view of a canp
utation center. For instead of chaos, we can average over
all the different user requests to achieve nearly total
utilization of all resources. The task of multiprogramming
required to do this need only be organized once in the central
supervisory program. Each user thus enjoys the benefit of
efficiency without the inelegance and pain of trying to average
the demands of his own particular program.

The above "exploding popcorn" view of computer use, where
tasks dynamically start and stop every few milliseconds and
where the memory requirements of tasks similarly grow and
shrink, means that one of the major jobs of the supervisory
program is the allocation and scheduling of computer resources.
The general strategy is clear. Each user's job is subdivided
into tasks, (usually as the job proceeds), each task of which
is placed in an appropriate queue (i.e. for a processor or a
channel). Processors or channels are in turn assigned new
tasks as they either complete or are removed from old tasks.
All processors should be symmetric and be assigned as needed
to the program for tasks1 in particular, the supervisor need

Page 4

not have a special processor. Processors should be able to be
added or deleted without any ~ignificant change in either the
user or system programs. Similarly, the channels should be
symmetric and should be logically and physically independent
of the processors. Again, as with the processors, one should be
able to add or delete a channel according to system load {or
reliability) without any reprograaning required.

The above system viewpoint, offers a clear-cut approach
to the multi-user, multi-processor computer. However, there are
many interrelated problems and requirements which remain to be
discussed, namely: clocks, memory protection, program relocation,
parallel tasks within a job, common simultaneous use of sub
programs by many users, growth and shrinkage of program segments,
and memory allocation.

Clocks

Of course, the most elementary clock required for an
operating computer system is a clock for documentation purposes,
giving the date-month-year and time-of-day sufficiently accurate
so as to be unique. Most contemporary cOJ11puters have not had such
a clock and it must be added on aa an expensive accessory. As
computer operation becomes round-the-clock and nearly continuous,
the need for automatic operation of the date mechanism of the
clock becomes a necessity.

A second kind of clock required in any time-shared system,
is an interval.timer clock which can be enabled and disabled with
remembered interrupts. Clearly this clock is needed if the
supervisor program is to maintain control over user program
loops {intentional or accidental) and successfully schedule
the computer time resources (processors an, channels) as well
as periodically service certain housekeeping functions such as
maintaining character flow to and from the user typetiriters.
Although in many instances interrupt logic can be used to
trigger off supervisor program housekeeping,· there may be an
efficiency trade-off with clock-instigated polling techniques
where all users are periodically scanned and given service as
needed. The pertinent factors in the trade-off are: the relative
probability of user activity in the polling period and whether or

Page 5

not the frequency of clock interrupts maintains "flicker-free"
service.

The resolution of an interval timer need not, of course,
be any finer than a basic memory cycle, or for that matter,
the time to store a user's program status (i.e., 5 to 500
memory cycles, depending on the machine). However, the timer
should certainly allow the supervisor program to interact
smoothly with the input characters from a user (i.e., a resolu
tion of at least 100 m.s.). When trying to analyze, monitor,
and debug input-output programs, there are often cases where
it is convenient to measure I/O times accurately, so that
precision in the order of .1 to 1 m.s. is required. Finally,
as fully multiprogrammed systems involving multiple simultan
eously operating user programs come into being, the only
accurate way to account and charge for the use of the various
processor and I/0 resources will be to maintain microsc~pically
accurate accounting. Thus, timer clocks which resolve doi,,m to
a few memory cycle times are a reasonable requirement for future
computers.

Memory Protection and Supervisor Mode

The most elementary form of memory protection required is
that which prevents a user from writing outside of his own
program area. If one makes the assUlllption that a user's program
consists of one solid, contiguous region, then an adequate
solution is boundary registers such as those on the IBM
Stretch, the IBM 7094's at MIT, and the CDC 3600. The boundary
protection registers need only resolve to the size of a physical
block of words. Clearly the user program must not be able to
issue instructions to modify the protection registers (or
many other instructions such as those for input-output) and
this is accomplished by always operating the user program in
a different mode than that of the supervisor programr thus,
•ny mistake occurring in the user's program causes the processor
to be trapped to the supervisor program. The hardware should
be such that following a protection trap, the program can be
continued in case the supervisor was running only a partially
loaded program. When there are multi-processors operating,
there must also be provision in the hardw'are for tie-breaking
in the case where two processors attempt to enter the supervisor

Page 6

simultaneously. In general, each processor must also have
separate boundary registers, including channels (unless their
canmand sequences are prechecked for validity).

Although simple system operation requires only write
protection of memory, and there are cases where several
programs might share a read-only data base, the complete
memory protection solution demands that there be the option
of read protection as well. ''l'WO important cases require it:
the first case arises in debugging where a program reading
beyond its bound has erratic behavior which in practice is
indistinguishable from transient hardware failure. The second
case is simply that of user privacy. It should be clear that
the general c011Dercial user has no desire to let his competitor
browse in his records, the project manager doesn't want his
staff to accidentally see each others personnel records and
salaries, the clients of a bank consider their bank balances
privileged, and a military agency cannot tolerate a high
probability of security violation.

Relocation

As soon as there is more than one user program in the
main memory, dynamically starting and stopping, growing and
shrinking, there is the need to move programs about in memory,
preferably with low overhead, so as to accomodate new programs
which are larger in size than the available holes in memory
space. It is important to recognize that in general when a
program is interrupted during operation it cannot be arbitrarily
relocated even if the original program loading relocation
information is still available, because the contents of the
accumulator, index register, etc. are of unknown relocatibility.
A simple solution to the problem is provided by a relocation
register, as in the IBM 7094's at MIT. This register (which
only,resolves to blocks of words) acts like an extra index
register for.!.!! address references to memory by the user
program. Thus the program, the addresses computed and
stored in the program, the accumulators and the ordinary
index registers always appear as though the program were
operating in a fixed location. Of course, whenever the super
visor moves a program, it also must correctly readjust the
corresponding contents of the relocation register.

Page 7

This kind of a relocation scheme has the following
fairly obvious limitations:

1) Whenever programs must be moved either to make
room for other programs or to grow themselves,
there is a minimum of a read and a write opera
tion for each word moved:

2) programs have at most one convenient edge upon
which to grow:

3) there is no simple sch~e which allows several
user programs to use transparently-written sys
tem subroutines simultaneously in common.

Cammon Subroutines

To see more clearly the nature of the system programming
problems which can arise without careful hardware design, let
us explore the difficulties with the use of coamon aubroutines
in a computer with the basic boundary and relocation registers
just discussed. The importance of such c0111111on subroutines
should vastly increase with multiple-uaer ayste&ns since with
only one copy of the system librar.y in core memory at all
times there will be.memory space savings, program mainten
ance efficiencies, and improved response time.

Several properties are required of common routines in
such a system:

1. A conman routine should be interruptible at any
time on the same basis as the user's program so
that the subroutine ta·ak may be of arbitrary
length.

2. A common routine must not store any quantities
within itself but rather in an area designated
by each user program as it enters the routine,
beca.use the routine must always be invariant
for each user. (As a consequence such routines
could be in read-only memory.)

3. A common routine must operate in the supervisor
mode since it will not be contiguous with the
user program area.

Page 8

4. As a consequence of (3), common routines must
be "completely" debugged. This means not only
that the routine must perform correctly for
correct input parameters, but also that under
no circumstances of false input parameters must
the routine take any action which violates the
user's basic memory protection bounds.

The last requirements (3) and (4), are indeed stringent
ones. In particular, .ill cOR1Don routines have to guard
against the following typical mistakes:

1. The parameter "call" from a user's program
certainly will start within the program area
but may not be completely contained in it so
that false "call" parameters may be implied.

2. All input or output parameters, which are
locations of a variable, must be tested to
see if the address lies within the program
areas.

3. All input or output parameters which are initial
array locations (and thus implicitly help define
an array) require a test that the end of the array -lies in the user program.

While it is true the above tests can be assisted with
auxiliary subroutines, or by preliminary supervisor screening
upon entry to the canmon system routine, the logical burden
they place on the programmer of caaon subroutines is immense.
Finally a further complication arises in that the instructions
of a common routine want to refer to two areas in memory,namely, their

. cwn area for the purpose of reading constants, etc., and the
user's program area. Since the c011ROn program does not move
and runs in the supervisor mode without relocation, it can
certainly refer to itse·lf for constants. However, all refer
ences to the user program must be in a way such that, if at any
time an interruption occurs, the user's program can be moved.
This means that the common program whenever it computes or stores
away any location references to the user•s program it must
do so using the unrelocated location valuesr but, of course,
to make actual reference to the contents of these locations,

Page 9

the common routine must somehow relocate these addresses
while remaining interruptible. One solution to the seeming
dilemna, which works on the IBM 7094, is for the common
routines to only make references to the user's program
area using a combination of indirect addressing, index
registers and con~entions.

The conventions are that all common routines may
reference a user's program area only by means of three
bases. These bases are:

1. The program area origin, for general reference to
the program area.

2. The call origin, for picking up parameters.

3. The location of temporary storage for use by
the common routine.

To make actual reference, the common routine must load
an index register with the desired relative location comple
ment: a second index register is then loaded with the value
of the first index register and finally an indirect reference
is made to a table in the supervisor which is always kept
updated on any movement of the user program. For example,
the following sequence would be used to pick up the contents
of the first parameter in a call:

AXC
AXC
CAL*

where CLBASE

1~5 prepare for first parameter
5,6 prepare to use IRS entry in table
CLBASE,6pickup parameter

SYN *-1
PZE (call base), l Table updated by supervisor
PZE (call base),2 as part of user program

<cai1
status whenever user program

PZE base),7 moved or a "call" is made.

The above example, still makes no attempt to check location
validity. This is done, if a further instruction is inserted
just before the CAL:

XEC* CLCHK,6

Page 10

where the following table is, like the CLBASE table, updated
by the supervisor whenever the program is moved or a call is
made:

CLCHK SYN *-1
TXL (error entry),1,-(program length relative to
TXL { II),2,-(II

TXL (II),7,-(II

Similar tables must, of course, be maintained for the other
bases. Finally the cases of common routines calling common
routines and of common routines calling back into the user's
program require special care and further conventions.

It should be clear to the reader at this point that the
use of common subroutines on·· the IBM 7094 with c:>nly simple
boundary registers and a relocation register:

1. is possible

2. is very involved, and

3. requires a large amount of program overhead in the
screening of parameter validity and the maintenance
of auxiliary tables.

Nevertheless, the example was followed through in some detail
for several reasons. Not only is it valuable to see the many
aspects which must be considered, but furthermore, it serves
as an object lesson in the dangers of trying to "program
around" poor hardware-program interfaces.

Clearly, a simpler solution from a programming viewpoint,
in the case of common subroutines, is to add to the hardware
a second set of boundary registers and relocation register for
the common routine ~rea, along with the appropriate reference
instructions between areas. There still are non-trivial con
ventions and supervisor tables needed, but the requirements
of completely debugged common routines and parameter validity

call)
)

)

Page .11.

checking are removed. The costly overhead of moving programs,
and the requirement that a user's program be in one contiguous
block are still present, but these are not removed until a
rather complete generalization is made.

In particular
1

, programs could be composed of not just
one or two segments as we have been considering but of many
segments some of which are in common and some of which belong
to the user. Moreover if one can proceed to find a reason
ably efficient mechanism for associating physical blocks of
the memory with the logical pages of the program segments,
then no storage allocation movement of programs need ever be
done and the reduction in multiprograDBing overhead would
be immense. It is beyond the scope of this report to discuss
these ideas further but their importance should be obvious.

Relocation of Programs on the IBM System/360

It should be enlightening to consider another example
of the basic relocation problems discusS!Jed in the previous
section. Although, other computers could equally well have
been selected, the IBM System/360 will be considered, partly
because it will undoubtedly be commonly·available and partly
because the writer has had occasion to become familiar with it.
The processor unit contains 15-24-bit base registers, and it
is only through one of these that program addressing may occur.
By appropriate conventions, which will be outlined, simple
relocatability of programs is possible. It is important to
realize that unless special conventions are used, programs
in the 360 once started cannot be moved and run elsewhere in
memory; this follows because not only are the base registers
useable interchangeably as general registers (i.e. accumulators)
or as index registers, but their contents, which may contain
absolute addresses, may be stored by a user within his own
program. Thus the situation without conventions is completely
analogous to that which exists in the 7094 without a relocation
register.

1. These program segment ideas stem from those of Anatol w.
Holt, (Comm. of ACM, Vol. 4, No. 10, Oct. 1961) and more
recently the ideas of Earl Van Horn who is engaged in
doctoral research under the direction of Prof. Jack B.
Dennis. Preliminary ideas are discussed in Project MAC
Technical Report MAC-TR-11. Discussion with Edward L.
Glaser has been especially valuable to the writer.

Page 12

A set of conventions which allow relocatability follow:

1. Base register 15 will always contain the absolute
location of the uaer•s program origin. (Base register 0
would perhaps be more logical but register o is aaaymetrically
only a general register, baae registers 1 and 2 are un
fortunately explicitly used in certain instructions.)

2. To simplify the discussion, it is assumed that the
basic addressing complications introduced by the base register
displacement addresaing of the IBM 360 are avoided by the
definition of an appropriate assembly program. Thia assembly
program would allow the uaer to write conventional programs
completely symbolically addressed, without any consciousness
of memory addressing limitations. Upon tranalation, the
assembly program would do a flov analyaia of the user's program
and then insert instructions for necessary loading, saving
and restoring of index registers required for the addressing.
The base register used will always be 15, as described. This
process is no more complicated than, and is analogous to, the
index register optimization in an algebraic compiler. Base
regiater 15 is always used for relocation purposes in all
instructions.

3. The user program must always declare to the super
visor, upon any changes, which registers are bases with
absolute addreaaes, and which are general registers or index
registers with constants or relative addreaaes. The declara
tions to the supervisor must, of course, be done by super
visor subroutine calls.

4. The user program must never read out and store away
internally an absolute address contained in a base register:
instead the uaer program must only store, within itself, can
puted addresses, references to itself, etc. that are in terms
of relative addresses.

5. As explained above in (2) all program references are
by means of indexed-instruction (i.e. double indexed if one
includes the base). The passage of call parameters is only
by full-address relative location values. The user, of course,

,j

Page 13

no longer has normal indexing available. For those in
structions which are not indexable, a special macro sequence
must be used to establish the appropriate absolute address
in a base register, (see below).

6. To establish an absolute address in a base register,
the program must go through a macro sequence which:

a. Loads a general register,
address.

r., with the relative
1

b. Copies the contents of base register 15 into
the desired base bi.

c. Adds together the registers bi and ri and stores
as the desired base in b

1
•

Step (2) of course might be preceded by another base register
load instruction furnished by the assembler, or by a suitable
declaration call to the supervisor regarding register allocation.

7. To do c1 subroutine transfer, the user program should
never just use the "branch and link" instruction since there
is no way for the called subroutine, which aay make further
nested calls, .to preserve the return as a relative location.
Thus, before making a subroutine transfer, a program must set
a general register with either the relative address of the
calling location or of the return. Of course, in practice,
specific conventions would have to be created.

The use of c0111Don subroutines is similar to the 7094
case discussed previously except that the zone memory protect
scheme of the 360 may avoid the need for parameter validity
checking. In addition, if the present conventions are ex
tended, the relocation of c0111110n routines might be included
within the same framework. Finally, if the above technique
is used, there would be some inefficiency in the resultant
programs f ror.i:

a) the overhead required for the assembly program
index-base register optimization.

Page 14

b) or the object program overhead in both size and
running time if the optimization of (2) is only
partial.

c) the declarations of registers to the supervisor
and the absolute address creation.

Nevertheless the resultant convenience and ease of use
should more than compensate for the programming system
complexity required to "finish the hardware". This
provides another example of how relocation• can be achieved
on a specific machine. Similar problana and similar
procedures arise for moat machines preaently available.

Conclusion

The above relocation examples and solutions have been
elaborated in considerable detail to expose the reader to
the difficulties encountered with conteaporary machines
when multiple uaer multiple-processor syat8lllll are considered.
The fact that each program aay perform unexpectedly, even
to the user, deaanda that running progrw be able to be
moved as well as to grow and to shrink. Aa man-machine
interaction becaaea faster, each program task beccnea more
intimately connected with secondary storage and with common
subprograms; thus effective multiprogr--.ing is esaential
for efficient uae of a multiple accua caaputer system.

