Bt Sl SRR R O M S e i

MAC~TR~7
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

OPL-1
AN OPEN ENDED PROGRAMMING
SYSTEM WITHIN CTSS

by J., Weizenbaum
April 30, 1964

ABSTRACT

OPL-1, an incremental programming system presently operating
with CTSS, permits the user to augment both his program and his data
base during widely separated successive sessions at his terminal,
Facilities are provided which make it possible for the user to operate
on his already established data base both by means of built-in operators
and in terms of operators (functions) which the user has previously de~
fined in the language of the system, Underlying the system is a power-
ful list processing scheme imbedded in FORTRAN (SLIP), The machinery
of this fundamental language drives the system and is also largely
available to the user, The data base generated by the user is there~
fore a set of list structures (trees), and most of the operators avail-
able to him are list processing operators., Data structures with con-
siderably complex interrelational properties may therefore be treated
quite directly.

"Work reported herein was supvorted (in part) by Project MAC,
an M,I.T. research program sponsored by the Advanced Research
Projects Agency, Department of Defense, under Office of Naval
Research Contract Number Nonr- 4102(01). Reproduction in whole
or in part is permitted for any purpose of the United States
Government,"

This empty page was substituted for a
blank page in the original document.

‘A time-shared computer system such as at M. I.T.'s Project MAC Zs

rich in opportunities to attack problems in new ways, ‘From the user's point
of view, his typewriter (connected to the: compntet)imrymuéh ke the
relatively simple control consoles of the computers of long ago. The speed
of response to the signals he sends té the cofiputer tentis to' confirm the’

11lusion that he has a computer all to himself and thit e has been thrown

back in time to those long gone days when' console debug“ging vas’ de rigueur, .
It is probably true that the old timers gave up this tibde of computer
operition most reluctantly and only under the unchallenpible ecohomic re-
alities of large, fast computers, The sudden reversul of evefits 18 therefore
greeted with the kind of pleasure dssociated with the réjuvénation of am *
almost forgotten romance. And, just as it would be & mistaké to believe

that the rediscovered object of oe's lohg ‘agc affectloii tiss rematied un=
changed over the years, so in this context {s Yt wrong to gloss over what has
happened to computers since one labt sat st onels Ywh ecisole. The most
directly influential chanpes. hdve besi the inereusws -1i’' memory capacities,
both core and bulk, and the development of high Tevel ‘computér languages.
Indeed, were it not for disc and drum storage, titie-sha¥fiig Would be impossible
for there would be no efffcient means for swavping programs™in core or givifig
active programs rapid access to previously storéd fiTes. Hiph level languiges
are almost certainly req uired to write the cawpm&xe‘cutivt 'p‘mgrams which
form the basis for any time-sharing system as well as to make these programs
amenable to maintensance and ‘¢hamge, Of course, the availabiilty of hiph ‘1eével
languages opens the door to the System to useérs whose main ‘doncern is with ™

their problems and not with the computer per se.

The most obvious, and _‘;ln._a‘sen'sgt;nps,g:_‘ g;ji’.;}gi,t_:iyve‘, gf,fec; the user
of a time~sharing console notices is, of course, an, imgre;gra:iyg‘ rgducggqg
in turn-around-time yis-a vig batch processing, He types in, say, a FORTRAN
program, compiles it and is given his diagnostics within a very few, if not
within fractions of, minutes. He can then place his missing parentheses,
relabel his mislabeled statements, or whatever, and recompile. This, would
obviously not be possible if the compiler itself were not accessible in the
form of a previously stored file, The psychological effect of being able to .
recompile several times in ome sitting must be experienced to be ayprgc;g(;,gq}

But the most suggestive aspect of the freedom with which one may
compile, repair, and recompile is not in the mere reduction of turn-around- .
time. It is rather in that this type of man-computer message exchange (man
submits program--computer points out bugs—man spbmits revised program, etc.)
is an (albeit primitive) example of a qualitatively new realization of man-

machine dialogue,

merely reduce turn-around-time. The goal is to give to the computer those

. tasks which it can best do and leave to man that which requires (or seems to
require) his judgement. It 1s to be expected that Ain many problem areas the .
computer will begin to help man by doing only the most obviously mechanical

. parts of his problem but that, as the man-machine dialogue extends over a

long period of time, more and more of the previously fuzzy issues over which
man retained suthority will become clear and finally be turned over to the

computer. There will, in otber words, come into being heuristic computer

LI e S A A U L S S R el L 2

programs in which the heuristics themsalves. will be products.of man's computer
experience, of his deepening undexstanding of his problem a4s a direct con-
sequence of solving it in partnership.with a computer,

Whatever the computer language techniques.which may be required .to .. .
compose such emergent programs may finally turn out to be, they are certainly.
not those which have proved effective for the batch processing discipline to .
which we have all become accystomed. That discipline requires a user to
anticipate every possible eventuality in the sense thag,,ﬂ.fc?r every such
eventuality a program dealing with.it has to exist at load tiwe. 1In an.
important sense then, it may be said that batch processing requires.the
prograamer to have a fairly complete idea of the salution of his problem.
before he can even begin to appeal to.the computer,. The:computation is merely

the evaluation of certain. parameters identified by the. preogrammer. in. advance.:

The basic purpose of OPL-I is thergfore to permit the user to build
programs- and: data bases- incrementally apd. over periods of time during which
- there will be long intervals of no user-—cowmputer interactiop at all. The .

SAVE and RESUME features of the MAC system are essential to this end, The

first of these permits a user to cause the -entire state of his program to
be stored on the disk files under a file name “¢hesen dy himself, The:
second causes a saved file to be retrieved from theé disks in suech a way that,
even though weeks may have elapsed between the SAVE-and RESUME operations,
the program which was underway at the time of the SAVE is continued as 1if no
interruption had occurred,

Experience has shown that one of the most powerful data storage
schemes relevant to present computer organizations s the 1ist structure.
Its chief advantage over "conventional" storuge methods is that the very
storage regime itself (as opposed to programs dealing with the stored data)
permits the recording of complex interrelationships ameng the data, List
structure representations of programs alse yleld considerable economies
in programs to process such nrograms, OPL-I"is therefore fundamentally a
tist processor very much in the spirit'?o'fipmz(fgghdi {less 'so) of ;I.PL-;V(.B)
The executive program which drives 0OPL-1 is itself writtén in a FORTRAN
based list processor, Sidﬂgf)all of the machinery of which is avallable to
the OPL-1 programmer.

In OPL~1 the programmer enters program segments and data during
any given session at his console, executes some of his program stens, thereby
perhaps modifying his data set, and finally quits bv saving his accumulated
program, frozen, so to speak, at its last step. He may resume his program at
any time thetreafter, save again, and so on,

Segments of programs operating under these conditions fall into

two classes: those which are executed repeatedly, i.é, essentially subroutines

B e I e e I e e R R T e

S

and those which are exercised only once, Were the latter tyne accumulated
in storage along with the former, computer memory would soon be filled

with useless material, It would then become the user's task to purge his
program of such material. This would place an unaccaptable ‘bhookkeeping
burden on his shoulders., In OPL-I, therefore,-almost .all program segments
are deleted as soon as their execution is completed and the space required
for their storage returned to a pool of generally svailable space. The
exception to this rule is invoked if the entering of a nrogram degment is
preceded by the word "DEFINE". Such a program segment is treated as a
procedure, is permanently stored, and may be called uson at anv:future time.
The ability to so define and store subroueines means, of course; that the-user
has a system which he may mold and modify. to his owm.eénds, It is also impor-
tant to remember that although program segments which .are not identified as
procedures are thrown away upon being executed (hence:making nrograms of
unlimited lengths possible), the consequences on data of the-execution of such
programs are stored,

An exanple may serve to illuminate the point, If the programmer
writes:

((A=1,5) (B = 2.,1) (c_- POWER(A,B)))

then, upon pushing carriage return on his typewriter, this small program
segment is executed and finally thrown away. However, the data A, B and C
will have been pnlaced in memory with their eroper valuiuyC‘bting?(1.5)2°1,
and may be operated upon by subsequent program segments. If on the other

hand, the programmer writes:

(DEFINE)
(MEAN(L)

(S = SEQRDR(L)) €SUM = 0.0) ((COUNT = 0.0)
BEGIN (C = SBQLR(S,F))

IF (F)MORE ,MORE , DONE
MORE (COUNT = (GOUNT +:1,0))

(SUM = (S5UM-+ C)) GOTO:BEGIN. -
DONE ((SUM/COBNT)))

then he will-have stored 'a procedure which, given a 1liat of numbers, will.

compute the mean of those numbers and deliver that result as.its value.

‘However, thie completion of the input of the asbove program segment-—as.signalled

by the carriage return following the. typing:.of the last right parenthesis-~
does not itself cause the procedure to he fired. :Execution of-a statement ..
of the form (for example)

{X = MEAN(SET))
will fire that procedure,

It is beyond the scope of this presentation to give a complete
catalogue of all the built in functions, control statements, input/output
and diagnostic facilities of OPL~I., Suffice it to. assert that, viewed as
a languege, OPL~I is of a character quite similar to the LISP program mode
and of about equivalent power.

The importance of the fact that OPL~I is fundamentally a list
processor operating in the incremental data and program.squisition mode
already discussed is that this combination makes possible. the experimental .

manipulation of complex data structures and their interrelations. List

structures are particularly appropriate.beciéuse-gublists of lists mav be-
easily and naturally interpreted as subparts of whdtever the 1list stands
for. Furthermore, lists have no ifiherent dimemsfenality, i.e., their size
may vary drastically during program execution without caustng program-
ming difficulties, It is also possible to attath 'so called "description
lists" to lists, i.e, storage devices whiech cvhtath’ information about
propertfes of the object their host }iét is supposédito répresent, Previocuss
ly existing list processors had all the power whicli 'sach an immensely’”
flexible data organization vields. However, nrografis vwritten in'these’
systems still had to be complete specifications of a éingle computational
procedure-~however long and complex--and’'did- nst therefore permit-divect ' -
human observation of tentative resilts nor- iimediate haman vediréction of
* the ongoing computational process in the light eof such-results. - -~

A simple example of some of the above ‘polate- is the following:
Suppose an organization is described in a atamdawrd organikation chart -
format, i.e. the top level of maf\sgenmént i3 the ha#d of the tree with as
many branches flowing from it as there are sublevels (say divisions) report- "
ing to it, Each divisioen is ajgain a "node" of a:tree with branthes flowing
from it, 1In this way an arbitrarily large and" eoiplan’ aetwork can be
represented, Within OPL-I aiich such node is actuilly the -head. of a list .-
which is a sublist of the higher order mode from:whidth it flows, L.ei to'"
which the suborganization so reépresented ﬂ!pm&. ‘“The' top level of manage~'
ment is (appropriately) the "main' 1list.:’Eech of these lists may have
description lists attached to it which comtsin arbitrary information: about

the represented component, e€.g. the name of the cémpohent memsger;, the sise

of the budget and of the manpower poql, data on last vear's performance, :

etc. The organization structure is. theaxefore known by the very way it is.

It is now easy teo. write programs which make .all sorts of computa~-
tions on this data base, For example,one program might allocate the budget. -
of each higher level as a fungction of - the requirements-of lower levels
reporting to.it. .It is now a trivial matter.to radically reorganize the . .
entire structure on an experimental .basis . and. to. see .what effect such:
reorganization has oun the over—all budget, inoventory ceste; .etc. This re-. .
organization can easily inclwde the aquisitien of: mew orx the deletion of -
existing eubdivisions, -All programs.which were written to perform computa—~ .
tions on the original. organization remain invarisat: wigh respact to any
such reorganizations. In any event,: the nsv results cen be seen directly
and further computation based on.the insighis.se.geined.initiated: impediate-
ly or very much later,. . I1f the reorganizatiom 1s.%e stand, then the program
which contains that represestation can be saved.amd will, of course, be the
already updated representation required next time:that.program is resumed,

‘A facility soon to be aveilable to time-sharisp.users.will permit .
a number of peovle sittimg: at separate:consoles. remete. from one another
(and, of course, from the computer) to interact with:a:eingle program, This
points the. way to the next most obvisus powerful extemsion of OPL-I. In
the multiple user mode it will:beceme possible te simulate. group processes.
(e.g. business games- and behavioral scieace exparimemts) with utmost realiem,.
For them the: conseguences of -any-single individual's decisions will immediate-
ly modify the model- either in terms of its deta base or.ef-its very program,

