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| Abstract Data Types in Stack. Based Languages
- by N
John Eliot Blakesiee Moss

Submitted to the Department of Electrical Engineering-and Cemputer Science
for the.degree of Master of Science.

‘Abstract data types-are the basis of an emerging methodology of mummmming The
only existing fanguages supporting abstr  types directly, CLU xed: Simula, both require

BaRre

compacting garbage- collection, and tﬁm t!ny are not suitable ‘for ‘many applications. This

thesis presents the design of -a new. language incorporating sbetract‘data types; the language
requires ‘t.'mly a run-time.stack, and not garbage collection. “Fhis-new-Ianguage, called ASBAL -
(for'"A Stack Based Abmtraction: Language”), is based on:CLU,:and borrows as many features
as possible: directly from-it. Virtuaﬂy every ngammm m of CLU is carried over into
’ ASBAL in some form, ‘and -extensions are inch - ilen mry ‘For exmqﬂe the
" maximum size of objects bewmes an'listeand is Mnd" by the sddie A of size parameters to
types. ‘Also, a'limited ‘facthity for dynamic “sorage shiocation s rated in ASBAL to
compensate for the removal of a. garbage: collected hesp. “This: m,v allows tist and graph
‘stzasctures to: be. built -within: the framework of the: stack-while;preventing dangling references

as:a "side-effect™of oompﬂc-;-ﬁm type checking.
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1. Introduction

In recent years the correttness of cocmter progrims%as bacome a topic of growing
interest. One approach ‘taken- to enh:mmg' m ‘Is the fdrmuhﬂon ‘of design and
programming: Mhodolagies It is hoped t?m Stness

'%be tchlevad by usiﬁg appropriate
structure and diseipline in the prograsiming process. %’l‘ﬁﬁi&;ﬂ' “Bbstract data typesl is one of
the techniques being developed. Abstract dutd'tyjes appear:| é itiing for sinfpllfying proofs
of program correctriess, and seem to be hatdtal’ for M ih n programmlng and. in
*.cormunicating among thémselves about program

LL Motivation .

To date only two programming !anguages have been implememed that provide and
»enforce the abstract data type disciphne directly in tm hgguge- CLU ([Liskov77], and
extensions to Simula [DahlBB] However, ‘both hm& Tequire ‘compacting garbage
collection. The main difficulty with garbagc collection is. the embarnsslng pause” which
occurs whenever the garbage collector is invoked. ‘Such a pause is intolerable in ‘real-time
systems such as operating systems, process control programs, etc. One way to eliminate the
pause is to use ﬁarawl"ilswe"ﬁ"of inichémissitat. [Raker7?, ' Dédt h’lﬁ: “Barth™n garbage
~ collection techniques. These methods have“tﬁ! eftect ‘of spréading the’ pause out uniform!y
over the normal processing time. Unfortundtely, efficien

4 ﬁfl‘ruéf garbage collection probabiy

requires special hardware, and’ ¢ thereforé ot !uiuble fat', m appucations, especlaily those

A e

relying on existing hardware. lqcr!m&ﬂ:l garbipe coflection lppears to’ ‘be more promising.
but both paraliel and incremental techniques for ob jects of different sizes (we say varlable size

objects) copy from one ob ject space to another. Each space i3 one haif of the total free memory;
thus the maximum amount of memory usable with the parallel ar incremental techniques is half
of the actual memory provlded This severely m aﬁﬁmmm pmslbte on most
machines, particularly mini-"ind micro-computers, whid; !_li#,gmﬂaddrm spaces,tq,pegm

1. We éssuine the reader is' famluar with_aﬁstricjt; data typu. For those Jess well versed in the
recent literature the following papers may be helpfut: [Liskov77, Wulf76a, Liskov75, Guttag75).



10

with. Another drawback to garbage coliection: is that the mym System mtght be
~a prime candidate far using abstract data types. Clearly: umm s part of the
~ memry managm{ syem.  If the language achich allems ome 40.yse sbstract data types
: requires garbage collection, then that lxnguage. chnnot:he teed-40 write. the: garbage collector.!
‘One might hope that 3 usets), subet-af the {aaguage: that shoss o Peise: gavbage collection
could be used to write the.garhage qollectar. Wmmmwm GWU or
, Simula they. deMm. arbage. cojection entirel _ v
7  We feemmm-dummnm_ rbage. collectio mhhﬂm parallel '
garbage collection into compuster hardware,  As the Mgf mmpdmm the
- cost of of software predominates, it may pay to dotble um.m.mmnm_n paraliel or
incremental garbage collection, and thus make MMMMWMMg
languages that ease software: dﬂehpmut However, in: MMM for: -”lmu
“the added hardware coit ummt be Mm Mmﬂsuacmm we. feel another
'sotuuon is in order I this thesls we present a m\v b i W incorporating
.abstract data types ina muer mmm mm D

112, Fhe Gosl

., Pascal, and PL/2 Rather, th designing this. new laoy

We have.designed a.new language with. abstracs sdate types:that will yun with-enly a
run-time stack. This stack is glmihr to m mnm&@hﬂ hwmn Algol,
_ mmem CLu
as a basis and have Mn&d on remining .as megy. of its features 83 _possible. ‘To
understand what we: huwdm ﬂm mlmﬁ mk‘ ALhage: -1 egonsary in
CLU. : :

1 Withom speclal m::ks, that is. We feel-that tﬂekq nf um sort shuwld hetvo!ded and an

elegant sohstion found thit dies not invotves mibks-br Spbcidl
2. For some applications static aliocation might be apprepriate; we did -net lnmtlgate that
approach. However, see the wggamom t’or furﬂnr nmeh ﬂn lut chapter for more
comments about it o ' )
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18, CLU alrd Garbage Coﬁection-

The coincidence of several :parts of the semantics of CLU makes garbage collection a
necessity. The basic unit of information in CLU is'an object. Every object has a type. and may
be manipulated only by the operations of its type: this is the key to abstract data types.
Conceptually, ob jects exist indepandently of pregeams, and gnce greated are never destroyed. A
variable ~rs simply a reference toanobpct.ﬂwm,aaame for it. It is important to-realize that
variables do not contain objects, but.rather. object. eforances, implemsnted by. pointers or
capabilhies.- Two. variables ‘may- refer to'the same ebjecta-we -say -they -share that object.
-~ Objects may__referf._to. other objects, so.objects can be.,shared by objects as well as by variables.
This_' is useful.in.building hierarchical, graph, and. list date structures. Furthermore, cyclic.data
structures. can be_ built, thus. implying that. refersnce counting will not suffice to reclaim all
unused storage. -Becamse variable ;iu»obm”meg mﬁu garbage: eo“eam is ‘needed
- to prevent fragmentation o&uqnge. U e

n CLU, assignment, argument- mmm md results are all accomplished
by transmitting b ject references;ne obmgmnfm Forexample, in

X =Y, , S T e T NPT Ve
the variable x is made to refer to the same. object as that referred to by y. The ob ject referred
to by y is not affected in any way. In the case of argument passing a similar thing happens.
The called routine is given references to the argnm being pas to it. This is not the same

as. call by reference the al%ed routine does not have‘uocea o the varlables of its caller.
However, the ob jects passed are shared between the caller md the ca!led procedure Therefore
any modifications to the objects wm be visible m the caller |

Any procedure can create new ob jects at wlll and these ob jects are stored in the heap
References to ob jects can be stored in other ob jects and alao retumed to the caﬂer directly We
will call the ob ject semantics of CLU the objm-ammd Wmlo

In sum, CLU ob jects must be lliouted in a hup beause (a) they can be of
unpredictable size, (b rhelr size can grow over ttme without bouﬂd and (© their lifetime is

1. A heap is a global, garbage collected storage area, like that of Algol 68 [WijngaardenT77).
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indefinite. Garbage cowtmn is requimd because cyclic. stmctnm can. btbuik. Compacting
garbage colection: must. be used to prevent fngmm o m buaun varhbk- size
_ob jects are used. N ‘ ST e e T L R T

I.4. Our Approach ‘ B

]

 CLU's majer contribistion -is the:abitrace it typé Tacility, -not ‘the objédioriented
view.. It appears shat the dw?ﬁ%dtw S Wb requiteiivnt Tor garbage
collection; as outlited:above. Perieps Wit et i ype- fiditier withodt the
object-oriented view.: As wmuwmm mﬁmmaw arrive
at: is-a; synthiesis of ‘the tratitionad: wmmm Wﬁm s‘-sunng
objects is-ehnvinated, mmawmww? - Rions

objects in: varidteso Fuirther distpiion 450 ‘
“may -be-manipulaed. - Our-panpnse 45 Spp )
possuble We 2all our: resulting design: 'A:Wf
ASBAL: - Wesmwm SNPROck | 1S i el
concentrated -On - tin :SeWMSHIC TR isamey oF AN -
improved fora pmw MWMM

R i S Lt

I. 5 Related Work

The goals of the Alphlnd hngmgeﬂu!gn gmp IW lppelf m be very simitar

. #ads g g kR bw iMst G 5., s, HEDY
to ours: Alphard hn abmact dtta typu and: Tuns mly & stak: Hm, {dphud is stifl
BV i«”rq o x?‘iﬁ é J‘IM um*,ﬁ%"’ L %L:a“u .;J’k
under development and it is not clur how similar BAL mﬂy are. We' smpect
A whe [NER BT sétd -‘fki Qi'f" Qﬁ rREE

there wilt be: stgnifiunt diffm bm of 'oar aé ce: to a mom objm—oriemed'

LERHT o bt P
aPProach Furthefmorg Mplmd m to m oa mﬁm (m {wum
’ Wulf?ﬁb Wulf"lscl) IR PR $550, £ €

The !anguage Euchid [Lampmm is ahh maﬂm M to our. work We are
: (A % '% 4 i RIS RO JERLEW
‘ especially indebted to ‘Euchd ‘for the cuiiqm ;@'{QM and w&hctions. lee -

we i@ akgs o3z vinddd &) ssee so

Mphard Euctid is net. c:bjac:-oﬂeuud. Fu nhumnﬁ. was not. Mhﬁy deslgned to
provlde abstract data types. although they can be Mum. mm&: m:lid

R B T £ vme fo x‘"v&'f 2

{?;4. .

\
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places more emphasis on provability than we do, and on systems lmplementation features.
- Euclid is a more complete language than ASBAL, but our lntention _was. not to design a
complete ready-to—use language ' ’ : :
| The language Simula is also somewhat related to ASBAL Simula oould be described
" as CLU's ancestor, and CLU is ASBAL ancestor so the relatlonship is one of progressive
development No specific feature was consclously taken directly frorn SImula in the desrgn of
ASBAL, but much was taken from CLU _ .
The language ‘most closely related to ASBAL is of course CLU since it was the
starting point of our design

1.6. Outline

This mtroductory chapter is followed by flve chapters. Chapter 2 introduces the basic
semantics of ASBAL Iaying the phllosophtcal and sernantlc foundations for the rest of the
desugn The third chapter extends the basic futures nlth two mechantsms taken from CLU:
iterators and exception handling Chapter 4 further extends ASBAL by addlng parameters to
abstractions. The parameter mechanlsm of CLU is oopled but a significant new feature is
added - size parameters The f ifth chapter lnvestigates a toplc foreign to CLU , dynamic
allocation of ob Jects without requiring garbage collectlon ln Chapter 6 we surnmarize our
research, draw concluslons and make suggestions on how our work can be extended
mentionmg other approaches to our problern deservsng mvestigatlon

There are two appendices which more completely deflne our- ASBAL The first
appendix gives a context-f ree grammar with explanatlons of the various productions The
second appendix outllnes the basic data types and their operations.
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: .2 Basko Golwqyts

Thls chapter pmems many fundmnmﬂ um o!' ASBAL We begln with a

 discussion of the pbﬂmaphy bohmd ob Jocts md vurhm iﬂ pmnmmtng hngunges point out
particular upects of thu phﬂaophy thlt diml,lw ollr dqﬂm in the des(gn of ASBAL,

1%5‘}‘%-"\ gEvEn

and arrive at the buic mmm of vtrhblu fm‘ Asm Fm thh we chelqp the semantics

Pt wlmege

of procedure invuuuon uugnmmt. and m mm of ebm. M‘ter a discussion

¥y 3"“‘ st F r3 wphsy -r*-* f o 'ig

of implemenmim techmqlm. we pruem n examp ege guﬂnmm to lﬂumte the material
P 2 wln - Ay, el s
introduced.

21. Philosophy of Objects and 'Vamblu |

Variabies in tndltimal pmgmmkg hngmges me two mt)or ‘functions: they
provide a naming apl’bmty. xnd ﬂny pmtdem'vm mm (ise nurage space).
CLU, with Its objett—oﬂemed “view, sepanlu m fm mpm lme the lnformtuon
" containers of CLU. (CLU variabies ok umymm ‘of ‘dbjects. ‘We generally say the
;T‘vanable denotes or rcfcrs to the object.) Obpcu hlve mwindct‘mw.' Iifulme, and may be

i SIS 3&:(,,( =§ﬂ t

x referred to by man’ywmbles lt once ‘Heuu. m mmgedu Mgeilleuted ina
heap. with’ varhb‘a beiug polmm m me m tl\tyim: o b&’eﬂm’ rel'cr to other
B objects and genem! gnph structares-of qt;jecumaﬁowed u

" Some ob“jem hlve tlm-uiﬁntW we uy“wao objnwau nutablc The state

of a mutable ob ject " the set of prepam?a n m wm pom«m *um For example, the

' ﬂﬁbstracttype smck ts«muuble Thesmuram ummmw obaum ini. A
push or-a popmume:t Mk m gmnamm mmm amfurempﬂness
will not change the state. of a stack. ‘ '

. Immutable -objects are those whose properuu do not vary over time. Most
mathematical valuu are immutlble as are their mmpuur llnguage ‘models. (The values not
the variables in which.they are stored!) For enmple integers, rul numbers, characters, strings,
and ‘boolean ‘viiues are all immutable. "The integer ' is " mmocable object. 2" is 2’ no

" matter how you shice it, and ‘2'.can never be changed eoanym integer. -
The sep:ration of the naming and storage functions of variables acmeved by the
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ob pct-—oriented view leads to a clean semantics.  But probabty the most lmportant reason CLU's
el i SrE ?is FER N

l' ob, Ject-orieuted semantlcs is attm:tive l; that peop'e seem to think in ;terms of ‘ob Jects The
very structure of Ianguage, with nouns (naming objects) ad f:tives (describmg tbe properties

EEEEL B R .i:‘,‘r S

of ob jects), and verbs (descrtblng the’ use of ob jects pr their hehavtor) seems based on thts view

of the world. If it is indeed true that people thlnk ‘:tn terms of objects, then Iinguistrc forms

.....

that enable people to program direcﬂy in térms of ob| jec‘ts colﬂd iud to better sof tware desngn
ey 1g st

and’ imp1ementation by being more natural for people to use. .
» " Of course, the kind of objects to be found l'n prograruming concepts are highly
abstract, often’ mathematlca! in nature. '$o, gtbcre rernains much structure to be butlt to model
real ‘world ob jects and. systems 'l"his hck of structure lﬂows the l‘reedom | necessary in a
'general-purpose hnguage For domain speciﬁc systems (e.g.. metltcal dﬁgngsts)ﬁ mdre structure
may be desirable because it embod!es useful amp?ﬂ;t; aud prennts "reinventing the wheel
3 -purp The abstract data type

for every speciﬁc task Howevér ASBAL !s fo be geners :
facilities allow one to build spectatized systems by aocumuhting a Itbrary of type definitions

%‘fae u
-; ,,h.

“and procedures relevant to the appliatttun Our modeltng of objects must extend to abstract
data types to be useful. For this reason ASBAL is destgned frpm a very general point of view
‘with respect to types “Fhis m may make our descﬂpums of mntic oom:epts seem very vague.
It is hoped that the miny small examplu we gtve wtl! help oﬂ‘set the abstract descrtptlons

22. Vnisbles in ASBA’!. :

As was, discussed in the flrst chapm,qur hug cmm in the m ai ASBAL is to.
,obvnate the need for garbage. collection. . This,. we..angued. .irplies -either., static- or
_ stack-allecation,o;;stongg, We explained that out- mmmumm 10-stack aMgcation.
-CLU-style ob jects cannot be stack-allocated in an ble. way, because they are very
general structures. We have decided that the best apwvech foc ASBAL 1s to store ob Jects in
A Cpf; 1. t;od directed our cholce Al
-, other-mechanisms we capsidered were mmmm Sursng ehzjaasin variables is not
as’ ice as the fuﬂ-—b’lown ‘bb jecf-—oriented appmch ﬁ‘ CLU bultg lt appears to be the best we
can do. The assignment, procedure call, and:component: m nechmtsms were-: designed
very carefully to help offset the limitations imposed by working in a stack. Here is a summary

-nr
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,;‘ - of the ob ject mterpmtaﬁon "

N , | A variabk- contntm an ubject An object hu a type. md » m a variable; a variable
- may only contain an object whooe type is the same a3 its own. Augmt nﬂl be used only to
| change whnch ob ject is ttored ina varhble. An aaignmcat effectiggy datroys whatever ob ject
prevuous!y existed ln a vartable, md cretm a m np'pct in m,,m Toc : the state of

3 J I /‘.“‘

an object rhe object must be passed (umtg the ,pmcgdun invocation mechanism) to an
operation of its type An operation that t changes an ubjsct’: m n njd to mtmc the ob ject 2
We emphasize that uslgnlng toa nmble gx not the mme as mmw;g the ob ject it
contalns This is becaun muuble ob, Jscts may havc prqnmu defined Wp‘y their. creation which
| may never be: changed later For example camk;er an. Ww that modeh autamobiles.
At creation the make model. and serhl number m ipedﬁd' thue propertie
never be changcd after it is created ‘Onthg other ?mnd the number of p;uengers in a car
and locatien of a car can chmge q;me frw "; ug ﬂlﬂu yroperti
of its state, oniy some of these prcpenies an be chaug;d by mtmuon 'However. if a car

. SER-Ts8
vanabte is asslgmd a new. car, ¢ll the pmpemu vight bdmm fm thme of the previous
car.

of a car may

ies of a car are part,

Objects my have other ohjects a8 compomnts. Gwnpqpm of an object are stored -

Fie

where only referemes tocompomntt are mmd m an objaet

Several consequences of this ob Ject interpretation of varislples shaukl de mentioned. In
CLU, assignment is system-defined: it is an implicit operation. This & fecause 2 CLU
Fereiice, riitver ke ‘cupying 4 pointer or capability.
On' the sother Wwid we st construct &n mwmmm this ‘néw ob ject
repb:a&tmpmhn&ymﬁghtmmm Thig’éotiseqiien 'ﬂrthufmwm
bthpw'ed«m thve ummwm ' «

|y

L Recall that the absmct data tyge methodolugy ;lhm euly thc aperations. of a type to access
or.update the representation of objects of thattype.

-2 The-only:mutehie ebjets asesiwoerdsand woraps swd-ob: “thvam. Allimutation
is accomplished by mutation .of records or arrays. Mutagion jl,jgl ymmﬂw .since the
mutating ‘operations are atomic.. That is, the fmml muattng apemtiam cannot be
lwukm@wn -ivto-other, mmm S
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Another consequence of the ob ject lnterpreutlon ls that shaﬂng of components is
disallowed, beause components are dlrectly contalned in their parent objects, rather than
may be the same exact object, and any modification to thia shat‘ed component object via one

access path will be visible via the other access path. Our abjerts  cannot share components in
| this way. (The additlon of polnters to ASBAL. restores tlmablllty to share, so we are not
giving sharmg up completely) . . ks e i .

A rather obvious result of our semantlcs ls that the lifetime of an ob ject is bounded by
the lif etlme of the variable containing it, rather than b@ﬂg bonnqed as in CLU.. . The major
*implication of this is that ASBAL routines will not be able mmrnobgecu in the sense that
CLU procedures do. ln CLU procedures retum r{[cmm: to ob jects; hence, previgusly. existing
ob jects may be retumed by just copying . l’efm o thm »l'l ASBAL we are restricted to
constructing new ob jects to be returned. -

The binding of an object’s lifetime to. that of;ﬁltgébont;lnh\g- variable, along with:the

storing of components within objects rather than se ely, Toquires 2 new mechanism for
. selecting components. In GLU components. can be selected by just returning them since only a
reference is returned. On the other hand, our returns always create niew ob jects, $0'returhing a
component ‘cannot be done in the same sense as in CLU: we can only construct a copy of the
component. Therefore, without a new mechanism, component ob, jects may never be matated,
although new component ob jects may be substltuted by operattons on the contaming ob ject
Since we should be able to do anythlng with’ component objects that we can 'do with entlre

ob jects, a new mechantsm 1s required o allow mutation of components ‘A new kind of module
* the selector, is intraduced for this purpose; it ‘will be &escrlbed in & tater section of this chapter

A flast consequence of our semantic model is that ob jects cannot grow dynamically, at
least not without bound, because they are restricted tokt storage allocated for the variable
containing them. . This leads to difficultiés when trylng to lmplement abstractions that are
conceptually unbounded. The parameter and area mechanisms t;be presented later are largely
devoted to solvlng this problem

To sum up, variables in ASBAL are containers for objects. Objects have a type,

which indicates how they may be manipulated, ie, what operations are allowed on them.



~ Variables are also given a type, indicating: what_type of abjects: M lgwy mn Variables
 will be implemented a3 storage xilocated: in & sack; the o jpet. ivrgretation: we espowse onl
puts hmmuons on’ how thm mrqe my ﬁu MM. Tinmgr dm pees De
| oblects and heap tﬂmﬁod ohjeeu ate- |

A our otfja:trm stared” within: mwwum - tmo%d ob ject. in-
the variablé-assigned 15 is destroped and'a muwwm Mﬁtmc’spm
~ (2) because objects are swred i m&th!es,m Wm m cmtmg an
o object;
(3) there can beno simmgw &mvawmd objects among
" - objects: and" variables;
() the lifetime of sn object is WM%«F&WM:;W it
(5 and; the mwmwwnw&vmm&w“ ing it.

,mn&tfewm,dtmd‘ m
' 'dmﬂ and’ pfegem Mmﬁ P

»‘ ) P

] 2»2& .Declarations: and- M

| ' Programmustbaabietoreferwe&mm,"
vanables in ASBA‘L with he glven nypu H!; FORTRINS. " RTN-
| _;to dmtngnmh ehcm t‘rom nam uud fww 4 Wﬂ MW?‘ precedm '
‘ It mm&; mmmmm: mvm,ef @mﬂgwnwm,@t the same
time ln ASEA’L a.dumm M m&u

4 var x: foo. _ : :
__ is used to-do thls lﬁ themmph & new. deWﬁebM%g&m the name- x.
A newly created: variabm :veeum By % declaration; clojpet; it ts m error to
| attempt to use it. (We have tmm.* to %M% . vaw ow.): Qm can easily

extend the form-of :mwmmwmwmma once:
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var x; int, y: bool;
or : "
var x,y: int;

2.2.2. Variable Initialization

~ We define our declarations to create new. variables, that is, ones. never before known or
used. This definition prevents confusion over 4whether a “new’”. variable contains an oki.ob ject.
It does raise two problems, however. The first is that memory allocation is required - thls‘ is
discussed in the section on implementation hwmfﬁwmpm&'m aeoondproblemis that the
bits initially in the storage allocated for the variable may not represent a legal ob ject of the
type of the variable. There are two solutitms to thls problem. "One ls to store a def ault ob ject
of the-declared type in the variable as part of the actlom taken for the declaratlon Thls can
be done for user defined types as well as sym-provlded ones by requirlng each type
defmmon to have a routine ot‘ a partlcular name (tnu. sayl whlch wlll store an inltlal ob ject in
a variable given to it by the system Thli solutlon guarantees that varlables always contatn
legal ob Jects (assuming users do not write crazy init routlnes'l But unfortunately. it cannot
guarantee that the ob jects are :enstblc. slnce nnstblllty dependa on how a variable is used
The better solution is to conslder attempts to uae an tmlnltlalized variable as illegal
and to detect such attempts with a combinatim of compile—-tlme and run—time checks Exactly
what checks are requlred is dlscussed in the rection on implementatlon later in thls chapter

2.2.3. Constants

It is sometimes convenient to have a bolder for an.object that cannot be assigned to
after initialization, and that does not allow the ob ject tobe mpdified. . We call such holders
constants to corltraat them with.. varjables; .they .are similar . to -congiant -objects. in. CLU.
However, we allow constants of mutable types, such as constant arrays. Since a constant
physically contains the object stored in it, modifications can easily be prevented by dlsallowlng
any write operations to the storage allooated toa oomtant. We wlll aee later that _we can.pass a
variable to a_procedure but’ have the prooedure consider it to bé a constant.’ This:is the real
motivation for constants - prevention of undesired modification to ob jects.
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A constant definition is similar to a vaﬂabte declaration, except: that. the object to be
stored in the comstant must be specified. Thus, in & constant’ m Wﬂn the desired
name, type, and the object to be stored in the:constant: ’

const n: int =53;
const i: int = j+ k;

const a: arraytint] = nnyteutuw)
In an implementation there is Titte difference between a mmd:t wm acmmnt is
essentially a write-omce vartable:

2.2.4. Scope and t{n Form of ASBAL Modules:

To gain an understanding of me ~scope of variable aml constant mames, we must
' consider the general form of modules in WL The mm modules of ASBAL are the
' cluster which tmpkmems tdm abm'mm md :mmm; ' ,:apmedunl
: abstractlon

A cluster defines a data abstraction, By gjm x M (of tew shortened to rep)
"Afor the abstractton bemg deﬂmd, md imphm of m opemi«w The operation
implcmentattons take the form of prooadum, but htw the: m m, to mvert ob jects of
the abstract type to and from the rep type. Imem:t W my be um the cluster. lists
which of the operations may be used ouum the c!umr

; Aﬂxedwehsahm«m:bﬁy.mbwmtmam The header
gives the types, and names. of the arguments, the types of any resulis: retuyped, and other
‘information to be'described later.

. Each abstraction is impienmwd i terms of lower: level. Mmm The overall
structure is a hierarchilcal decomposition, witlv:the tighwst’ Tevel abstractons:at the top, amd the
‘lowest level abstractions Betivg types and: procedisres: Butle thto !N lingusge: ' A module is an
imphementation of ar abstraction:] Because' sn abstraction 13 entire unto itself, s free standing

‘1. A module may impfcmem a-class of related aburutm m!m than & &mgbtwmtm (see
the chapter on parameters). - :




21

mathematical ob Ject modules are conceptually sepante and iru:iependent2 For example. there
another module to supply those variables :

This model is " somewhat contrary to the more common block-structured view of
programs in at least two ways. l'-‘lrst, the block-stmctured view leeds to large ‘monolithic
programs, and the whole goal oi‘ modularity is to orevent sucll hrge prognms Second we

e

allow only local varlables. not global variablu This wpports modularity by maiting module

Iy T

relationships more explicit any data that a module wi;}hes to accecs must be passed as
arguments to that module Since each procedure ;efines a distinct abstraction. and every
abstraction is implemented by distinct modules, nothing is gained by: defiming: procedures
within procedures. In the interest of simplicity procedure definitions in procedures are
'forbidden However, hierr¢hical’ n‘esting of’ M gWs wlt‘liln a procedure is quite
desirable, so it is-allowed and encouraged: F b S
What scoping of ‘nathes is- propétfor" this “fnodutar 'Hevvpoint? Without local
. procedures there is little reason to aliow variable namu and constant names to be obscured
(reused in nested blocks), especially since proeedum ‘are not expected to be very large
However, it is often helpful to restrict the.scope of certain; variable (or constant) names to an
inner block, such as a loop, rather than an entire. MAMI helps indicate the purpose of
the variable. ’ e S A
- Our no-global-variables poli;cy makgs prognmsmmo(lulac but makes: some
. . The mwadvm«oﬁ global
data is not having to explicitly pass it to every pmeed.um,thatt might use it. An example of an
ob ject niormally made global is the symhnl.tal;l}_e of a compiler. . Assume we must implement a
~compiler in a language forbidding global dm -Let us,say the compiler parses by recursive
~ descent. Onlya few routines directly access %Wﬂhhﬂmnrrthesmw table; must be
_created at the highest level and, passed explicitly through many routipes. that never. use it-at all.
These intermediate routines only pass the sybal:tahle dewn for the lowest levels o use. We

programs a little more awkward when global data is necessa

2. This has nothing to do with separate compilation. however. -Modules may or may not be
separately compiled: we do not wish to pin this aspect down.
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. feel the modularity gained by forbiddmg ghbal data: more than effm the inconvenience of
\”:requtrmg extra wrmng for some pfogrum. RMg (&a data s m} to diminatlng
implicit ‘module interdependmciu. Block stmctun h uu! M in M gluidﬂdm is. However.,

once all data is local there is Httie potm to bieck :tmcm far mmmm:

" Even though ail data should mmnmmmm-am should be global.
"It is not useful to restrlctthempe of medwu.md mmnmhmmmun - it may
b‘force abstractlons to be re—implemmtad mmy 'ﬂnmﬁore we am M module names
“are global ‘We neither requm nor pmhibﬁ ethu' infm mlding tin reilﬂmsmps of
- modules - such modulemmaumm mfm uwmmamm |

2.8, - Procedure Invocation

- The previous section. discussed. vmm M the mechanisms. for. storing
and holding objects. We now continue, with procadize. innoos! oo, Wiich- aﬂm the creation of
- new objects.and. themaaipahum .of old.ones.. mmmMmigmt.

2.3.1. The Dif-ferent Clm of Argm -

" The whole point of prodedures 15t guin bstraction ihsactions. A set of actions that
© form a logical whele' is ‘greuped together and' vié e ‘85 s siwgie bstract action. The basic
actions are mutation of objtcts and assigmmnt to m Since all data is Jocal in ASBAL,
“the key to provedural ‘abstra mb passing  mechamiim; that is, the
*~ mechimist by which procediires are mmu&&wmm o
o “We can imagine as ridny as four différen tﬁﬁsﬂ’w n MAL The first
' cliss is mstmﬁ'afgum:s: K constant Gtgudient io i’ hoistiive uia m wm& cannot be
directly modified by the routine: 'We will se¢ itef that = providure

mcumtouan

- constant wmsnmmhgngmmuthm&pﬂn from some other

“argument to' the object that: allows' it to. be mtred. Mﬁttﬁrmapﬂnms.a
constant argumtmb&m hrmm e v ASBAL. Pimﬁeﬂmn if all

1. We reserve the word. pcmmm for 2 futme uu. M mdfuﬂy dtlungulsh bwveen
arguments and parameters;
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arguments to a procedure are constant a'rguments or result arguments (see below), then the
procedure is functional; that is, it does not modify any of its arguments

The second class of arguments is objm cr‘nmim -An. .object argumem gives access to
a particular ob ject, allowing observation and mutation of it. Hosvcver the variable _containing
the ob ject may not be accessed, and therefore mq not be asslgned to.

The third class of arguments is mrtable argumnts A variable argument is a variable
passed by reference. Therefore assignment to it Is allowed, as 'well as access to (and mutation
of) the ob ject it contains. The difference between variable argugents
-exactly the difference between assignment to a nmble and muuﬂon of the ob ject | it contains.

and object arguments is

The last class of arguments is result crgumm A result argument isa variable which
may only be assigned to. The purpose ¢ of result arguments is the construction of new ob Jects in
vanables that is, assignment This includes iniﬁaliution a8 well as assignmem ‘

Ob ject and variable arguments (the seoond and third classes descfibedl are not very
" much different from each.other in implemenution Both would be implemented by passing by
reference. The only difference is that a variable argument may be assigqed to, and an ob ject
_argument may not be. This slight distinction i3 not \vorth the complei;ity of two separate
argument passmg modes. Therefore, we chose to dispense with one and keep the other: we
retained ob Ject arguments, and eliminated variable arguments, i‘or two reasons. First this s the
more conservative choice in that less access is given to arguments: Second, ob ject arguments
more like CLU’s argument passing mechanism. - In CLU, object referances are passed, by value.
The effect is as if immutable objects were passed by value, and mutable ones by reference;
except, the variables of the ‘calling proeedure cannot be affetted by the dilled procedure in any
way. However, the object passed is shared between the procedures, and hence mutations of it
performed by the called proceduré will be ‘visible“ to the callifig procedure The decision of
which class of arguments to keep is not all’ that fmportant in the’ long run, but has affected
later decisions such as the selector mechanisri ind alinsing detection '

© Now that we have séttled on the classes of arguments - constant, ob ject, and result - we
need to devise a syntax for expressing procedure definitions and invocations. Let us first
describe & simple scheme Which we will impme m ina mol'hent -
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2.3.2. A Simple Scheme

The simplest apﬁmch to defining prm is to Mu: header in each definition,
much like the procedure headers of Pascal. In tive header we m the bcsi name, type, and
" class of each argumient. For example:

p= proc(comt w,x: int, var y: sresylint), mnm

The above header says that procedure p takes four trgm two constant trgumems. w and
x; one ob ject argument, ¥; and one result w‘m W pis not allowed to mutate
or assign tow and x (integers are not mitable objects anyway); p my matate 9, but not assign
“to it; and pmust assign toz,butmtyrmamkbé‘mm Mby feference is used to
“implement all three kinds of arguments; the difference. m ﬁm B i what the cafled
: procedure may do with an argumem - ot tow the ngm ttpused
' Procedure invocations take the usul form: the name of the procedure followed by a
parenthesized list of arguments. For example, a call of ﬁnm p.w sbove might look
-~ like this: - | | - SR

p (1, i+5,a, b);

The types of the arguments must match those declred by p. Furthermore, access constraints
may not be viotated. T’hmeonmu may mtbepued umwwmms as res

arguments
2:3.3. Returning Values vs. Passing Varlabies

The stmple scheme outlined above is perfectly workable, but can easity be Improved
uv;pan.v The main thing to notice is that Me is no explickt assignment. All assignments are
;accomplished by passing a variable by res. (Presumably ,ﬂnm types have operations to
~ assign to a variable of their type. In a mmm are wagical, since all other
aSsignmems rely on thém.)' However, the ymtmn invecations pecessary for each ass'i_gnmnt
are tedious to write out in the simple schtme, md they obacure m i happening since resuit

1. We admit the use of vas mwmwnmmmmm mm«ltopnrallel
Pascal. Anyway. we do not wish to get involved in purely syntuctic fssues. :
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arguments do not stand out.
_ It is possible to separate result argumenu by wrmng them on the Ieft-hand slde of a
v’ symbol to signify asslgnment For examp!e. we would write:

var b: foo,c bar;

= qix,y);

cwrin;

a:=pi(b,c)
where in the simple scheme we wouldmlr:ve written:

var b: foo, c: bar;

q(x,y, b

riz, ¢,

p (b, c a);
~ assurhing these to be the types of p, g, andr

P proctypeifvir foo, bar, res TD ~

- proctype (var T2, T3, res foo}

r: proctype (var T4, res bar) .

The use of "=’ shows mare clearly what ts{&qmgon, , ,

We can make a further improvement, however. If we had to declare a variable for
every temporary result, our programs would become qum cluttered with extraneous Val’hb‘es
and declarations. We can get around this problem .by having the mﬂu albcete temPOf"Y
variahles Adding this feature allows us to_ rewrjte the quve exupple amd ellmtnate the
temporary variables b and ¢ ‘ '

~a=p(qxy, r(z))

varrable the compller will allocate a temponry va[bbht;g thg prgpedure to wrlte into, and
then the temporary will be thrown away (i, never accessed again). So, if the variable a were

never used again in the example, we could eliminate it, giving 2
plgxy, ) '

The end result of puttlng res arguments on the left, and having the compiler allocate
temporanes is syntax quite similar in appeerance to CLU. In fact, we encourage the
-programmer to- think of procedures as retuming objects instead of belng passed ‘variables to
write into. The overalf picture of this final scheme i3 that t‘e camng procedure gets the effect



of ob jects being retumed and the called procedure sees varlab!et whlch ‘must be assigned to.
This is a good compromrse between abstraction and emdency T‘he only constramt is that the
~size (or at least an. upper bound on tt) of all ob jects to be remrmd must be known before the
call, so that the actual variable used can be created. How we ydetl with thls constraint will
become clear later.
X To encourage thinking in terms of retuming ob jects, we put the ducription of what a

| procedure returns in a separate part of the procedure header, as in o

p = proc (const wx: int, var y: lrnf[iut}hetum & W
The ob jects to be returned are given names because the procedurvbelhg defined views them as
variables. Therefore, we now call the result argumems of a proeedure mum wtablcs ‘Notice
that effectively all we have done is segregate the res arguments

Now let us consider how to express the returning o{ wycts in ASBAL. In principle
we could use a return statement like CLU’s, whieh gkves a lhtnf m ta Mm This would
be implemented by lmpliclﬂy doing amgnmems ‘?c g!:e r:mm vﬁ’“;
rmphcut assignments might invoive the copying of hrge ‘objects into the return variables.
Instead, we allow objects to be built incremenuily in the rewm viﬂtbie!. and simply say

fC(ﬂf“

However. these

to return from a procedure We view the return vuriabies as béhvgummuaﬁzed on procedure
entry, and any return statement in the procedure is -midere&wbe a use of all the return
variables. This'allows us to use whatever mechanism airesdy exiits for detecting the use of
uninitialized variables to handle return variables as well. “hv wmtm ﬂve‘u’riderlying
‘mechanism of returnmg is the passing of variables (whetivet: MWW«M declared or

" compiler created). ‘However, Ve dffdfigé the Syt 0 e pape:
 “bbjects, a view ‘we feel i§ more mattiral, v e e Teigies v

2 A s s, s AV il e .

2.3.4. Mufltiple Returns

v In most Ianguages procedures maAy return WIL zero or one things We remove this
. s v je um;:z«; »-u v M

restrictlon because it is arbnrary and sometlmes copnterproc ucttve, in that some procedures

. most natura“y return more. umn one. object. Of mm pmjde mbh ﬁnhcﬂc forms for

"usmg this feature. T‘he return statement Itself need not be exmded since we are depending on
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.as.signments to get the .return objects into the return vimblu, as previously ‘explained.
However, some syntactic form is necessary to designate the variables to receive the return
ob jects. The multiple assignment statement, which wﬂl.be discussed in detall in the section on
assighment, is used for this purpose. Its geneni formis

var;, vary, .., var, := invocation;

The header for a procedure retutnlng more than ‘one ob pa ‘would huave a returnis clause of the
form . S S et -
returns (vary: type;, ..., var,: type,)
where the types may be factored. For eximple:
| returns (x,y: int, z: char)

The order of the variables 6n eﬁc leﬁ side in thc qi'lmmp!e aulgmnem statement is the
same as in the returns clause of the procedure header. This panlk!s ‘the* standard
eerrespondeme of actual and formal arguivients to m The Teturns clause may be
omitted for a procedure ret!mtlng no dbjam, or : '

. returns()

may be used. .
2.3.5. Aliasing

We have not dealt with the problem that arises when the same object is passed to a
procedure in two different var posit.iom. or in both a const and a var position. The problem
is that not altiprocedures are prepared to’'deal with overiapping variibles. The problem is
compounded - by the fact that there are:variables that leffectively): ave subvariables (eg.,
records and-arsays), and overlapping subvariables present the sme difficuky. :Furthermore,
the fact that each argument has a. different aame-in the called -procedure tends to make people
forget that two names might refer to .the :ame object (or overlapping objects).  We call the
prot;lem .aliasing (after Buclid Hamn'mh Wesbelieve thut aiissing: 'shoukl be illegal.: One
very good reason for prohibiting: ablasing is: that: Wwocan cuusd an abgument to mysteriously
change into an entirely different ob ject from that passed Consider the following proccdure
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p = procia: maﬂt], x:0;
;.[101 -
: 'a"(i‘?’ e X;
eml P - _
It is reasonable to think that (a) § has no effiect on x-5inoe i dues et AigR- &k in the body,
and (b) that after the second mwdﬂmmwpud in. However, one
~ could call # in this way:

. p (b, b10D); :
Assuming that both arguments are passed by reference, we. e thes. the psignment to CUO] in
the body of p cmdutmy % See [Lampun¥il tor mmunmfmm should
be prohibited.] o

Most cases of aimmumumbu&mmmpk
run-time checks, eg., that two array indenes.are dif favent MM&&

f (aldl, al jB;
and so on. Wewmup&mwMMhMmpmmmmmmm

~ implementation, and wiauptnd zmmwmmummam as we
encounter them.

2.4. Assignment

| Here we thescriby how 5 change -mamwwu'ma variabie -ute': operation
procedure invoction, return: variables poer— Mmﬁk Wan the anly'
assigmament mechanism. k*wuumm&rwumm '

- var = invoeation;

that is, variabies being anigned a compused Wﬁ iulle is: phsait 46 the gutirmost
.prmdure cadled. a% wﬁi hMa&u Mﬁw e mmmms.

l There are no imphcit afgum in Asux..uumm mm Mm the number
of checks required to prevent slinsing. :




even if they are not explicitly written out. For example.
' X+y
reallj means
TS$add (x, y) k o
where T is the type of x) What about assignments of theform ,:
vary.=vary; ? AR
There is no invocation there to pass var to! This probhm can be handled in three ways.
First, there could be a system—defined automatic oupy operation performed This is
what happens in most hnguages. lgnoring difl‘ering stora;e formats. etc. the implicit copy
performed is essentialiy a bit—for-bit copy of the oonm: of the storage allocated to var2 into

c%ﬁ.

.i-(-" E

the storage of var . We call this tion a ut-co A bit A works fine in the absence of
| g r opera n t-cop) ) the abses

‘ abstract data types. but with their introduction a probiem tmes Any assignment creates 2 new
S P ety

ob ject; a bit-copy creates one wrth the same sme apithe ppe in }the right—hand variable The
problem is that not all types should be copied in this way l-’or example some types may require
all the existing ob jects of the type to have different states, :othat each object is detectably
umque In the presence of pointers. it is not r:i:er v:hethe:e; pointer which is a component of
an object to be copied should itself be copied or whether the object pointed to should be
copied. 1 Thus, an automatic copy primitive is not feasibie '

The second solution is to have ail assig-nments .

| vareexp;

mean

var := T$copy(¢xp)
(where T is the type of both exp and var) whether exp {s a variabie or an invocation This
“has the unfortunate ei‘fect of doing a redundant oopy whenever exp is not a variabie
Furthermore the redundant copy operation is hard to opthniae away because users write the

copy operations, and are not constrained to malte them easiiy optimized '

R

We feel the best soiution is to insert no extra cepy in asignments of the form -

1. This is called the copy problem and will be further discussed when' pointers are added to
ASBAL.



wr:-lnm
and to take

vary = varai
to mean

.TScopy(wz)

Thetypeofrtcop’tsmmedmbe

proctype (const T) returns (T); : ,
R anasngnmdmnm&msno&&hmﬁmmmwamm
not exist, then thcpmgnmislﬁerm o
Letus pdntMawad&eMnhanm Fmt.every
| operatmn mnpmm:mmﬁﬁpmdmmmbhm from one
 variable to ancther. Tmummmmmmmmxammdm
demonstratcd the first solstion to be infeasible Second, the symbol has a non-uniform
| meanmg While we ;Mmmmmmﬂmmmwm.
umqucmcantngs,wefedwemuummmwhﬂihm Wlntlsgained is a
savmgs mefrmixopmm mmmumm ,

o Thermmmprmmwmmm

X -p(x ;-
Here p receives x as an afgument m two pam one h mdtbh. md one is write-only.
 Things couldgetmllymeuednpm,mnmmhmw One way to
solve this problem is to transiate it to

x := TScopy (p (x, y);

similar to the mmamprmmpm mammuammtmh

- because it is nowhere mr asobviomnwonwha&ammwﬂhew and when

it wmnot Thewmmmbwmuwamymm”abp Thenafter
p returns, a bit-copy s performed from the temporary im0 x. A bit-copy works because the
state of the object in p is unabmm@f&’&m&mhnfme the
obgectinthemmryismlmudtgm
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- 24.1 Multiple Assignments

Ina previous sectlon we lntroduced the ldu of retumlng more than one ob ject f rom a
procedure We need to be able to assign those ob jecn to varltbles The form of asslgnment
statement for this is

vary, vary, .., var, = invocation;

To .extend this to its logical (and useful conclusion; we also atfow simuitarteous multiple
assignments of the form ’ |

var,, varz, s VBT -cxp,, cx}vz, - cxﬁn. L S
Each variable var; is to be assigned the corresponding expresslon expi. and all these
assignments are to take place simultaneously. To prevent confusion  we require that each
expression either be a variable or return only one object. Jn case of aliasing, the. same-trick of
using temporarles works fine. For example, in . ' ‘

X, ¥ = q(z, rly), x); '

a temporary would be allocated for the result destined for x. On the other hand one is not
needed for y, because y is not an argument t0 ¢. ‘ ‘

" One partlcularly nice construct the multiple asslgnment mtement al‘lows is

X, Y=Y X;

It is hard to decide if this should just swap the bits of the objects stored in x and 9, using
. bit-copies, which is both efficient and semantically correct. or whether it should invoke t8copy

twice,! which is more.consistent with our above rule about assignments between variables. We
-._belie-ve it is better to be consistent (i, to call t$cogy). A mew operator could be used to swap
the ob jects in variables, but we will not explore such.pessibjlities here.

1. For “x, y‘ o Y, X" two vtempo‘rgrles; mlght.b‘eﬂ regul:ed, hom.!e;, it is not dif ficult to have a
compiler notice that one of them is not needed.



2:4.2. Declarations with:Initialization:

One last useful asstgmnent statement is & dechuum nith iumaumm (or assignment
’ with declaranon) This form- of smem-m albm one: eo dwhn aud um to s vaﬂable in one
: et .

' step Here are two exampm.

var x: foo = p ;
var x; foo, y: bar :=qft), r(u);

A declaration with initialization is effectivelyl a shorthand: for a m followed: by an"
assignment Thus the second dechfltlon*muwto ’ '
' var x: f00;'y: bars ’
= ql0), ru);
which is-in 'this case equivaient'to

var x: foo, y: bar;
X = qlt);
y:= r{u);

g

Constant’ deﬂnmms. which were imrmm Mhﬂn the same ef fect

as declarations with. initialization. mmmmmmmm be assigned.
to again. . '

25 Access to Components of Ob jects

The: previous: sections of this chapter have deait: with mechanisms: for mampuhung
‘objects as a whole; here: we discuss the: additional mmm Mfw mipullttng
components of ob jects. Thewmﬁim ‘actions that can Te-partormed.on ‘olijucts: objects may
be created, they may be observed (read), and they may be mutated. We desire to be able to do
all three to components of objects as well a3 to entire objects. Crestion i3 no problem. A
component of an object is either created vohen tht objlet is crmed. or is created by a

1 In Chapter 4 we will see that there can be an lmpemm difference between a declaration
with initialization and one without. However, for now, or the duciaration with
initixliiation to beeepmﬁm 102 declarition’ rmsmm
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(mutating) operation on the ob ject. Records are an example of ob jects whose components are
~ created with the objects themselves Arrays exhibit the other behavlor the addh ancl ‘addl
operations allow new array elements to be created dynamlcally (Records and arrays will be
described in more detail in a moment) Abstract data types may display either ‘or both
component creation behaviors, they may always possess some components but create (and
possibly destroy) other components dynamicall’y
Reading components is already taken care of as well Since all ob jects having:
'components are built from records and arrays, and records and arrays have operatrons to read
their components, any type can provide operations to read any components it may have of
course a type imay not make all components availabie externally and may return information
derived from the components rather than the components themselves However. reading
~ componetits. is always done by returmng ob jects This is unfortunate. because returned objects
are always copies - always new objects (Remember tltat return variables must always be
~assigned to) Thus, returning does not allow components ol‘ ob pcts to be mutated only copies of
the components may be manipulated
It may seem that storing a mutated copy baclt into a data structure is equrvalent to
mutating a component of the data structure, and this is ol‘ten true However, many data
structures do not allow cornponents to be replaced at w1ll in this fashton As an example
consider queues; perhaps we can observe the member at the front of the queue. but we can only
_insert new members at the end of the: queue " An even better example Js. items that must be
mutated atomically rather than by separate reading then writing;"semaphores and other

synchronizing data types fall into this category. les .are sufficient for _observing

components but a special mechanism is needed to allow t;uttation of components.

In a previous section of this chapter we indicated that the operations of an abstract
data type are procedures. We now design a new kind of module, the selector, which is also
allowed as an operation of a type. Here is what a selector. dnes. A selector is_given an ob ject

from which to select a component and possibly some au ar;umnt.r to describe which

component is desired. The selector then proceeds to calculate whatever array.indexes, etc., are
required, and eventually executes a select statement. . The select statement indicates the
component ob ject to be made available for use. What is returned to the caller of a selector is
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notanewobpct.bntra&«zdumpmquwm ¢That is, an object

| "reference is returned) The selected W ‘may be used 22 2 var arguavent to a procedure,
“and can thereby be mutated. However, what is m‘p_mm and hence may not be
h fasslgncd to; only vartabhsmaybeldgﬂdtn o “
smenmmmmmwmmoapamqam“mm
| agaimt any danguug references. quxg a m M llhu ope: of its local variables

rather than a WdM&pﬂka&Mmerﬂeha dangling

reference when the desmptm is murmﬂ. Wc W&hlg iring_that. selectors never
select any of their lacael mhbm (w components. thereof). Nuia thet procedure returns
cannot create dangling refm of Mxm A M -ma rew object in its

| ’ return vanables procedum can nwer store wpct mfm in m m ,

i' There iﬂ two mm peinu o m regarding mjt First, comporrents
 selected from var's shwid be var, ie, muqbb a«d " mpones of const’s should be const.
Therefore, a selector dou rmt desm wbether bebpct w*&fmb const or var; that
 property is automatically inherited: from the nmuag *’.’F’- Fusthermore, 2 selector may not
mutate the ob ject being sefected fmm; hmmwpnkwusm inside the selector
for checkmg purposes. The nmd potm is that a m M not mutate any ‘auxiliary

- argumem Therefoma%lawxmatywmm»hm

Theformofanfcctwdcﬂnmmis

nam - szlector@uml ’”‘l' mz typz, s m', m) dqgflm nameq: typey:
, :tatemcﬁts '
eném ,

The name,; fort>0 are themmu‘y&tﬁm wh&nd’uusﬂu&fm The ‘of
type part m‘mﬂmwamﬂmu&em &Mwﬁﬂiﬁhhmy legal
“in a selector) takes this forii :

sekctwpressm
?Mapmsmummawm«m&wymdmm .
S ltrsmmumaumemsmoii‘m&mmmaua |
* sefector. We could use

selector_nametobject to select from, auxiliary am ats)
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to be hke procedure invocation, but we feel it is better to wrlte |

‘ object.selector_namelauxiliary arguments) |

to be anatogous to records “The latter form alse Kas the advantage of making the object being

selected from stand out.’ If the selector takes’ m auxmary arg\bmu. the parentheses may be

omitted, leaving ’ ' " ‘ : ‘ -
object.selector_name |

which is just Hke a record component sefection.

| ~ In many cases computing a- selection’ can ‘be expcnslve Therefore. we provide a

mechatyism for saving a sefection; it is the w&wumm o - ‘

with class name == expdo ’

statements

end with;
where class is const or var. If the class is.var, then the selection must be from a var. The
name - stands ‘for the selected ohject withinithe bodj of the with ‘statement, and is treated
according to the declared class. A scope is used bechiise éxira checking must ‘be done for safety.
To prevent mutations ‘of the containing object fremdutmymg the selected object, all
arguments to invocations ln the body of th& with' WM are ch&dne& for overlap ‘with the
selection. ’ EEEETEE

For example, say (bourxded) quetm are imphnmud as’artays. If the front member of
a queue is Held in a saved selection, then the quedt may not be iodifiéd until the scope of the
with statement is exited. This is because an element of an array (the front member) overlaps
with the array itself (the queue). The checking to prevent this aliasing is done using the
normal aliasing detection techniques. (The checking may be dlff icult to ‘accomplish” at
compile-time, however) The with statement s mrllhr t6 the bikd-operation i Euclid.

Now that we have described the essential mtare of’ sélectors and selection, let us discuss
where selectors are appropriate and where theyarénot. “Selectors are "to' be used to mutate
ob jects stored in a sumxmding data strm:turé without dlsmrblng that siructure. The types
~ having selectors will tmmly bé nes that store data fterhs and’ nhtiomhlps between them, but
do not manipulate the data items dlrectly. Good exmplu are Jists, stacks, queues, trees, graphs,
etc. Selectors should definitely:not be used to. sccess: components:that carmot or should not be




mutated. Furthermore, selectors should not be used merely to make access more efficient,! for
this can lead to (effectively) exposing. the representation amd thus Hmit the range of
"imp}emematibns of a data type. For example, consider the functions nﬂ.wm:mi arg on
complex numbers. Implementing any of these functions as a selector forces that component of
compléx n.umt‘;ers to be represented explicitly in the representation. Hence, pelectors threaten
the uniform reference principle [Geschke75, Ross68]. Thus, the specifier of a type must use

caution when deciding whether particular operations should be pracedutes or selectors.
We now describe reconds and areays. 1t is important to understand their semantics, for

they are the principal types used in defining Wﬁ m data tmu. A record

~type has named fields, each specifying a type. For example.
recordla: int,

b: bool,
c ralph]
Each neld name defmes a seleceor with the spectmd mme;thc tmof m yelentor is
seitype () of type of field from record type . :
Record components may be changed. The openmn fpmld.um i: uad to update the
named field of the record. The type of put.ﬁddﬁ.mm is
proctype (var record_type, const field_type);
- The .new object is constructed using the field. typeScopy qpenuon. ‘whith must exist for
JSield_type to be usable in a record. For omvm record put ope \,m !’W"' a sugar. one
may write ‘ - |
expy ﬁald...nam - expz, |
‘ mstead of
- record_ typeSput_ﬁeld..name (expy, expp);
~ Notice that record put operations are “magial® atomic. mutating sztom. Records also have
‘copy and equal operations; records are more fully described in Ap Kh; H ‘
The oniy other operation on reoords B Creation. Thjj mmt be written out without .
giving an order to the Fields. We feel lt;!s mwm of the figids a3 being unordered, and

1. Sefectors do save a copy eperation over procedures returning an object.
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) the user may not hwoke the record crute opemlon dlractly lnsmd thefe is a speclal form

calied a record constructor wlvlcﬁ allows cmtlon of%%o?& ob jects ln an order—lndependem way.
A record constmctor takes this form: ’
. record_typcslﬁcld_uaml: expp,
' field_namey: exp,,

ﬂald namn cxpn

{x- b ak . . (O

... The field names must all be. pmnp;exml; MMM m e ms ammnmd in

| the order listed,! Sﬂeqtlfldds may.be mmﬁm (copies-of) ﬂnm -mmby writing:.
' field_nameg, field_name,, ..,

The record constructor invokes ﬂ)&ém “opy Wﬂmz fw oach expmﬂw -which is a
variable, and for each expression

An array object is a sequence of obpcu. of a sln‘le type indexed sequenmlly The
sequence may be empty, and can grow and shrink in size dynamically. Amys have a selector to
index them; it is called fetch, but there is a shorthand for indéking lrrays “Ian element with
index-¢ currently exlsts in the. amy s, then d!) selecu tlm M q dou thc unsugared form
afetch (. ‘ - )

' An array vartablc an hold only certaln nmy ob)ect: af its type More sgeclrlcally.
each array varfable has associated wlth it m lnterval of the lntegers. and only arrays whose
indexes are all in that interval may be saorod ln tl:e array | varhblg. ch emphaslze that the
indexes of an array.ob >ject and those allowe;l for an array mhble are bo

th sets of .consecutive

'lntegers) The allowed indexes for an array varlqyle areéget Wb?'l LI ls declared _and_never

1HEED. 4

change thereal‘ter Thus. an array varlable of type m%lfoq;lpw,hlgh] can be. asslgnad any
array ob ject whose elements are foo’s, and whose indexes are al g}egtgrthanm equal to low
and less than or equal to Aigh. The type of the array objac_t is ;gr;x[fog) {This difference in
the number of parameters and the ' notation \plll beg xplained n the gh;g;gr on farameters)
~There are operatlom on_ arrays that qu Addlng!md yemoving elements from the
hugh or low end (l e, growing or shrlnklng tlze arTpy one elemmg at a time at elthpr end) (addh

1. For ASBAL to be well-defined, the order of evaluauon is llways spedﬁed Unless explicltly
memioned thmt order {s left vooright. . . ol il
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and add)), trimming to a particuhr range of hdm (trim), guerying the size (:tze) low index
| Utow), and high mdex ﬁig&) shifting the dmts (ux,.lew) and replaciag the elements (store).
This last operation store, has a mgar smﬁm fn th:t for tbc rwwd m m& We may

- write

exp,[expzl - exp 3
in place of

array_type$store (exp;, expz. exps);
‘Both forms mean “replace‘the component ‘st intiéx nusmber upz in the array cxp, with a copy
of exp;". See the appendix for a complete Histiof smymmdms v

Arrays were designed in this (somewhat unusus® way to.be convenient for use as
 representations ‘of abstract data- typ!s and to'prevent accels to mmm 'However,

they are a bit more expens

in time.
2.5.1. Examples of Selectors

Su}p'pose' we had an abstract type usbcmm_mmy ‘which associates pairs of integers
We represent an associative memory as an array d‘ mmmds; each fmord has two components,
" one for each integer of the pair 'l"hm the repm mle d m amnnmry

cluster is

array(reeord{ﬂrst, second: int}; 1, 100]
: assuming a maximum of 100 elements is allowed. The We memury is to have an
“operation tpdate wmch wifl cluage the m m ef; pﬂf hnd m the ﬁrst element.
v pdale will have in it a statement ﬁﬁe R

a[index] second ‘= Ew;
which is a sugared form of

© RT$put_second(afetchlindex), new);
~ where RT is’ recor&ﬁrst. second: int]' ‘Thus, we have shovm howa nhcmr may be used.
" Ldusnwmﬂd«maa@kﬁaqpemnmm a bank account

record file. It is convenient to design the structure uud to W ﬂw Mi?idaaimgoum records
of a bank independent of destgnlng the records m“’* Of course the two :designs
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interface in the area of the keys used to mrch for the records, but except for the keys (and the
size of the records) no propertles ‘of the records affect. the deelgn of the access structure. -
Likewise, the access structure has no real effect on the properties of the records. Letus suppose
the file of al account rewrds is a (rather large) objact of type acwuwue, and that the type of
the  individual -Pecords 5 acoment.revord; “Since m mdr are mutable. we. deslgﬂ
account..file with a selector of type oo
seitype (key_type) of account_record from accoiint_file ,

This allows us to realize the separation of accels from: ‘use: This sepiration contributes to
abstraction by reducing dependencies among different types. In the ubsence of selectors, we
would be forced to implement: ait update actiohs o itcount records as operations on account
files,”and present the approprme key every time. Furfhermore, the access' would have to be
recomputed -every time. Thus not only sre mere tipe’ ‘dependericies created (by maklng all
record updates go through file operatioris), but perfurmance fs reduced as well. (Remember.
though, that perfmnee arguments aiotre do'not- piﬂ?yming lelector) 3

On the other hand, if a selector is used to aeeustlte‘reoord:. then a restriction is being
placed on every’ implemientation, namely that ccotint ‘records Tnast be represented explicitly in
account files, and that it must be poaibteformnm w eﬁiu mut records dlrectly once
the records have been selected - | '

’2.5.2. Summa_ry.

. We have presented a hew module. the sclcctor, destgned speclf tcally for ASBAL'
ob ject interpretation semantics Selectors allow components of ob jecu to be selected dynamlcally
and passed to procedures to be mutated A type has :thel ultlmate control Jover the components
of its ob jects, and need not allow them to be selected Fnrthermore, only the ob ject can change
the tdenuty of its components. since selected componenu mey not be asslgned to. (Selectlons
produce ob Jects ot variables) Records and emys were Introduad as prime exarnples of types

1. Notice that selectors do not nlu my olf &hepmhhnu mllted wlth accessing - obpcts on
external storage; ASBAL assumes all objects exist in. &Munlﬁormly acoessible address

space.
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Aprov:dmg selectors. We argued that nloam mmﬂmaum ;pamgly 30 as
to avoid havmg types dapmd on hvmg a pummhr W

2 G !m«pkmemtm

Now we memthe m of how mwwﬁma m‘ First, we are :‘
going to allow recursive (and mutually recursive) procedures, 30 & stsck of ;procedure: activation
- records is required. . These frames (a3 we alin call the activation vecosds) gee very much like

. those used to implement hw Mm Algol .and PL/L. ‘Encle frame contains the: storage
far the (local) variables and Wlf mmm ;90 wiich i corresponds.
Since a finite (and muﬂ;mﬂ) number.of variphies ave “u;tm it is passible to
give each variable a fixed offet from the beginning. ﬂmm wivich can be very efficient
on many. machines. As for arguments and retumn yasl Miﬂ MM by address.
The slots for these addreues,m also be at fixed mwmm the sart of
the frame, since the argument addnssses may be. pnt ondhe. Jop.of -tive -stack by the:calling
procedure before the frame s created.

Using fixed offsets in this way fails only for joca) m and-temporaries whose
sizensnotknown at. compile-time.. (FHow
of a variable that are m at nm-time. can still te 2
the frame) Most types have a ﬁxed size, and we will not ﬂm the mechapisms for using
types of varying size’ uutilthcchapm on parameters. On the other hand, ‘we presemt the
implementation now since it af fects other parts of the dmga of A&BAL

Most cases can behmlul by mmmw mtﬂf norage on the
top of the stack as soon as the. size is lmmm (Thk Wummmgh a pointer at a
fixed offset in the frume) Thue m only m ﬂmsgnm m&b daes not work perfecﬂy
dedaratmns wuth initiatization, tnd Wiu tn:i!e éﬂ&ﬂ” w« As we will see
later; the size of these varhbuc my nut 'be kmn umﬂ jmt Man :he proedure which is to

Seivp

1. We assume the reader is f:trly familiar with grmentation mﬁw for stack based
programming fangeages,-so-we mmm Mﬁummmm do mt present
' specmmmsarm :
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initialize them is invo'ked Unfortunately tMs ls afxer a“ tfle arguments to the invocation have
been computed if any of those arguments are thameives temporaries, then allocating the space
for the return variablgs at the top. of the stack: mnumem when the temporary is
freed. Let us prcsent a simple example to demo@tnﬁ the cmtlon of these holes in the stack:

var x foo := p (qly), r(z))
where the size of the Soo is not known until just before p is calied

(D The stack starts asin part (a) of Figure 4 wiﬂrrmd”’z Mthe current stack frame.

(2) A temporary variable 7_g is allocated, ard ¢ h*etﬁed'ﬂb)

(3) Another temporary f_r is allocated and 7 is ctM’ffc)

4 Space for x is aHocated and p is called (1d).

(5} The stack is left as in part (e} of Figure |, with a. hoie begween x and the rest of the
variables,

Thus we see that the simple scheme will leave holes. m ttmmck “There are three solutions to
this problem The first is to ignare it; this is not agood ldu for more and more holes could
accumulate {eg., in recursive calls) and cause considerable waste of storage. Still, it is not clear
just how. much storage:is wasted, and it may not payt&yrgyentthis particular waste. The
second solution is to’ bit-copy the new variable- after itls crgted.movlng it to the beginning of
the hole, and thus eliminate the hole. This need nqtbgwi@gff ldgm in terms of code because

many machines have a suitable block transfer instructioen; he

considerable processor time and memory cycles. .

er, the copying might use up

The third solution is to use two stacks rather than one. '!"he basic idea is to allocate
temporary variables on one or the other of the two stacks 50 that neither ends up With holes.
Let us call the stack with the usual frames and focal. mﬂn sariable stack, and the other
one the auxiliary stack! It is clear that in ordetito Mup,mm_m holes on the variable stack
the temporaries used for a call must be on the auxillary stack. A symymetric argument leads to

1. The auxiliary stack will have to be set up into muudtbut its frame pointers and
stack pointer can be saved in the variable stack. Thus all housekeedping information is kept in
the variable stack with the auxiliary stack used only for storing temporary variables. -
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(a)

(b)

(c)

(d)

(e)

hole {

Figure 1. Scenario of

Wmm
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tn.it‘ia! Stack |
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Stack during coll of q

Stack during call of r

Stack during call of p

Final Stack
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the converse fact: that to avoid holes on the amtmary stack nmporarles needed during the
computation of intermediate temporary values must be put on the variable stack. What
happens is that we alternate between the stacks according to the nesting depth of a particular
temporary in an expression. Let us examine another scenario to illustrate this scheme. w¢' will
go thfough'the execution of | |
var a: fo0 = p ( q(r0), s(ON, uvO) );

The evaluation is strictly left to right. Figure 2 shows a sequence of relevant snapshots of the
stacks. It is not at all hard to figure out which temporaries should be put on which stack if one
works backwards from the desired f imi conf iguration Note alse that the use of the two stacks
is purely for the evaluation of expresslons within a procedure. Any procedure that is called
~during the expressnon evaluation can put its local variables and temporaries on top of either

stack so long as it cuts both stacks back to theh' previous state befoee. xetuxning Notice also .

that both ‘the one-stack and two—stack schemet handie multiple returns easily. by allocating
" more than one variable at once. '

It is not too hard to see how to implement two stacks on a computer- one starts at fow
_addresscs and grows upward, and the. othu M%high addresses and grows down. There is
' some time and space overhead involved In keeplng two stack pointers and frame pointers
instead of one each, but there are no severe technical problems. So, we have seen that two

stacks are better than on,e.1
2.6.1. Variables

_In either scheme (one stack or two stacks), a variabk is a contiguous block of storage,
at least cuncepmaﬂy “For variables whou size is known, storage is allocated at fixed off sets
from the beginning of the frame (in the variable stack). For.those whose size is not known,

1. Implementations. of Algol 68 have many of the same difficulties found in ASBAL. (See
- [Branquart70] for a description of the problems and their solution) For example, some space
reserved by loc generators in Algol 68 is more easily put in the heap than on the stack. It is
possible to put all space from loc generators in the stack, but in ASBAL we must resort to a
heap, second stack, or copying the space. However, ASBAL does have an advantage over Algol
in that it does not need a disphy. since it has no local procedures. .
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(a)

(b)

(e)

(d)

({e)

(t)

(g)

{h)
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Figure 2. Scena
Execution of ‘var a: foo := pl g{r0, stOD, w(v() )}
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- space is reserved at a fixed offset for whatever information is necessary once the variable is ‘
created. This can all the' variabie fixed size parts. and sioks for the sizes and addresses of its
variable size parts, which are filled in when the vatuble is aﬁomsed The figure at the end of
~ this section shows a possible layout for stack frames.

2.6.2. Selections

. ]

A selection can be implemented as a pointer to (or descriptor of) the ob ject it denotes.
Slots for. these pointers are easily tlbaud uwmmmwm have tﬂxed size and
are of finite number. Even better, the number of selections is apparent from the text of the
program. Thus, allocation for selections is no-problem.
| Checking that selectors do ot select o local itein, etc:;is. more challenging. A compiler
can perform the. cheeks by,;neiysis of .the expression given:.in: the select statement of the
seiector. The expression must be the-object to select from;-or. (miote usually). a: selection. from
that ob ject. The other checks {(eg., th_atftheauuiihmw -are not mutated):are handled
by other.checking mechanisms: with no- spacial qasing:: Savedselestions tin the.with seatement)
present no more prablems shmuguhrmmdnwwme ;ame way.

-2.6.3. Nested hloeks

Instead of using a full frame for nesmd biocks, itis probably usiest to append their
fixed size space to that of the enclosing biocir.s, making omhrge fixed size biock Of . course
blocks at the same nesting depth can use the storage in different ways ""‘9";‘3’?1“’.9’ of . them
can be active at once. The part of their storage that Is unknown in size can be managed in
stack f.ashion:;allps:ated beyond mewfmthemm, and:cut back when the nested
block is exited. These are well known techniques.- . - o :

2.6.4. Checking if Variables are Initialized

Now we describe th“e"cﬁ&ks necessary for insuiing ‘variables are always. 'iniitia‘l‘ized
before use. First, let us see how much a compiler £an check It is clear that truly sophlsticated
checking might invotve complicated analysis of ‘the cont

¥ flow of a’ program However, we
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) “would like to keep the amalysis ® a mmm mve. we o 1 qllcd “structured
v programmlng com;ol-fbw mwmnu grelt!] W tbe  analpsls, Thc cﬂ&kal feamre of
" such statements Is thlt the ngmber of pltlw thmq@l ] W %W »ma m&bk size.
The compiler can keep & record of which variabley are sssigned 0 in every bigch. From this it
is fairly easy to combine the information, separating mmmm '

(1) those dcﬁfmdy initialized at every use;

(2). those definitely wninitisdoed stsomewse; .

(9 and mmmummmmmmm rest.
~ The first class is all right; the second indictes an: incserect pragran:and the ixst ebunquires
~* the insertion of run-time checks. For saeh vaviibtewf the st sleny; the xompilyr stlocates one
 bit of memory in-the Tun-time stack frame 4 b rused 2 i indioatr o Whéther tHat vatiable
- has been_ initialised. - Thete bits-all siust n the no-sies. m«ﬁ-m plates on the
: questiombk mmmmuwn«tuunmwﬂmn Even if a
variable is. used and sssighed 0 8 MMM“”W&WM@] i few.
Thls, along with the fact that the: ‘oede 45 short one: Uz Twh- MNARIions On mest fixchines),
means that there is little rm-ume overhesd. We feel that the overhead is well worth it,
particularly when debugging programs. Notics that this same scheme checks for initialization

of return variabte: all.we need do is consider those vmulp © Mart. uninitiplized, and view
the return’ statemcnt na ‘use of tﬂ of the return VM

"’26 5. Anmng

The checks. Wuwmlnw mw ona simple
: inducttve principle: if there is no aliasing when mem ‘e, nowe of its

arguments or return variables overlap), and all local variabies of ' m dglsjum (none of them
overlap) then we can guarantee that $ introduces no sliasing in the mmuom it makes. The
compﬂer does this by mklng sure that mm MWM i the calls p

makes

‘Tolmpmntalhsm(dm“modamwdwmchmmuor



47

variables overlap, and which do'not. The Euchid report [Lampson'm gives a very detailed
definition of which variables overlap in that language.: We will be content ‘with a less formal,
more intuitive descriptlon First, it is obvious that a variable overlaps with itself. It is also
clear that a record overlaps with any of its components, and an array with any of its elements.
This carries down through all fevels, so an array of reoorgg overlaps with any component of
any of its element records. On the other hand, if two vauabies do not overlap, such as two
local variables with different names, then none of -their whcomponents overlap either. When
two variables overlap, one must contain the other; hence, when two variables do not overlap.
they are completely disjoint.

How do we extend aliasing detection to ”general sggectlons? First of all, any selection
comes from a particular objact in a particular. vgrubk We need only check selections from the
same object. An ob ject and any selection from it are considered to overlap Selections from the
same ob ject generally requtre a run-time chi!ck ‘This’ eheck ascemlns whether the two
selections overlap physically in storage The mrtfhg nddrus for each selection is always
available at ropftime, but ‘tbhemlerrg“t!rof uchmustbepmvlded in additlon to the starting

addresses . |
| Ina later chapter we will extend aliasing preventtoq to cover.the use of pointers. Our’
'ahasmg detection methodsm based on those of mtmmm

2.6.6. Summary

ASBAL requires one stack to be maintained by its run-time system (but may do better
with two). The stack frame for a procedure activation contains the local variables references to
the arguments and result variables, and housekeeping information (return address, old frame
pbinter, etc). For most variables, fixed -offsets into the current frame can b_e used. Some
variables require a certain amount of descriptive information (descriptors or dope vectors),
mainly those whose size is not known at compile-time. Figure 3 shows a possible layout for
stack frames. . ‘

Argument passing is by reference, i, the addressu (or descrlptors) of arguments are
passed to a procedure when it is invoked. Returned resulu are simply extra argument
variables; the addresses of the variables are passed. Most of the checking for aliasing and
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" uninitialized variables is handled easily. at compih:-tm and. the run-time checks do not
amount to much code. We conclude that our scheme is aborlt as:e_fflcient as possible given the
level of saf ety we require and the future;,we \un; ln MW

2.7. Programming Example

In this section -we will present a pmgnmn)j;g .example to help illustrate the
fundamental ideas introduced - in:this chapter. ‘“The example 1§ 2’ type definition, but since
clusters (the form of type definitions) have procedure.and, selector. def initions. inside them, all
three module types will be-illustrated. Leterwe Wit see that ‘using ' more advanced features
allows us to write better definitions for the tape we now: ppesent. but at this .point we are
_ restricted to the most basic of fextures. o R
There are. two essential parts to n type definition in. ASBAL. the rep (representation)

type and definitions for the operations As in CLU, we group these together in a smgle

module called the cluster. The syntactic form is: AURE

type name = cluster is nams_qf_opcramu:..cxporud

v E68Q = rep.tm :
operation_name = proc ... ;.

~operation_name = selector ... ;
end typcinanrt.' B

The procedures and selectors may be mixed. There eup ,,,,may be lntemal procedures and
selectors; an internal opention is one that can be called?.lﬂy frbm within the type definition.
‘Internal operations are d!stlnguished by the fact that tbey do mt appear in the list of exported

operations.
2.7.1. Bounded Queues of Integers

In this first example, the task is to define and implement a new data type, a bounded
queue of integers. The operatiom'of this type and their functionality are listed below.



create: proctype () returns (queue)
.o -=(cmmammyqum’

insert: proctype (var queue, const int) .
' (invests ‘thye-trteger at the-end or ‘the quene)’

remove:  proctype (var queue) returns (int)
(removes the front member of the queue)

is_empty: proctype tconst queue) returns (ool
: (mumuuetf.udm&&&eiwm :

is_full proctype(const queus) returns (booh
(returns teve if and myamwm

size: ~ proctype (const quene) returns (int)
(returns the number of members in she queue:

'2;7.2. The R-epm«thn |

It is easy to decide what representation to use fur this mn. M am of 100 integers
~ will hold the members of the queue, and will be managed in ciralar buffer fashion. One
index will be maintained: the position of the first. mm‘d' the queve. Thcmemben will be
stored in order of increasing indexes in the array, moduto 100. Th; size will be kept explidtly
Thus our type def inition will begin:

© queue = cluster is create, insert, remove, is_emp&y Mnﬂ. ltne-
vep = record [first:int, :
size: int,
q atk
at = array [int; 0, 99];

end queus;
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2-7.5; The oper.“on‘ e

We will write the create W‘“ #irst. - mm m ﬂn‘tmt of*ehe rep to be

zero, the size to be zero, and fill the whelp nmg m m f‘rmm i flgw for efficiency;

it does not matter what it is filled with in this case) The mmm is presented
} 3 £S5

below: ‘ ‘

crute = proc () returns (q cvt)
- Qe agp {fiest O wrne ol
_ silg- 0 '
aitrill w0, 0 m}
Omm o Eoatrgs
The notation cvt (from convcrt) lndk:ates a varhble or &mﬁm whose type is viewed as the
abstract type (ie, the type being d “"‘“f?’ mn&’ module, and the nep type inside. Of
course it is only aliowed in a -module\ at iy wiﬁ;&m thmbtype by context.
The expression ar$filiilow,num) denotes an array objla. ﬂﬂm m are copies of {
(made by uslng tScopy), for all indexes in the nnge% MM ?Q-} chIstve,
is not negative. (Camng at$fill with a negative third u'mt is mm.m what hqppem
will beexplained in the, next ma?m)m?mm iy no, returm statement in t
abow.», for convenience. the end statement of a procedure does an tmplkn returp.
Let us move on tosm. is_empty, and B.jw: L '

size = proc (const q: cvt) retarns (s. lnt)
-8 = qsize; DI 2
end size; . ’

TR

is empty = proc (colm q cvt) retlnu (e: bool)
e = (q size = 0);

end is_empty.

is_full - proc (const q cvt) retuﬂu {: lnol)
f := (q.size = 100);
. end is_full;
‘Our integers and booleans are like those of any other language; details are in the appendix on-
data types. The use of =’ in g.size = 0 actuaily indicates a call of ‘iatSequal (gsize, 0. This
use of syntactic sugar allows us to extend symbols such as =', *+', ™', °s’, /', etc., to abstract types.
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Full inrormauonmthenmnmmhwshm'mw__, o
Now let us mmmm '

m~m4m¢mmmmma
if gsize « 100 them error end if;
var index: int :-quwm
qalindexd. = o, -

q.size = qsize + §;
end insert;
The *//° is a sugar for typeSmod, that is, the m c«mm of the. type.
Notice the use of sugared array and record compupent
chapter will present a mechanism for signalling and. mw& now we will
write error to indicate that appropriate. qﬂemmm Y s
Theremovcmmnadmmwﬂcm, o
remove = proc (vas, ‘ o

if gsize’ -ﬁﬁiﬂ M!" LR TR s e
- mnember: e

gFirst = tq.fim»al/m

qstte -qtﬂe 1 g '

‘Finatly, herc are ﬁx&nwk aﬂs of me ms. ﬂ"he syl 1 phefix
typeSnot (expr)). R ‘

varq queue -queuécmce()
if ~ queuesis_full (q) MW(@fwlﬁﬂ. ,,
if ~ queuetis_qupty (q)&eaw-W(@;u&#.
var s: int -qumﬁn(ﬂ" Hme - '

This data type (queue) mwwmwmm MMnﬂlhmi
exampksdwhmrdefmmmm o ) ‘
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28, Conﬁlusions

| " This chapter_has dealt with the.fundamenta) :semantics of ASBAL, a_language
| intended to preserve as many, of-the abstraction .fenwmes. of GLL} as is ‘possible under the
stra a stack-or antics.and implementatien. : We started with: the: notions of
variables and ob jects. We thenwmwﬂumm wﬂmm for-procedure call and
return. - Aliasing u;a's discussed, and- rules foﬁmd to prevent: its mm A-satisfactory
solution to the problem of uninitialized variables was presented, and an lmplementation
outlined. Next, the mechanism of assignment was explained, followed by a discussion of
component selection.  After discumng lmplemmtltlon we. prgmmd an example to illustrate
these conccpts The groundwork hu beanhld fof g, more advanced features of
'ASBAL. The next chapm wm mtroduee two m fem;m: m lpd exception handling.

. constraint of a stack-oriented semantic




8. 'Twn Wm

In this chapter we extend ASBAL by the addition of two new futum = iterators and
exception handiing: - Berators iroduce 4 new Kind"of déraction, and are implemented by a
new kind of modue. mmmmmmmmmwmmm
modutes; it chisnges them frons kit functsbéit'si Yetal iy by allowing them to specify and
deat with exceptionat cases Weﬁﬁwa&fmukkwctﬂ and then modlfy it as
neeessary for ASBAL: A

3.1 lteratou

| Amaprgmldawnmmmmuwmnm?ngmmmerawayfrom

- details and into Ming tt a high oomepna! m Pmedm pw:?vm functional (or
procedural absiraction, and clusters provide data sbstraction. Ancther useful kind of
abstraction has been identified, the control abstraction [Liskov"?, WMJ The only sort of
,cmtm!:bﬁmﬁmnwﬁdfakamﬂuﬂuqlm«ﬂdauam based on the
itcratorsofCLU Akmpbuthmhukptm

o genemionafthenqumccd‘mhmswhmm. :
(2) operating on the data, and
(3) testing for completion

 Iterators proyide'.§ modular way of generating the sequence of ob jects to beoperued on. In
CLU, an iterator generates a sequence of objects that are pamed to the body of a loop. The
crucial point is that an fterator generates MW amm&r one ob ject at a
time. This will be easier to understand by following through an example.

Let us say we have an abstract type Mnary free. Furt!wwapmethatmnyof our
vprogramsthatusebinary.tmtneadmexamhcnﬂmmwdauuhkftmﬂghtorder If
.wgareglvenuperuﬂw»fe&hthekftmdﬁgﬂ%damwgqnhokvat the Ieave‘s,'
in the desired order by keeping a stack of trees. -A Joop to do this might look lke (in CLU)




_t: tree := tree of interest;
st:. treestack trmd&mn O;
iftisa lcaf o
then
loapbody
if treestackSempty (s0
- then more := false;
else t -treest;ckspop (s);
end :
else
:rmuaispmh (u, rt;kt mum oft) o
tmm:dwaafa W T T g
end; N
L end;

5 ,.-;ﬂ

ber the 3 mﬁmd which have not been

Thus, the stack of trees is used to e ‘

ikl

generated. Wrmng this code out for every oop is mmwmm ralies gn; many
details. If the type unar,_tm offered an iterator called leaves, we could write the above loop
. this way: - e ' :

forl: leaf in binary_tyesbleaves (0-de~: .
. loop body

 The vartable l ts called a loojt vcrtablc, and ls ’Ioal _m thg {qg statement.
The for Ioop is more t0 the poim, glgd Q@l Wl tbm@qu thc \lshile leop

il St
In short, iterators provide: better abmcthn Iterators can also be more efficient than loops
| _written “out, because they can be opmm of «W‘mwm" access. to the

e resentationofob ofthet The or‘m shoe {eaves might look, like this:
rep _ F“’, type. Th .
. ’~”"»"§§w’ . s e s i*,‘,l‘f oo LT SR

f‘{ ¥

R Y
[ oD




leaves = iter (b: bimry.ﬁw mm
if bis aleaf
tien yieM (b);
du
ym n;
end,
for & leaf in mnmmmgw o
yield (D,
- oend;
end;
end leaves;

The recursive fterator makes our tatent MM and ﬂnm 2 W o the genmtion
algorithm that was obscured mmmn Msummmm veman _
is less efficient than the terative vm b it i not W
upon implementation details, :

S mmtmﬁmmthM mmwmmomdm
: uﬂhg“&n fmmfhﬂéw% et EE :

1) the forbupca!t: thl mwr L
~ (2) the iterator yields ubjlcu mmmmhw :
(9 the loop body Is executed mmwmmbmm ylelkded by the
. iterator; : |
(4 the erator 1s resionsd, wb«mummwmmn.or
| the terator rmtm, Ereina

Nmrhat:ﬁchepﬁodyﬁeﬂumdmp«yﬁﬁ,uﬂumb%mmmly Mso
L the itemur ¥ dlways resumed ]mtamr”i“aiumﬂ m;nhaaw'ambm intact.
Thus iterators are a form of corowtine. mmmmmWMem
run, but iterators are sufficlemtly restricted that they cun be implemented with a single stack.

(Iterators run in a single stack because of MMM of resuming they use) Let us
detail the transformutions mede to the stuck for ench of the basic sctions Nsted above.




o R e s

57

(D) - Iterator call-~ the argumem are passed-and & new: frame-is mwfér‘the itemor. Just
asina procedure call; ’ S L
(2) Yield - the loop variables, which are created at this polm uu!eu they are of fixed size,
~ are set to the objects being ylelded, the iterator’s resurie address'and frame pointer are
. pushed-en ﬁ!eﬂlﬂu and:the for:ledp- m«wm with: the environiment reset to
h tor's¢ .lmmmkm¥MmtmghyWMg is
semanticauy the same as resuraing);: ORI
(3) Loop body - the jeop bady executes: normuly; pushing any- temponry ‘infortation on
the top of the stack, beyond MMMM ‘
4 Resume - the stack is popped back dm to gtge tterators fl;ame and execution of the
iterator begins sgaln at its resume addreu, wtth its mvtrenmem restored; -
(5) Iterator return - the iterator retursis o Its caller: “execution continues after the for Ioop

2P G Ligike
eret i

‘Thus, a yield is a kind of aand 2 resume 15 & kind of mm. both are a special case of
coroutine resumption. - R T - |

As the example demonstrates, iterators may contain for loops, even ones that call the
iterator recursively. This is useful for vnlklngf reamlvedm muetﬁres *Although we did not
show it, it should be clear that for loops can,be m:md with m dlff lcmty '

Another feature we did not mention is that a for loop can be termlnated in other ways
than by the iterator returning. The loop body can”‘execute a speoigl sﬁtement called break,
which terminates both the body and the iterator, continuing execution after the for loop. The
~ body may also execute a return statement, which terminates the body, t_he iterator, and the

routine with the for loop, all at once.
8.1.1. Implementing Kterators for ASBAL

“The description above hai been of lteram " they appeer in CLU here we will see
what chrm Yterators take in ASBAL. T-‘lm of aﬁ'. our cafl mechanlsm can be trlvlally extended
-~ to include calling iterators. Iterator returns are also mvm, being the iame u procedure returns
Yielding is a little more complicated. Semanuuli;‘zn yleid is ke a retum However. it cannot
be implemented as a return in ASBAL because returning in ASBAL always create new ob jects;



_ semntlcs of CLU wemmtohelpusdeﬂ;nmmf«m mmﬁ :

“an iterator should Ma&mmnmdﬂq*ﬁ%nmmuof an
array. This suggess that a- yield mmmauwwm will be
evaluated to objects, as is done for selections:

yied (exph:
o yidd (exh, czpz, vy cxﬁn);‘ . |
‘We also md a mmmm:mmmm# the headler ciny take'the same form
_as procedure: headers), which defines the order of the lunsit-and: thelr ‘types. It Is useful for the
iterator to control whether the objects it MMW constar vav B the bp body so the -
. yicfd‘ clause includes that Mum Hmmmm
i = iter (const a, b: int: -ylelds Gconst lnt);

or :
i-iter(coﬁstf roo,mwm) ymwkmf.mm;

‘orevem. . ;
_l-iter(comtmt.M)thdtO

Now, let us consider the. formofﬂveforbepm Thegeaw&lfm myaswell follow
CLU's. Thcm@mmm”ummwummumw‘
variables; the dechration will mewhmmmpmmmmwmum'sa
var's, Here are some exampiles:

..~ for.const x: int in-.. do mm
. for var x,y: int in ... do ... end for;
fotmnx,rtnt nrz:tnﬂn...du nim- '
The formsofthebteal:mdnummmw ;
brul_:
and ‘ L - p

return
3.1.2. Summary

We introduced thenaimofanmunwmm mmm&m at the
,aform

" “for iterator deﬂmmms and for loops in ASSAL . There will be_more m of _iterator
deﬂnmon and use at the md ef ehe chapm
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8.2. Exception Handling -

In our earlier dlscussion of procedures we ornuwd one Importam aspect of procedural
abstractions. A procedute, iterator, or selector i ndlﬁ m caffer of an unusual or error
condition. We unify the terms unusual md mor ln the ﬁerm exccpuou (or exceptional), after
Goodenough [GoodenoughT5l. In this sectiom, we' First- exintine Cﬂ)’s exceptlon handling
mechamsml and then proceed to modify it for ASBAL, in much the same spirlt as we did with

_ iterators in the previous actlan ’ S C

321, Exceﬁtion.Ha.ndllrlg in CLU

Any procedure or iterator (we say routine for short) in CLU may .ngnal exceptional
- conditions to its caller: The CLU Viewpoint on the meaning of such stgnals is this: a module
signals to indicate that it cannot perform its duty as a good abstraction. This might be due to
an incomlstent state of an object. beuu;e of bad a.rgpmem;. hecau
‘becauseof a system limltatlon (eg., outofmemory) Of course, it may. less odious

.of a hardware:failure, or

unusual but predlctahle muation, such as end. : ) _
procedure does when it sigmls an exception ts that it returns a dlfferent and distinguishable

kind of ob ject to its caller. Each, exception the ro;edurq mlg!;t want to_signal can be given a
different name and a list of ob jecu can be :ent along - with .the signal. to further describe the

, condltion ‘ _

" The procedures caller has the optlon of gndling exceptions signalled by the
procedure. If the caller has a htndler for the exeq_mon then lt Iy executed, and. execution
continues after the statement to which the handler was attached. If. the calier does not have a
handler. for the excepuon then the aller slgmb 3 spe I ew;emﬂm called fallure, aendlng
along the string ‘

1. We note that this' upa!c of ewm begi hange, 0 ﬁo not consider what we say
here to be def initive about CLY.  However, mmﬁa of»the medunum is expected to remain
the same. We trust that any further work with'A O opt any lmprovements made
by the designers of CLU. :




uncaught exception: nam_of..nrtgmd_mpm
Here is the format ef a statement ‘with a handler block m

statement,

-except
when mcﬂmml Acadtn,.

wlm: cmpmu_wmz m«z,
when eXCOplion_name, handier,,;
end;

A handler block handles only exceptions arising from invocstions i the gatement to which it
is attached. Handler blocks may be nested, since a m with a harvdier M is considered
to be a statement. If more than one handier is vakrm m m handkr blocks
are nested, the lnmrmmt onc taka pmdm L o
‘ ' This exceptton hmdﬂng mechtm hdﬁfmm Mﬁ l’l-/l :mms in-several

ways:

' (l) Handlers are tumlty Associated with M&d mmﬂlmlmngmubled by
someﬁmghkemnmm‘ ’ :
2 Execuﬁﬂgaﬂgmtmmmauy:ummmmmmnmymtbe
~© resumed.
_ @ Theemtrecaﬂstacktsmtmrcﬁedfarmmmmapmduremustbe

prepared tohaadk‘ alt stgnﬁﬂntmigﬂmfmmymnum dkecﬁyz

Having handlers natkalty usecmud m bbcks et m was dloun over dymmic
v¢mchan1msmnummmmwmmmm mrmt in all
‘cases. Signaliing ahvays ammemmmm“bMWMcmtmm
with CLU’ vkwpo&mthaaﬁgmlhdmmmybmwwfm as asked.

1. To help in debaggtng, if a procedure does not Mﬁaun, then it Wﬁmm, sending
the same string as it received, wawmw ’
2 It is safe not to handle an exception only whew .4 corein mmimmm
will rot ratiie that exception. For examp f‘mﬁMﬁnav - f;m’lﬂvmabbmt
whmdietheexapﬂon fwd&stﬁwh}m
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Thus a procedure is saying “I give up"' when it signals.
Let us go through an exnmple Suppose we have a type queue with an operation
called next which returns the member at the front of the queue and removes it at the same
time. Clearly. queuesnm cannot work when applied to an empty queuel Liet us say queueSnext
can signal an exception empty. The deflnltlm of glmutm mlght look like (in CLU)

next = proc (q: queue) returns (element) signals (empty);
if q is’empty then signal emptr end . :

fixupg; -
return (old Aead of q)
end next;

Thus, we see that a slgnlls clause Is reqplnd ln the pmondurc header. Here are -some
examples of such clauses:

signals (foo, bar (int))

signals (l)letch‘ (int, int, bool)) )
“The first one states that the procedure:can sigml two ‘exceptions: foo, with no ob jects, and bar
with an integer. (Factoring is disallowed here because it leads to umblguny.l To send ob jects
- along with a signal, they are llsted as ln the yleld mtemem:
Slgnal bar (D, |
slgu&ﬁoo(h-b,ze? X >5l

vA call of. queueSnext and handling of the exception mpty mlght look llke thls (agaln in. CLU)
begin '

X = queueSnext (q);

end;
except
when foo: ..;
“when empty: ..;
when bar: ..
end;

—pt

1. We are not considering parallel processing situations where mch a request mlght lung untll
another process puts an item into the queue.,
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Af a signal sendsobjem, mmmmnmwm»mmwml The
following example shows how this is dane. : ‘ :

v'°

begin
ot |
when oh_foo {xy: int, : beeb: Sedy of dendler;,
:nd; .

In CLU, the semanucsofmdmgobpmm&nwhﬂnmmm&mm ob jects.
tony d, and a handler

executed ystasifapmeedureinmmw Mmmdmagml is

o

the'calt of tmmnmm«m!wm m@le:
.- in fterate (x) do ' o

end;
- exeept _
when iterate signat-lsryff: Aondler; - - -

If a signal statement is executed in the for hup bdy &euy ﬂn m lnd the routine
' containing the for loop are ferminated all.at once. mu umm the bodys

catching an exceptton as ln
for .. do
statcmnt
except
when oh_fox: ..;
end;

end;

If oh_foo is signatied by some routine invoked in statemen, M the hlufdhr Mil'be'exe_cuted :

1. Actually, the handier may chm to igm the. abpw muulr the Mom tudgr can
peruse the syntax in the appmdtx .

. i5
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“and the execution of the body will continue. Assumlng we have shown all handlers. if ok_bar
s sngnalled by some routine called in statement, the body and the lterator will ' be exlted and a
more global handler executed (if there is one).

3.2.2. Exception Handling in ASBAL

To transfer CLU’s exception handllng features m ASBAL we need forms and
semantics for signals clauses of routlnes headers. slgnal statements, and handlers Signalling is
basically like. returning, but the items sent along with the slgnal will probably not be handled
the same way as’ return variables For one thing. lt !s wasteful lo allocate space for ob jects that
might only be signalied once in a while. Another polnt Is that these objects are always the
initial va’lues of some new variables and constants: those declared for the handler of the signal.
- The best approach to sendlng the ob jects: appearsto be to leave them on the top of the stack.
Unl‘ortunately the space at the top of tlle stack overlaps with the varlables of the

signalling ‘foutine. The ob Jects will have to be enmputed ﬂrst and then eopled to that area.
" Uniike the case of retumlng. we will probably be wllling to pay the prlce of copylng items .
down onto the top of the caller’s l‘rame wlnn tlley are to be slgnalled slnce exceptions are
generally rare compared to returns. Thls leads us to 2 algnal statement lllte CLU s, except that
ours always creates new ob jects, just as our returns do. Tllus we write '
| signal foo (10, b(3); ‘

signal bar
The signals clause in procedure and iterator headers glves a llst of types Wlth no names, just
as in CLU: .'

signals (foo, bar (int, arraylbooil))

~ signals (bletch (int, int, booD)
. Once the calling routine has the signalled ob jects at the top of the stack, the transfer to the
handler is semantically a_jump, but objects are sent to plug into the handler’s varla‘bles The
handlers variable list will take the same lorm . tlsat of a m lveaders argument list
part. For example




except whemsfowr(comst i: int, br boed; vercokee; .. =~ = . .
endy _‘

m the ewpmuanr in the sig;m m (!f’sq) wm miag aqum in:

......

_ rouune; ' e g et
(3) it prweeds to adjlut tm mk W -ut m
o (uﬂngmt—coww then

BE
too pamful The mr«w mwm *WMmm
mﬂum of wmm Wof mm e

K- ﬁ ';

Y of the exapﬂms hﬁﬂdw md m' s

fixed: offset siots for thv*obpcts, wmﬂmﬁmrdﬁ‘u.mm ﬁq ww The
ohjgct;tharreﬂlygounwgwmemﬁmhmmwmmgn;mmm

to- thmugh pointers, aned: m@cﬁ’ wlla mmwﬁmwmgm Thus,

" there are no overwheliming: M Wﬁrmm -onosption. handling
mechmum. mwgh it dmaﬁmhmrmm

UL ThiS h*st adjaMm NM “P‘“d’&u :’
Fined: wmmwm wmwﬂm M
haredier variable:) v lliﬁw w
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3.23. ',Sutﬁmnry

We have examined CLU'’s exception handung mechanism in detail Based on this
~ examination; ‘we designéd parts of ASBAL to perrorm the & ume function “the structured
notification and hanﬁlfng’ of exoeptlom. I-‘ommn!y Tow clunga were needed ln the
© mechamisit Borrowed from CLU, aind intld additional mechanism was required Agaln we feel
we I‘nave been suceessful in triiizferrlng i good‘ fum’ frem t\.LU m AS%AL —

33. An Example - Sorted Bngs of Stringl '

This section presents" another data type definition: a sorted bag of strings. Thts data
~ type might be used for coraputing the fwd‘ m of dif ferent ‘werds in a sample
of text, and printing. them aut in: Wmﬁﬂm W Is based”on the
example in [LiskovI7). mnnwtmm L |

create: ) proctype() returm(bag) |
"(create a new empty bag)

insert: proctypelvar bag, const stringl:20) sw (ful)
(insert the strlng into the bag; sighal full if ehcre is no more room)

count: proctype(const bag) returns(int) o
A - (total numberofitemsintmmmgmmﬂ

size: - proctype(const bag) retms(flt) ‘ N
(total number of distinct items in thg \ng.,u.. not counting repetitiom)

increasing* itertype(eonst bag) yields(const gﬂn([.z)]. inp) ..
_ (generate each distinct string in_the. m. with its repetitlon count, in
alphabetical order) '

- The type string in ASBKL isa sequence of cham'.ten. of cplmt. strlng varlables must put a
limit on' the maxtmurﬁ ‘size $tring they can ‘store. ﬁuf?: themaon for the ?anmeter '20' to
the string types ‘above. (The ™ in % 251’ will be exphin ) tn ‘the mxt chapter.) A stﬂng s
‘different from an- amy Of -charactérs fn that its’ contents nnmt be ehmged Le., strlngs are
immuitable; ‘ Strings are whole valiés even thougﬁ ﬁtﬁr lnﬁvldual characters cain be accessed.

The usual operations on strings, such as substring and index, are provided in ASBAL. A full




-list of string operations is in Appendix II. -
3.3.1. The Representation

N Therepremmtonwewmuuforhag&nabmm MMW&Mna
smng with a count of the number of times:that string s been. imerted: in. the bag, All nodes
.-v ,' to left of a given node contaim stﬂng: which siphabetic mmm;mm with
the given node. Qf course wem«lﬁo kmu WQPWMB&MWM tree in
order to compute size and count efficiently. This. '!nphnhaq is:then: Whhg like this:

record [count: int,
size: imt,
t tr'ge]

- We will maintain -the tree- in-an armay, uﬂu;«mludmnﬁ‘pmfwth subtrees In the
- nodey, (We must gut a limit-on‘the: numbser:of distinct itoms: ina:bag. W wilkuse 500 in this
- example) This adds:tuffmﬂwm&m (TFobevenlly cloan-sbout: it. we would mmthétree
part as anomertypebatwadmznw e exnsmph : mm

rep = record [count: int,
: size:  int,
root: mbranch,
tree:  anl;

- an = array [node; 1, 500);

node = record {s: stringl:20],
left: mbranch,
right:  mbranch,
num int};

mbranch: = oneof fempty: null;,
branch: mﬁ; | ,
The type mbranch is short for "nmbnmh v ummmm;m by an
index imo the: arny ‘A oneof type is a: discriminated: union, somewhat like, the-variant records
of Pascal [Wirth‘m A oneof- objea isa mg(mef mfmw ‘dong, with an ob ject of -
the correspondlng typc (Thm are operations that m an objact of some type: to a omeof.
object with * appmpdm tag. They and mmmﬂﬂhm below)
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R

' Allocatmg space for a oneof variable is easy; Just. M q'qgmtn'um of the sizes of the
varlous possible types in m fields, plus room for the tag. - '

3 3;3,2. The Operat_iom

Let us start with the m Wﬁrw’?ﬁ*m set all the counts to 0, and
initialize the array. ) R a ;\ : : .

create = proc () returns (b: cvt);
~ none: mbranch :« mbranch. mke__nmpty muw ~, -
n: node := nodes(s: " : AT

left:  none,
right: none :
g Lo cirweebeti Q) . =~
b -repS(count.O g ! ‘
- siter 0,
root: none,
tree: ansfm (n,l,!mn
end create;

The ™ means the empty (or nulb string. m creste opeuum shows how to make a oneof
value from a non-tagged value of the rght mmmm m n thu case the
make_empty operation. (This operation calls the copy operation of m‘iﬁiﬁ)

Here is the lmertgpeuggnmm e d AT

lnsert proc (var b: e, const §; mjmmum,u
" 'biroot := insert] (b, s,b.root) exeaptvhufuﬂ:,igulfultend;

ﬁn‘-m gt -_}t N 57 IR
insertl = proc (var b rep. eomt s stﬂng[;ml. root: mbnnch) retqus (m- mbranch) ngnals (full
- tagease et in - g b e T E LI A TER
- tag empty: ‘

m= add_node (b, s)



tag tmmch (comst {: int):

m = root;
' ifsens .. ol
then
npumber = nnumber + .
bmu,-hm»l. _
- elseif s <ns
Muw;~MM
“else n.right = insert] (b, 3, wright);
emd If;
end with;
mtm Tip a0 w
exaptwtufuﬂ:uguﬂﬂ;!ﬂ: ' ’
endimcrtl,

add_node = = proc (var b: rep, const s n«m& M lignuh (fuld);
if bsize = 500 then signal folk; wnd if;
bsize := bsize + |
b.count :» bm 4 l ) i
none: mbranch := mmm_mcm s
btru(b.uw - nedd(s. s,
" ‘number: 1,
bl . nole;
ngm. nonel;
“br wmmww
end add_node; |

This operauon itlustrates the use of intermal wm M u.'* ecedisre: ntexpumd by a

cluster); it also dcmomtrw how te: w*w ‘ , dh ;:,,, »

ob ject. Eachasemmmth'tq wmwmam»uwmwnm the

name has the- thrmmwdtype Thhammmy Wﬂlg owpef can be mutated.
" “WWe also see a reaf use of awmmwmwxmmm

Maomf

Thecmmtmd smopum:mmywm



count = proc (b: cvt) returns (c: int);
¢ := b.count;
end count;

size = proc (b: cvt) returns (s: int);
s = bsize;
- end size;

" The last operation to write is the iterator increasing:

increasing = iter (const b: cvt) yields (const string, int);
. for const s: string. i: int in Mcrelungl (b b.reot) do
yield (s;.1); : ;
end for;
end increasing;

lncreaslngl - ftef (eomt b: rep. br: mbﬂnc“h) yields (const smng. lnt)
~ tagcase brin :
- tag empty:
tag branch (i: int): ;
with const node == b.tree(i) do (
for const s: string, | int in lmuuglih. nodc.hft) do
yield (s, p;
end for; . '
yield (nodes, node.number); (-
for const s: string, } int in increasingl (b, node. right! do
yield (s, ;
end for;
end with;
- end tagcase;
end increasingl;

Agam we see a recursive internal operatlon and use of the m«ge statement. At the top Jevel
our ermrc type def inition looks like this:

;




bag-chmlsmmmﬂu.m
. rep .. .

create -
insert = ... ;
insertl » .. ;
- add_node =
coumnt = . ;
stze = ... H
increasing = ... ;
tncreasingl = .. ; :
en‘ b.g' T o Loy

Here are mmmmdmmmmwmmwz

{x "srr‘

b: blg WO ' IR T
bagﬂmert b, "a smun eaqgn when rgltwmm
avg: m-msmm/ww U

n: int -bn;tmat (b? o
?ﬂm&?ﬂf S d sl ST
end for; :

3.4. Sunimiry

This chapter msmmmmmm ASBM.. These two
successful. AﬂthtmthnmhnMMMfm
“YOICRN “with atteratioht 66 aetem date tir &* 5k dproiniton of ;M Tl;e ¥;:ext‘mm
chapters consider two additions 10 the nnguege. WMhmumm
WewmexpmmmgCLUEMMhMﬂﬂﬂww
Rwﬂhmoﬂgmﬂmfwmmwﬂ&mdwmau - The
fﬂmmzcmpmmwmmmhmwuﬂuw The
fmmwammmdmwmmmm
-inthenm '
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4. .Parameters

~ This chapter presents the ASBAL mechgniun for pmmemlzmg abstractions. We
begm with -an examlnation of paramete{s ln CLU. Vg then.. ;borrow and. ﬂ(md CLU's
mechanjsm, modifying it to,,sult our needs. The. m;joreuw -made is. for parameters
relating rtkor the sizes of objec;s in ASBAL. We have mlm infcx!eliding,~CLU'S
mechanism for ASBAL: : '

D | to make programs as independem of the sues of thetr data ob jects as possible and to
~ allow sizes to be determined at run-time;
(2) to relieve the programmer of the burden of mm of the sizes of variables, and
to transfer this burden to the compiler and mn—tifﬁefyuem. but, .
(3) to allow the proé_rammer uitimate control over the sizes of variables.

After bresenting our parameter mechanism, we give an extendedmmple using it. We close
the chapter with a discussion of possible implementation techniques.

4.1. Parameters in CLU

Here we discuss the parameter mechanism used.in CLU. We start with the slmplest
and most strongly motivated case - parameters to cluwers. We present a full example of a
parameterized cluster, and then move on to parithetériziig other-abstractions.

4.1.1. .qu-umeters to Type Definitions

Let us say we have wrltten a cluster to implement queues. of imegers A while later we
find a .need for queues of strlngs, so we write a new clumr to lmplemem them borrowlng from
_the previous cluster. Some more time passes, and we. f!nd we, need queues of customers for a
simulation program, 0 we again ndnpt the qum—of ntegers clueter Thts copylng and
modification could go on forever. What is- Wse. if some subtle bug is feand in the: origlnal
cluster, a lot of effort is necessary to find and correct all the other clusters that copied its code.

‘One might imagine using a fancy text vednor or macro processor to heip in this




| correction and updatagm However, wmhﬂ“ﬂnm&eﬂudm
abstraction generator: am«mmmumnauw
Fmexaﬂphuemﬁmnm:wmim*luwym%rthem

. anda allow: mmMuwﬁﬂﬁw . Th |
mmmmtuewdm
mmmgpam:ma
wtthmexample@h@l.m

queue M{ti”dhmndq.m
mp = mﬁt} '

-m»mw

WM

i‘uMmm aryp ‘
] zve type. fﬁhcﬁuu-ﬁws&m

eng = pnc(q:cﬂ,xﬁ
Mtﬂ.ﬂ

' deq = proc (g vt reterns (0 signall fempry;,
i repSsize () = 0
- then signsl empty;
mmmm&
end deg;

Mummqamm
(ﬂpm-ﬁ'
endempty

end queue;
Tmrammmmmumtttygd’mm mwmmmam
B ‘pargmeter awgmmhmswmuaqm mwwtype!fw.
i me

say?thmextmawufqupﬂm _;_mmu

sl HAR L eHE

s Trhe: tepey-aotesl 45 4n comemst 0 formel: mmmwmma
;-temphte (forml) and an mmgraw P ‘ : :
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- legal because quéue[lnt] Is a type, so it is a legal parameter to queus, etc. The representation is
.chosen to be. pruy[t] - this dmmn that £ -is W 4 - it weere: tn actual 'type
;spedﬂcationl inside the cluster definition. mem POtURS AR eMPLY-array
(representing an empty quee). Fhe sng opamblen-adds-e.pew eletwent 10:the high. end-of the
array. Notice that £.by juseif is.a valid type ppecification in sise hander of the engoperation. It
is alsa legal to deciare vaciables 10 by of {ype.. inside:thy. dhseter; we-mention this to drive home
~ the paint that ¢ really is;taken to be o type apecification; swshin the definition of Jusus: “The
 deg operation is symmetrigal to enq, except that-it Mwm 'indicuting: that. its' caller
tried to remave an element from an empty qulne. Tbnﬁmm a test to see ifa
queuehasnomembers SR A R R

4.1.2. .RestrlctIOns

- In order to demonsiraie further features, we will sdd some MW‘“" tomw.“ :
cluster. One nice operation to have is copy. We would like copy to call ($copy on eich: element

of the queue. Of course, this means that we cgn mly copy qunu!tl i e has 2 co” opention
muﬁd uo CLU A restriction defines

(which it need not have). For this reason r P

copy proc (q. cvt) ;'etums (ovt);
. where t has copy: practype(t) returns(t) ead;

return (repScopy(@);
' end copy; :

The call of arraylt}$copy (impﬂdt in repScopy) results in ctlb of M”; since array(t)Scopy
- requires a copy operation .of , we must require that operation of our caller. Restrictions

- complicate type <checking, but are necessary. The where clause an abo uqmre a parameter to |
have several operations, and can put restrictions @ W“ A Qf Ape parapeiens. “The
| keyword& pmymw m wwmm ”» WW m aml m

g

1. A type specif ication is the syntactic descrtpﬁon of g type.
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 types. (The keywovds proc, iter, and m are ot used for this patpmn because syntactlc.

. - awvbiguities result). -

= definve ¥ type generstorsortedibay; wiieh: canbe:

Theubmccmvphmammtm‘ .' jif”t‘*"dwmt'havea

copy epamthen MWMW&M&WW hmm&?ﬁwpy In
F&III ' donsider

. some cases it isdm»pu a: reseiétion: o8 aif the apéit

i*mmﬁgmmmmwwwmiw

natist ””ﬁmmbtgsdany
.7 ordered type: In: mwmwmawm: mmm {3
B .andanmuu!muw.mmlsuwammw EEEE L .

- sorted bag: = cluster fr typed is o5 - z

: whmthask.quttpmwmwem

end sorted_bag;

We can st.m..ptit further restrictions on the type parameter within: lnd%ﬂdu&l operations if
... needed. - Thus, & ooy operation for tire sorted "bag ‘thisnir WoulS' retjuive- £ 0 have a- copy
_’ 4.;3{ ?anmttersa to. me Iﬂd ltumm :

| JustasctumanhWMwmpwmm Comldera
bubble sort routine ‘that uies an my of any ‘ type and mt? it The same
msomngthatmmmmmudfmm %u&mmhﬂm -

sort routine:

1L We“‘wwld reﬂyﬂkewmmnaﬁwmm&mdqp!t.Mtauweun

. requite.in. 3 restrigtion-is. the-eptyact functlonality: Piisurilly, torgantithiot & Srders the objects

would mimmummmmmdmmmmwnamuma
- compiler to mmmwmm»ﬁmmmemm o



| }‘ sort -proc [t t;ge] (a at) , '
i Mtiumlkpm’pdwmm
v.gt"-afaﬁk

end sort

Operatlons of a type may be pa yeter

followmg gcnera! form for g:peramugﬁ pecificationg:, .

4.1.4. Other Klnds of rmmtm

. In CLU, most compile-time -constants aee < M*ﬂ”ptum ' This * includes
integers, characters, strings, reals, bookéiink; ( g ii!%ry useful (there Is
~ only one value of . type: aull: so mull is: w as s parameter’type). “Every diRtinct set of

~ parameters to a parameta'iud abstraction ‘ranith: I¥'h - ENEY Wbdirdction. “This’ fheans that

queuelint] is different from queudbadll, etc: Ao, If: weave gived m&m :

© - foo = cluster.0x,.y: i) .3 e e o
then fool1,2] is different from fodl2,2). In like fashion, e«m sets - of pamneter: to
proccdures and iteraters mmmmmaem L
.. There is a goal-that type: chocking:de :possible at complie-time; Whlch requlres
. instantlation to be passible.at m&m : Thierefous, pasameters may not be eompoeed at
| run-time. However,. it:turns. out thet even.if-all- W‘W ‘compiie-time tmble '
instantiation is not alwags possible st-compilestime. Tiis dipSiulty: will ‘be ‘@iscumed in' the
section on lmplemmm Siifl; pun-time Wmm%amms

RO

4. 2 Panmeters for ASBAL

ASBAL can ‘borrow afl of CLU% paﬂ"imw mer.hanlun ‘with no ugmflam changes.
However, even though’ that' iéchanism works Fir, it Is ot convenlent for wlm wm be the,
i l”foﬁdﬁdmmombty we must allow

most widespread use ar pmm in A"sﬁt o




because every size must be specified expiicitly, md each set ef shae plnmaeu will result in a
distinct type. This results in a distinct set of cluster gperations s Bor sach size (akthough most of
the physic&l code for the opemioman be M m; ﬂ Mﬂ%ﬁi type gmentor)
- The major difficulty is that binary (and higher mmm hjects.of different sizes
become hard mexmb&ma%mymnﬁm&yuh”ﬁmmwkww
and fmﬂ!em Mm.mummbm&uwmaobm
of different sizes simhmomty beumewym of dﬂ’fm dmmef m:ypu

, With the proiferation of paraieters, exprestion mmm Consider
strings as an example. We could not write |

v s.=she

.. {The ¥ is a sugar for concar) We would be fosced to say
5. string {1000 coppistringl 1000 ScomentifGiie; O; - : : :
to. get the uypmmmﬁ s dvnd_size 100 and: ¢-had: alne 50 Mmmmmn

. ,mmmumxmmkuuumm

s -s#MMAﬁIW g

Of course it is possible to extend the notation for mmwxq” M100.50)), but the

'mzounatiunumabwmm SRS RNS L :
| Having each set.of mmmwmmm ‘procedure; etc) separates
 types too finely.. Firss.of all, it conflicts with absteaction: T iobiguss of inaity types come ina
. -variety of um-ln&mwmwfmﬂm" ihmbe; fined siohi (Detause Mmd espond to
1. starage allocated in the stack).~ objects: aré comceptonlly of uniiodided ihie. For example, there
- ave strings quhngchgmm,wwum Muﬁﬁu@ the conteptual type
e aNGUiliNg sonige Tor varisbies.
If we require every. abstraction tsobebmmdcd mmmmww uumcuon on the

- abstractions just to make :hemmm&mmm OmnwaeMemfuct is to

’COI'BtdeI‘ objects to be unbounded, md vtmbk&}@h imperfect models of the. objects they
~ contain. Thts leads m attﬂbuﬂng mmm?m racighies.. The affect.is that nd-blu
| ;‘cannotWal!objxuﬁ:mmhmwwmmwfwwm =

in sum, size will be dectared only for variables %Mm O S
1 to state the slze !nformtuun is a3 part.of the type spacificatinme (ypespec

 for ‘vatiabies. Our




task is to design éonvenlen; syntactic forms for expressing . size iﬁférma’ilon‘ where it is
appropriatre,’anq’ to allow such information to be omitted where it 1y not necessary. The exact
- technique is to.introduce a new class of parameters to types, size paremeters. These parameters
‘are disting@isﬁed f rmnC!,p—stxlepanmeten (whgmm qurp,;ggu paramsters) by being: listed
after a % in the paramétéf Iist.\ Slupamm Jsed only with (ypes; rouunuuu only
regular parameters. Also, size parameters are ahgayg integers; no othet.typ_éa- seem useful
enough to Justify the lddmoml mechanism thgg‘ Corps ation would requice, S
} .- Two examples of size parameters have alread M used.in previous chapters. Aruy
takes two size parameters, indicating the mmmmm boypd wdmxjmum upper bound of
ob Jects storable in an array variable; string takes one gjze parameter, indicating the maximum
length ob ject a string varlable can hold. Amyland strings are | the only basic types of varying
size; all other types of varying me incorporate them lp thdr representation, aithough. possibly
'through many Ievels of data lbstractloql Tbg mentations of both. arrays and strings
insure that objects too Iarge for a variable of their. ty?s o hold are.not. asﬂgmdr to. the
variable. ‘Attempts to make such ﬂlega,l ssignments cause . an. excegtion, failure(*variable
ouerflow") to be signalled Furthermore, tm, » tatie otamy; insures that the ob jects
in array variables are not grown beyond the limm of their containing variables; if such an
attempt is made, the varlable overflow: ex@thn Is ngmlhd To make such exceptions
avmdable we wm provide a mechanism for querying the size parameters of a varlable This

,_quammz

mechanism can be used. to check sizes before assighments or grow

43. The Size Pa_riméter ‘Mechanism

Hiving introduced some of the basic concepts and features of size parameters, we now

go into detail about their use. ‘Thls is more easily done by going through the syntactic forms

“used for specifying size in typespecs, and the restrictions lmpond on whlch forms may be used
with typespecs in dif ferent positions. '

1. That arrays and strings are the only sources of ob jects of different sizes is slmllar to the fact
that all mutation is accomplished via records and arrays.

2. Of course, one can just attempt the operation and then hmdle the exwpthn. but it.is often
better style to prevent the exbepﬂon s ohcm-ren”ee '
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4.3.1. Size wwoozxo..

>§«a%§.\§§wzﬁ&aﬂaxq§§~aﬂ?§ ._.soqa_

. Total o ‘Abipéc 1 ', iﬁ#&tog 33-::3& sa
u.uassggifwiw!tti Ra-zﬁoaﬁa

| .SS:.iﬂ?gg%!;gi ?gqﬁ ,
e 1134&3?%?35*
o ,.: .z.a..ez- \.

o.x_t .
: .ﬂ:oaxvg%ms%ao?ig!!iﬁkal‘ge%s»:
run-time. Aﬂroggg#agga?ﬁﬁp Sbightal: the first is
:.nu.uoﬁﬁoﬁgiﬁaiwgﬂggil*s&a&z.: the




4.3.2. The Kinds of Typespecs

There are three forms of typespecs in ASBAL. The first form is alled the vartable
typespec ( v-typespe:) because it is used mainly in varubh dochntiom. All the sizespecs of a
. -typespec “Taust: be’ exact mespecs. so that the' uctual sptu requlred for a variable can- ‘be

" computed and’ allocated. We will detail all places where each fprm,pf:__typuggc is used below.
~ Here are examples of v-typespecs:. - | E ‘

string(;15).
- stringlu(x)+v(x)]
Carrayliie; 1, 1000
arraylint; 1, 10s j+5]
arraylint; £(x), 8]
arraylint; foolx, y), bar(y, 2)+2] -

" The second form of typeapec atlom exm or t-uuspeu to be used, and ls called a
"wbtypnpu' {for-variableor &' cyptiped for short. It is used where any size is allowed or size is
irrdewmt, but where: Mm is not aﬂwed V-iypapcu are'a subu of n—typupecs. here

o anes same we-typespecs that are not v-typespecs:
' - stringlix} o -
arrayling; ¢, 10}
arrayling; &, v(x)]
 arraylint; 1, +]
" arraylint; u(x), s]
" arraylint; s, 2]

We aliow an abbreviation for typespecs all of whose sizespecs are ‘s” the size
;-panmeter part of the parameter Hst may be omitied, lucludmg the ke Furthermote if such
* omission results in H’tﬁebnckeuunbedrqipeduwﬂ. Hm ' '

: L

: amsyum x, «] snd m‘hg( +) : | ;
arrnylint] and strlng

respecnvely :
The third form of W is themyenmt my«ef ‘the three sizespecs may be used

in.it. This form is catled the w?-typnpx (fur varlabk, s, or N, W Va-typespecs are a
subset of v#?—typespecs (and hence v-typespecs are ako a subest of vei-typespecs); here are




some va?-typespecs that:arenot- w-qtnmpm:

- .stringl;Men]

arraylint; 1, 2high)
- arraylint; Mow, ]

: Camraylint; mel;agm L
(There are many mote: comhmahm of ,@g&.ﬂm;} oibhariic

433, How‘l‘ype specmmmm Hsed

Now we discuss: which form of typespec is ued mM IMC pwuon -and .the
-meaning attached to: it:in:that-pasition. ‘‘We- wiudoz different groups:of
- -symntactic positions. - ' '

4.33.1. Arguments to Rouives

;accgptabb. ‘The use of:.a- ?wmzthumm ;
. ex,m‘e :\;{ B £,

end P

. ln this case, both a and b must be mpn{ ntegers - Jower
: bmmds are-not restrtcmd. !ud umd MQ&MM m husl;
via the expressions a?Aigh and: BAlghS As another exampl

‘1. However,. side-effect freecexpressions. mwkmm n numes, and mmg only
_-built-ip operations,-are-consicored to-be-apmpiiestimng conmeEnts. © .
2 These | bmmds*arethebaundtof thtmm’ s A
» 8 '?'asmubemmoﬁm At mblar &
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p- ptoe[ttgpd@nrﬁ*at;eemt a2: 40 gna sovertio
. where t has octypeieonst ). returnalt);
ate nuytt ., ?thg?irl" o :
lf (al?high -~ athidgh(ad) <Msln(a23
then signaj | pvetﬂo\v -
endf;

fqrmt&:thamm%.’?ﬁ
at$addh(al, x);
 endifor;
cendp; 4
© The test in the if statement is: ‘Does al have enwgh room for a oopy of uch element of a2?"
The elements iterator for amys producu Gldl element m the Array fmm the lowest to the

hlghest

4332, Return. Variables

O

Arguments are the mmt obvmm mg Mvm use for size parameters
iments. allow. M&@mxm handle objects of .any size
| conveniently However, there are also some situagions. whme fhexibility: in the-size of ob jects
.returned by a proceduye is . help(yL For this geason. we.allow -the size parameters of return
Hvanables to be detergm\ed dynamically;. :pecgﬂaﬁ. thm -sige parameters may be computed
from the arguments to the precedure being.salisd. Foe-comprehemsibility. of ASBAL programs,
we require that any size cmyuumn fmm varisbles: mot. mutate ayguments: ‘of the
procedure being called. , This is done.by. MMMmﬁ the: -mmzm these
' size expresslons : . .

| Consider a gmgedme tl;p; me*m arrays together toiform a new
:Earray If it is known that the new army. ﬂ&m bewnirged, it is ressonable to' creste zg.e
'smallest possible array ;hetpgmmmm mmmu avold any wam wonge
Here is the skeleton of such a procedure: .. ' ~

q = proc (eomt al, a2: aint) returns (as: aWW«MM@M
aint « errey[lnt] .

‘ ~ because size pafameters in ar

end QG

Determining the size of return verlab!el on the fly has some complications, however.
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Recall that return vasiables:are really me fmmm dnby the cauer If the
variable passed inisa my.ilmma nsmmmm presemed
in- Chapter 2.aliow for determtivation of 118 temporhd - computation of arguments to the
Invocation “creating” the ‘temporaries. - An fage, wmém - designed mth flexible
return variables in mind. On the other hand, if the nrhbkm &n the:return variable ts
«mtatemponrywemy*‘hwamﬂmwm;‘ ol e %atmn—tifnem
compare the size of the variable being passed in m&tmwmpmedme header.
At this juncture:we have an cptim we may m&mmmtd\ exactly, or just
that the variablepassed in is at feast as big as the. one we. d-get from the return: variable
specification. We have. ehm m be ﬁexible and albv any iable of sufficient. size. We
delay discussion of the basis. for this decision. until the entire: ﬂum m has
been presented.
‘Two questions m what do we do if the size sof .o petuem.: mé&m the
run-time check outlined-above? Qur solution m ﬂm m hr!o hlve me invocation. being
' ' ‘ ndo if a return
as mtham above.

- agml fa::u:a( mmmagmﬁ , L |

' - ‘Because of the rumw-time ‘thecks often: mm mum vaﬂabks my be
~expensive. However, wesbelieve that m ‘comtiion ‘uses oF m mwm variahhs will be
‘handied at. WMm Ty veismn Wiy cosplle-tine Guks will often soffice a.s ctm most
types:taking size parametars have: sizes which m*ﬁ‘i Foturn ,fff‘," d‘ such. a type were
. constsucted-using tre minimt amaunt mremery; it tolilnot B¢ grown Hierestier. Therefore, we
believe it will be more common for the user m;pmfythemofﬂu n,thbh ‘0 be returned by
_ passing an argument for perhaps 2 parimited o the prscelure, hﬂm than having the
_pracedure compute the .size-itself.. We believe. that . thif sprassions mul - mvey the size
infarmation may be comparatiie;at cotgiie-time wveh if ¥ Spmbelic. that is, it may be
possible to perform the checks even if the size is i puiiiistg of e M”n,
making the.call. - Heredssmenample: . = e
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P = proc (const n: int, ..} ..;
varx: fool;n; |
x - q(n,..);
end p;
q = proc (const i: int, .. ) returns (a: fool;i));
| end G | o ‘

We grant that it may not be at ail easy to duign a compiler mm't mwgh to perfqrm this sort
of optimization - we are merely pointing out that the optimiution may be possible in many

‘_ca ses..
4.3.3.3. Declarations

_ There are two sorts of declarations: those-with initialization and thoae wiihout A

* declaration without initialization must use'a v-iypespec 30° ﬁnt Iwnge can be allocated for the

- variable being declared. Any expression evmung w m meger s tiiuwed for computing the
- size parameters.

Declarations with ipitialization are more compﬁcated because we have the opportunity
to reduce storage requiremenits: we an permit the ‘vartable to be the exact size returned by the
procedure being inveked to initialize the Vambie "Thus we allow «- and ?—sizespecs in the
typespecs for declarations with initiatization. - Any panmeter spedfied by a - or ?—sizespec

_takes. the value computed by the invocation for its return variable; any exact sizespecs in the
declaration with initialization are kept as'is. Therefore, the normal check necessary for flexible
return’ variables in assignment may ‘have to be petformed in dechntions with inmaliutlon as
well; the check can be omitted if all sizespecs are s~ or ?-siuspeca Conmnt definltions follow
the same scheme as declarations with initialization.

. Here are some exmpksuf'de‘thfﬁdm and constant definitions:



var n: int = 400;

var a: arsaylint; 1, n);

varb: areaytint) waveaylintiStil 0,1, 30V
" var ¢ areayling; 1, ¥highl =Tool);

const d: arcaylint) =b;

const e myt»ini;a W00 =t

The Iow and high bounds =f amuaumaaamm mm of the
array returned by foo mhem.hm&et”hhn}dw&e mythin m@gmhmw
oty ¥ LR ) il -

writing cPhigh. Thebwmﬂdmulmmpm@ wmacmma
unless ¢ has at most 100 ¢lements. » | j ;‘ .

o ‘4.:’34 Repfesennﬁoa‘!’m o o
Thetypupecfortinmmhntmhqw)ofaahwmhenvww
variabiles of the typehmdctbdmhew M“W@; ,'m,thew

typespec must ‘be dmmm;mwpmmmmm l-bnevu arbitrary
.gxpresslons are aﬁowgd .o, ANon:

\bmem theymtyhee“ 40 | 5 IR R
signalied when a rep's size expm-un . M wilunet st
signatied to the creator of the varishle, ... ... . ..ok
o Theheader furn;lgﬂerlmhltu, TAMCtrs. tanes ‘
g - cluster [ ropuer pusempter i
Theidifori>01rethemyflhsm
the rep type and aeher equates; unii

avatlable t to the op«m This. am;,;mm m,au abstzact size
"parameter mmes are not per. mmm athryper mm notumake
'nmeto use ﬂmu nmlnchmrm . g et
Let us introdyce an exam mu&m heaughaws,auc disssion: of dise parameters
and mptypes Aummmmemtmmmqus.m we need to
implement them using arrays of characters. Here is a skeleton of part of the string cluster:




“string = cluster{;len] is ...

. rep = array[char; ), lealg \ |
. size = proc {const s: evt) retums (n Iut)

- = repBskaelsd;: .
endsizg L e

Notice ma} :::l:::n f;}er;cion return; the size qt‘ thubm not. th! sze d the. u&hbk

Now we come -to the question cf what ¢, and ?-W mean. when written 'in
mple, what, doe; $#yingls] or stringl?i) mean? . They
merely mean that those abstract size parmemrauaug m Mlgd and.in the case of
P-sizespecs, that, those .abstract size. parameters may be. queriad, €g. P if ;x ware.decipred as
stringl?). In every case where the size of the rep must be known, ali ebstract size perameters

_ typespecs for the abstract type.: For examp

' wrl! be available, so the rep size panmeters. Lo
' The only potentlal confusion left is the rmmlng of the typespea rep and cvt. Rep
meaning s the rep typespec obtained from
giving the abstrﬁct type ‘those size plrametm A; m CLU cvt‘ u just 2 shzrth:nd /for the
’ ‘vabstract or rep typespec at the interface of a routtne. with a converslon epplled at the
o appropriate time: dovfn for incomlng ob jects. a;d}'u; Lfo;&iautgolng ones Tireref ore, cvt takes
the same ‘size parameters as the abstract and’ rep typespecs do. Notk:e that neither rep nor evt
, ‘requires Statement of reguhr type parameteu. the mguhr type perametm lre Impﬂclt in the
' instantiatlon of the cluster. The converslom up, urd d?}\?ﬁmse the ume semantics and
implementation as in CLU - they cause Tittle or A0 Ha-time. action, buat m used merely to
change the compiler’s “point of view" on the type of an object. é
To illustrate the use of cvt, consider the procedure m{m’t oi onr example string

cluster: ' . R , Cp

takes the size purameters of tﬁe ebstnct type; the n

concat = proc (eomt sl, 52: cvt) returns (s3: crt{mwidel)tupttize(s2)]);
end concat;

Notice that rh}e arguments (s/ and 32) have been down’ed before the computation of the size of

s3. If we had occasion to create a temporary variable of type rep. in the string cluster, we
might write o

var x: npt;n] -}



which would be'equiv&mfﬁﬁ

var x: ;rray{chﬂnj, nl;
.except that the latter cannot be llp’ed It cann_g ?QW wtnvolm inversion
of arbitrary functions in the general c:se. this is s0 becay : _}j restrictions on the way
in which the rep type demds on the abstract type's dm M 2 my amy!clurl

can beassigned toa mp nmbie (pmuad mmmmmmmw a

5;31

8 i thesizesoftm&rfag vambm u&uni&%m mneeded in the
e T eedang L by i «w’# fi 7 e st g EREIE
operattons pmicedure b&f tﬁé - 7 ‘ : o -

DOAEERL

el RO ¢

'melengms 6f sl'and 52 Gl w‘ WWW 5o &.Wety

fai LT T REIT S BRI SR “#'*”5 ‘5’!"’5 W owEr syt G

43.35 OM Roﬁﬂauhmm SR R R

B T B RN TS e Te ¥y i Y;‘:ﬁ“}jﬁ;g; YAIEE HI ok

There are a few other positions m rwﬂm h?dqsm

are the types of panmsmwutinu.AW thes are B m: pespe
(1% oz PARE sEfTy v 5 i :g...‘»."a‘aew

buol ‘and type. whkh have no_ stze panmmn; 1 no_probi , pecs fe
v :m "ﬁ“‘fm orany

hold for thq xypes

RN E

ob jects ylelded by Can u;riw are w-tmwg .

e sile “ a"owed hut thereh no‘me fq ?-simm here. m

ek «&ﬂ"

of clau‘ses from routine h;adm 7
B SERi0E B
sigmls (fou(my(iﬂ-l,t]) b&r(stﬂn‘)) -
ﬁmistﬂﬁ?ﬁmﬁ” w T
. of string-.. e ey s
bieech proe[x. Int] - _ e e
edgar - sekctu{-ﬁag: bool]

5 (24 &
pon i
LV ]
AR P Y S emEG F < i T et g R
" vy § K # 1 PN {ig};* ViYL RRMITy St TV s ST Tt S .
: S B T S LIS VO PPN S S DIVING SRR RETTe ST K
A s T AUHE L e TR ARG RN B TR e k;
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4;3.3.6. Typea of Routlnes

L
3

A situation sllghtly different from routine heeld!gflg ngki,{ ress
the arguments, etc, In’ the typespecs of rwmu (i,e.. proctype’s, mrtype's. and u!ty”';) The
“typespecs for routine types should aliow full type checking, so typespecs for arguments, returns, -
yields, etc., must all be given. The argument typapea are va-typaspecs, shere being 'no use for
P-sizespecs in that posmon (A routine accepts either a pamalhr size, or any size) leewln.
_return variablesiare given ve-typespecs, Bit domptel e nﬁ*;lvféu i ¢4, not expremom.
only. compilestime “expressioms are sWowed: 3o ‘tirit’ n M’W%Mm can be dom at

- compiie-time as:possible. This the type of ‘stiliigScoiic 'nvmamu o
. iproctype (m“aﬂng,m mw IR
Wwhich.is short-for S
.. proctype (const steingls); Wwwmw,ﬂi
Yields, signals and of - typespecs are all handled mmm variable typespecs. Thiat takes
care of all the special mms in typespea of" routines. Here dim‘%m mmple routine
typespecs ' T el
proctype(var lrrny[bool*l,t] const sttiug[.lOl)

Itertype(comt amy{inm yldds (urhl(.m’ o

4.3.3.7. Actual Type Parameters B : e

_ Now we come to the writlng of typespecs for actual t!pe p;ngneten of abstractions,
eg. the ¢ in array(?). These are a!ways v-typeapm (witb mﬁueegthn) 30 that variables of
b tiskbe v gl lite

the type can bedeclared The excepu?n is thetypep;umwptr The type ptr h:s to do
bﬂ‘?* s ‘i taéﬂ b.M 5
; howenr lqvquphlnhefehowptru

with polnters. which are discuuéd in the next

P e 46 4

different. The type generator ptr is usod for typed pﬂnm M

kes as a parameter. the
"typeofobjectpointedto Slnoethemeofa s indgpende \pfthesluol‘thegbpa
pomted o, #- and ?—slzespecs are al!owed ln typapea usuiiﬁa‘sé gammten to ptr. . Af ter mdlug
Chapter 5 it should be clear why this wm work L

Here are some exampm of typupecs used as panm

wi;”?"t HEEY




,}(on strings

arraylarraylint;1,1003).

recordia, b: smmmn
pteia, arrayling:s

ptria, recordla, EWJ

"Pfe:»se ignore the ﬂm pamm to ptr for m the m plmm is uu one discussed
" above. | :

4338, opemmm

There. is one Impmmonwhm W&nm&ﬁwm of -cluster -
" operations. In this pasition. all kinds o typapees 30r. e sncs: sie: peram

completely irrelevant. Hmﬂu is common.te- write the showt M‘zw Iov- chaster
operations, omitting the size pasameter . part.. complerdly. . <Fiis: gives progeams 2 nicer
appearance, but is not 'mem'ht It is ako cemm to use a short name;that s equated to a
,Vt?-typespec for examplgg %tfm: asesylil. A&@Mmmmm opemton-

‘ string[,ZOlSconcat

“stringl:#1$concat
stringl;?len]$concat
string$concat

(This operation aiso has an infix form: !’J In elummm Mﬁsm’e for formmg

operatmn names.
4.{.' An Examp:le Clust_er --Seqmm:u g

The header fort‘he sequeme dmm is‘(‘
' seq = clumr [t type; n] ls nuu add!’a a@dl. oonmt, m mt, mm

g

rim, !m. mﬁﬁ.m«wg it ; laagth;

i RO

, whmthcsmpy pmctypc(mt)m@lﬂ L
- Sequences have mmy of the mma mwm are not m
(meir staté camnot be cﬁmgw s mww um m Wm ﬁy yenting
operationsafewatattme ﬁutfmt MW ' ‘ ‘
rep = arraylt; L, n);




Thus, sequences wm be modelled by arrays. Tlm B mmpm b'cwn dny are similar in
many respects. - - ‘ i 2

~ null = proc () returm (s: cvtl;0));
s := rep$create (1);
end null

The array create operation returns an empty array; its argumnt spedﬂes the low bound of the
array ob ject returned, Notice that it “MM Mﬂm

var x: seq(t] := zeq[tBnulI()
because all x could ever hold is tt&cmptynm emm nquenoes are too'big to fit in x)

addh = proc (const s: cvt, & t) returns (new: cvd:ip‘du@oll)
new := repScreate-(1);
for const x:'t in repSelements (s) do
rep$addh (new, x);
end for;
rep$addh (new, e);
end addh; -

The addh operation returns a new sequence with one more elemant.at the end than the one
passed in, therefore. the size of the returned object is one bigger than the ‘ictual size of the
argument sequence. (Notice that this is not mﬂly the sime as ‘s'm I') The elements

opemion is an iterator that genemu the elements of an uﬁsy u m from the first to the
last. The add! and concat operations are simitar to addA.

addl = proc (const s: cvt, e ) returns (mw' cvt!m‘ﬂtdshm
new := rep$create (1); .
rep$addh (new, e);
for const x: t in npSehmenu () do
rep$Saddh. (new, x);
end for;
end addi;




concat = pm!m r, rwmwwwmwnn
new - repScreate (1), ot i
For comst x: CHr rep$ it '
rep$addh (new, x);
end for; D
for const x: t in repSelements (s)do ' b b R e
: repsaddh (new x)

end for; -
' endconeat . L L
- Now we present the m M produce-sherter W?fm ﬁ!ﬁf lnpﬂts. remh, reml,
and trim. : "

- remh = proc‘emts.dvt)mmm'

o J:m agm (ermpty);
n: int e nptungw

Cifn<l | - RS o
else . k A . L ,»;x.’:k ¥ *
mmmt |
white index < n do |
repSaddh (new, iMex})-
et )
endnmh% R

rem} = proc (const s: cvt) utms (new- evﬁmw-m) si(uh (emgty)
. i int = repSsipets); :
ifn«l ) T T
' then signal. empty, -
else oo
new := repicmu (l)
. index: int := 2;
\th m <= ﬂ“ ; Lo TR .
‘ r:p&ddhtm.imﬂ SR
end while,
end if;
end remf;.

W'W Mum W is passed to
retained. Trtm returns whamer pomnn ot the me m nmbawm tM:
bounds.

(Max is used to prevent a “r :frddt nessi
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trim = proc (s: qwt, low; highiint) returns (new: cﬂlmlgh—lomlm
start: int := max'(l, low); :
n: int := rep$size (s);
end: int := min (n, hlgh)
. new mrepScreate(1); - wnt B o
: _for const f int in lntSfrom_ﬁo.by (mrt.m;l n dq
“Hpsaddh thew, sUf);
-end for;
end trim;

The from_to_by iterator genetites the integers from its first argument. threugh to is second
argument incrementing by the third argument; it is like an Algol fo: Ioop
Here are the selection operations: first; kst, Jetch, and elements. -

nrst-u;epm () of ¢ from gmmm N
' ifrepsme(s) =0 e g Sy
else select s[l] LT
end if;
-end first;

~ last = selector () of t-from-&: tvtwm
n:int := repssize (s}
ifn=
' .theﬁ signal empty;
else select sin];
end if;
endhst;

~ fetch = proc (i: int) of t from s: cvt llgmh (range)
if (i <D 1G> repSsize(s))
o then signal range;
else select sii;
end if;
‘ end fetch

| The vertical bar i.u sugar for the er. qmamm:hm oisor’,

. elements = iter (copst s:a¥0) M(Mﬂ“ o
for const e: t in repSelements(s) do ;
Coyleld ey
. endfor;
“end elements;

Notice the use of the array iterator elements to implement our own iterator. ‘It would be nice to



be able to assign sequences, 3o we define a copy operation.
COPY. = PIOL foomst.s: c¥L) setmrns. (new: wlmpSateelally; -

new = §;

end copy;
The copy operation will often be this simple, but then trbm fw!”a ﬂnre more must be
‘done. We also provide anather: Wwﬂim egual. . W.m e th

© extra restrictionont. = o

equal . proc (const 1, s: cvt) returns (eq: bood

‘ whmtmwtkpmwgﬂ;”; i
eq w(r =gl }
return;. .

end equal,

* Notice that we use the ummm M;mﬂﬂmww%m of ¢ to
compare the arrays element by element. Now we write the s
length = proc (comst s: cvt) returns (k int);

| := rep$sizels);
end’ length

- It will be helpful to see mwmu w

First we define a few types:
st100 = seqlint; 100);’
si_ = seqlint; #3;
silen = seqlint; #en);

Now some declarations:
a: sil0o; ) e P i L
b~silOO slmnuil()' . ‘ R CRIREI
d sﬂcn -c;
if dvlen = O then ...

First, a is uninitialized, and has room for sequences up to Mﬂ‘m laug The next variable,
b, is the same size, but hasjeen assigned the-nult yeyencs’ mmwcmw
dynamically, it can hoid only the null soquent’ e»m &Mﬂfw R‘m why size
should normally be specified in dectarations) ‘The same  troe &gighﬁ;mu its size can be |
queried by using dﬂen as shown in the if statement. Hmm& oW




i_:-alld;_ L
b :=si_$addh (a, 5
Af si_Slast (b) = 5 then ..
var j:int := 0;
for const i: int in si Setements(b) do
J=je iy
~ end for.
Notlce that the first line calis the :iIOGScmat operation.

- We have defined a complete type generator for sequences. This example is atypical in
that it has no mutating operations. We chose this over 8 ﬁfutahle type because it demonstrates
more of the parameter mechanism, since it: retums more things. and tends to alliocate the
bh" types is not always desirable,

since they may need to grow later. Furthermore. even if the objects ‘are lmmutable larger ones

minimum storage possible (Allocating the m!nlmm for"‘

may be asslgned toa variable Iater of course the styte of use is up to the prognmmer)
45 lmplemen-tation

Here we discuss how to implement ASBALs parameter mechanism We first explore
techniques for the régular parameters, these methods are borrowed _directly from CLU. We
then consider the addmons necessary for sue panmeters

4.5.1. Reg-uvlar "Partme’ters _

The most straightforward idu is to pass parameters as extra wrguments in calis. This
works fairly well, except when ptocedum and iterators are passed around: as objects. When an
instance of a parameterized prgcedure or iterator is paaed around, i parameters must be '
stored in the ob ject, since they are not avallable when it is calied. Ltkewise an operatton of a
pa r_ameterized type must carry the parameters of the type around.

 This difficulty suggests what ‘we call the macro ltmhmenmion of parameters This
implementation actually wbs&tutes the actual - pemmters ie md eomes up with separate
procedures. {iterators, seiedors. clusters) for each dlstlnct set of parameten - This would seem to
be inefficient in terms of memory use, but can be good in some situations. Its main advantages
are simplicity, and the ability to do better optimization of code once the substitutions have been
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4.5.2. Irnplementing Size Parameters

Now we turn to the question of implemeuﬁug ASBAL's sue parameters First of all,
they are not true parameters to the type, aad quur ealy as dummies, or in positions to allow
allocation of memory for variables. The basi technique for handling size parameters is to
store the size information in the variables. This method leads to a nice lmplementatlon of x?y:
just. fetching a component at a. fixed: offset from’ ehe beginning of x, very slmllar to records.
Because the sizes are stored with, the variabies there are no. pnﬂhlems of. oﬂeuting space for
size parameters dynamically - the. space has alrady been m ln eagh varuble (The next
section . will discuss storage fprmats for variable size obpcts in more daall) An the case of

abstract data types defined- by usgrs. the undeﬂylng sizes of amys and smnzs must be kept for

_the use of procedures receiving the components as argumu etc. HoWever, the abstract size
_ ' ‘:parameters must also be kept, for' querying- md for the size ‘checks required in passing
- . pre-existing variables as return varia_bles (seethe-nexueaton and Sectionlis.f_.'om.

4.6. Analysis of Costs of Size Parameters . |

There are two major costs associated with size parameters: storage overhead and
processor time, and: both are somewhat depemem on the actual storage upresentatlon used.
Therefore, let us consider the storage effk.leacy of pouwle reprmmattom. and the extra
processor time required by size parameters. Part: M of Figure 4 shows the most general
storage format, one using poimers. This format is simple to use since itemg are always at
corhpile-rime known offs‘e’ts _within substructures, akthough considerable 'lndexing and
indirection may be required to access a deeply nested item. ‘More efficient forms such as the
l linear format of part (c) of the figure are possible in :many cases. Sm:h a um format sl\rps
memory and cuts agcess time because the polnﬁn do not have to be stored or followed.
However, the linear represenmhn 18 not suffictent for an cues. It Is better to tdopt a general
representation using pointers - we believe that a single storage format shou!d be used
thraughout the system. Having multiple formats in the system would be bad for the following

rea SOﬂS
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_1st.abatract sise parameder

2ndob$tmct g;u W‘m
Maxlmum !mgth ot L

| Stéragé tor charactérs of @

Actt;p{ 'W’!b 9%;5* by
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(1) code generation- would be mademmnd
(2 if multiple coples of madules were cwde, each M one amage formt. moduhtity -
A "wouldbethreamd. , S o o
- (3 if, on the -other hand, mnéulucouﬂ hwltmyﬁmage furmat. the. code would  be
larger, or. mtervae execution Wawm o
(4) the entire _.mnmmfmu mm:gihlkthe‘payo?f mngm' be small.
Thus, the optimization to a: fumm more. mpmm the pomer format may not be worth the
'complicmons it introduces . ‘
Given that we will.use the pointer  storage: format, ‘et us examine the cost of size
_parameters in detail. First, let us see how much:siorage overhiéad-is introduced by havlng-uze_
parameters. The storaﬁe» overhend for size puramettrs conslits of “one integer per abstm:t size
parameter per object of: am abstract: data type;"pius.one politer for each array”or string
component. - k is hazd to assess just how much tmpact this overhead WiW have, because it
entirely. depends .on. how often variable size ‘objects are used, and whether the arnys and
strings in them tend to be Iarge or small. Dope vectors: hikve-besn accepted in many hnguages.
. and size parameters are only 3 generalization of dope vectors.. 'We believe that the storage
' overhead for size.parameters i acceptable: ‘Besides, thiy: overlieid Is unavoidible because size
~ parameters can be determined at run-time: Therefore, wwggﬁt that: mxe overfiead !s fess

. of a problem. than pracessor time.

In examining processing overhead, we consider the bit-copy operatlon ﬂm l-‘or fixed
size types a bit~copy can:be-accomplished with-a blotk move, provided poimers to components
are represented as.relative offsets; and all components -aré- packed ‘together linearly. (Both
.b -proﬁsbs are possible, and the offsets can be deterisined at comipile=time) With care, the
components of an object of a variable size type can be packéd together in a similar way,
although the of fsets wi generally be computed at run<time; and the order of the parts accessed
through pointers (i.e., offsets) may not always be the same. Theume‘when care must be
exercised is in the initial copstruction of the nbmm the: components will- mver be
“moved fater. The only information that should be stored at a fixed offset in the stack frame
- for var'iables of a variable size type is a pointer to the ob ject itself in the dymmlc part of the
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frame; in tha way a ungmmummlp rm is achieved. ,

Run-time size checks. Wmmw MW 43 we made a

. decision regarding..how clowely return vaniblue stul apaihicatioNy: ML rid ‘im sizes of
- pre-existing variables; narwly, we decided to-sllow WMWM so long
;as eaah of. its arrays- AN RRINES Ware st lenit-as m' i - “bectivn variable.
Thus lfxmapMmMW"_., Nt . ‘FWM for a

return variable jntended: . be-x the alon mw*wm*m the
abstract size parameters ({10, 20’ and (20, 309 are different; MWMiW of x i3

. theia 458 COMMOTIoUN: quiies:w trewille oF e "‘tﬁ*mm the

return variame specmcmm and the pre-existing variabile; that i WAy ke StHvg ¥ must
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4,7, Summary

The ﬂexlblllty gained with size. pannmm an be expensive. However, size
parameter; are really just a generallution of the bouuds pf arnyx, and many.of the same
N implememation technlquu ;pply Notice thn if sige, armgters are. required to match exactly
in assngnments. we have a scheme very close o tm W yg is part of the type. However,
- we have avoided several dlffk:ultles associated vnqh havmg :m bepm of the type of objacu

() We do not have different operations fer ob jccu of different sizes;

2) -and thus we have prevenwd an explosfon of pamneun to opeutiom

(3) We know expﬁcmy which pammtm oust be oomptle known. and whlch may be

‘computed at run-time;

(4) and because types (as opposed to sizes) must be compile-time known, we avoid having
run-time type objects (i.e, objects of type type) at run-time, akhough we do require
run-time size information;

(5 and, agun becauie types areeumpﬂe-tuu kmn,mun perform all the difficult type
checking at. oompue-ume. ' .

~ Although it is a master of epinion, we feel that separating size information results in a cleaner

notion of type and helps to separate ahstract concerns frors implementation details. Overall, we
-are certain of Lbe usefulness of regular m and ‘believe that size parameters are also
helpful in programming
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B. A“Il and Natm

In this chapter we present a mechanism for dymk storage allocation. It allows
 programs to bulld general graph-like dita structures m’uqumug gnrbage collection o
~ much run-time overhead. Furthermore, the use of thw mfw can be prevented at
"cempikeﬂm Our presentation’ begtm With areas, the objmcti ;hapﬁm mnge allocation.

‘The discussion’ ofafus!sfoibwedbyadacﬁpébndw th!objectsuned to name
ob jects aflocated in areds. We then present details of & uﬂug areas and pointers; it is here that
the techniques used to prevent dmguug references are devsloped. N '

After prescming the area and pointer mechsnium, we dimmthe impact of the
| mechanisms on aliasing. mmeqt on the copy pro 90, A0d. Qrsent a variety of methods that
| might be used to implement areas. Lutly we &ve m p 40 ilgtrate the use of the

mechanisms.

SI Areas

An ares; mamm‘awm w m a stack frame,
somewmt like an array. The idea is that the m--w ‘ot this M dyn;micany..

request. Areas are bised on the collections of Euclid tumpson’m but there are several
lmponam differences. The. ‘ma jor; dif fevence wmwmw m of a single
type, whereas wmummmmmmm *Thus st area bounds
only.the tatal amount of me mwmm& of W)utu éf ‘each type
separately, as collections would. This can lead to better storage 3 :
The simplest allocation method is to allocate ob jects knuﬂy from one end of the area

' to the other. No reclamation is done; because areas are in the stack, the space for an entire area
an be reclaimed when the frame it is in is released.2 When the size of a requested allocation is
larger than the remaining space, the allocation operation wil fail. This allocation technique
brings out the sknlhrlty between amsmdam*p: lmpmgmdymmﬂy using the addA

1. We will discuss more wphiuuted tmpmam m for mm Iater’ m this chapter
- However, the general properties of areas will hold true for any
2. Again, we will outline. mmum schemu that do more ﬁe.g.. rechmation) hter
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or addl _operations; areas. allocate new components dynamically in'liké fashion. The similarity

ends there, however. because arrays are Homaensous aggregatis-and sreas ‘are héterogetieous.
Pointers are used to'access ‘objects allocated in aress Feﬂowm & pointer is not unlike

‘ index ing an array, but a polnters lype includes the area in which the ob joct polnted to resides,

and the type of the object; for safety.: Thus the type generater ptr (for polnter) takes two
parameters: an area—»and'a type; pt'r(a,ﬂ means a golnmx wm object of type ¢ in the area a.
wlll be dl;cuued in more detail

(The type generator ptr and the use of areas. upa

TENARE O

' below) The allocation of ob jects in areas is Momod by the operation pldc.tlulloc It takes

one argument an ob ject that is copled to.produce the newly allocated objoct The new ob ject is

. created using f$copy. The typeof piriasiScilacts

proctype (const ) setwens (ptriagd)

- where a Is an area and -3 type. Alloc slgmhjdhml' o8.0ut of memory”) when there is not
_ enough mermory left in. the-avea to aliocatesn cbpaof MWW If @i an area, then

» - var g ptrh.lnt}u- ptrinintiSaliac®;. R s
is a kg‘al declarardon mth initialization. Its effect:is NMM ilnwg« ln the area a, and set
the pointer variable ¢ to point to that newly alloated integer. In this case’ ‘the new integer is 3.
Corresponding to alloc, there isa selecmr devef, med to access objem alloatcd in
areas; the type of ptrﬁu,ﬂ&dcrg/ is: SRR
seltype O of ¢ from ptriat] tigmk (hidm) : : _
where a is an area, and ¢ is a type. Dcrcf sigrals bad_peinter when given a null polmer to

follow (The null pointer will be discussed below) An umugtred use of dcrcf is

ptrla,inti$deref(p)
The standard selection sug_ar»a'llo.lgs‘ this to be written as _
pderef o ‘ h o | - E
However, there ls a speclal sugar for dcﬂ[ whlch is more oonvenlem than either. of the

' previous f orms

pt o , ‘
There is no free operatlon to release prevlously allocated stouge. Fr« would be unsafe, or if
saf e, prohlbitlvely expenslve Havlng frec and requlﬂng ».fety would amount .to. requiring
ob jects to be reference counted, and still one could not truly free cyclic structures wlthout first
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- breaking the cycles. We feel-that reference counting is:t00 axpensive.to justify requiring it for

~all areas. However, partisuiar. apeas can.do refecance MMMW from the
. compiler; there woulkd still be no. explicit free-opezation, hut-setting: a - W wﬁuﬂptr might
. cause the. ob ject puviwﬁym hbym mnum

' 5.2. Pointers v

For each area ¢ and each type ¢ there is a mnr ty ;m(a,tl The ob jects of that

pointer typeare pointers to objects of type { in.aven.s. ’I:bmmﬂnmﬁmuofthe type
" ptriat); in addition to ailoc.and d«cfwhkhmmmw wehawr

(3) equal: proctype(const ptr[c.ﬂ. ptelasd seturns (bach) = returns true if and only if the
two-pointers point to the same ob ject ti.;the same Jocition in the:same area);

(4) copy: proctype(canst piriasl retuens: (piria, < cogies its megument (the poiriter, not

(5 null: proctype O retwrns (ptrias))  alwags renins the'nefl pointer,# pointer which
points to no object. (Remember- Mfmwmmm and sigmls an
exception.) |

'There is a sugar for ptt(a.ﬂsnull() it is :mptr Netia m ﬂu umes no destgmﬁon of
‘pointer type - the correct type can- h obtahld fmm ampt n the ‘case of nilptrf,
which will always signal bad_pointer anyway.: The wm& W are alloc and nilptr.

5.3. Using Pointers and Areas

Up to this point we. have described some feamm 'of areas and 'poinms, but have
omitted several crucial points. A goal in the design of the area mechanism is safety In
particular, we desire to prevent dangling references Mmly mtplie-tim ebecks Prevcntion
of dangling references depends equally on several differént parts of the deslgn it is the
- synthesis of these parts that achieves our goal of nl‘ey. and not the individual parts.

' The technique used to prevent dmgllng rel‘m is buiaﬁy the foﬁo\msg We use
the symacnc scope.of each ates object mdeﬁne X ﬁmmk. muc seope of the am object at
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’ run-time, Le, we arrange thl:gs such: thlt thc area i3 ﬂﬂy nameable Where it will ‘exist when
the program is run. We also arrange for any object that mlght contain (or try to construct)
references to ob jects in an area, to have the area’s name u purt of its type Thls "trlck aﬂows _ |
standard type checklng to prevent dangltng ferences at Wlk—tlme, Thus, we use the
standard type checking restr!ctiom of the ltw to get . much of the checking,;;«m can. '

53.. Area Crestlon = T e e '
Areu is.a type. and areas are: quemaf the mm Thesww operation of the type
area is area$new, which is-used to creste mw Tm ‘operation nkes e argumenu. a
string (describing what sort of area mnwxmu 10 be wied.!' €., “imple" or
“ref_counted”,.and an integer (despribing the size: of :the-arex 10 be created, eg., in words, or
bytes, or some other standard unit such-as the:size of an M'Fﬁm%huypeof area$new is
| proctype(mnst string, int) returns (aren)-signals (bad_argumentetitring)y -
The exact meaning of: both- of the arguments.is systom Wt: the number am! kinds of
area. management schemes, and :their names are detarmvined by tNe language: lnwlemematlon
the unit storage size is determined -by mm ‘and the: meaning of the size
argument: may depemi on-the area anagement soherhie: chioten; as well. ‘Of course’ tmsmu
may signal if its arguments are improper (e.g. the size is mgatlve) R

' Alchaugh area isa. lype. we do not aiaw. ﬂmtﬁtmm in fact. only two things
can be done with areas: they may be created, and: they-may by tved a3 ‘wctual paramcters Area
variables are a bad idea because area assignment is dangerous ~ area am;nmt could result in

dangling references to the area written over by MW
' Since there are no area variables, a special statement is, used to:create new ‘areas, tbe :
new statement. For example,

* new a: area = areaSnew ("simple", 500%;
Creates a mew area g, of the “simple" variety and of size 500 units. The new statement is -
intended to ‘parallel constant definitions, and the scope of the area lntroduced in a new
statemem is the same as the scope an identifier in a o'onsun‘t.défmmdn would have in the same

1. See Section 56, which is about implementing areas, for several area management schemes.
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pﬂsiﬂo" Wmmwdmwwemmmusu«d
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5.372. P'oint’ers aml A‘reuhleps L . o BT R

ftis mmxw:mmmmmemwwmm Hiving
m&mmepspemu“fjff mmwumm%mmamma
the area mechanism. However, any typemmhw repremniion s relying on the
area which cmtmtheobpasmudw. m«mmnmaawmm :
an area: a. gga is saigt0 Wp wmmmmmwuw via objects:
;.- 9E the typs. Thus mmmﬁuﬁmwwﬂmqm the
- second type d@@damam&mm e '
. We mentioned .our-mesived of mmwmnmtw
depending on.an anes. mwmmw W willid o ‘tgpes Umwritable
by requiring. any iype mwmwwmwm“vm Fhus, areas are
hot clobalmddMq ﬂ-wmwww‘wmuman that

-~ binary.tree ﬂmm«;mu e f LR

!'!i" St Hodel o
node mw,’k

et Ty FRERRMLE S At R e e P N TV
mbtmry_hw e ’ ¢

Notice that the type node u nwmve. cw om et Ao, . recurave
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lf their (pouibly infinite) .Pmm ‘u tbt 1 ﬁ“ .
 temporary data structure might ook like this: |
foo = proc N

edure that used a binary tree asa

bcgin ,
const a: area = amtncw( slmple n)
bintree » blmry_trwh. At
.. bintreeS... .. -

. end;
end foo;
| The other- thing to notice about btmry..tm is that it takes g as a ptnmetér- it miist do so to use
ain its representation. R S R R |

Why are no other uses of areas. ot!fm Mm M?' As was lrgued
before, area variables are dangerous because assignment of areas isan iimolmolhbk source of
dangling references. Other uses of areas, such as storing them in dm urmres. or passing
them as arguments, tend to destroy the static scuplng’ ,requmd o that the compm-tlm checks

to prevent dangling refmnm will Wurk Buidu. sinamch dynamlc posmom fmay not be
“used as parameters, and ptr takes the area pdnud fn&o’n paumeter these dgmmic uses of

R

areas would not be ‘hﬁpl‘ul the usefuhen of aren dépends on poimer types. and i in some

A e R

context the type of pointer; lnto an area canmt be expremd nothmg un be done wuh the
~area. In sum, there is no way for dangllng nfemm uo lrlu from dltg stmttures becausc the

type of the data structure depan(Hng on an area unmt be expqu mywhere thq area does
not exist

5.33. Closing the Loopﬁoks v

As demgnstratqd above, d{,ﬁ_ tﬁm amnt ‘arise from dam structures.

_ However there are more possible. m 2t m afm For: enmple. the prdadura
| ptr[a tlsalloc is clearly bound to the area g, and we would not ltkﬂhttpm to be usable

Thls rule is_the same as. that-used in- Algol 68. Sntﬁﬂmufdeh'm fot an algorithm for
checking type (mode) equlvalmce



where a does not exist. - One might think, 'The aren ¢ is mamed In wm‘ out pmmsauu.
there is no danger.’ Hm, tym s mm Mm m gmedun

def lnmon

foo = proeta am](msu tnt) rmmn(ht) |

The a'ssignmm st:temcm below is pnmmblym
p := foolal;
where a is an area, and the type of $ is
proct’ype(comt M) retarns (int)
Therefmg;wecan write, . . ,
* var p: proctypt(mn int) nmm(int)

T AR EE R

gl

“The tode’ pktured above my foim a dangung rgfcrm LX m am o; that retcrence is

hidden in me proeedm wm assign
i .1.3‘;;:; "‘6,"[ )§ “ - RGN Bt

" with other objuts we mld m the t”eef mqusn ) <
Mest rouunes typadonfabﬂnam&qm Fuka@Mﬁt
. proctypc(eum 0 nhrudpuu.m :

' and'tRat of ptrfaibderdfis

seitype) of ¢ from ptries) aumud..pumﬂ |
and both types refer to a. To prevent dangling m-&mmmmm
we prombn routines from taking an area.as a parameter mmmg tlnt area as part of
. stheir type.. Thus mmﬁumww Shice'd euinng: s

e ,;i;iiﬁatmmmm access

R

ohibitin 4mmm 57 mmn of a
mutmg does not refer b9, AP SAA:then uiwmwww be pamd
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‘-through tho routine’s interface. And if no objects depending on an area are pgssed through a
routine’s interface, then there is no point.in the routine’s nhiagth! area it ) parameter in the
first place: if the area is to be used only- louly the rwtmc gm; ggfwell uqte an area for its
own private use. : EREERE IS SR

Another loophole is the use of aréa as anacmaipanmetér ina posmon' requiring a
type. For example, if an abstraction h:s a type p'amneter‘ t, it may declare variables of type ¢,
arrays of type arraylt], etc. Previous restrlctlons we have made prohibit the use of areas as
variables and - their stonge in data: structures. - Tiserefose; -we imtist ‘make ‘n “additiona)
restriction that.area may pot be usad as: an:actusd wmm A

'534 Summnry B

' .Hdre f*a‘ré the restricﬁdm wemdetopt?evema’mgﬁl& referenw |

(1) areas, once created may only be used as ucmal panmters, 7
- (2 if a routine takes an area as a pamneter then that area must appur In the type of the
routine. s o .

@ area may not be used asan actua! tzge ptmneﬁgr

h_polnter fypes, may. be. . Thus

arraylptrla, 1) isa legal type. but bar(p] wtm B8 of, tgpd peigsl is not, ,,gxg;g;-.m,mg what
meaning can be attached to polnters as panm& gnngx) . ; * |
~ With the restrictiom suted above u;erq . no_possible way of mllowin& a. daagliﬂz

reference in ASBAL However. it ls poulbie ] w 2 dangling reference.that can never be
followed Consider thlx fngmentofcode- s : o

§ oyrRL T

In: addmon, pointers may not be used as, parameter;. thoug!
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" new a: area -W'W.m;

7*‘2‘\?'&5?: ) .h! '“ g

mwh mupﬂﬁmw m; S
‘YP‘! Ptﬁhhﬂ' e i

var p pt,yp wmwmw

e
T

Fre *Afmmm black mmﬁmm umiﬁmm of g will

remain. That pointer wil be:dungiing teckuse ftiachies isio sieiet, yich tixs bueni deitroyed.
However that pointer can never be accessed m»mmmmw cannot
be written outside the begin black (the scope of #. Evan If the begin lock were in & loop,
40081 Agoip when it would be

there is no way to “r nember” Mich 2 ¢
invalid.

3.4. Pointers and Al

SRR EV I PR R ‘*»aa.g.;sa I B R R ,

With the amﬂmmNamnam‘mMMmCLu‘ |
We gain many advantages: shatitg, mmﬁwmﬂmmmm we gain
the samedtsadumugespthLU Famm muuwm We

£ st dccdpt-that o dere

““Bis!d o Eiicha 1

T oy MP ‘it M'M enni with i 4 k .
same type. What kind of a&aﬁhg riﬁﬁ I

“shiwring. 'The sharing g , "

+ o checks are made necessary at a dereferencing. Muwaﬂmwww
sotftwoderqnemmmmwswwmemunmmmwno_ |
checks are necessary If the pointers themselves are passad. mmmm»n'
pointers of .the mtm“hdﬂeﬁ;m&mmmm Thqﬂnﬂng

possible through pointers is:not quite as bad. ummmmmmmum
- Object in an area is never destroyed by having another object written over it; objects in areas
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may onlybemutated (Thuisbmuuﬁhamw::mbeaﬁtgm to)

- Another problem, which was mentioned * whert: sefections and allasing wére first
d_iscu,ssqd in Chapter 2, is.that h;a,vtng' an object:as & conet does not gusranteé that'thé ob ject’s
§tate’ will not change. This is because the object may be actensible via anothier path as‘a var,
for example, by fdmmg a chain of- pointers. Huywever, sven thoagh a const iy be mutated
under some conditions, there is-a simple condition under sitidchi it ‘ean be guaranteed not to be
mutated: the object .is not allocaeed in an area. Tests for aliasing alweys catch overlapping
ob jects residing :in the mvambh,ao«if ‘an-ob ject that is-physically pant of a variable is
. accessible. .as a censt, then we can be sure it will.not be mutated.- Thealuslng detection - checks
performed before procedure calls. gumnm this. On the other hand, if the object in’ qucsnon ,
is in an area, it might be mutated via mmmmmm used to access it but its
|dennty can never change because the iaapm vaziable itmddu in:can never be mgned to.
This 1s an advantage of derefegencing t0 mm of ts varixbles.

_ _ Note that if an object has componen _\ﬁm ave stared: in &% area; then its componmts
can always be replaced by, replwng tbc m:@ them m lese_no useful abmty through
derefergncing pointers to ob pcumsmd of. {0 variables.. The major disadvantage of sharing
in ASBAL is the same as its major disadvantage:in- cw *siumg makes verification and
proofs about programs. difﬂcult., by requiring mm axioms and proof rules. The
complication of proofs mum from . sharlag =is, v 33 1& .unsolved pmbkm common to alt
Ianguages having pointers or sharlng '

5.5, 'The Copy Problem

When presen;ed with an ob ject to copy.that: contains 5pabnrs. should we copy just the
pointers, or ,thc ob jests. pointed to as weli? TMMi&Mmtypu require copying the
 ob jects 'pomted to, and other types forbid- 4t Asdiscussed: in ﬂwuzmd chapter, the only
| solution to the problem is to have each Lﬂn provide a a” operation, which does the

appropriate.thing for that type, - o

In CLU, a copy operation will uuully copy- the obﬁcu referred to ‘instead of the
refere.nces. but both sorts of copying are provided in many cases. For example; CLU has two
copy operations for arrays, called copy and copyl cof:y does a full, recursive copy while copy/




copies only: obpct“m However, Mmmmh CLU, wiereas they are
‘ always eamsin M&ﬁ» Heoswes: wehave. WM ﬁw M’”m can

Eum sort. Tm,gw« .4 mm . ;
f\,,(;,,-;imhmmuw-uwwwm
s usually, desired; et she ' ,,w;wmmmn WMW
....operation of that type. .
-  The:-copy pesblisnvis clisely Mwmm Mwuﬂ mwm
.. problem. mm mmmm%ﬁmw: :ype. and it

ﬁ.smwmwﬁa ot seme. typen: e spbowgent ootk Rt Ui JeltiN & e of Rion
o oljects. are; squivelent M awd: onlfs 16ty svp W0 D il oipe. Wer - athier
e‘l“lvalence wmwﬁmﬁw&m_@ NI :

S . r WlﬂWM T"’%o sets are
msw«od«pﬂeif mwnmmymw ~theord ]f tﬁtm in the
. Mmm for etk It 18 too: strong: W WWMW s

stmctures mmhtypemmpmvmu, : e o

5.6. lmpleme,miag Amtnd Pointers

- Quir originat notion of AR A Wa-s blocki of siériggy: alidbatid: in a suck frame, and
. lhat»«of a-pointer was-a: m:mwﬁmm Siihing of ‘thie area).
. However,: any-otber. implerntations of Mﬂw Ak cbutd’ *M& d‘memory
~ taken from a- sorage peol sepurmie frony the salk’ This' iiglimenu '
run-time support code, but has more. flexibility. For exnmgti: il COuNE’ grib pros b‘!&ks
storage automatically  If thelr orighwet sivount Wil wedd Ul ‘Rbied stiv-biltks would be
. allocated; and the-blocks wsed by:an:uris woukl be: réftiiniet 65 & ot of Tres Ulbeks When the
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area .was destroyed. Thus, very emdent storags muw would be posslble. One coud
‘even go so fards 16" copy cumsvﬁy inacoessit ?nmsmbm-ﬁmma'w devm to get
an effective thcreasé ‘in- ‘address space. An” at different approach
single heap in which alt areas allocate thetr ol 'l‘heobm efﬁuch lnl couid be chamed
together to be freed when the area is destroyed. .~ SRR ‘

| Somewhat orthogonal to' the source of the mwm m;emem The simplest

oooo

- scheme has been mentioned before: linear allauuon wizh do nchmation Hmver, areas could

reference count their ob Jects; alloc and the pom copy Gpersition toild have code to maintain
the counts. (The compiler would have to. hg& in noting_paimters. that;are destroyed, however.)
With more sophisttuted run-time support, umm collection schemes  could  be

mplementet:\l Our goal has been to avoid the necessi }gﬁpmcﬂm but thl.t does not

mean that we cannot provide it when asked. et &

One mem of areu s th&t thgy alloy. mn; diffmm mamggment schemes to
coexist, if care ls t;ken Hence. storage  ianagement , faciiifies can bc tailored. to the
.programmer s needs in each problm even wm;kg am res ut‘ n;em program,

. We beheve areas are a flexible and potentially, jopt akern
coilection Poimcrs can be as efriclent as mchinc lﬁm md a“mtion within areas M!d
not be slow area rosmnes will most. likely be hand m in ammbly huguage. Argumeuts to
‘the routines will be in terms of machine addresses, o(‘flm. and ml_mbm rather than types, etc.,
b.éi:a use they will be called by ob ject code and not directly by users. The ability to tailor storsge
v'mana‘gement to the task is probably the biggest udnmqe of areas over a global storage
mahagement schm;' ' | ‘ '

1. The main difficulty is supplying the information required for tracing. See Bishop
[Bishop77] for applicable pamsi garbage collection techniques. Perhaps these techniques could
be combined with Baker's ideas on incremental. garbage collection [Baker77), or with the
transaction file methods (Dmh‘n Barth77] to provide areas that do local, incremental
garbage collection.
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Figure & The Queve Cluer

. quetie = clusteria: sres, & typel de-creste; inselt, remove,
: ' whmtlm copy: mgmgwm

rep = record(first, last: ptypel
ptype = ptr la, elementl;
element = recordinext: ptype, member: Gy

create = pioc () returns (q: cvt); |
- q = rep${first, fast: nilptr);
end create;

insert = proc (var g: cvt, const x: t); ' :
. - YBF P: ptype = .n;a,mwm:immm x);
_ Iqulrat-nilptr ; faim ,
: then gfirst .« p;
, else qlanttnext. ol
end if;
| qhst (2
: end insert; ‘

5 .3* .-

remove = proc (var g: cvt) returns (x: t) sigmls (empty);
if qfirst = nilptr
then signal empty;
else
X := g:firstt. member;
- q.first ;= q.firstt.next;
end if;
end remove;

members = iter (const q: cvt) yields (const O);
var p: ptype := q.first;
while p ~= niiptr. do
yield (pt.member);
p = pt.next; -
end while;
- end members;

end queus;
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5.8. Example Twe - smsm

) Thtsexmhnawmpfwwum& hmmmhue_
improved bagsbywm "l"ﬁ‘wf Pl ‘
« recordicount: Int, . ey RS T ~

prmde'- p“lﬁl, mﬂu). EREa AL S

node = recordieloment: t, SRR
count: - int, o R SR

left:  pnode, .
| right:  prode);
This reprmﬂm 13 csomtiny ”m#m“ MNW uphoﬁ by an
area, and array indexes replaced by pointers. Figure 8 pry mmm We feel the
new implementation AMMmmmmm Mpmmm the
array containing the wodes had to be passd In SNy recwsve *f‘
wmu:hucme'pm'dm:mbm ‘
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Figure 6. The Sorted BigCllmer

bag = cluster{a: area, t: typel is create, insert, count, size, tncrmlng. o
‘where t has copy: proctypc(m U returngly),

equal, i proctypueliit £ retarmitide end;
rep-:ecordcount int, o
S 'sizc- Int : /
pnode - ptrh.nodel L T
node = recordelement t, ‘ o
" count: int,
left:  pnode,
-right pnode]

create = proc O returns (b: cvt); L
b= repx{count: 0, siz&'0, root: ﬁw; Cre,
end create; |

insert = proc (var b: evt, const x: t) R R
b.count := beount + ; S S
const Rew_ptr: pnode, alloated bool = insertl (broot.x)
b.root := new_ptr;
if allocated then b.size := baize + I; end if;
end insert;

insertl = proc (const p: pnode. x: ) returns (q. prode, allocated:bool);
if p = nilptr
' then
q:= = ptria, nodel$alioc(node${element: x, count: 1, left, rlght. nilpte));
allocated := true; '
elseif plelement = x
then pt.count := pt.count + |;
elseif pt.element < x _ ' o :
then q, allocated := insertl (p1.left, x); : .
eise g, allocated := insertl (pt.right, x);
- end if, ,
end insertl;
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, Figure 6. (continued)
size = pm(mbaﬂm&m :
s:=bsize; -
endsiu;
cwnt-pm(mbcrﬁm(cw
¢ := b.count; -
end count;

increasing = iter (const b: cvt) yieids (const:t, dat);
for const e: t, cmmmwmwu
yield (e; o);
end for;
end increasing;

increasingl. = iter (comst p: mmmam ‘
if p. = nilptr them return; end if; .

for const e: t, c: imt in-incrensingl(p?: o do
yiekd te, 0

end for;
yield (p?.element, pt.count);
fwcowotft.c:mm

3‘"‘“ ‘s?' &
Iend m:mx,
endbag,

W B
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‘5.9, .Ex'nmﬁle 'l'hree - Symbol Table

presented to allow comp'aﬂm with Mpha'rd' A symbol m mm ' mnp oln fmm mlugs
(repremting identifhm) to attrtbute ob’m in M , ,
header: - : g

symtab - clulter[a ares, lm" type] h mm is,ddﬁuéd)
. i blok ; ‘

,,3 ﬂ’¢

and a description of the opemtom.

 create: proctype () returns (symmb) e :

insert:

e ttines prstypn e -
,returmtmlfandoulyifﬂnquﬁdbddm:!lbubbekkm

; -entgf;hbck »proctype (ur symtab) T .
. - qumwhatevcr ekésping i “"‘;“’fwimbbckkvel ‘

Ja iz '3- ;.v’.;;

leave_block: | proctype (var symub) n.m (undqr_flwi ' :
. flushes symbols of top NP and drdih Back ‘s level; signals underflow if
~an amPtismndewﬁW‘ piid WM

‘ Iook;up: seitype (otring) of attr 146 m" L_pr - |
_ selects the attribute objelt' Faé“the s o ﬁi’mﬂ;mn not_present if
there the syibol Lot et table =~ '

A hash table will be used: to ook’ up the W ﬁ‘ﬂ!dhhlg We will use a linked: list

xf‘ @

for symbo!s hashing to the same bu%;hggm MMM nfm such a Tist. Each
entry in one of these lists will be a poimgr*to)the dmm;uggn for om symbot This. data
structure consists of the name of tly gm.@m wd MM&‘ mtrlu made for that
symbol. Each block s represented by the list of the mbell deﬂmd in it, and the blocks are

stored in a stack.” An actual statement of the represenbittioll ookt mike t_ﬁ{s more clear:
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mmm.m
blocks:  bikustk,
 hash.sable: hashtabl;

blk_;tk mr.kh. hhsk]

N S T = S
[ ST R UL S

N

See’ Figure 7 for an examph of ‘h W% oy

performed. Here are brigfu s WM“‘%
- Openitions a@rum; gl TN i s T e

'D cr«mvm;m sy ,
cumsmmm

#'ivft w*‘e B By

3oty o gickh

: c5> mpty pmmmmmmm B
g I JMW”“WFWM & BETR
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L]

Figure 7. A Snapshot of a Symbol Table

Below is a drawing of the representation of a M n@k after the, foﬂowing qperations have
been performed on it: .
. create

insert: a, x1

insert: b, x2

insert: d, x3

enter_block

enter_block

insert: a, x4

insert: c, xb

. enter_block -

insert: f, x6.

leave_block
(Assume that a, ¢, and f hash to the same. bm u;d list. md “stack are implemented with
linked lists.) . ,

jevel 3 ‘ IR g ‘.\8
blocks
' hnsh‘.tu&e.;!': ’ ' :

.
I
——

x1
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(D create: WW

o mm:mmmﬁuwmnmmnmﬁm
of the Hat;

themchmmumdtmm

(3) members: u«type(lﬂh.tl) yieldo(v)
ybeids the elements of the list nm

I

Nowwepmenttheopomdmmm muuﬁu

create = proc () retuens (3: cvt);
s -nps{lenk lv,_

Lu’l*

Thuscrcauremmta:mhdubhubbckNLMWMMwWyhash

tabte and a single b block with no spnbols. . ’ : :
mzmmummummmmmm It

worksufnliam. S e SR o D '

(l) :hemuzmnmhdmmmm»nwuum _
@ i thesymbdhpmwd"ﬁmmutﬁcmwm&enam :
aNMnI:CMMWMMﬁmMM
() f the symbol is defined WWMMMWbmm
4 if the smmqmmnmwmhawdfnmm-wun
ummformqmmumuwwm o
® lamy the symwm mwuam”;, *,‘,.Iwmmm
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 insert -pcoe(nra évt, conist sym. strlng,‘

~ const bkt_num: int = hash(sym); . '

varp p_;ym_;m o nibtr e
“torpin i b i

. " break;
. else signal defined;
end if;

. end if;
‘ end for;
if p = nilptr
' then -
P p’tih. sym,.mtry!ta!bd . .
sym,,entryﬂ:ymhot sym, :
o stmeks: am_tktcmwp;z e
attr_xtktpmh(pfmk, uttr_cmrﬁilwd: ‘ sJevel

ml»; ‘

const, newblk symiist = xymwmdp bM&WJymbow
bik _stk$top(s. bbckﬁ.symbolg 2
end insert; - L e

The operator cor (for conditional or) evaluates m ucond u;gnment only if the first argument is
false; its value is the logical or of its argumenu. Thereis alsoa: ciﬂ operator- conditional and,
~and it evaluates its second argument only if the first argmls mn. The.regular and and or
operators are sugars for calls, and therefore uhup cvahme mnrgumm The cor used
~above prevents our following a null polnm '

The rest of the operatims, ts_dcﬂnod, mm.b!ach, lcaw..btocl;, and loolmp. are
straightf orward. Notk.e that lmu_bloch must thm l.wsy lu qmbol deﬂni!lom for the block :
~ being exited. However, it does mot throw way an m :’-uth. in this sense a symbol, once
entered, is never deleted
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d = False;
end is dcﬁmd-

enter, Mock pmfvn s evt);
P ; M{MW»

sesire aln

s. levei = slevel # ;-
end enter_block; Coas
leave_block -pm(vn&cmmm Lo
1F slevel « 1 thew signal underflow; ond if: it oa
slevel := slevel - I;
for var q: p_aym_ent in ‘
attr_ﬁckwm}'
end for;,
end Iuve M
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| .'5 10. Comparison of Area- and Steclz Based Progumming

There are aonuderabh diffmnm mm tlusters for objects in the stack
- and_vnes.for,ggmgo be-allocated in areas. - Unlortunately the:user must plan ahead because
ebstrectian: designed for the one storage mede. will uwwhemer!me to operate in the other.
The reason is. that stack- and area-based ubmm take. dﬁimt plnmm ‘sack-based
abstractlons will use size parameters, | md M am will maieut one area a; a
. parameter, but not usually any size parameters. -hlowewer, 4f- mnmm is examined more
closely, it appears that stack- and area-based ubstm:ﬁon will alnys be different abstractions,

f ltacl-bued uburactlons will

stacks as opposed to areas. Another dlﬁmnee n th:*t amys wﬂ! be used to represent lrsu in
stack-—bﬂed &b!tm'.tm biit Whﬂked Aisty’ m fite ,h n:ed in areas. This matter
of bounded vs. unbounded abstucﬁm ‘néeds Piirther memi‘i CEm

501 Summary

‘ We have presented areas and polnters, featum thet edd dynamlc storage allocation
and list processlng capabilmes to ASBAL \mhout reqwlrgng glrbage collection or great
run-time overhead. Our pointers are safc- they may never point to garbage Polmer safety is
' guaranteed by compile-time checking whleh prevents fol any dangﬂn&re{erences We

: extended our a|iasing deteetion and pamneher meehanhms fqr areas, and dt;cussed a variety of

'possnble implementatlons for areas. Lastly, we pruen,ted three prqgra mming examples; two

were new implementations of previous examples, and one m a new cluster We believe thnt
the concepts behlnd our areas may be useful ln other hnguages beﬂdes ASBAL
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6. Summary and cm

.. does not. mwmm Our-ajipy
extend - i a3 neededti; The' najor cm m%ﬁ*tﬁe aniliielying - semantic” mode! of
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RFU TRy
We have deugncd pngmnm ha;nqa mg abstrnct data types that
sdhi il A 0 CLXY 232 ‘Basis and change or

my of the

wmwmwwctvwwh%mm angum

necessary: o obviise mmmwm it
rmmpramm o B s e
Gz : AT Fowii o o o4 ’ L
| (l) Selectors mmhmi;m for accemir &mmmmm

. ;Mmymmmﬂam bt handling

(2) Siu pammem's -a tm _
gm Deded; shae; prramaters mmﬁm where

T 1 %. slte aumm S ‘

Of the three extensions, two are just generalizations of commonty mqim ideli,’ from their

| presem use tothe ralmofabstuctdatatypes. smmumm:my component

" becaude the' objutt"f 9
" ‘account. “For uiﬂph.#wmbdmmfmjmm«w pnblem ‘would not

n the abmdmdnwh&mﬂcmﬁdﬁgkhm

PReTR {05

.....

' Aress exténd tﬁe hnguage in quite a dm’m dm They are an orthogonal
addition to the Basic ASBAL premtsd in Glnpun 2 bt l-hnm lms were tdded so easily

531

mammw‘~mm zamgmu into

)

 arise. thwttheouprprobhmﬂm&hgahbbhna deﬂmdmgyfornltypes

faw"'oa.s VRS

eant m«!nt. T'he area
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6.1. SusﬁémJ_;ns for Fusthes gm L
vess  selated (o, the. -design of
s dexcibe 3 ﬁew oncerning ASBAL

:;.,f;" an Wngusge we have. designed.
;macmm amgqqd muy are

There are many areas of possible further |

Ianguages supportlng lbatnct dat:

‘mlghtbeworthwhne ‘ T B R
o A' more ambmous undenakm‘ mld bg egm to. A&BAL for _systems
| programmlug, although my tation wonid thclmm ome.. )Hm
are some systems pmgnmmln; futum ;bgt [ I 1AL

fm-
g S“i"’con Sed ex &'m’ lme ‘m “W m-“gam nnufe operauom. such as

i Y

(e ..g:iche memogy) prpcus

(‘i’ o

v, ':'(’ 2373

 controt of input/output Jevica and :p‘d}l mg! - €
swapping, and ‘other features for bumhg higher fleirei panlle! programming_
constructs; O R

(4) user-written ' storage mamgemem puckages, pombly in the form of new

. implementations-of the area typ&

‘ Anofher suggestion for further Wivestigiition-1s: iicorpotation of our area and poimr
mechanism in other languages. We believe our scheme mmumwg:w ASBAL, and

PR LA
WA R s PR K

| 1. Por’ exampie memory' ‘a’iléc’atidn !nvo%va the unufc u,g: peingo ReC memmef a-hlock
~ of memory words to an atbnrgr . Mugh wock cempity M% o the quastion of chow

P, LI ) ;M'ﬂm A at-all Ww
“[LAMpsoRTT for oné teé'hniqué : W  checking... The:mechanism presented. there is
simple but inadequate, because there is not enough control over which programs may use it,
and how they use it. :
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t;'wou'%d be interesting to see i nmmmm Camparison of our area
mechanism with its parent, Euclid's collection MWﬂm The size
parameter thmw:&eummmmmmuuanm.
"dﬂghtfo‘rwurdzmw& ﬁn’ vsun?a““ g, £ Y TR ‘

© T Kodifferdnt tine o Fetedreh 1s 6 desigh tmmﬁnmgukﬁﬁsk?m.
et uitmg stitic Tacvel tharl ik " Uhdcation of Werage lém * mm‘&m a
 syfithesis BF the'CLU- cmwwm“ i “eomcupt of type managers. Each type
- manager wodkd statically posséae”orige avd woul e s tres g‘o;aebpéu& yuma that
| "W* The dset's m TN ﬁi stack” would enc

ECUT e SEANGE 3 A FTH
W% typed ubyct ufm which
g tzitey wiatel 3 4L & by g

iﬁﬁ?& ﬁ»&‘ ¢ ,JW' i - -|!

!!il!!wﬁ? v g Telnloo

distribute on!y referencu to iu ebjacts. the ehjm mﬁ be kqn pr!m uonge
gw TH M,w‘ g APy

stonge used by lmceeutbk wjam.
33 &,9 Y3

mamtgers2 Sﬁﬂ. we beucn the type“ w 2 A
: "’aevaoped ima a stmphr und me pncum Wm m

82. leusiom ‘

" We believe we' were successful in mamwmm types that
does not requireg:rbagem Aﬂdnmmmhmgnaﬁrm
‘ ,;ﬁhsophim tmi:.whm ;,,;namm LR RL N

. - T 5 o S e g odgare
A R A T A B . N L NN
R BYE L % A A LA e
‘,@3 L fone ¥

"‘““P" ‘the type managers would have ’
£ imnmagement-OF ob J6ot oF il ygpe: * 1
R muﬁmwmimw%
“ wish “quieuds: of* aiy ype. m#w&ﬁ)
Wmmwwm ' 7!

il BEL
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"+ ASBAL does not have the ehgam or cw But we did not expept 1t would. There
appears to bea mde—d‘f besm elgame gu Mm L w gfuem on the other.
CLU’s semantics achieve elegance through the use of a simple and pm'ful amtlc model.
which unfortunately requires fairly wmphx m—-ﬁm support. We htvc tnda.t away some of -

5&{@(

that elegance for a more efficient run-time muhaaum. Humu we mw tried not to
compramise - some. more: mm;mxcw. Qm,.pm hu bpen toward a
completely type-safe bntutme- type-safety bel ’

~ similar languages) but more beauu lt l\u a panmqu le thlp because of abstract

 data types! Yet ASBAL s more complex than CLU. ‘We | beueve the source of ASBAL's
cempkxuy 18 the conummaf ronning -within.a mmmm Mmmged
heap. In a sense, we have built ASBAL o mwmww onus
by our requiremenu -

ASBAL represents a synthesis- of ideds from several hnguages, and several semantic
models, We feel the synthesis was profitable, and hope that our work may suggest and
encourage more investlguthn in the area. '

l Pascal -has been criticized on  the grounds that it 15 to0 slmple in this respect. no. Paml
_program can deal with arrays of any size.
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"I Synm «m

m“mmm,mmﬁm Tmquudis an
extensionoﬂha mm-nw ﬁﬂ\; “’ﬂm Soural ; :j MM Mﬂ; is as

{ } mmmmmwuwmwumwmmmmmmm
N -m.r.mmm'-lb'gmmw‘-’m'b;

() -.reu.-dmmupnmmmwm G
=> - used to separalp the lei-hand side a ,cwh muan (a Mormd) from tho
- ngm-ma -M- (the mim it mx »

: mmwwvm WMWW HWW m t.rmind



I.l. Formal Syhﬁx. | L _ AR T

LLl. Modules =

program
module |

c!uster

clustermodule

procdef
iterdef

s_eldef v

fparms -

~ fcparms

fparmitem

.. L e T e T Tl FA RN SRR TN s ey T e gl R TR o S e T R e ey
e R By e vt e iR S R o e LRI e it “ "
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f .>cmm]procdoﬂ""“j“'*' »
A  ;_m_emm[,cmf.,@.[mwm,] 
| {mm}up-w:f‘m‘f}}

«> procdet | iterdef | .qa

- id’-ﬁpm [ fpaml ]W{ M }{éw ]

[mtmumx ]’Mﬁifﬂ*i;

dustirmoduh { chﬁl"

. - M-‘lter{;fgmﬁ ]’W yids: }{w]

o [resuktm;}mm ] }x

 wid= selectorE fmz'}( - Mypi“{‘.l& : qtypo } ] )

ofstypofmwmmffa’g [miriehom ]bodyond[ ]

L2 Pmm.uwm

- [ fpormﬂem { fplrmlhm } ]

| '. _>[[fp.mu.m{ fp.mnm}“msll

=> de : (intlboollclm']typcllm)

The abave three productions are for formel wmton (to sl Sefinitions
except clustorc), formel wamhn to duohn, ond the items in formel

_ perameter lists.
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S —, »«m}nm»{.m}}:
sparm => exp | atype

~ The productions for aparms and qnm ore for actual #i;'aﬁﬁton. which may
be exmoom, or type m M% w@d s MM

_restrictions .- vrhere rcstﬁcﬁoﬂ { m  resirict m ? e

restriction =>id Inl restrict’ { .th'k:t }
restrict => ids : ( Plype ityns. 'm)
113 Arguments Returns, Yelds, and Signels .

fargs . | ->([mm{ m-m}gll

E | “taitem o ->(&!;!: lm) “'%M{W ?M‘} -

.frets . | -'>’ntw‘n_s‘( [Ms,dwq{gﬁwgw}],

tylditem o ->‘(«‘ "d m’%)*‘?"{*ﬂﬂ'} RS
fsigs = sigaas Ctoigitem { . foighmari§)

Thoabw.prmdmwctﬂ - ; vidt ibts, yielde lists,
and c&mh lm: Tboy are mw«mmm

1.1.4. Sta;temcnts

body : ->{Wu}{imm:}

enuate’ => id -expy

B "
el 'assign




. decl

assign

while

for
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it
| white

' | with

1 excapt

| return

| yield - |
l'so!g;c;; - I S I TN T (T

| signal

| invoke

| tucm‘f .
| bresk
l new

o> var ids : qtypo{,ids qtypo}:-OXP{-‘XP}

# T

‘tlnrlds tym{ .idl;tm}

| const ids : qivm{ .'d' q'ym}-m{ J’ﬂi}

In the first and third productbm for decl, m‘im of identifiers on iho loft
must equal tmwa-xmmﬂ'rw

'->ids -oxp{ exp}

' Thoro must bo elihor one Qtprudm, or es mny cxprcuiom os thou are

identifiers.

‘ ->if.xpthenbody{wwthcub°‘¥}[°"'°°‘y ]"“[" ]

> wmnupdobadymfm]

=> for fotdec! § .foraml}famdcwm[ for ]

Ifor[ ]Inlrwokodobodyend[lor]




W
‘,_’fovduc‘l, »(W‘M)W:m
with »m(mim}wwnamﬂfm}
cncem o ,»Mw{ m;}fm;}“ . |
meanme’
whenarm »mm[fmlsm
| imwn) M | | |
' lnmmam.ummmwm-mwwcm
" types of objects in the sems erder. Tiw® diliohe peodisciion is used for
mﬂmmw‘mwtwﬂmam :
cbmmmh!bmkﬂ"}' ool .
~ otherssrm => otivers ( const id : glype ) : stulement
' : ‘ lﬁm(‘) dm | o
.mwmmmamhmwwmum;
andis: the: name: of e stic AR .

. oyl [w‘f -»}I‘)r

select - => geleet oxp

. s‘tml ._’“‘m“[ [mt “}I,I e

o emdmbdb

- ~->e-=-Ls(wtwk#@wﬂ -~
B : |m staboment e

tagcase _ "m“"‘?‘h
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L YRR R &

There may be only one others arm per ugan statement. All tags must be

~ accounted for in each tagcase statement. AR tags named on the same arm

break

must be for the same tmlndﬂn!yudthhcﬂydodvodbdonmhr must
match thet type.

=> break

"->newid:nm-oxp

The expression must be an invocation of aulnow

.Seversl of - the. above. M ore- m in particuler contexts. The

. ntm ﬂdmﬂh lagal: only in procedires: ahd Rerators; yield is legal only

LS. Expreulom

exp

.snmmmmmmmbmmumm only in for

=> exp bop exp e
| uop exp

- exp)

uterst oy
| selexp

* latvpe sl apame ]

lup
[down -

The last four productiom of cx[a md oxydnkg;; thoy ‘are for routines. The

special rouﬁnes ‘up and Mn e M only in clusters and coﬂvort

i belmn the abstract and rep types. . Cy

selexp

=> id

Jexp. id[(oxp{ oxp} ]

| Iexptoxp]

jexpt
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literal

- booltit
nultht

ptriit

These farms are Un orderk o variabils, selaction, arrey indesing, end pointer

el-1a

KR DI PRI |~<t~<—|-|»—i~é

|8 |cand B
I1]cor

The operalors on mmmmm privedencs. The operators in the

. tirgt Jin ind moet Nghtis, thots W ThS: snciiil-Sess tightly, eic., oo the last

Hine binds oeal Ughlly:- Wmmmmmmw o,

‘xopyep? M%x»y)uﬂ%affﬁ?ﬁm*ua(yuzr

‘->-'~

->¢aut|cm|dm1u¢éu|w1ﬁm,
[ atype 8 (oxp : m{.m}l -

'ln'mttmo oxp : oxp ]

| atype & { ids : oo { ide:om})

Thomondmdmrdﬁmn!uﬂrmwm which has two forms.
The '[w'"g.mg....ml‘m“mm\vMbwbm
ummnmanp,mwhmmm The .
‘[axpo oxpl upz]’bmm-nmiy‘”“mm.ww
 nd N M uﬂu of Wz» Tiw fest




1.16. 'l"ybes '

type -

ptype
itype

seltype

fpargs =
fpargitem
fprets

| ids

| |id [‘wm'm ]

A e PR BRI R e

| =>int
| boot - |
Ichar' , TR
' wull
| area

I“'lnl[;expl

;lmordtm tm{.u-:tw-}l

|°mf’(,‘?::§3£o {. Wiitype }) .

Iptype :

levtliexp)
Iptrid,atype)

-> pmfype fpnrq: ['lpg_ah_ ]Inm ]f

=> jtertype fpous fylds [ Mu ]

Y seitypo [ !pargc }ofslypo fml qtyp‘{ M.c ]
.- ( [ fpargitom{ fporgihm} l) . {, '_

'>~(var|const)¢ypo PR

N _ ret!i"f" ( [ stype { , stype } ] )

- td{ , 5&} | o ;; -

135

The productions of type ere for thqn poomom where » v-typespec is

requirbd.
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LL7. Star Fypes

""*ﬂ![[;m]]
.|m07[3'm[ Wwf}
| record [ 1ds : stwo{ il e !W}] '

Fmuay; : ]

“'Mf[hk styp.{ m MTI

. I"’[m!fm]
| ptype |
| itype
|seftype

lcvt[{nmrm},m{3§

- ' P" . k’ qtm 1 IRCTIT I ¢ b S
Wafms | -> [{ m{ ' m }‘k{ %W{% {'m} l ]

sparm . . > m | '

An 3{,’,“ us: ." “r“ l’ iﬁi«’?} : ,f st : i Pl

LL8. Question Mark or Star Types

‘“YP_? : > it
' char
| nul
fares



qparms

-qgparm

- stf‘i:ng [[mpmn ]] .
_lamy[qtvw[mp-m,qpim }] S

| record [ids : qum{.m th»}].

thmsm{.m etypo}l*

afeem]

| ptype
|itype
| seitype

. .|cvt[[mm"°{""'“‘} ]

_‘7|rcp[[;qp-rm{ Q‘f"‘}l]
lptrlid,atyps ).,

.>[[.p.m{,m}][ W"‘{""‘"“}]’

> exp |?id h BN

 The nontorﬁndwpoxpands to vc?-tymn ond ﬂd’s -

187
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- L2 Syntactic Sugm

There mmnmwmmmm for nprmel invacstions. These

forms are catmm:.y,mdzmma
type of x (il.e,, its typoud.ﬂmdhgpm,rmg

_Suger

x.n
XN =z
x(y)
- x[y) =2z
X %% y
X%y
x/y
x/ly
X+y
X -y
xHy
X<y
x<-y
X =y
X>-'y
x>y
x'~<‘y
x~<-y
X vy
X~ my
X ~>y -
x&y
x|y
~ ¥

L.3. Reserved Words

and char eise from
area cluster elseif has
array const ond if
begin cor  except in
bool cvt false int
break do for is

cand. down

Lo

nm and T in the syntactic

T



R R

slpha .

Hetter
,di;it_
intlit
chafll"

Cstrlit
char-_r‘vepl

' p_rinfing

special

octal

Lo
e _

L4 Termlml Symbou

) ;,‘-> Mhrlw -

,‘7.,_,” IZT ] lz e

\;->o| |9 o

=> dight { dm} '

LT

EE BRI 118 e

. {chlr_r.p' }
> prlnﬂn |\ spediet:

ot s

-Iochl octol octel

=017

- Xrepraspmte, 5

% represents CR (c;rrivqo‘rotum)

-> my ASCII cheracter such M 373 < ochl vilue. < 1773

fex ) -,“ 1v‘\,,=,
X fOProgpnh

! represents "

% represents \

o .,_ﬂu.«(m)

o "*'P'm'*!“ {herizontel teb) .

X represents FF (form feed)

X represents VT (vertical tsb)

gve iR gepes b

139
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I. Mnmrmam

S el

mfanmmmammmﬂm Mmﬁrﬂducﬂbelhe

~ special notstions used. The srguments h mmm ebjects, not the “syntactic
expresswns) are cdiod aru' ‘org?’, ﬂc., or. just ‘the w H there is ov*y m If an
operation signals ‘foo’, we say that foo occurs. Tho wgﬁgi&“w nomes is dropped
where there is no ambiguily. Arithmetic ons: i j‘mmmmmm
mcmwwmmummmmm'mvmmm |
Some definitions invelve restrictions. a:%&mmnma 'is ‘sither a
standard where clause, oro!mm
where each T; has oper_decl;
which is an sbbrevistion for ' !
" where T, has oper_decl, -, T, bas operidecl, |/
Seversi definitions will involve tuples. A tupler i ﬁ ften <o
components of the tupb.nﬁth“ihi”‘m. A

w B The o ere.cslled the

s with n components is odlod _
an n-tuplc We mmunmmfs o R R
5'20(‘!1‘1.1 Q“?)Iap, e vy _i St k P

A =B iff (Size(A) = ssa-ca»Amusisnxq-baJ
<a,. .,b>tl<c,..,d>-<a,...,b,c,....db
FrQnK‘-!, b, C)m<a, B>

~ Taill<a, b, ., c>)w<h, 0>
 Tai%A) s A ond. Td'*w-
Occurs(A, B, i} !m EW- C’I% RM -i 13)

Lastly, we say tuple Amt dhﬁxfﬁ F#M B, 1).holds.
ILL Nulls R T i R

stamt

Thare i any one,inmutsble bject o 'm'lllsm'” mil
equal:  proctype(const MMMM e tesey T
A'st rotums true.
copy: | proctype(const nuli) returns (nall)

The obvious copy.
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IR, Booleam

There are two, immuteble objccts of type bool, denoted by true uﬂ !lhe. They r.prmnt the
logical truth valm

Cend roctypc(const bool, bool) ntum (oo
Do "proetype(mtboﬂ.bool)réms‘(inlz\
not:  proctypelconst booh relkens ¢ "f e

e

The ‘stondard iogtcaﬁumﬂom T
© equal: - proetypecmn tooi, bool) mmi (bool)
'Equal returns true m its orgunmm ore the: W

copy: - proctype(comt bool) returns M \

Copy simply coples its srgument.

11.3. lmegers

. Objacts of the type int sre immutable wd nprnmt u wbrm of the mathematical
. _;ntegers The subnnn (which may dmor wﬂh noh et .. .
(It _Min, Int_Max], where Int_Mins-215¢1 and lm_uinz"s-{ 'An overtiow exception _is
signalled by an operation if the result would lie Mddq Ahin. intgrval - S

add: proctype(const int, int) returns (int) signals (overflow)
sub: proctype(const int, int) returns (int) signals (overfiow)
mul: p»etyputunm int, int) returns* ﬂnﬂWM)

'ThQ standard lntgur opeutm.
minu§: proctype(eomt int) returns (int) sigmls (ovorﬂo\v)
| Minus returns the -mptwo-of it's armnt. -
div: p’ﬁo"é’t}be(cénst iut, int) returns(int)ﬂ_gldt(wo.deb mffb;) ’.

Div computes the quoﬂont of argl and g2, i..., tho integer q such th-t '
(3rl0 < r < jorg2)) [argl -qtar¢2+r]. hro_Moocmlf otg2 = 0.
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po'wer: MMMMM)MM)WWM mm)
TMsmmnml rtiudhﬁnxg!pm Mm-l WM‘

'Joccursﬂ org2 <0, .. o e
mod:  proctype(const int, int) returns (lnt) dguh (un_dlﬁl-. mﬁu)

This computes the integer rmm of dvid ;agz tyv m;.p.. the result s
argl - argZ*dN(lr'l ww Zorom Wgag nq;a- .

from_to_by: itertype(const int, int, int) ym (cum iut} w (mera_sh

This iterator yisids, in succession, -rgl.ml * arga, argl *3‘%%&1&#!@0&[
value to. be vyielded, x, nﬁ;ﬂn h’lr‘!l\lrﬂ’ﬂv (x<u;2nmﬁ<0)'
Zero__sfcp occurs t’l ll"a -0 '

X proctype(const int, int) returns (bogh) .
le: | proctype(const it int) seturns (bool)
equal:  proctype(const int, int) returns (bool)
ge: proctype(const int, int) returns (bool)
- gt proctype(const int, int) returns (boel)

Gopy: proctypeleonst int) returns )
o Ti;o oiwious copycpum
"H.4. Cltmcters o | o . ': ey

The objects of tm d:cr are M anl m Mﬂs Every
8mplementﬂmn is  assumed to m ot lnsf 128 ebtncbn. bﬂl no mm than 512. Cherscter
are numbered from O to soms Cher Top,mdthm pederi :‘fcr&.ehmchr
lypo The first’ lZSchnrm aro !Nmmhmwm : ‘

SEERR RS

i2c: proctype(const hﬂ m (ehf) w M_chr)

12¢ returns the cheracter numbered argl n tho bering ofdngru;!m M_,chw
occurnﬁthaargm};mf%rmta.m_m - :
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pvrbctyype(consrt char) returns (int)

Rbturns the number corrospondim to its orjumnl.
it: pmctype(oonst char. char) retlmu M)
le: proctype(mst cbar. char)’ retnm (bool) |
equal: proctype(conat. ehwshr) -retuens . (bogl).
ge: _proctype(const char, char) returns (bool)
gt: proctype(const-char, char) 'fetirivs (bool)

'Tho ordmn. nuﬂom oomlchnt with the numborh c! clwuchn
copy: proctype(eoast char) returns (dur)

' 'The obvvous copy ¥ |
1S, sungs |

Strings are immutable ob]octs Each string nprnonts | lup!o of .cheracters. The ith

character of the string is the #" JAAmMponpnt dﬂhm ‘This-Side ot » string must be a legsl
integer; if it |s not, then a failure exception is signalied. Furthcrmo. ® vwiabh declared
string[i):mest be éble co ‘store” strings whoed ‘shee am ot exceed n, snd may possibly store

larger strings '

size:

indexs:

indexc:

c2s:

- R egke

' proctype(eomt atring) returns (int)

‘Returns thir'size of tho tuple ronrmﬂﬂn. Ih m’wﬁ’mt

proctype(const smng, smng) rctum (lnt)

The operation returns the hut index et M -r;2 occurs in aul (Notico that this
‘means 1 hmurmu ifﬂ s’ uwfr A

BTN

nol occur in ﬂl. then O is
rol‘urned

proctype(eonst string. clnr) retuﬂu (lnt)

24

, Indexc returns the least indox ot which thl l-lupb <u.2> occurs in argl If <arg2>

does not occur in argl, then 0 is relirned.”

‘proctype(const char) returns (string)
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concat:

append:

fetch:

substr:

s2ac:

ac2s:

chars:

_vAc2s is the inverss of s2m. The, . m h,
as in s argument. Thus the ith. characier of the result " MﬁﬂMﬂl) - pth
_element of the wgmnt

 Returns the string rapresenied by the 1-luple <srgl>.

T ki RS ST

proctype(const m«in string) returns mﬂm

Concat returns the smm for which ar;l H mz is th. mmﬂion.

proctype(const string, mm.[ orisign

Fetch retums the mﬂ‘ cheracter of axgl.-: M ooours : ‘flf (ar52<l)v

 (arg2 > suze(orgl))

proctypa(m string, int, int) retm W WM nqaﬁvo sm)

Substr  returns  the  string. uprmm by the ftuple of size
min(arg3, siu{lr;l) g2 + 1) which occurs st m g2 in ergl. m occurs if

(ar32< l)v(u;?>du(mi)+ 1) mﬂmnmw

O S B 1

pmmmam WMWM

| "Equwn!eni to subsMaf;l u;z. stzw»,wmmu ;w“i?'laum.

proctype(const string) returns (srray{char]

This operstion crestes a new m'w,tht olements ‘of which sre the characters of the
argument. The !cugfgwad of the -my h 4 nd Yhpsize s«mummu The

ith element of the arrey i eh- tﬁ‘ ehcraehr of ﬁnm

"%%‘r* :

' proetype(mst mq{char]) mm: (strlug o

FORLS R ¢ f“

-nAhe seme order

itertype (const strhg) yhlds (mst clur)

. A . .jm

: Th!s |tantor ymlds ln ordor, mh chanchr d ih w

#4:
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BT proctyp«mst string. stmg)mumw

ie: m}m (ool .
‘ equat: Pfoct,pq(eom( strlag &tﬂg‘ m“’w) e :“,

ge: proctype(mmng string 1 turne ®ool) e o
gt *'”'“-Vproctypefamtdﬂng. ﬁm M |

# ot anna ".*t R e

‘These uss the usual bﬂw MWW% m for chlractors.‘ The it
aperation is equiveient to the fomm Mo: '

'_lt ; ‘proc(const X, J: string) returns i bul)

dut.» ot 2

if sue_x <= slu Y
then min := size x;
else min = site y;
end if; .
for const i: int in, lattfrom_ﬁo_by ﬂ.min D dq
if xti) < yi1) L ,
) the' m . mmm' Y I “d"‘i‘i:‘ i ‘ R

: end if
less -(slu.x <slze_y) T A AR e -
copy: Proctﬂ”(mst st}hg) mw,(‘m" ) R A
| Tho obviom copy '

(SR

B llG Atnys ‘

The array typo generator defines: on Tty MW For every lypc T there is a
type array[T} Arny objocts are muhblo. Tho ctm d nn wrey W gqmbh Qf

» l an integer Low. cdlod Iholo\vbomq,md e e
nupl.msocobpcbonm‘r uman-bm;

»Wc aisbsd.ﬂm Sipe v SizwlEite);iond High slow's Sige L. *Wmf la thlnk of the components
- of Eits-as howmmumdm tow; 'so nmm orray Jhdbi ‘o the Y component to be
(i - Low + 1). Esch array object nmmmmmm nnt.m Siie, Low, snd High -
must all be legal integers. Secondly, Low end ch e boumbd by the size of the verisble
containing the array. o&iod Any attompts to mmm result in a feilure
exception: failure(illegal_arfey™) in'thie Al cakia, snd Tilliirlivariable overfiow™) in the other. ‘A
variable (or object compomnt) of type arvay[Ti i, h) M be &b {o contain srray objecls with
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Low 2 I and High b it may be able to contain larger errays. I sn.srrayis sseignedito @ varisble,
‘grown with addh or -addl, or shifted with uUw.»su:hy,M !ﬁp Mn:qt ﬂu Mobh woukl be
exceeded, then failure(“variable: worﬂcw") is\”dgﬂlﬂ.;d, mmm

For an srray A, we shauld write LowA, olc, to refer 1 h the mt, o that ob;ect, but |
subscnpls will be dropped where the mehtion k dllr ‘
: ‘Note that for ail srray opm
states of the srguments are m}mm ho

We use the abbrevistion AT. wmw

create:  proctypetconst ity returns (AT)

This returns sn-ariey WM fEWj oV i‘ﬂl N

new: proctype() returns (AT) _ e * e

s

quivp!entvto criqh(l.),

low:  proctype(const AT) retarns (int)
high: - pree&n)mt AT) m em)
size: - proctype(mn AT) m:m ﬁnt)

' These opeutiom mm,mwmm

set_low: .proctype(w AT, eomt int)

Set_low makes Low equal to nmz This: npnntion may invoive physwy shmrgg the
elements of the array in storege. However, block mmm::n many
machmsmbq mmmmmm

. trim: proetype(v:r AT, eomt int, int) dgnb (bcouds. wﬂmﬁm)

‘Thts opention mdus Low cqud to »?gz lﬂ!’ Mﬁ‘ m th. iupk of size
min(arg3, High' - arg2 + 1) which occurs in Elts" at index arg2 - Low’ + 1.1 That is, every
eloment with arcg,y.hdox lus Ahan.arg2,or. 1granter. - Ahenidr: oquil -0 weg2: - org3, is

-rmd Bounds Laccurs i, w <.Low?) VAWW‘**'&: W aceun if_
arg3 < Q

1. E1s’, Low’, efc, refer 1o the stats.prier 1o invoking the-oparetion. .
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fetch:

 proctype(const int, int, T) returns (AT) signats (negative_size) -
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S I

wbmrhucow.pmtymnramm ‘

RTETE S e

Filt returns an array for which Low is ﬂl. and Ea is @ (mx(o. arlz)Huph in which

- syery-component: iy icowo!‘m it e*?w ”WZ) ﬂm to get the

.bmmi oo order. mmmﬂww e
seltype(int) of T from AT slgnlls (boundc) ;

s .
Fetch selects the . obmont ol or;l wlth .rrny_jndox «;z Bounds occurs if

o Aerg2< Lw)v(ﬂ’“lﬁ)c

- 59.'?’59?;

.top: .

store: ‘

’ seltype(} of h) from AL dgnﬂoﬂmngt) |
| seltype() of T fm AT ngh (Ml

These operations select the elements with wmn Low and Jilh. respaciively.
Bounds occurs it Sizo =0,

| proctype(var AT cvmt tnt. T) slglnh (boundl)

where T has eopy. pnetm Wmm

‘Store makosﬂlslmwlupbvﬂchmmmddhlhd orgd is the element with

T qmw,_indix ‘orgR. Thoopy is md:!o epgwub «W m occurs if

agldl: ‘

- (arg2 «Lm v (arg2> High).

proctype(nr AT,const T)
whm T has copys pnctype(eﬁit T& mm

4

This operation mok» Em tho new tupb Elts * <ar|2> Tkopy is uud to creste the

: -niwmemt b

proctype(nr AT eomt T) ) .
- where T has copy: ptoetype(euut T) ntw (T) }

" This operation mmc Low equel to Low® - 1, end Eltc the tuple <erg2> # Eits’. TScopy is

- used to creste the-new compone. me .rr-y_jndoxs of the

f_. wnviomobmﬁnh!him) IR s ,

ren:ih:

proctype(var AT) returns (T) slguli tbomds)



ditine tnemais st o Sy jedl o O

; mag; zéﬂ s maz@ mui wis zv%%} twm iw m&i - W’#& Wﬂ o ¢
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* permuted.) Records are muhbh objects. The state of a record of type uewd{w,. T, s ld Th)
is an n-tuple. The:ith component-of the tupie: i of type T, mﬁﬁmnt Is slso called the
| mompomnt mm M&ﬁ‘ﬂ'i. ....f"ﬁ,,i mwmw | - e

‘ create'

ldi .

_ Put_ld;:

‘sach ld‘

s W

pmtnﬂegm T;-«... TSOWED e
Mhere each T, b-&smwmm&ﬁmm g

Th's opoulion roturm 8 new record with tln tupb Gor;l. - mN> a’t its stot- lt uses
T,OcOpy to copy orgp Crnh is not wm QMM.”M JQ- 0. b mplicit in the
rOCOfd Cwﬁwm. _ et A IR I I s L

~.8eltype()qf1', fm RT o e by

This operation uhch the ld’-comnt of its «;mnt Thcn is on ld, opoution for

et it orrmegr ot

proctape(m R, oanat Tai

This apmuon makes the slate Of &) # 0w fuplewhich ditferes from the oidsin that
its ld‘-compomm se copy ‘of ar¢2 m(h uolu Tpeopy Thon h (] put_ld, eponﬂon

R -for,nckid; : wins vl ok gt et
PW“YPC‘W”!RT RT) returns (bool) el g

oﬁuilﬁ

copy:

wlme each T; has equal; pnctypdm T‘, T‘) Mllﬂll (bool)

a”ﬁ{'ﬁ , i \;

Thii -operation sompaces. 1w Syping of. ngpt q‘@mﬂt by compomnt 'using
Tikqml for the ld,-componont If all the mm rctum uturn tme. the result is

proctype(eonst RT) retums (RT) :
where unh Ti h” copy: Pros i ‘l’ﬂ mm ﬂp '
B Free T2 PPLR SN R it i wpnde

This oporotion returm s record whose. state ls s eopy of tho stlto of the orgumont
m«ﬁwmmww ey -
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I1.8. Oneofs

qumf gwqwaw wm-»wm mwm mnww-m Hllype
pairs <ud,, T1) s Uy, TPy where il the id’s are-diating! sothin-iedeogrepltic-ordery there is »
‘type oneof{id,: Tl' oy s Tol  (The user mey wﬁb this tyw umv ﬂn ptm p.rmtuod.) Onoof
objects are immutable. Each oneof object, is repiosite by puit* k!
The Id; part of ‘the’peir s ‘collett” the fag; - mf’“i ”i.""“”
 oneof(ld): Ty e T ]tootbotow | o

muke::id;: pmtw“ﬁmm D e s
' wmrimm:mmmw ;? e

This opeutmn returns the oneof ob;oct !or the paié ﬁd', M), mh( T;kopy Th.ro is
‘a make ld, opontkm for ncb ldi

. e

is_Id;: - proctype(comt OT) returns (bool)

This operlhon nturm true m thc tu of ﬂl io M’. Ih ﬁo L3 Jmpﬁeﬂ in the tagcue
statement. mwu on is_ld; Sierition for duch ;q | ‘

- ~wtu_wf mtype() or T mmmn W.W

If the argumont hs hg Id;. thh selects tho vduo wt of 4he qmnl Wrong_teg
occurs if the tag is not Id;. .This optnuon is uud Mduy by the u‘eue sh!mnt.
There 6s a va!uo_.ld‘ for each ldi A A e

equal: proctype(eomt OT OT) mm. (m)

ymv,, vp nwus M)

- If the tags of the orgumenis are dvffomn},albn Mh m lluttle tags are both
!d,, then the result is Tiloqud appihd to ﬂ\. vdui Wh ef ﬂn arsmnh '

copy: proctype(mstm)mmwﬂ .

wlme each T‘ has copy. pnetyp«ma Ti) retms (T,)
2T

" This operations remm arm obioet mh m &um Mmgmt. and & value
part a copy of the velve pmof thw I thotubld,,thontmcopy icmdc
using T;8copy.
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: ll.9. Poin,te,rs

‘type T, ptrA, T is a type. The representation of poi

The pointor type generator defines an lnﬂnlto clua of lypeu For oach area A, anq, pach
#Fs is Aot doﬂmd explicitly, but tmpucmy

through the behavior of pointor objoch. Pocntor objoch ore ngh Wa sbbreviate ptr[A. 7]

ndpgr:

alloc:

deref: -

equal:

copy:

s to PT below

proct ype() rmmn (PT)

"vTh|s openhon retgrns a qoinlg,g;.that pgiah to-no object; Thtroioro, it is equal only to
‘other null pointon of tho same type, end cannptl- hc«donhnmd. '

,proctype(const T) returns (PT) s!gnlls (fdlurc(stﬂng)) |

where T has copy: proctype(const T) returns (T)

This operahon creates a copy of argl in sres A, returning. a pointer to the newly

 crested object.. The copy is made using TScopy. Failure occurs if the sree cannot
‘contein the new object; the string signalled is “srea out of memory™. '

seltype() of T from PT signals (b.d_pomr)

This. Opermon “follows™ a pointer.to the nb}oct pointed at. Bod__polnlor occurs if the
null pomter is dereferenced.

proctype(const PT, PT) returns (bool)

This operahon returns false uniess argl and arg2 point to the same object, or argl and
arg2 sre both null pointers.

proctyée(const PT) returns (PT)
This operation returns a pointer equal to its argument. That is, the resuit points to the
same object as the argument.

§J1.10. Areas »

new:

An area object is used for the dynamic sliocstion of other objects.

proctype(const strlhg, int) returns (area) signals (bad_srguments)

H
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This operation returns s mw‘ area. Argl is used to: describe: whel: sort of aree
mansgement scheme is desired; and arg2 is for size. MWMW is
imphmnhtion dapendeant.

: ll . Proceduns, mmm zmsm

, Fﬁﬁ@ach procedirs, iterator, mm wm-«;mmmmy,
and equal. Creale is- not available: to the: user;: its use is. imﬂdthﬂwm and: ran-time:
A system~ Copy pnﬂmobly does not copy the ob;.gtm .Q&mmm wooly s descriptor.

T}

4 W“h«tha- same: m%ﬂw ik
cluster are considersd:to:be:diferentimbtities:
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