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- Abstract

A data abstsaction intreduces 2 data type-with a_hidderi represenfation. Specifications
of data abstractions are required to allow the data to be described and used without reference to
the underlying representation. There are two main approaches to specifying data abstractms.
the abstract model approach and the axiomatic approach.

This thesis is concerned with the problems of formalizing and extending the abstract
model approach. A formally defined language for writing abstract model specifications is
presented. The correctness of an implementation with respect to an abstract model specification
is defined, and a method for proving the correctness of implementations is proposed.

Our formulation treats data abstractions with operations that can dynamically create
new data objects, modify the properties of existing dita objects, and raise exception conditions
when presented with unusual input values.
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1. Introduction

Specifications play an important part in the programming process, especially in the
design and construction of large programs. It is generally accepted that {arge programs should
be designed as systems of loosely coupled independent modules, so that each module can be
designed and understood without reference to the other modules. A precise specification of the
behavior of a module decouples the programs that use a module from the programs that
implement the module, since programs that use the module depend on the specification of the
module rather than on the implementation. The hope is that the specifications of a module will
usually be simpler and more stable than the implementation of the module, so that the use of
the specifications will make it easier to design, implement, and maintain the modules that make
up a program. Specifications are also needed for program verification.

The research reported here is primarily concerned with specifications for data
abstractions. A data abstraction consists of a set of data objects and a set of primitive
operations on those objects. The objects of a data abstraction are treated as abstract indivisible
entitiesi which do not have any directly accessible substructure. The objects of a data
abstraction can be manipulated only by means of the primitive operations provided by the data
abstraction.! The behavior of a data abstraction is completely characterized by the behavior of

its primitive operations, and the observable properties of the abstraction are precisely those

computable in terms of the primitive operations. Since the behavior of a data abstraction is

1. The only exception to this rule is the boolean abstraction. The host programming language
may provide statements, such as the conditional, which make the flow of control depend directly
on a boolean value. These statements are not primitive operations of the boolean abstraction,
and they cannot be defined using only the primitive operations.
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independent of the way in which the associated data objects are represented in any particular
Implementation, introducing data abstractions is one way of decomposing a proﬁram into
independent modﬁles (19. 10,19, 4, 29] vTht: concept of representation independence _is made
more precise by the definition of 'qu'jfyiora' eqy_i»valengg»q( data models developed in Chapter 3,
and it is the basis for the usﬁal data typeinduct)ou mhi§31 L |

Tl;) specjff the befoaviof of a data abstraction, it is éufﬁdent to specify the behavior.of
each operation, since the only way to inéer:aa Y»ith the objgcts of a data aﬁ;tractim is by means.
of the primitive operatim;. The problem of specifying ~the. operations of a data abstraction
differs from the problem_c# spe:clfying,pro;edures‘bec/_aus‘n_pc specification of 3 data ab:uractlon
must be th of the way the associated data objects are represented in any particular
implementation of the abstraction. There are two main approaches to specifying data
abstractions, the abstract model approach and the axiomatic apprqach;v

In the abstract model approach, an abstract representation for the data objects is B
defined, and the operations are specified in terms of ghc abstract represeamlon. ~ The
representation is apstract because it is constructed from mgth’ematkal’y .deﬂned domains, rather
than the built in data types of some programming !anguage. The abstract representation
should be chosen so that the operations dn be defined as simply as possible. The
representation used in the impiementation of a data abstraction must often be chos’én to
optimize space or time efficiency, and may be quite different from t.he, abstract representation.
To prove the cor;ectness of an implementation with respect to in abstract model specification, it
is necessary to define the correspondence between the representation used in the implementation
and the abstract representation. |

In the axiomatic approach, the set of data objects is defined implicitly, by giving a set
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of axioms relating the primitive operations. The axioms specify the relationships that must
hold between the operations of a data abstraction, and any structure satisfying the axioms is
taken to be an acceptable model for the abstraction. If the axioms are consistent, then there will
be at least one structure satisfying the axioms. It is possible for many different structures to
satisfy the same set of axioms. To establish the correctness of an implementation with respect to
an axiomatic specification, it is necessary to show that the operations .of the impleméntation
satisfy the axioms. An excellent treatment of correctness proofs based on axiomatic
specifications can be found in [37].

The work reported here is concerned mainly with formalizing and extending the
abstract model specification technique. We present a formally defined language for writing
abstract model specifications. A criterion for judging the correctness of an implementation of a
data abstraction with respect to an abstract model specification is developed, along with a
method for proving that particular implementations are correct with respect to specifications in
our spécification language. Both the specification language and the ﬁroof technique 'apply to
situations where mutable data can be shared. Previous work on specifications has largely
avoided the issues associated with shared mutable data. Our formulation provides an
integrated treatment of data abstractions with operations that can dynamically create new data
objects, modify existing data objects, or raise exception conditions when presented with unusual

input values.



1.1 Previous: Work .

Mot high leve programning anguages. have,a s of bk Jn dta sbtractons
: .. Languagés_'t_!;a( “suggm_ft% user defined data abstractions . have .been developed,. including
SIMULA 67 [5]. CLu [29]. and ALPHARD {54) . In. these lnguages a . program using a data
| abs‘»t‘-r;action‘dqhe;sAnot have to mention the representation of .that abstraction, so- that. the
impl;.-mntatioﬁ strﬁcttlre can be changed without. affecting. any of-the applications programs
usi;g the abstraction. | |
- Surveys of specification techniques for data abstractions can.be found. in [31) and in
e8] |
7» The abstract t.nodq approach is dirg:t in the sense that the set of data objects
as;ociated with a data abgractign_ is explicitly constructed. References.to early- work-on abstract
‘model vsypgcifiéat‘ions ?an be found in [31] The problem of praving: the. correctness of -an
implementation of a data .abgtract_iop with rq;pe_ci to an abstract model specification has been
trtleatgd by Hoare in (18], and the problemof proving. the correctness of programs.using the
objefts and operations of a data abstraction has been treated by Shaw in (47} In both-cases,
tbe specification language ha;hbegn_ introduced informally, and shared data has been-excluded.
‘The problem of specifying the behavior of data shared by concurrent processes has been treated
in the context of the actor formalism by Yonezawa in [55)
The abstract model approach is related to the. denotational definition method for
programming languages developed at Oxford by Scott and Strachey [49, 46) in which a
mathematical model is defined for each of the constructs of a programming language, including

the data domains. The major emphasis of the work at Oxford has been directed at issues other
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than data abstractions. A formal treatment of a language with the potential for sharing
mutable data can be' found in [50], although the model makes little attempt to abstract from the
storage representation of the data. A denotational definition of CLU, a fanguage with facilities
for constructing user defined data abstractions, can be found in [45).

The axiomatic approach is indirect in the sense that the set of data objects associated
with a .data abstraction is defined implicitly. There are several different axiomatic specification
techniques, which are distinguished by the kind of logic in which the axioms are embedded.

Axiomatizations of data abstractions in firs; order logic can be fouhd in {19). A first
order logical approach has also been used in the iota system [37] for constructing and verifying
programs that use data abstractions.

A restricted form of axiomatic specification using only conditionals and equations has
come to be known as the algebraic approach (56, 10, 7,13, 9). The name stems from a uniform
method for constructing a canonical model for axiomatizations expressed in this form. The
canonical model is a many sorted algebra which is unique up to isomorphism, and which is
called the initial aigebra. A system for verifying programs using data abstractions specified by
algebraic specifications has been developed at 1S1 (35, 11, 36). |

The problem of proving properties of programs that manipulate potentially shared
mutable list structures has been treated by Burstall in [2]. Burstall follows a hybrid approach,
by explicitly introducing a model and defining its behavior axiomatically. Proofs about
programs that manipulate pointers have been treated by Suzuki and Luckham [51, 32).

An approach to defining programming languages combining aspects of the direct and
indirect approaches is being developed by Schaffert {44). Schaffert treats shared mutable data

abstractly, and considers the problem of proving properties of programs using mutable data



abstractions.
1.2 Motiviations for this Work

The original aim of this researchwas tudeveioptooisand techniques lforfincreaaing
the level of confidence that a formal spedficanoni‘or adataat;stradion does indeed ‘;ciapture the
behavior intended by the designer We staried with ti;e akebraic speciﬂation technique, as
described by the work of Zitles [56) andOuttag o1 o I

After some preiimmary invesuganon. k3 became dear that there were a number of
pheriomena associated with the data types actually used by programmers that could not be
adequately described by this speciiicauon technique as it stood notably the dynamic creation of
data objects, changes of state of potentiaiiy shated dafd, and ex exception handiing |

It akso appeared to be dlmcuit to produce 2 well formed aigebmc specification for a
new data abstraction, especraiiy if the exact behavior required was. not yet compietely designed
In our expenence. a typical attempt to design a data abstractton using axiomatic specmcations
runs as follows. After analyzing the probiem ‘the operations of the data abstraction are
determined, and the inputs and outputs of each operati‘on are idennﬁed When the intended
behavior of eéach operation on a typical set of input values is fairly weli understood. a
preiirninary "axiomatization is coilstructed. " The process of producing the '»p‘relimina'ry
axiomatization helps to pinpoint special cases 'and‘:bo‘unda\ry values for theinput domain, _anid
the problem is analyzed further to determine appropriatve;Beiiahvifofr for the operation on unusual
or ill formed input values. The axioms are examined :in’iigiifoi' the new design decnsrons and |
are adjusted to conform. After a few iteraiiona each of the axiorne:looks vpiauaible when

considered in isolation. At this point the axiomatization is examined for consistency and
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completeness. often at the cost of considerable effort. Fairly often we have found such an
axiomatization to be inconsistent, and less often to be incomplete. It was disturbing to find that
plausible axiomatizations could be ill formed, and that the effort of producing a precise
description of a seeming simple design decision could be quite large.

We also designed some data abstractions using abstract model specifications, and
found that the process was much easier. One point was that inconsistencies in the design would
usually surface immediately, because it would not be possible to define some operation so that it
satisfied all of the informal constraints, while the usual result of trying to axiomatize an
inconsistent set of design decisions was.a inconsistent axiomatization, which was often difficult
to recognize as inconsistent. Another point was that minor perturbations in the behavior of an
operation were easier to-describe for an abstract model specification than for an axiomatic
specification.  As long as the meaning of the abstract representation is not changed, a
modification in the definition of one operation cannot affect the other operations, since in an
abstract model each operation is defined in terms of its effect on the abstract representation. In
an axiomatic specification the meanings of the operations are defined in terms of the relations
between them, so that a change in an axiom can affect many operations.

While the above is a very subjective judgment, based on our personal experience with
a fairly small set of examples, we found that other people trying to use axiomatic specifications
in the design process had similar complaints. This motivated a more extensive investigation of
abstract model specifications.

We found that previous work on abstract model specifications was largely Informal,
and that abstract model specifications were used without saying what the specification language

was or what the specifications meant. Since abstract model specifications appeared to have
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advantages from the point of view of design, establishltig a precise mathematical formulation of
the specification techmique arose as a natural'sibgdal. “Ihthe process of pursuing this goal it
became apparent that dynaniic éreation of Gata objects’ stife chiges. and excepiion conditions

o7, At tHat time; existiig work on axiomatic

_could be readily incorporated into the f caie

sioO0

‘specifications did not sddress these Issoes: Which ket croppifig up it the design of programs.

" As a tesuk, the direction of this research’shiféd o developing and extending the absiract
model specification techriique, and The oviginal problem’ was'set akide as a subject for future

invwfgatkm” tion.
1.3 Assumptions and Restriotions

I the interests of deﬁnlngaproblemthatcanbe&eated in depth in a reasonable

Certmort s
.

amount of time, we have miade soffe’ restrictions oh the scopé of otir investigation

s i opupit

restrictions are explicitly stated below” A more detailéd dis

of the resrictions and the
reasons for introducing them cih be found in Appendix 1.
© We have riot’ considéred cases where mutablé data is shared by concurrent processes,
so that a model of a compulaﬁonasa linarsequcnccdeptf;ationsls ihffiéie;lt for our
purposes. We have assumed that each operation is deterministic, so that every ;dnputation‘
produces ‘a unique result. These assumptions lead to a ‘simplet Eﬁaucteriiatiop of the
observable Béhavior of a data abstraction thais would otherwise be possible, |
We have adopted a model of exception handling in which uperations are terminated
if they raise an exception condition. This restriction allows the behavior of an operation to be
described independently of the behavior of eicepiion handléers and exception handling

mechanisms, and leads to a clean model of data behavior.
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We have assumed that each operation depends only on the properttes of the data

objects passed to the operation as arguments Operattons that depend on global data or on own

F oo
LTS

data (ie, operatlons with internal state) are exduded by this :ssumpuon thhout such a

Chiead L DrenitLend

réstriction on the operattons syttems must be treated where the behavror of a data object may
. S

‘be affected wnthout applymg any of the prlmttwe operattons assoaated with the data

abstractlon and the concept of behaworal eqmvaience (see Chapter 3) must be reformutated

ey N ,‘;:;;sn:w

Smce the behavior of such structures is not comp!etety characterued by the behavnor of the

primitive operations, we do not accept them as well formed data abstractton&
1.4 Results of this Work

We have mvestngated the structure of mathemaucal models of data abstractlons,

developed a general framework for provmg the correctness of implementatms and proposed a

ity

prototype spectf |cat|on language based on these resutts

s

1.4.1 Mathematical Models. .. .

A specification can be viewed as a method for singling out the structures (or models)
that exhibit the desired behavior from those that do-ngy, ang the meaning-of "e:;spséi&atien n

be identified with the class of models consistent with the specification. Thts gtves us a basis for

R Y PR

judgmg whether or not two speuftcauons in two dlfferent .formallsms have the same meanlng

The set of structures consistent wrth a gtven axiomattc spedﬂcatton contatns precisely those
structures in which all of the axioms are true. An abstract modei specmcation deﬂnes

e e
particular model exhlbmng the deslred behavtor. and the class of all mode|s conststent wlth the

EY

' speciflcatlon contains Jmt thoce structures with the same externally observable behavior as the
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standard model. In this work we have foﬂnally characterized the aspects of the behavror of a
data abstraction that are detectable by an external observer o | |

| We have descrrbed two classes ol‘ algebmc stmctures, exception algebras and state
machines whlch can be used as models l‘or data abstractsons vtth exception condttlons and with
state changes This work will be of lnterest to people wishlng to extend the axiomanc technlque |
to lnclude exceptlons and state changes. since lt explores the klnds ol' stmctures that wlll have to

be deﬁned axlomatlcally
1.4.2 Proof Techniques

ln treating a range of behavlor lncludlng object creation mutation of data, and
exceptrons we. have found it necessary to reformuhte the crtteria for the correctness of a
Ol IR

proposed lmplementatron ol a data abstraction and to develop new mchmques l’or provlng the

correctness of an implementation with respect to the new criterta These technlques are of

interest also to people who wish to verify mutable M SlelRbntitions ‘of dits” sbhtract

respect to axiomatic specifications.

1.4.3  Spevification Language

5 -

We have developed a specifrcatton language l'or deﬁmng data abstractrons based on
abstract models Thls langnage has been given a mathematlcal de_frnitlon that is sul‘flciently
formal to support mathematrcal proofs of propertres ol‘ the specifrcatlon and of the correctness
of rmplementatrons We have made an eﬁort to lncorponte all ot the l‘utures necessary for a
practlcal speclfrcation language rather than to deflne a language desrgned to facrlltate proofs ol‘

meta- theorems about the specrflcatlon language We have intended this language to serve as a
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prototype, which can be used as a guide for people designing practical specification languages.
The language presented here has been designed primarily to be read and written by humans,
rather than to be mechanically processed (eg., by a program verification system). In some
applications it may be desirable to use a more restricted language, in order to facilitate

automatic theorem proving at the expense of making the specifications harder to construct.
1.6 Overview of Remaining Chapters

In Chaptér 2 we explain the novel aspects of data behavior associated with exception
conditions, dynamic allocation, and mutation of potentially shared data, and describe algebraic
structures suitable for modeling that behavior.

In Chapter 2 we formally define the externally observable behavior of a data
abstraction. The meaning of a data abstraction is associated with the class of all structures
exhibiting the same externallly observable behavior. The concept of a reduced model for a data
abstraction is developed and explored. )

In Chapter 4 we present a specification language for constructing models, along with a |
mathematical definition for the semantics of the language. Each well formed expression of the
language denotes an algebraic model. The construction of the model is explained, and the
requirements an expression must satisfy in order to be a well formed specification are
established.

In Chapter 5 we state our basic definition of the correctness of an implementation, and
develop a methodology for proving the correctness of an i‘mplememation with respect to a

standard model for the data abstraction to be implemented. The methodology is illustrated by

examples of correctness proofs. The basic definition depends on the material in Chapter 3,
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while the examples use the language developed in Chapter 4.
Chapter 6 contains our conclusions, a comparison of the abstract model specification

technique to the algebraic technique, and indications of directions for future research.
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2. Modeling Data Behavior .

* We will define the behavior of a data abstraction by constructmg a standard model
‘exhibiting that behavior” A model is a mathematical structure contalnmg tnterpreratlom for
the objects and operations of the data abstractnon. “The externaily observable behavior of a
data abstraction consists of the results of all finite computanons composed from the primttive
 operations of the data abstraction and yieidmg oﬁjects of oiher typr.-sl An abstract model is
used to specify ‘the externafly observable behavior of a data abstraction All propertres oi' a

model that are not externally observable are irrelevant. in the sense that they do not innuence

whether or not a proposed implementation of a deta_ahstz

BN A e

5 qorrect with.sespect to-the

standard model. We will say that two models are bchaatorally eqmvalmt if and only if they
have the same externally observable behavior. I two stmctures are behavioraliy equrvalent
then' they are models of the same data abstraction. Behaviorai equivalence is treated in depth
i‘hChapteri! o T | | |

" ‘The standard model is intended to be a uomorphic image of the data abstraction as
conceived by the designer every ob;ect of the data abstractton imagined by the desngner should
correspond to a unique Objed in the standard modei and the correspondence should preserve
the operations. The ‘standard model of an abstraction can be identlfied with the structure

conceived by the designer.' thus 'bridging the gap betw&n the inaccessible pattern in the

. Except for the boolean abstraction, the only way to interact with the objects of a data
abstraction -is by means of the primitive operatiehs, so that the only way to export any
-information from an abstract type is by means of the primitive operations yielding results of
some other type. The interested. reader may ‘Wish to compare this idea with the treatment of
sufficient completeness in [10].



.
designer’s head and a publicly accessible mathematical structure.” A’ welldesigned standard

model should be rcduced it should not bc possible to delete an object from, tboﬁodel or to .

coalesce two distmct objccts wnhom affectlng thg extemall! obsefvablg behavior of th& model.

.....

IR

Thc concept of a reduced model Is discussed furthcr in Chapter 3. |
: m this chapter #.Wl‘“ consnder various aspects of the behavior of a data abstraction,
and show how‘ tﬁey an be modeled ~using a!gdg[aac stmctures, bu; first, we have to, b“kﬂ’ .
'examing the int}er_nat»stm&urg of a data abstnctk;nqndthe ways in_which a_set of data

abstractions can be related to g_a;h other
2.1 Types and Bubordinate Abstractions

We will callva 'set of data objects subject to the same operations alype. The dgf_i,nition
of a new data abstractm mtroduccs a new type. "?e;?"mfd q}c oi the abstraction, .. .Each
operation of the abstracnon involves objects of the principal type, and often also objccls of
other types, which we will call the mbordmau tyfns of the data abstracqon For example the
set of integers is the prmcnpal type of the integer dm abﬂractbon and the set_of booleans Is a
subordinate type. because the integer abstracnon has the operations = qnd < whk:h map pairs of
integers into booleans. Every type is the Pf',"“!’f' typeof some unique data abstraction, knowan
as the deﬂ(ning abstraction of the tyoe. The primitive opetatmsmthe objects of a type are
just the operations of its deﬁning abstraction. |

A model for a data abstraction must contain interprmtions for the prmcipal type and
operations, and also for the subotdinate types. mﬂﬂ “!9 openthns involve ohjects of the
subordinate types as well as of the principal type Eachof thewmme types of a dau’

abstraction d is the principal type of its defining abstraction d'. Thus we are usually dealmg
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with a set of related data abstractions, and with a set of related models for those abstractions.
We will assume that systems of data abstractions are defined incrementally, where the definition
of a model for a new data abstracti;Jn explicitly introduces an interpretation for its principal
type, and where the interpretations for the subordinate types are taken from the models for thg
defining abstractions for those types. This construction guarantees that a type is not g'iven two
different interpretations in a single system of models. However, a bit of caution is required,
because it may not always be possible to define the data abstractions in a system in an order
such that the defining abstractions of the subordinate types of each data abstraction are defined
before the data abstraction itself. For example, suppose that the fixed point number abstraction
has an operation for converting fixed point numbers to floating point, and that the floating
point abstraction has an operation for converting floating point numbers to fixed point, say by
rounding. In such a case, floating point numbers are a subordinate type for the fixed point
number abstraction, and vice versa, so that it is not possible to define both types in an order
such that their subordinate types have been previously defined.

In order to make the idea of a hierarchically ordered set of type definitions more
precise, we define the direct subordinate and subordinate relations as follows.

Definition 1 Direct subordinate relation,
If d’ and d2 are data abstractions, then d, is a direct subordinate of d2 if and

only if the principal type of d is a subordinate type of d .

Definition 2 Subordinate relation
The subordinate relation s the transitive closure of the direct subordinate
retation.

We would like the subordinate relation to be a well founded partial order, but this need not

always be the case, because two data abstractions can be subordinate to each other, as in the
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above example However, if we group together ali of the data abstractions that are mutualiy
subordinate (ie take the quotient with respect to the hrém equivaience relation contatned in
snbordinate) then the subordinate relation does in fact induoe a partial order on the groups
(equivalence classes). o

We will treat each group of mutual!y suhordinate data abstractions as a singie
module. A model for such a module wnii have several principal types. one for each data
abstraction. Modules correspond to the equivalence chsses introduced in the previousq
paragraph The subordinate relation for moduies is aiways a partsal ordersng This ordering
is also well founded, because the set of data abstractions in any real system is finite Since the:
ordering is well founded, we can use structural induction with resp;ct to the subordhml
relation on modules when proving properties oi‘ systems of data abstractrons (i e, to estabiish a;
property i‘or the data abstractions in the moduie n, we can assume the property hoids for all
abstractions subbrdinate to m) c \ '

It wili usually be the case that each moduie deﬁnes a single data abstraction. with a.
single principal type. In the folkrwing discussion we ws!l oﬂen tacitiy assume that each model

has only a smgle pnncrpai type. although the formal definttions wm be formulated to deal with

any number of principal types per model.
2.2 Simple Abstractions

The purpose of a standard model specification isto grovidean iniespretation for:each
type and for each operation of the data abstraction it speciftes A well chosen standard model
should provide interpretations that are clean and simple The most suitable modeimg structures

dépend on the kinds of behavior that must be described. The slmplest case Is a data
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abstraction without any exception conditions or any time dependent behavibr, because in such a
case the types can be interpreted as fixed sets of constant values, and the operations can be
interpreted as functions on those sets. We will refer to this kind of abstraction as a simple data
abstraction. The early work on algebraic specifications for data abstractions [56, 10, 7] dealt
primariiy with simple abstraction;. Following their lead, we will model simple abstractions as
heterogeneous algebras [1).

A heterogeneous algebra, also known as a many sorted algebra, is a pair (P, F), where
P ={ Pylac A} is an indexed set of phyla (also ;alled carriers), and where
F =1 Fﬁ |8 ¢ B}isan indexed set of operations. The index sets A and B contain the names
of the types and operation;, respectively. Each phylum in P is a set of data objects. Each
operation in F i$ a function Fg:Pyg )X .. X Pa(B, n(B) ~ Pr(By where n: B —> N,
a:BxN—> A and r: B—> 4 are functions such that n(8) 2 0 is the number of arguments
for Fg, a(B, k) is the type index for the k-th argument of Fp. and ;(ﬂ) is the type index for the
return value of Fg, and where N is the set of all natural numbers. The principal and
subordinate types of a constant data abstraction are interpreted as the phyla of the algebra, and
the operations of the data abstraction are interpreted as the operations pf the algebra. |

Simple data abstractions are easy to describe, but they represent a very restricted class
of abstractions, which almost never occur in practice. For example, the fixed point number
abstraction, a common and relatively simple data abstraction, fails to qualify as a constant data
abstraction on two counts, First, an attempt to divide by zero results in an exception condition.
Second, fixed point numbers have a print operation, which modifies the state of an output

stream. Exception conditions and state changes are discussed in detail beiow.



-9 -

2.3 Exception Conditions

Many programming tanguages have data abstractions with operations that may signal
errors or raise exception conditions (we prefer-the fatter term). A 'comimon example is the integer
data abstraction, where an attempt to divide-by rero résuks m aif excéption. fngeneralan
operation should raise an exception whenever it is called with an argaient ottside its matural
domain of definition. - Siwatigns.fike this:are-quite*cohimont, so'that it is imporiant to include

exceptions. in our model of data abstractions.
2.3.1 Termination vs. ‘_Beéumption

- An exception causes a departure from the pormal flaw of controt, to execute a program
fragment intended to hantile ithe’ exceptional ‘Condition. ‘I ¢ises: where the biception handler
can recover from the exception,-the computatisn may continue, and“ ofhetwise it must be
i aﬁoned., There is no universally accepted medel for this process.

One wiewpoint, which we shall adopt, s that an operation may have a number of
return points, one for the normal case, and one for ‘each exception. We shall refer to 'this".:
viewpoint as the termination medel of exception handling. According to the términation model,

raising an exception is just a special way of terminating an operation.

An alternative - viewpoint, which is cominonly’ held, s that an’ exception causes the

exception handler to be invoked as a procedure, with-the implication that the operatibh that
raised the exception will continue after the handler returns. We will refer to this viewpoint as
the resumption model of exception handling.

Both alternatives have been implemented. For example, in CLU an exception
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conditions alwa yvs terminates the operation that raised it, while in PLIl the operation is resumed
(for one class of exception conditions). A detailed analysis and comparison of the termination
and resumption models can be found in [30), where it is argued that the termination mode! has

a much simpler behavior than the resumption model.
2.3.2 Termination Conditions

We will assume that an operation of a data abstraction may terminate in any of a
number of termination conditions [cf. 43), one of which (the normal condition) corresponds to
the normal behavior of the operation, while the o;hers correspond to the exception cond.itions
that may be raised by the operation. The effects of an operation and the number and types of
return values will usually depend on the termination condition. For motivational purposes, we
will assume that when an exception occurs, the data objects produced by the operation, if any,
are passed to the appropriate exception handler as arguments.2

A specification for a data abstraction with exceptions must therefore specify when each
exception occurs, and what the results of the operation are for each termination condition. The
definition of the host language must specify which error handler is associated with each
occurrence of an exception, and what happens after the handler terminates. The only constraint

we impose on the host language is that whenever an operation raises an exception, the

operation is terminated before the handler is invoked, arid may not be resta(ted.?’

2. This corresponds closely to the exception mechanism in CLU. In other languages, more
roundabout methods may have to be used for passing information to an exception handler,
such as assigning values to global variabfes.
3. This constraint is implicit in [10] and [8].



2.3.8 Exception Algebras

ln order to get a class of stmctures suttable for npdeﬁng data abstractlons with
excepttons. we have to extend the notton of a heterogtnems algebra In a heterogeneous
algebra as described in (1), each operation is a function whose range is some phylum of the
algebra, but a typical operation of a data abstractton‘rhay rettn‘n ngtoi'e{iﬁan one data object and
it may return objects of different types in din'erent- termination. oondmons. Rether than
lntroducmg phyla wnth a compltcated substmtture, we prefer to re!ax the constratnt on the
allowable rangcs of the operattons. slnce we would like to maintatn a slmple correspondence
between the types of a data abstraction and the phy!a of the modeltng stmcture n an
exception algebra the range of a typkal operanon Is the dispmt union of a farptly of sets, each
of whxch is a cartesian product ot‘ some number of pl\yla (possibly zero
| We will also include the index sets and the functtons descrtblng the types of the

operatrons as explicit components of the exceptton agebra to prevent conrusion tn situations

where we are dealing with several algebras in the same context

>'.',23

Befinition 3. Exception algebra C o
An exception algebra is a tuple ¢ phyla P operattons F arglength n, argtype : a,
tctrlcngth m, rtypé:: r, typenaines: 4, o B AP pt: D), where'
={Pala(A}tsanlndexedsetofphylaandwhereF {FalﬁtB}isan

indexed” ‘set  of operations, such that each” operatt&n in F is a function

FB: PaB,1) % - X Pagf, () —> U1 Ry 17 € B) }, where ) denotes the disjoint.
union operation. and where Ry =Pyg ¢ nX - XPyg 7 mif, 1)y N:B >N
a:BxN—>A4 t:B—>PT), m:BxT >N, r:BxT xN—> A are functions
such that n(f) is the number of arguments for F [} off, k) is the type index for the

k-th argument of Fg, #(0).is the set of all termination conditions.that.may. result from |

4. The empty cartesian product is a singleton set containing the entpty"SeqUence.
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Fﬁ m(B, T) is the number of objects returned by F g in the termination condition 7,
and (8, T, k) is the type index for the k-th return value of Fﬂ in the termination

condition T. A4 is the set of type names, B-is the:set.of operation wames, T is the set”
of termination condition names, and D ¢ A contains the names of the distinguished
principal types. N is the set of natural numbers '

M- T S

The details of this formal definition of an excepuon a!gebra will be used primanly in Chapter
3, and in the proofs of the theerems. in Appendix. I, .The:following example may -help to
_clarify the meaning of the vuwuswmementsthmﬂm aigebra. -Let 4-be an exeeption

_algebra model for the integer data abstraction. - Then-we have: .

A. typenames = { "int", "boolean™ }

A-Opnames { “plus”, "times”, "difference”, "quatiemt”, .. }:
A. tcnames = | "normal”, "zero_divide” }

Aopt ={"int" }. :

A.phylamt={0 l -1, 2, 2 }

A phylayootein = {T F}

A. operationsp"us‘ ={ O, ]|z=xy }»

Quotes have been used to emphasize that the first four sets contains pames (strings) rather than
the sets they denote. Note that an algebra is a labeled tuple, and that we are using a dot
notation similar to that used for the components of records in PASCAL to refer to the
components of the tuple. If A.arglength = n, A.argtype = a, A.tc = ¢, A.rlength = m, and
A. rtype = r, then:

n{quotient) = 2,

a(quotient, 1) = a(quotient, 2) = "int”,

t{quotient) = { normal, zero_divide },

m(quotient, normal) = 1,

m{quotient, zero_divide) = 0, and
r{quotient, normal, 1) = "int".
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In the specﬂ‘lcanon hnguage dcscnbed in Chapter 1 wr. wm descﬂbe the txpe lnfortmuon for

an opermon ina oempaa syatau mm mmmm anmdn
quotient: int x int —> ( normal : int ) + ( zeré_divide: )

The range of an operation, which is a disjoint union, is written as the sum of the components
- for each termination condition. ‘The component:corresponding to°the termination hinatioh condition 7 is
written as (T : R, ), where the mormat comsponeirt!may B¢ bbreviated by dropping ‘thehﬁg’le

brackets, the colon, and the condition name.

;—v

The reader should note that termination m and data obpcts are’ mwd in

¢ Tedyyuib i;,_‘§gr’r‘*g)—. oS

different ways, and that the inputs to an operation are always ordimry data ob)eas which :re

never used to represent excepuons. In previous work on specifymg dan ‘ jons: wﬂh

exceptions, exceptions were modeled as di;tinguiﬂwd‘ cxccm obpcts, whl&: rwefe euthe_r
elements of extra phyla [10} or distinguished subsets of the ordinary phyla (8) We have
foltowed 43] in introducing explicit named termination conditions, maintaining a distinction
between termination conditions and data objects,s]me we ‘feel that tMs ippﬁiaih ‘provlvde:a

more coherent and disciplined view of the exceptions assoclated with a data abstraction.
2.4 Time Dependent Behavior

Many programming languages have data abstnaims with data objects whose
properties may be changed. Two common examples are reoofds mPASCALand gfr’a‘ysi in
~extended LISP. Since data abstractions with time dependent properties are vigil_if'ad widely ui_e_d.
it is important to develop a formalism suitable for specifying their bé;iavi.i)r.

An operation is non-functional if it is possible to invoke the operation with the same
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arguments at two different times and get two distinguishable results. A data abstraction
exhibits time dependent behavior if it has at least one non-functional operation. Data
abstractions with time dependent behavior will be modeled as state machines. A state machine
is a special kind of exception algebra containing a distinguished phylum of system state
Sfunctions. The progression of time in a computation is represented by the sequence of system
states of the state machine

We distinguish two kinds of time dependent behavior. If an operation changes the
properties of an existing data object, we will say that the operation mutates the data object. If a
data abstraction has no operations that mutate any data objects, then the abstraction is
immutable, and otherwise it is mumblel. If every invocation of an operation.returns a data object
that is distinguishable from all data objects that have been computed previou-sly. we say that
the operation creates a new data object. If a data abstraction has no operations that create new
data objects, then the abstraction is static, and otherwise it is dynamic. It is possible for a
dynamic data abstraction to be immutable, as illustrated by the unique id abstraction described
in Chapter 4.

Mutable data abstractions are usually dynamic, since the possibility of sharing data
objects goes hand in hand with the need to create new data objects. A change in the state of a
mutable data object is visible in all contexts in which the data object appears. If all of the
contexts in which a given data object is used are not known, as is often the case in a program,

then the data object cannot be mutated without risk of violating the assumptions made about

5. We are relying on our assumption that a computation is a single sequential process. The
history of a parallel computation has been described as a partially ordered set of local states in
[55).
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the data ob]ect in some of the other contexts in whrch it may appear A newly created data

object is known to occur only in the context m which it was created and can therefore be
mutated wnthout risk of mterfermg with other parts of the program

Data abstractions that are mutable or dynamic wsll be modeled as state machmes since

B e gHed

they exhibrt time dependent behavior Data abstractions that are, both static and tmmutable

"\fi

can be modeled as exception atgebras mthout introducing states The rest of thls section is

it E

concerned wrth state machine mode!s

2.4.1 Data Objests vs.. Variables

IR

| ln the early work on abstract data types, abstract data objects were treated as
immutable values and all changes or state were identtfied with asslgnments of new abstract
' ‘Vvaiues. to programnganables Thts pomt of view is now mdeiy held and is oﬂen taken for
granted in work on speciﬁcations t‘or data abstractlons However. as clearly stated in Hoares
pioneermg paper [18]. thrs approach is not suited for describmg programsthat manlpulate
pointers, or more abstractly. for descnbing mutable data abstractions that aiiow sharmg of
mutabie data objects | | -

The drstmction between the assngnment of new values to variabies ‘and mutation of
data becomes tmportant in cases where mutabie data Is .thcnd (several varrables denote the
same data object). Consider the example from LISP mustrated in Frgure I Suppose that
initially the value of the variable x is the iist )] and the value of the vanable yis the Iist (4 5).
The assignment (serq x 9) will change the value of x to be the’hst ({ b) which is identically the
same Hist a; the imt—tat valne of 3. This assighment has not inmw:che properties of the tists

(3) or (4 5), and therefore has not affected any other variables whose values happen to be the
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Figure 1. Shared Mutable Lists

Initial state

- — - - - A -~ - - - - - - - -

After (setq x y) |

After (rplaca x 7) |

—— o — - - - - - e g - - ——— o -

same lists as the original values of x or 7; If we now modify the list x by executing the
operation (rplaca x 7), we will have changed the first element of the list x to be 7. Both x and y
continue to denote the same list (the original value of ), but the first element of this list has
changgd, so that the value of either x or y would print out as (7 5). Whenever a data object is
modified, that change is visible in all variabﬁes that denote the data object, and in all other
data objects that refer to (or “contain”) the modified object.

The classical approach of associating all changes with the variables does not work

very well in cases where mutable data is shared. If we were to insist that list values be modeled
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as immutable sequences, and that all changes be descnbedby assigmng d&ew vaIAuesﬂto the
variables, then we would have asmmiorr Mt rplacc opention could change the values of
arbitrarily many varijables, dependmgaﬁmthrdau was shared. By associating states with
the dam ebjects-themelves ratherthanwith ﬂ!e mlabm. Wwe can overcome this dimculty. since
}changes can- be locatized in an object cemen!d dacrmion An example of a description of a

“mutable data structure with shared subcomponents can be fm in Section 24.4.

The treatment of potemiaﬁy shared mutable dita has been one 6f the major goals of
this work Our appmch |s mast tlosdy matchcd to objwt oriented hnguages such as CLU
and LlSP and* our wk is more or tess appﬁcabk to hnguages with pointers and heap

allocation, such as Euclid, Algol 68, and PL/I. We treat operations as functions that take a
system state and some data objects. and produce a new s;istem state and Some ‘difa: objects “‘The
variables of the hest progﬂmnﬂng hhgu;ge &o nu expiititly enter into our treatment, and we

“leave a dxscussion of the assignment of data objects to variables to the definition of the: host
programming langﬁage. Our treatment is directly applicable !qﬂheprogramming fanguage
CLU, in which the invocation.of an operation or pfocedive may charigé the properties’of some
data obje-cts.rbut is guaranteed not to disturb the assotiation betwéeh vatfables and data objects.
For host programming languages where the invocation: of a procedure may alter the assoctation
between variables and data objects, -3s-in-(impure) LISP; Euchd, Algol 68, and PLJI, &
correspondence has to ‘be made between the operations of the lnguage and the ‘oﬁera‘ifit‘ms of
the abstract model for each data abstraction.

There are two ways of incorporating abstractions with operations that assign to their
input parameters in our framework. One way is 10 consider the abstractions to be immutable,

with operations that return vectors of values to be assigned to the output variables of the
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procedure. Another way to model such operations is to rc’ov_tsk‘lerﬁthe L—valqes [cf. 50] of the

variables to be part of the data object rather than the variable, and to treat the data abstraction

as mutable. o | A
The first approach is well suited in cases where there is no sharmg of mutable data.

“Aliasing can in fact introduce sharing betwten the formal: pzmetcrs of a ‘call-by-reference

procedure, so that speéial care is required in cases vfhgré thg Vsérme‘!ér’ia‘l?le‘__ is pés;gq in more

ent position (17

In order to describe data (ﬂ)je_t:ts~ whosé properties are subject Ato. change, we will
introduce a system' state function, which maps each data” object into .igs properties in the current
state. Only the permanent properties of a data object aré represented by the ihtérbretaﬁon ofa
data object im a state machine model, while the properties of a data object that are subject to
‘chanige are represented by the image of tﬁe'ébje& uider tﬁ;’é?‘i’y'st:énf'state function. For mbst
mutable data abstractions, the only ptrmanent propertyof data object is its identity.

Y

2.4.2 State Mag;hines

Mutable data abstractions are modeled as state machines, which are defined formally

below. A state machine is an exception algebra with a distinguished phylum of system states.

Definition 4 State, Machine :
A state machine is a tuple ¢ phyla : P, operauons F, statcfuncnons Z, states : A,
arglength : n, argtype:q, tc:¢, rlength:m, rtype:r, typenames: A, opnames: B,
tcnames : T, statenames : S, ss: 5, pt ), where P = {P a € A}is ah indexed set
of phyla, and where F = ngal‘B ¢ B} is an indexed set of operations, such that
each operation in F is a function
Fg:Ps—> (Pyp 1y X% PoB nif)) = Fs x UL Ry LT B) }),
where U  denotes the disjoint  union  operation, and where
RT = Pr(ﬁ' T )X X Pr(ﬁ' T, m(B, T)) 2= Ea laec S} and
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A-{A lacS] are indexed sets such that each ’d‘; < ia";ska state function
O Pa > Dy B :0.CPy then & wilbi Oy bo S Jofori: some 0 ¢ By v

n:B—>Ma:BxN—>A:B>PT),m:BxT >Nr:BxT xN—>Aare
functions such that n{fl} is the number of arguments for Fg(o) for any system Atite ¢

q a(ﬁ k) is the type index for the_k-th argument of, F&U} ((d),js the .set. of all

termination ¢onditions that may resuk from Fa(or) m(B, T) is the number of data
- objects seturned: by Fp(o) i thie termination cshdition s, atid- 78 7 /B) 18 the type
index for the k-th return value of Fﬂ(a) in the termination !tim T 4 is the et

£ 3G REEE S ‘i BT ]

* of type names, B is the set of operation names, ¥ is the set of termination condition
names, D C A contains the names of the principal types, 5 G4 M&M =t
the types that have a corresponding set of state functions, and 5 ¢ (4- S - DY is he

distinguished phylum of system states, W is.the st of naural pumbers.

The phylum of system states P, contains all possible. system, state, fungtiops, one, of which

represents the current global state. A system siate fupction is. the disjoint yaion of all.the

lndlvndual state. funcnpns each of whu:h Jepreseots, the G

dependent behavior. The disjpint. union of a_family. puwim,t-suu, l4g L} where
fidg =71 is a3 function. f:U{d; li...( .l A2V Lyl L} such . that whenever
xcUfd;licE}and x= (z.y)ﬂx)-f‘(y) Informally, the elements of the domain of the
system state function are tagged with the name of the phylum thcy came from. s0 that the same
set can be used to represent many different phyla without causing-any, interference among the
various components of the system state function. 'l;he sets /g 2Nd A ,are the dom;ms and
ranges of the individual state functions, and hence are used in the construction of the phylum

of system states P, but they are not themselves phyla of the n;éej imchgi'ne: reﬂecung thefact

that none of the operations of ’the' stzté"i‘mchihe 'ﬁigm&vduﬂ ‘state Nm:t)omor 'ihcfiyidual
data states as arguments. The set of statemames § spectf&s chh phyh repmmt mtable
types. Individual state functions -are: associsted m)y \mh, th& mhh typi.'s of a data

abstraction.
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The operations of the state machine are curried 8 so that formally an operation of a
state machine is viewed as a family of operations parameterized by the current system state.
This structure is introduced because the system state is qualitatively different from the other
arguments of a typical operation, and because this structure makes corresponding notations for
state machines and exception algebras more uniform. The operations of any immutable
subordinate types are extended to take the system state as an extra argument, and to return the
unchanged system state as an additional return value (the first component of t_he tuple of return
values).

Each operaﬁon of a state ma;hine takes the current system state as its first argument,
and when supplied with the rest of its arguments the operation produces the new system state as
its .first return value. The reason for making the global state an argument to each operation of
a data abstraction, rather than just the state function of the principal type, is that the operation
may depend on or modify the state of some subordinate type. A common example of this kind
of behavior is the print operation of a data abstraction, which modifies an output stream, but
which usually does not affectthe state of any data object belonging to the principal type. |

If none of the princkpal types of a data abstraction has an associated phylum of state
functions, then we will say that the abstraction introduces no mutability. An abstraction thag
introduces no mutability may still exhibit time dependent behavior, and hence require a state
machine model, if it has some operations that depend on or modify the state of some

subordinate type, or if it has some operations that take or return mutable data objects.

6. The process of abstracting from a function with n arguments to a higher order function
which takes one argument and returns a function of n-l arguments is named after Haskell B.
Curry (3).
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2.4.3 Mutation of Data Objects
In a state machine, the properties of a data object may depend on the cursent.system

state. Typically the objects of a mutable type are modeled, as tokens. without any .astributes

the qurrent:data state

except for :th‘e\i(‘ ident’ri‘t_vy.l The purpose of the state fynctmiQm
of each data object with that object, 50 that the samg.object can lave, different properties. in
different states. The set of data states 0, for the type « is the.range of any individuai state
f;znction 0 ¢ Z, for that type. The data state of a mutable object is roughly analogous te the
representation of an immutable object in an exceptian. aigebra..In an.exception algebra model,
the properties of a data objert are computed in terms of some. representation siructure. while:in
a state machine model, the properties of a dala abject -are computed. in .terms. of the:
represeptation ad s imagesunder the st functon,

A very simple example of a mutable data, absiraction is the integer cell.. An. integer
cen is =.."vi€,°f,w¥ ;l?n%t can store an integer. value. A model for integer cells can be-
constructed by ;gipg the natural numbers for EW cedt. 200 the, integers f"Aimegefeé#-
since the only obs?tvab!:g_ property of a cell that is subject to change is the identity of the integer
currently contained in the cell:, The system state function O maps every .natural' number
rép_reseming a ce_llvinto’ the integer xg_hat_i;.t»he current contents of that cell. There are. three
operations on integer cel!_s:'crmtg. Jetch, and store. The creale operation creates a new cell with a
specified integer as its initial contents. (The creation of dita pbjects is discussed in Section
245) The Setch opel"ation applies the state function to the-cell to get its current contents, and-
the store operatim ptoduces a new syacm state that dm‘ers from me o!d one m!y in mappmg

the updated cell into its new contents. A language for spedfying models is defined in Chapter
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4. and a number of complete examples of models for mutable data abstractions can be found

there.
2.4.4 Sharing of Mutable Data

From the point of view of this work, the existence of sharing relationships among
immutable data objects is not externally observable, since we are concerned only with the results
of a computation, and not with the time and space requirements for performing the
computation. A specification of an immutable data abstraction can therefore be constructed
without considering potential sharing relationships. Sharing relationships among mutable data
objects are often externally observable, so that they must be described in a state machine model,
at least to the extent that they influence the externally observable behavior of the abstraction.

To reflect possible sharing relationships, the set of data states is allowed to overlap
with the phyla of a state machine, so that the data state of an object x may be or may contain
another object y that lies in the domain of the system state function, and therefore has a data
state of its own. This kind of modeling structure is indicated whenever the object x has a
potentially shared subcomponent 9, such that the state of y is subject to change and such that
the externally observable behavior of x depends on the state of y.

In the general case, the behavior of a data object x may depend on an indefinitely
large set of data states, which are reachable from x by repeatedly applying the current system
sfate to x and to components of other data states already in fhe set. We will call this set the
reachability closure of the object x. For data abstractions where there are no externally
observable sharing relations, as in the integer cell example, the set of data states should be

chosen to be disjoint from the domain of the system state function, so that all of the state
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information is reachable by means of a single application of ihesy‘stem state function.
Mutable binary graphs are a classic example of a data abstraction where shariiig

relationships are important. This abstraction has operatiens. for ¢

reating the null graph, for
creating a composite graph with given left and right subgraphs, for extracting the left and
" right subgraphs of a composite graph, for modifying the Rt and ;ight subgraphs of a
compoagite graph, and pfedicates for testing if 2 granh is emp(y and i twographsare identieal.
One way to construct a state machine model for bmary gnphs is to take Pbinary graph to be
the set of natural numbers N, and Abmary graph to be the disjoint union nuft U (N x N). The
data state of a graph is ‘either mm mdlcatmg that the graph Is empty or it is a pair of natural J
numbers representing the left and nght subgnph& “An illustrauon of a system state 0'5
contaming a number of overhpping binary graphs is shown in Figure 2. Note that the graph”
represented by the number 4 is a subtotnpnnent of the graphsl and 2, and is therefore shared.
Binary graphs can also contain cycles, as s shown by graph 5 which is its own left subgraph

The mutation of shared data is a phenomenon that has been avoided in most existing

work on’ specifications for data abstractions. As the exmple in Flgure 2 indicates. it is not

difficult to describe shared mutable data once we adopt a point of view centered on data objects |

Figure 2, Shared Binary Graphs
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rather than on variables, Some af the issues involved it reasoning abbut shared mutable data

will be discussed-in Chapter 5. ..
2.4.6 Creation of Data 05]0&‘3‘ |

The principal type of a data abstraction is a fixed:set for both static and dyndmic data
abstractions. For a dynamic data abstraction, the ptincipat type-is:tive set-of. all dita objects of
the given type that can be created by :anvaezth: in-terms of the. primitive
operations of the data abstraction. .

~ The population of a.dynamic data abstraction:d--in & system state 0" is the set of ah
objects'of the principal type of d that exist. in the state 0. The concept of a population is
meaningless for ;;atici data abstractions. - Singe -we -find- it convenient 10 work - with total
functions, we adopt the convention that the data state-of :any object-that: has-not been created
yet is the special object undefined, which is a.member-of every phylum of the state machine.
All qu(gtipns of the state machine are implicitly extended to applyito this extri object by the

following strictness requirement:
Yi[1<i<n&x - undefined => flx), ..., x,) = undefined ]

for any operation f taking n arguments, for any 2 2.k ~We-also adopt the conventiof ‘that
o (undefined) = undefined for every system state-0r ¢ 2.
- Definition 5 | Population of a data abstuetlon

The population: of the data abstraction d in the:system state 0" is- deﬂned to be the

set { x € Pylo(x)= undeﬂned}

We will. assume that in the nmtial system state every mutable type has an empty
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populasion, and that objects are added to the populatioh as 'tl.vey'are‘ created.  We will also
assume that every data object must be compmad (ie, returned as the vahse'of some operation)
before it can be used as an argument to a subsequent openuon

We would like any program we can write in terms of ehe primitive operations of a
data absk_reution to be guaranteed to retura omydm objects with a- well defined state, and we
will call a data abstraction secure;if it has this property.

Data abstractions with eperations ‘that exphieifly destroy data objects can be modeled
readily in our framework, by having the operation change the state 6f the data object it'is to
destroy back to the original value undefinad; thus removing it from the current popuilation.
Data abstractions with operations that explicitly destroy data objects cannot be setufe, because a
computation that creates an object, destroys-it,:and then appHes any’ i’imher dpetatioh to it will
produce undefined as a-vatue: The probless of deciding When it i Safe to.explicitly destroy a
given data object must thus be addressedfmew"for“etc‘h*ﬁ&gﬁkﬁ"tﬁif’ﬁses objects of an
insecure-data abstraction.  This is known es the dangling: reference problem, and it is geneiall;
acknowledged to be difficult.

We will concern ourselves mostly with secure data abstractions. The population of a
secure data abstraction grows monoeeﬁicallj, and the reacﬁability closure of any object in the
population of a secure data abstraction will never contain the data object undefined.

| Informally, we will say that a model is reduced if it does not contain ‘anyuﬂneéessary
data objects. (A more careful definition of a reduced model can be found in Section 33) The
standard model of a data abstraction shoukd be redlud since this generally feads to a cleaner
_specification. In the context of a state machine model, this means that an operation should

extend the population only when it creates a "new" abstract object. An abstract object is "new”
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if it is distinguishable from every object in the old population by means of some finite sequence
of operations. In practice the required sequence of operations is often very easy to find, since
many dynamic data abstractions provide an equal operation which can be used to test if two
abstract objects are identical.

A very simple example of a dynamic data abstraction is the unique id abstraction,
which has only two operations, create and equal. The create opgrati.on creates new unicjue ids; a
newly created unique id is unique because it is guaranteed to be distinct from all previously
created unique ids. The only way to create a unique id is by means of the create operation.
The equal operation is provided as a means of corﬁparing unique ids, and it is guaranteed to
distingu-ish a newly created unique id from any previously existing unique id. Unique ids are
immutable (so that they cannot be forged or tampered with - one application for unique ids is
in implementing capability based data protection schemes).

This example illustrates that there is a state change associated with the creation of a
new data object, as reflected by the increased size of the population, even though the properties
of all previously existing objects may be unchanged. Note that the create operation is not a
function of its arguments unless the state is explicitly included as an argument to the operation,
because it will return different unique ids in different states, and it will never return the same
one twice.

Another example of a dynamic data abstraction is the impure list abstraction (as found
in LISP), with the operations cons, car, cdr, atom, equal, eq, rplaca, and rplacd. Each time. it is
called, the cons operation constructs a new list, which is distinguishable from any previously

| existing list by means of the eq operation. The impure list abstraction is also mutable, because

the rplaca and rplacd operations can be used to modify the contents of existing lists. These
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operations can also be used to dtstmgmsh a nenriy created Iist from a previously existmg list
with the same contems by modtfytng one of ihe lists and Iooking to see if the other is changed
akso. I the lists are distmct then one will be changed and the other will not be. Thus the
impure list abstraction would be dynamic even without the eq operation In the general case,
two abstract objects are identtcal only if they have the same observable properties in the current
state, and if they are guaranteed to have the same properties in all subsequent states.

Constder a restricted kind of Iist which has the same operations as the impure lists of
the previous example, except for eq, rplaca, and rplacd This Iist abstractton is tmmutabie and
also static, because there is no way to dtstinguish the list returned by one mvocation of cons
from that returned by a later invocatlon with the same arguments This example demonstrates
that whether or not a given operation returns a new abstnct data object depends on the other
operations of the abstraction. It may require a bit of thought to decide ii‘ a given data

abstractton is in fact dynamic and hence requires ) mte machine model. or ii‘ it is stattc and

immutable and hence should be specifted by an excepuon aigebn model.
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3. Denotations for Data Abstractions

The mean‘ing (or denotation) of a data abstraction is the class of all models of the data
abstraction. In the axiomatic approach to specifying data abstractions, this class is taken to be
the class of all models satisfying a given set of axioms. In the abstract model approach, the
class of all models of a data abstraction is taken to be the set of all models with the same
observable behavior as a given model, which is explicitly constructed.

In this work, we will assume that a model for a data abstraction is an exception
algebra. We will say that a model is dynamic if it has a distinguished phylum of system states,

and that it is static if it does not.
3.1 Complete and Partial Models

A model for a data abstraction d is complete if and only if d ﬁas interpretations for the
types and operations of d and of every data abstraction subordinate to d. The externally
observable behavior of d is characterized by the finite computations in terms of the operations
of d and the abstractions subordinate to ¢, and any such computation can be interpreted in a
complete model for d. A partial model for d may leave some of the abstractions subordinate
to d uninterpreted.

Since the identities of the objects in a model are not a priori observable, there may be
no way to compare the results of a closed computation in two different models. This problem is
resolved by insisting .on a unique standard model for the booleans, containing exactly two
boolean values, so that the results of any computation producing a boolean value can be

compared for any set of models. To reduce all comparisons of results to the problem of
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comparing boolean values, it is necessary to - incitide the Opﬂatiohs of the subordinate
abstractions in the computations Thus complete n modets are required to make sure that every
computatton of mterest can be mterpreted
‘ ln practice a system of data abstrecttms IS described incrementaliy. by giving a partial
description for each abstraction (or set of mutualiy aubordisute abstractions) d in the system.
The partial descriptions give a prescription t‘or constructing interpretations for.the principal |
type and operattons ot’ d, assuming that complete models for the abstractians subordinate to d
are already defmed ln parttcutar, the mterpretations of the subordtnate types of d are to be.
taken from the models for the deftning abstractions of those types . The construction . of a
complete model for d is described more precisely below.! |

| Let d be a data abstraction, let d}, *, dn bethtatis&acﬁonssubordtnlte to d, and
let m; be a complete model for d; for each i in the Tange I fisn Suppose we have a partial
. descrtption D for d, which gives the signature of d, the ‘name of the prmcipal type of d, and
interpretations for the principal type and operations of d IftD describes an exception algebra,

then a compiete model m for d is constructed as follows.

mephyla = Diphyp, o (U m,.phyh"nrpt)

I<i<n
m.ops = D.ops U ( IS‘{.’Sn m;. ops )

m. arglength = D. a_rgiength u (, U,, my. arglength )

m. argtype, m. tc, m. riength, and m. rtype are similarly defined as dispint unions.
m. typenames = D. typenamesﬁ( u mi.typenzmes |
m. opnames = D. opnames U ( 1<¢ ”‘t’ opnames )

M. tcnames D. tcnames Uu( u m;e tcnames )
' iLi<n

I. The details of this construction are not essential for an understanding of the rest of this
work, and may be skipped on a first reading.
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m-pt = Dn pt

where U denotes disjoint union and where U denotes ordinary set theoretic union. If D

describes a state machine, then the above relations still apply, and we have to add the following:

m. statefunctions = { D. statefunctionsp, pt J U { m;. statefunctions is a state machine }
[ ] .

m.
mi. pt ' []
m. states = { D. statespy pt FU { m;. states, pt | m; is a state machine }

’ 4

m. statenames = D. statenames U ( U { m,« statenames | m; is a state machine 1)

m.ss = D.ss

mophyla,  ={U{0 lac§S}lo,¢ 2, foreacha ¢ 5}

where S = m. statenames and 2 = m. statefunctions.

In the rest of this Chapter, we will limit our discussion to complete models, and we will

frequently leave out the qualiﬁef “complete”.
3.2 Behavioral Equivalence

Informally, two models are behaviorally equivalent if they have the same externally
observable behavior. In this section we develop a precise matﬁematical definition of an
equivalence relation that captures this informal notion. We define closed computations, and the
interpretation of a closed computation in a model. Two models are behaviorally equivalent if
they contain interpretations for the same types and operations, and if the value of any finite
closed computation in one model is indistinguishable from the value of that computation in the
other model.

Behavioral equivalence is an important notion, because it is the basis for defining the
correctness of an implementation of a data abstraction. An implementation defines a model /for

the abstraction it implements, and the implementation is correct if the model it defines is
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behaviorally equivalent to the model that specifies the abstraction.‘
We can meaningfuliy compare two modeis only if thej have interpretatmm for the
same types and operatlons Two modeis can be behavmiiy equivalent oniy if they have the

same signature.

Definition 8  Signature

The signature of an exception algebra ¢ is the tuple

(arglength : a. arglength, argtype : a. argtype,
tc : a. tc, rlength : a. rlength, Rype: a.rtype, . -

typenames : a. typenames, opnames : a. opRames, t;namesic.unames)
If two exception algebras have the same signature, then they have the same names for the
phyia operations and termination conditions, and corresponding operations have the same
numbers and types of arguments, the same set of posssbie termination conditions and the same
numbers and types of return values in each termination-doadition. :As a mitter. 9f- hotationdl
convenience, we require comparable models to be indexed by the same sets, so that
corresponding types and operations have the same names. and we can taik about the
interpretations of the same operation name in severai d:i;erent n\odels |

In order to characterize the kinds of behavior a data abstraction may exhibit, we

define the set of closed compntations.

Definition 7. Closed computation

A closed computation with respect to a sighature S is a finite sequence of pairs C
such that

Cli} » Cop : £, args : s ) for each i in the range | £ i < length{C);

where f ¢ 5. opnames, and s is a sequence of argument speciﬁcmons such that
length(s) = S. arglenth{/),

s(j) = (step : m, tc: T, result : & ), (the source of the fth argument to f)

1< n<i, - (nisthe index.of a previous step of the computation)

T ¢ Sotc(Clnloop), (T is the required termination condition for step n)



-47-

1 <k < S.rlength(Cln).op, T),  (the k-th object returned by step n must exist)

and S. rtype(Cln). op, T, k) = S.argtype(f, )  (and it must have the right type)

for each j in the range I < j < length(s). ,
A closed computation is a sequence of steps, where each step is the application of some
operation of a data abstraction to data objects resulting from previous steps. Every
computation starts from nothing, and computes data objects as it proceeds. A closed
computation is analogous to an uninterpreted flowchart, since the sequence of the operations is
given, but the operation names are left uninterpreted. A step is a pair consisting of an
operation name and a sequence of argument specifications. An érgumént specification is a
triple, which specifies a previous step, a required termination condition for that step, and the
index of the desired result. The index is necessary because an operation will in general return
more than one object, and we have to say which of the returned objects to use. Since the
number and types of objects resulting from an operation can be different for' different
termination conditions, an argument specification requires the step producing the argument
object to terminate in a particular termination condition, so that we can be sure that vthe
specified data object is of the proper type. A closed computation can fail to have an
interpretation in a given model, if the termination conditions actually computed do not match
the required termination conditions in the argument specifications of the closed computation.

An example of a closed computation Cl ov.er the list abstraction of pure LISP is shown

below.
Cill) = Cop : nil , args: {))

Ci[2] = Cop : cons , args : < { step : 1, tc : normal, result : 1), { step : |, tc : normal, result : 1 )
1)

>
CI[3] = Cop : cons , args : { (step : I, tc : normal, result : 1 ), ( step : 2, tc : normal, result : 1) ) )

This computation computes the value of the LISP expression "(cons nil (cons nil nil))".
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A c'osed computation consists of a finite sequcnceof oﬁ«atm with no condmonak
or other control structures, and can be thought of as 2 trace of the execution of some program
that uses the operations of the data abstractions of interest. The finite preﬁxes of the history of
any program can clearly be described by a set of closedcomputztions. and any finite closed
conmutaﬂon can be destribed by a program in just about my pmgtammmg language Note
that a machine for executing closed computations requites an » unbounded amount of memory
because it is assumed that theiresults of each step are saved, and may be used in any number of
succeeding stepf. | - -

We:want to know whether or not there is some computation that yields observébly
different-results when infterpreted in each of the two mddels whose behavior we are comparmg
It &5 sufficient for this' purpose to consider only thé finite computations: given two infinite
saquences, if we know that their prefixes of length n are the same for every natural "number n,
then the original infinite sequences must be the safme as well

The interpretation of a computation in a given model is the sequence of resukts
obtained by applying the interpretations of the specified muence of operatidns iﬁ the modd to
the specified arguments. Since the interpretation of an opentim iS'diffe;'ent for - static and
dynamic models, we will give separate definitions for the interpretation of a closed cochputaﬁon
in each kind of model. |
Definition 8 Interpretation of a Computation in a Static Model

Let M be an exception algebra model, let F = M. operations, let n = M. arglength, let
C be a closed computation with respect to the signature of M, and let X be a

sequence. ' K is the interpretation of the computation C it the model M if and only if
all of the foﬂmvmg conditions hold:
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1. length(Il) = length(C),

2. For each i in the range 1 £ i < length(C),
() = Fﬁ(xl R ) ), where Clil = Cop : B, args : 5 ),

>

For each j in the range 1 < j < n(f)
x; = obj(Il[k)) [w),  where s[j] = (step : &, tc: T, result : w ), and

4. te(Ir) = 7.

A computation is a sequence of operation names and argument specifications, and the
interpretation of a computation in a model is the sequence of values obtained by applying the
interpretations of the specified operations in the model to data objects specified by the argument
specifications. The set of operations of a model is indexed by a set of operation names, and the
indexing function specifies the interpretation of each operation name in the model. Since an
operation may return more than one data object, the interpretation of a computation is a
sequence of tuples of data objects, injected into the component of the disjoint union
Eorresponding to the termination condition produced by the operation. Recall that the range of
each operation of an exception algebra is a disjoint union of a set indexed by termination
. conditions. Each element of a disjoint union is a pair, containing a tag and a data object. If y
is the result of some operation of an exception algebra, then obj(y) denotes the object without
the tag, and tc(y) denotes the tag, which is the name of a termination condition.

The interpretation of the computation Cl (shown above) in the usual model of pure
LISP is the following:

I1 1] = ¢ normal, { nil ) )

1 [2) = ¢ normal, {(nil ) ) )
It (3] = ( normal, {( nil nil ) )

The pairs stemming from the disjoint union are shown explicitly. The first component of the
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pair is the tag (termmauon condition), and the second componem is the sequencc of data objects
resulting from each operation. Since all of the ppenwbm in L!us examph tetum a slngle
value, the resulting data objects are contained in sequm:d bng!hme

Note that the termination condmon of each step must match the t&mmation condmon
required by every argument specification that uses the results of that step A closed
computation may .or may not have an mterpretatm in a modcl Ifan imerpretatlon exists, it is
unique, because the opmmons of a excepnon algebra are functkms wh:ch necessanly have
unique values. A computation may fail to have an interpreutlon ln a glven model because the
opera!lon specmed by some step of the computatlon may termlmte ina dm‘erent condition than
the one required by some later step that uses tbe results of the given uep lf several steps of a |
computatlon make conﬂlcting reqmremems on the termmltlon condmm of a glven step then
that computauon will not have an intcrpretatlon in any modd of tbu absbacnon lf a
computation has an interpretation in a model, we wm say tbat the covmumnon is feasxb!e in
that model. A feasible computatlon can involve steps with exceptimal nerminmon condnms.
and it is posstble for the termination condmon of the ﬁnal step to be norm-l even if the
termination conditions of some intcrmedme step: are excemonal. |

The mterpretation of a closed compumm in a“d)‘v‘v»umk model is slmllar, except that
there is an extra component contammg the system state. Reca!l that the ﬁrst argument and the
first return value of every operation of a state machine is a system state.
Definition 9 Interpretation of a Computation in a Dynlmlc lodel:: |

Let M be a state machine, let F = M. operations, let n = M.arglength, let C be a
closed computation with respect to the signature of M, and let I be a sequence. X is

the interpretation of the computation C in the model M if and only if all of the
following conditions hoid: , _ -
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1. length(X) = length(C),

2. For each i in the range |1 < i < length(C),
i) - Fﬁ(cri) (g, "'n(ﬁ))' where

Cli) = Cop : B, args : 5,
0; = A x . undefined ifi =1
o; =obj(Il -1MN0]  ifi>1

3. For each j in the range | < j < n(f)
x;=objH{k) [w+1),  where s[j] = (step: k, tc: T, result : w ), and

J
4 tc(Hr)) =17
The initial state for any computation sequence is the empty state, which maps every data object
into the initial data state undefined and thus has an empty population (i.e, no data objects
have been created in the initial state). Each step of a computation except for the first step starts
with the state produced by the previous step. The interpretation of a computation in a dynamic
model is a sequence of tuples, whose first component is a system state, and whose remaining
components are the tuples of data objects and the system states produced by the operations
specified by the closed computation. Since the first return value of an operation of a state
machine is always a system state, the w-th data object returned by an-operatidn of the abstract
type corresponds to the (w+l)-st component of the sequence of values returned by the
interpretation of the operation in the state machine.
If a computation has an interpretation in a given model, then the value of the
computation in that model is the result of the last step of the computation.
Definition 10 Value of a computation
If the computation C has the interpretation I in the model M, then the value of C in
M is obj(Illength(I))) if M is a static model, and the value of C in M s

(2[2), .., vllength(v)] > where v = obj(Il[length(I1)]) if M is a dynamic model.

Note that the value of a computation can be a tuple containing more than one data object. The
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final state of the interpretation of a computation in a state machine is not part of the value,
since it is not directly externally observable. - i?;
We are now ready to define behavioral equivalence. .,

Definition 11 Bebhavioral Equivalence of Models . ,
' Two models Ml and M2 are behavnofa!ly eqawalen: if ahd only if all of thé
following conditions hoid:
L. Ml and M2 have the same signature S.

2. For any finite closed computation C with respect to’ the signature S, C has an
interpretation in MI if and only if it has an interpretatio,n in Mz.

3. For any finite closed computation C with respect to the slﬁnature S, C has an -
" interpretation in M1 and the vatue of C'ifi M1 1t'the Bodleah vakie't if and only if
C has an mterpretatlon in M2 and the vahe of C in M2 is thc same boolcan ‘
valuet. o
Two models are behaviorally equivalent if they have the same signature, interpretations for the
same set of closed computations, aiid if every computation Tesuiing In 3 boolean value has the

same vatue in both modets.

Theorem 1 : Behavioral equivalence is an equivalence relation.

Proof : The theorem follows digectly from the definition.
End of Proof '

We intend two models to be behaviorally equivalent if and 'imﬁ if they have the same
externally observable behavior. In practice, what' we can really observe is the output of 2
program, which is usually manifested as characters pringgd}qp a piece of paper, or displaycd on
a terminal. Although there is a wide variety of periphtrﬂ devices that can be ‘connected fo a
computer, capable of producing a wide variety of observible effects, thcycan all be modeled by.‘

a (mutable) output stream data abstraction sufficientty ‘well‘for our purposes, since we are not
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concerned with the actual physical properties of the output, but only with whether or not two
outputs are distinguishable. We model the data states of an output stream as finite sequences of
integers (which can be interpreted as character codes in most cases). We assume output streams
have an operation that returns the current state of the stream, represented as an immutable
sequence of integers. This operation models the system user, who observes and compares the
actual outputs of the system, and it need not actually be implemented. It is included because
some data abstractions have properties which can affect the printed output, but which cannot
be tested by another program.

Integer sequences are defined to be a priori distinguishable because they are used to
model physically observable outputs of the system. Note that the states of mutable data
abstractions other than output streams are not a priori observable. We will further assume that
integer sequences have an equal operation which allows us to reduce the problem of comparing
sequences of integers, representing states of output streams, to the much simpler problem of
comparing truth values.

The domain of truth values is a priori distinguishable because of our assumption that
the host programming language provides some means of altering the flow of control depending
on a truth value. For example, a conditional statement that pr'ints a different message on each
arm can be used to physically distinguish between the truth values. Because of this property of
truth values, we insist that the boolean abstraction be given the standard interpretation in ali of
the models that will enter our di.scussion. In the standard interpretation, there are exactly two
truth values, T and F, with the operations and, o, not, implies, and equivalence (see Section 4.2.1
and Appendix I).

Different termination conditions are also externally observable, because we can
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associate handlers that pnnt different ntessages with each exceptton We do not have to
introduce any extra machlnery to treat thls case, because it Isﬁalready covered by our dennmon
of the interpretation of a computation lf the ﬁnal step of a computation c resutts in two
’difrerent termination condmons in two diffetent\modeis then by addmg one more step that uses
the results of the fast step of C and that requlres itto terminate in one of the two observed
termination condmons we will get a closed computatton C that is feasible in one model but not
in the other - |

In our. definition of behavioral equivalence, we have assumed that all of the aspects of
the behavior of a data abstraction can be o‘bserved’bvy‘: means of the operations of the
abstraction and its subocdtnate:aostractions. If every operatton ot‘ every abstraction in the
system computes results that depend only on the data objocts explicitty passed in as arguments
or on the data states in the reachablhty c!osure of the arguments (see Sectton I3) then this
assumpnon is justified. An example of a system that vmlates thts assumptton is the foﬂowlng
Suppose that the abstraction NASTY has an operation count that returns a natural number :
representing the number of objects of type NASTY that have been created 0 far and that the
only operation that creates new objects of type NASTY is the nul!ary create operation.. In order
to implement this behavior, the creafe and count operatlons must share some own data. If some
other abstraction A4 in the system is implemented using a repfesentation containing a object of
type NASTY then the operations of 4 can have effects whlch are only observable by means ol‘
the count operanon of NASTY, even though NASTY is not necessanly subordinate to 4 (ie
A need not have any operations that operate on or return any objects of type NASTY). In
general, abstractions with state components that are associated with the type as a who'le. rathec |

than with any individual data object cannot be used to represent objects of other types without
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introducing hidden interactions of the sort descnbed above. Be(mse we want the behavioroi’ "
data abstraction to be mdependem of the repremtatma used in any. particular implemeéntation,
we ,exc,lu\dg;tx;uqr;ires like NASTY from. ous discussien. ; The: specification lawgtiage presented
in Chapter 4 has been designed so that abstractions violating this locality assumption cammot be’

defined.
8.3 Reduced Models

Data abstractions are identified with equivalence classes of models with respect to the
behavioral equivatence relation. In this section we will show how to construct a representative
element of such an equivalence class, known asya reduced model which can be used to speclfy
the behavior common to all of the members of the chss &M modtis are shown to be
unique up to isomorphism, and they are nﬁmmal in: !he;mserthanhey cemain no unmssary
elements. Models to be used as specifications for dm-abst:acﬂenslshwld be reduced, since
irrelevant components serve no useful purpose and may Iead to confusion

The concept of a reduced model has to be deﬁmd samewhat differemly for static and

for dynamic models. The two cases are dlscussed below.
3.3.1 Reduced Static Models

Before we can precisely define what we mean by a reduced model, we have to
introduce some auxiliary concepts. A reduced model should: be free:of “extra” objects that

cannot influence the externally observable behavior of the model.



Definition 12 Reachable Ohjects R ' '
A data object x is reachable in a model M with a ngﬂamre S if and only if there is
some finite closed computation € with respect ta S such that ¥ B-thé ‘value of C in M.~

Only the reachable. objects in the phyla of ‘s model can Influénce ‘the éxternally observable
‘ behavior of a model. |

We would also like a reduced model not to contain redundant copies of the same

object, if there is no observable property that can distinguish betm gheoopies;!'p ngjve at

a definition for the external equivalence relation on data objects, we have to define open

computations.

Deﬂnmon 13 Open Compuhﬂon for a Shuc m

An open computatm with respect 1o a sngnatures and a typca € S.typenames
is a finite sequence C such that < -

Cli) = Cop: f, args: s)foreachlinthennge2<i<lmgd1(6)
whmfrs.mmd*‘:siwaﬁnhﬁ
length(s) = 5. arglenth{),
- s{j}=  step = a, ¢ T, resalt - & ), where.
1<n<i
if » =1 then S.argtypelf, } = a; T =« novmal and & =1,
and if n > 1 then T ¢ S. tc(Cln). op)
1Sk <5, riengtiCin). op, 7) o
and S. rtype(Cin). op, 7, %) = S.atgtype({j)
for each jin the range I < j < length(s):

An open computation is just like a closed computation except that an minal data object is

wq

specified, which can be used in any subsequent step of the computation in addmon to the data
objects produced by the preceding steps. The initiat data’ object: is a parameter to the open

computation, and the value of an open computation is a function of this parameter.

Definition 14 interpretation of an Open Computation in a Static Model
Let M be an exception algebra model, let F = M. operations, let n = M. arglength, let
C be a closed computation with respect to the typename a and the signature of M, let
x € P,, and let K be a sequence. I is the interpretation of the computation C
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applied to the object x in the model M if and only if all of the following conditions
hold:

1. length(Il) = fength(C)
2. K1l = ( normat, {( x »)

3. For each i in the range 2 < i < length(C),
o) - Fglxp, . X)) Where Clil=Cop: B, args: s ), and

4. For each j in the range | < j < n(f)
xj= obj(I{k]) {w],  where s[j] = (step : k, tc: 7, result : w ), and

5 te(lilk]) = 7.

The interpretation of an open computation is like the interpretation of a closed
computation, except that the interpretation of the first step of the computation is a sequence of
length 1, containing the specified initial data object x, and with a normal termination condition.
We have injected the initial data object x into the normal component of a disjoint union for
the sake of uniformity. The ( tag, object ) pair is shown explicitly in condition 2
befinition 15 Value of an Open Computation in a Static Model

If C is an open computation with respect to the type a and the signature S, M is a
model with signature S, x ¢ M. phyla,, and if I is the interpretation of C in M with

respect to a, then the value of C applied to x in M is C(x) = obj(I{length(I)}).
The value of an open computation is the tuple of data objects resulting from the last step of the
computation when interpreted in the given model.

Definition 16 External Equivaience of Objects in a Static Model
Let M be a model, a ¢ M. typenames, and xI, x2 ¢ M.phyla,. The the data objects

x| and x2 are externally equivalent if and only if for every open computation C with
respect to a all of the following conditions hold:

. C has an interpretation in M with respect to the data object x1 if and only if C
has an interpretation in M with respect to the data object x2.
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2. C has an interpretation in M with respect to x"l‘a‘nd the value of C ;pplied to x}
in M is the boolean value 1 if and only if C has an interpretation in M with
respect to xl and the vakie of C applied to x2 in M is the same. boolean vajue (.
Two objects of a given model are externally equivalent if and anly if eyery open_computation
applied to one of the objects yields a result that is indiu.ingukhahle from: the result of applying
. the same open computatlon to the other object This means that the two objects share all
externally observable properties, and therefore represens thc same abstratt objeq. even if they
are two distinct objects in the model. The point is that the identities of the objects:in a model
are pqt extemaﬂy Observable unless the data abstraction provides some operations. that make
tt_wm gbfservabk, o
~ Now we are ready to define reduced static models. |
Definition 17 Reduced Static Model
A static quei Mis reducrd if and only if all of thefoﬁowing conditions hold:
I. Foreacha ¢ M. typenames and for each x € M.phyla,, x is reachable.

2. For each a ¢ M. typenames and for each xl x2¢ M. phyha, if xl and x2 are.
extemally equwalent, then xI = x2.

A reduced static model has no extra objects, since every. object is the l:ei‘t:ilt‘of some finite closed
computation, and hence externally observable, and every distinct pair of objects in the ‘model
differs in some externally observable property. |
Theorem 2 : Every equivalence class of modds with mpect to the bchavioral equivalence.
relation contams a reduced model.

Proof : Take the reachable subset, and divide by the extérnal equivalence refation. Details in

Appendix Il
End of Proof



- m -
Theorem 3 : If two reduced models are behaviorally equivalent, then they.are isomorphic.
Proof : The isomorphism maps the value of every, dosed computation in. one. model into the

value of the same computation in the other model. Details in Appendix m.
End of Proof : ‘

e
Thus every constant data abstraction has a reduced model that is unique up, 1o isomarphism. -
Theorem 4 : If M is behaviorally equivalent to M’ and M is reduced, then there is a
homomorphism from a subset of M’ qmo M. :
Proof : The construction of theorem 2 yields a reduced model which is a hemomorphic image
of M. Compose that hemomorphism with the isomorphlsm guarameed by theorem 3. Details

in Appendix 111
End of Proof

We can always find a homomorp'hisn.t from an ‘é'rbltfa:iy ‘static model to a behaviorally‘
equivalent reduced model. This result is irit'er’éstihé because the classlcai waﬂy: to pr;v'e‘ the
correctness of an implementation of ‘a data abstraction with respect to an abstract model
spedfic;tion is to construct such a homomorphism from the imfpieméﬁtation‘:fo the defming
model. The theorem says that the required homomorphism exists for any correct static
implementation model, provided that the defining model is reduced. While there ‘is no
guarantee that ‘the homdmprphism is compuﬁ?(l;zle' or e;én ﬁhitelywdescrll'):abk. the
homomorphisms corresponding to most implementations are quiiéigit:;ac‘t;ble. ‘As we shall see in

the next subsection, the tc:orrespbnd:ifng theorem for dynamic models is false.
3.3.2 Reduced Dynamic Models

Informally, a model is reduced if it has no unnecegsafy objects. We have to take a
different approach to formalizing this concept for dynamic models, because the existence of a

data object and the properties of a data object-a}e not chtely determined by the idenfity of
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the object, since they will in general depend on the system state. Theorem 4 fails for dynamic
models for this very reason. A homomorphism on 3 many sorted algebra is a family of
imappings, one for each phylum. In a‘ dynamic model, the velemre»ms of vain.y‘ phﬁhni
corresponding to the principal type of a dynamic data’ abstraction have no ‘distin:guishlbg
properties except for their identity. Al of the interesting. properties. of ap object belonging to
such a phylum come from the image of that object under fﬁé:sygiém“'sta’te function, and any
particular object does not have any interesting properties until it ;{,creat.ed'.(i.,e.?,_ until some
operation gives the object a data ;tate other than undefined). Depending on howanobjeg.
ggts created m each parti;ular computation, an object inthe model can come fo represent any '°£
5 number of differeq; abstract objects. Consequemly there may,}b-e no correspondence between
the objects of» one model aﬁd those of another which is both consistent with the operations and
independent of the cqnggﬁtatim history. T'heuca:sgs where the correspondence is independent of .
the computation h_.istory are rare. |

The rest of this section consists of a cﬁmctaiytm of a reduced dynamic ﬁloﬂek,.and- ‘
an example of two behaviorally equivq-lgqt models such that one is reduced but is not a
!;omomorphic image of the other. N

There are two requirements a dynamic modelmust meet i_f‘ it is to bc reduced: the
phyla must contain no unncce#sary objects, ;nd for every sﬁtc, the population must contain no
unnecessary objects. [f we insist that every element of every phy!um must be reachable, the first
requirement is met. Reachability can be’ defined for dyn:mii?c,models in a way entirely
analogous to the deﬁnition for static models, and presents no essential difficulty. For most
dynamic models a countable infinity of data objects are reachable, and each data object has no

directly observable properties except for its identity, so that the first requirement is not very
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mterestmg | The <econd requ:rement requlres a fundamtaﬂy new approach, because there is
no way to meamngfully define the behavior of an abstract object lndependemly of the system
state.

We wnll assume that an operauon of a data absmction an create at most, fimte!y

S -
ER

many new data objects [cf 15] Smce we require a" opcrauons to terminate in a finite amount of

time, and since all real machmes compute at a ﬁmte rate thns assumftlon is Justmed A‘

CEEE DY

consequence of thl! assumpuon is that the populauon of every reachable state is finite, where a
state is reachable if and only if there is some ﬂmte closed computatm that produccs that state.

We can deﬁne reduced models for dynamlc models as follows.

Definition 18 Reduced Dynamic Model
A dynamic model M is reduced if and only if there is no other model M* such that
M’ i$ behaviorally equivalent to ‘M, ‘afd’ f6r" ¥ine ‘closed” ‘computation C, the
cardinality- of the population of the final'stite prodiied By ¢ W' ¥ is sirictly smafler
than the cardinality of the population of the final state pmduced byCin M.

An example of a case where we have a rediied dynamic model Ml and a
behaviorally equivalent model M2 such that thcre lg no hmmphim from any subset of M2
onto M! is described below. o

Considcr a i;crsﬁn of mutable iictc, which havc nii cs the only atom, actd' for which
the rplaca and rplacd operations return the list that was modified rathes than-the Gid valve of
the component that was replaced, as is the case in LISR. - The'imodel M1 has' Py = N, and
Qe = {nil JUN x N). In Mi, the only operation that extends the population of the Hst
domain is cons. The eg operation serves to make the identity. rehtioh.mx;objects‘m the model
externally observable, so that every newly created object: is distinguishable from any: previously

existing abject, and hence M{ is reduced.
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The model M2 has Py, = N and Ahst - ceil{{ nil } U(N x N)l In M2, rplaca and
rplacd as well as cons extend the popuhtion of Phst: We have mtroduced an extra Ievel of
PR 2
indirection, so that the identities of the abstract objects correspond to the Idenmies of the cells

that are the ‘data states of the ekments of Plist' rather tn;n toﬁsew keiements of Plist direct!y as
would be the case for any reduced model. m is behavionﬁy quivabnt to Ml but M2 is notrx '
reduced, becaise the rﬂaca and rplacd weranons create reclundant ust objects. |

“There can be no homomorphum from M2 to MI because the correspondence between

et ir

objects in M2 and objects in M1 depends on the system state. For example, the mputatlon

shown in Cl below

CHll} = Cop : ntl , args : (O
Cl2] = Cop : cons , ;rgs {(step : L1 nornm.rem 9 (wepml.,ﬁc‘m&kremk l)))”»rs‘
CH3} = op : cons , args ! {{step : I, &c; mm .D.(tlep l..tc;makmu& )

has the following interpretgtion in Ml:

Il -<0y.0) ' where b’o(O) = nil
T2l - (o, 1) where 0(0) = nil, and (1) = €0,0)
I3 - (oy.2) where 0{0) = ail, 0ofl) = (0,0 ), and 0g(2) = (0,0

Cl evaluates the expressmi"(cons,na uil) twice, resulting in two cnpler of the ﬁst(nil) Each
element of the interpretation Kil is a pair containing’ the resulty vaturned by the operation
specified by the corresponding step of the computation Ct. The first element of each pair is'a
system state function, and the second component of each pait is a mattiral number representing
a mutable list. Note thae»én system state: is considered to be resukt 0, and that result | Is the
first data object returned by the operation, corresponding to the second elément of each pair.

The computation Cl has the following interpretation in M2:
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m20} = (op .00 where 0'(0) = cell-0,

0 (cell-0) = nil
22 = Coy, 1) where 0(0) = cell-0, 0((l) = cell-],
0y(cell-0) = ni, Ul(cell-l) ={(0,0)
N2 =<(oy,2) where 0'9(0) = cell-0, 0 o(1) = cell-l, 05(2) = cell-2

0 9fcell-0) = nil, Uz(cell-l) ={0,0), Gz(cell-2) ={(0,0)

In model M2 we have an extra level of indirection. If the state 0"y of MI corresponds to the
state 0" gq0 of M2, then we have the relation 0'yqy(n) = 0 400" gy 9(n)) for any n ¢ N (a natural
number representing a mutable list). The correspondence between the elements of Py for the
final state produced by Cl in M2 and the elements of the population of Py, in the final state

produced by the interpretation of Cl in Ml is

M2 Ml
0 —> 0
1 — 1
2 —> 2

Now consider the computation C2 shown below.

"~ C2l) = Cop : nil , args: )
C2[2] = {op : cons , args : {(step : 1, tc : normal, result : 1), (step : 1, tc : normal, result : 1))
C2[3] = op : rplaca , args : ({step : 2, tc : normal, result : 1), (step : 1, tc : normal, result : 1)))

C2 computes the expression "(rplaca (cons nil nil) nil)". The interpretation of C2 in M1 is

X2l = < 0y, 0) where 0/(0) = ni.
212 = Coy, 1) where 07((0) = nil, and o((l) = €0, 0 ).
_ I2AB3) = <Coy. 2D where 0°5(0) = nil, and 0 o(l) = (0,0 ).

The interpretation of C2 in M2 is
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X220 = (0, 0) where 0{0) = cell-0,and

oo(ceﬂ-O) = nil.
X2202) = oy, 1) where 0'((0) = cell-0, a,ﬂ) - ceﬂ-l

0 y{cell-0) = ntl, and G'l(cdh) «(0,0).
H2203) = (09, 2) ‘.E.whereezmﬁcdl-o:rzm ceﬂ-l.#z(z) cell-
- Ogfecelt0) = nil, andvzftéﬂ-ﬂ - (0,0).
Thus the conespmdence between the elements of the popuhuon of Plist in M2 and the
Msow,mmmmudmchefmz;mpmdmdbyczts R -

Mi
0
1
1

w-@s,
Vi

A homomorphism must be a function, and hence single valued. Since the computatious Cl and
€2 introduce conflicting requirements for the image of the element 2 € Py, there can be no
homomorphism from M2 to Ml

: c;wrecmess cannot be established by exhibiting a homomorphism from thc implementation {o
the defining model, even #f the defining model is refiiced. Therefore other methods of proof
relying more‘aire;ﬂy on the underlying concept of behavioral equivalen;:e are needed. Proofs

of correctness of implementation are discussed in Chapter 5. ©
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4. Specification Language

In Chapter 3 we saw how a data abstraction co;lld be identified with an equivalence
class of models with respect to the behavioral equivalence relation. It is our thesis that an
effective and useful technique for specifying a data abstraction is to explicitly construct a
(reduced) model of the abstraction. The data abstraction denoted by such a specification is the
class of all models behaviorally equivalent to the model that was constructed, which will be
referred to as the standard model. In order to define a standard model for a data abstraction,
we must specify the signature of the data abstraction, and give intergretations for its phyla and
operations. In this chapter we present a number of methods for doing this, along with a
language for describing particular models defined using these methods. Chapter 5 is concerned
with proving that a proposed implementation is correct with fespect to a given standard model.

Since we are primarily interested in using our specification language for defining
particular models, rather than for proving meta-theorems about the specification language, we
have made no effort to keep the language minimal. Our intent was to make it easy for people
to read and write specifications in our language. Such a goal has no objective measure, and the
reader is urged to consider our examples and to construct additional ones in order to judge the
merits of the formalism. The syntax and abbreviations we have chosen are meant to ease the
task of the human reader. For applications where mechanical processing of the specifications is
to play a dominant role, a more restricted syntactic form may be appropriate.

As mentioned in Section 31, we will construct models for data abstractions
incrementally, assuming at each stage that models for all of the subordinate abstractions have

already been defined. We will explicitly construct the interpretation of the principal type, and



". .
implicitly specify that the interpretation of each subotdimtetype is the prin'cipaiityp‘e" of the
stnnd;lfd modeH'or its defining abstr»action.y

In thi; Cﬁaptgr we u}rgll‘ assume that a model for a static data abstraction is an
cxceptkﬁ a!geﬁra, and ti_aat a model fof a daﬁ abstnqm,gitb timedependmt behavior is a
state machine. (R&a" tﬁat a state machine is an_exception ;kebu .with a distinguished

phylum of system states))
4.1 Components of a Speciﬁcaﬁon -

- The important part of the specification. language is. its structure and semantics, which
are gxp!ained_mforma,lly heiow A precisedeﬂniﬂouo{ ou:mwhat _;zb;g:;ggly chosen syntax
can be found in Appendix 1v.

The:k“ba'sic componems of a modelspeciﬁutm are iflustrated by the example shown in
Fi’gurer 3 Th‘is example gives a defmmon of gmmtabje g,ta‘,icks_«,‘(qr; stack states),. modeled in-
terms of sequences, where the top element of» the stackﬁ is the last clemmt °f~ the sequence
representing thé stack. This example has been treated. many times in the literature on
spevcifi(.»ations for data abstractions, and will probably be familiar to the reader. Later we will.
see a kspec.iﬁcation of mutable stacks. The form of a speciﬁcatm and the meaning of the
components are explained briefly below with occasloml reference to the stack example.

The name of th;: abstraction, which is the same as the}rvla,mg of the principal type. is
introduced by the keyword type. An optional abybrev{htigp for the name of ;\ﬁle_prin'c,lpal type
is introduced by the kede as. The name of the type is followed bf an optional list of
parameters, enclosed in square brackets. If there is a parameter list, then the speciﬁcﬁion is not

a single definition, but rather a definition schema, which can be instantiated by substituting a
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Figure 3. Stack

type stack[E] as S

requires E : type
with empty: —>S % the empty stack
push: ExS—>S$
pop: S — S + ( stack_underflow : )
top: S — E + (stack_underflow : ) ;
null: S — boolean % is s empty?

representation: sequence(E]

restrictions: none
identity: sequence[E)fequal
operations: empty() = sequence[Efempty()
push(e, s) = addlast(s, €)
pop(s) = if s = 0 then ( stack_underflow : ) % o is length

else s[ 1 .. (ws)-1 ] %sla . b)is subrange
top(s) = sequence[ENast(s)
null(s) = if #5=0 then true else false
end stack

suitable expression for the occurrences of each parameter in the body of the definition. If there
is a parameter list, there must also be a requires clause which specifies the restrictions on the
expressions that may be substituted for each parameter. In the stack e'xample, the param;eter E
is restricted to range over the names of types (E is the name of the type of the elements on the
stack).

The keyword with introduces a specification of the signature, in the notation
introduced in Section 2.3.3. The signature gives the name and type of each externally available
operation, including the number and types of arguments and the number and types of return
values for each possible termination condition. The set of subordinate types is also implicitly

specified, since it contains precisely those types, other than the principal type, that are used as a
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componcnt of the domain or range of some operation in the signature. Fach operauon may
also have an alternate syntactic form, which is introduced by the lu.:ywo;d as. Wl&bm &he-
the operauon, and a“ of thc oﬂw; symbols (gp fo the endof the line) ,arrg‘: separators (prefix,

' infix, postfix, etc), whicrh are to bctﬁkmm Thctmeof an operathi(me the name of its
'defining abnraétit;;) should be obvious from u; context. In cagsw}ngre u is not. obi,v;gyus,;gr
where we want to emphasize the type, we will use the standard fungngm!rno(atlonﬂtﬂe !bl
name of the operation is prefixed by the nameof its ‘defmmgnabstr;mon followed. by a ’%".
The parameters o!:the type will be mcluded m caseswl?u:e thai B help{ul to the {human)
reader. B
The interpretation of the principal typ’e'vi's spccmed b'yé thc ;th three components. ;
The underlymg repm.cmauon algcbta is speciﬁed by an expression introduced by the keyword

representatim The allowable expressions 2 and their meanings are discussed below in Section

4.3 below, The restrlctions component specmes a subset of tht principal type of-the

representation algebra and the ldenmy section specifies an _quivalence relation on that subset.

The mterpretatmn of the principal type is the quatient of the specifiod stihset of the principal -
type of .the representation algebra with respect to the specified equivalence relation. The.
identity relation in cffect determines the identity of the abstract gbjeds of the principat type of
the abstractioﬁ being defined, and serves as the logical mahtyrdanen for the pringipat type of -
the modei.’ Logical equa)ity is not externally avallabkuﬂlen one._of_the. operations of the
abstraction happens to coincide with it. In a reduced model, logka!vquahty should be -
extémaﬁy obscrvable in mv;\s of the operations, akhwg‘h_”nq(gnggcssarrjl‘y in terms of the same.

finite computation for all objects in its domain.
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The operations are defined in a section introduced by the keyword operations. The
forms and meanings of the operation definitions are described in Sectlon 42 below |

Comments can appear at any point in a specrflcatlon They are lmroduced by the
symbol 2" and extend to the end of lhe line.

Aucxiliary functions or abbreviations may be used in the deﬁnirion of the operations.
The types of any auxiliary functiohs rrrust be giverr in thellntern‘al slecriorl. and the definitions
ol any auxiliary vfl‘mctions or ebbreviet‘ibns must‘ be given in the deflnltion section, in the same
form as the types and definitions ol the operations. Auxlllar} l‘dnctiorrs are :‘irlt'rdduced ‘solely
for clarity and expressive power, and rhey are not externally available (for use by programs) or
even part of the model, which contains only the functlons actlng as the mterpretatlons for the
exrernally available operauons Adxrlrary functrons may be used in assertlons and in prools of
properties of the data abstracuon . |

A specification is terminated by the keyword end, optlonally fbllovred by the name of
the abstraction that was defmed In cases where several data abstracuons are subordlnate to
each other it re necessary to define a grdup of related abstreerlbns by aAsmgle model wrth
several principal types. In the specmcatlon language a module defining a model with several
principal types consists of the keyword module, followed by any number of type definitions,

followed by end module. The representation and -the: inteynal: functiens of each type are

accessible throughout the module. Modules may not be nested.




4.2 Defining Operations

The princlpal type of a model is the quotlent of the subset ol‘ the prindpal type of the
representation algebra satul‘ymg the constraints speciﬁed in the rostrlctlons secnon mth
respect to the equivalence refation specrﬁed in the ldnntlly section lf there is o restrlctlono
section, the entire pnncnpal type is used. lf there is no ldonmy secnon then the loglcal equality
of the prlnclpal type of the representatton algebn is used. and the quotiem structure ls trivlal,
since all of the equlvalence classes are smgletons in thts case.
= The deﬁnltions of the operations ln a type defmmon in our specnﬁcation hnguage
expllcltly deﬁne l‘uncttons that operate on the elements of the prlncipal type of the
represemauon algebra These funcuons are impladtly extended to opente on the equivalence |
classes that make up the pﬂnclpal type of the quotient structure in the umal way. descnbed in
moredetatl in Section 'H( |

The followlng subsections describe the means. for deﬁnmg l‘unctlons prov;ded in the
speclfleatm language and then examine the constmnts a l'unctlon deﬁnltlon has to satlsfy in

order for it to denote a wel! l’ormed operation for tlte exceptlon algebra or state machme belng
4.2.1 Conditional Expressions

We will use a language for defining functions similar to that introduced by McCarthy
in [33], extended by the iota expressions described in the next subsection.

A function definition consists of a function name, a list of variables, an equals sign,

and an expression. Valid expressions are variables, iota expressions, functions applied to
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expressions, and conditlioﬁals“app»lied to expressions. Conditionals are written with the usual
if-then-else synta;c. aﬁd the.;y i\;ve the gsual r‘rv:eaning:l“ o | |

b =% ((if b then x else 9) = x)

= b => ((if b then x else y) = y).

The variables that may appear consist of the variab)ef appearmg in thg list ofi:_yfq‘r}mql
arguments on the left side of the equals sign, and any local vz;r;a;k; de;ined immediately after
the function definition. A local variable is defined by writing its naine,'an equals sign, and an
expression. Circular definitions aré not allowed: -»iyt' must be possible to eliminate afl of the local
vatiables from the right hand side'of‘a function definition by a finite nurhber of substititions,
each of which replaces an occutrence of a‘local variable by’ the expréssion efining it. " Local
variables are a notational convenience, in the serise that éﬁy’déﬁniﬁm’hﬁﬁg‘ focal variables has
an ‘equivalent definition without local’ variables: ‘The abbreviationi ‘introduced by local
variables can be'a very important aid in ?maiing—mé%strﬁc‘tﬁréfoffi"'ﬁmctioﬁ‘dammon more
apparent to the human reader, and they can at'times dramatically shorten the text of a function
definition. S

The functions that may appear on the left hand side of an nper@atnon definition a“r_cttbe
primitive operations of the representation algebra and of its subordinafe abstractions; and“the
operations and auxiliary functions defined in thé: type spetification or- module in*which the
defining expfession appears: Recursive definitions are llowed. ‘Auxikary Tunctions must be
defined in thé definition sectiom Awiliary functions' can increase the expressive power of the
language, as proved for equational axiomatic definitiofs in- [52) " This result should  not be

surprising, since auxiliary functions may be defined recursively, so that the process of
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substituting the body of the function definitions for each mvocanoﬁ (attempting to cltmlnate the
auxihary functions from the main definition) may fail to termmate o

Since the operations of a data abstraction are supposed to be lotal fuuctiqm. it s

TS S

necessary to show that all recursive deﬁnmons used are well founded
4.2.2 Iota Expressions

lota expressions are named. for the m operator in logic. - An iota expression has the

form x : p(x), where x is the only free variable in the predicate {x). If x is of type.T, and if the
set { x € T | plx) ] is a singleton set, then the value of the jota expression x : #lx) l;'thgiggw
element of that set, and otherwise the iota expression is.undefined.

. lota expressions are useful in cases.where it is much sasier to specify a property the
result of a function must satisfy and to prove that the property uniquely determines the resukt
than it is to provide a recussive definition of the function. lota expressions are the equivalent
of Hoare style input/output predicates for a language with functions and without side. effects.

An examples of a definition where an iota expression definition is appropriate is
isqrt(n) = y: 92 < n < (yoh)2

which defines the integer square roat function..
It is necessary to show that each iota expression used. in a specification is well defined,
given the context in which it appears. More precisely; the following two requirements must be

satisfied for each iota expression x : p(x).



L oglx) =>3x pix) ]

2. Vx,)\[ glx) & plx) & q())\& pyy=>x=y ]

where = is the 'equivalence relation defined in the Identity section, or the 'lo'gic‘al equélity
refation if there is no identity dection, ¥ ra;igés’o&f the principal type, and where gx) is the
path predicate describing the conditions undef which the lota ekp}éssioh Ea;1 get evaluated. Lét
a be an occurrence of an iota expression in the 'ékprégsiorrf:e‘., and let pathia, ¢) denote the path’

b

predicate for a in e. Then pathi(a, ¢} is defined as follows:

path(a, a) = true N . PRI
if e is flx), .., x,)" and a occurs in x;  then path{a, ¢) = path{a, x,)

if ¢ is 7if b then x else y” and g ocaws.inb | ...then pathia,«) = path(e, b). -
if e is "if b then x else 9" and a occurs in x  then pith(a, ¢) = b & path(a, x)
if e is Tif b then x else y" and o occurs iy then pathia, @) = b-&:pathla,y) - -

4.3 Constructing Algebras

Our approach will be to define-a standard mpdel for, 3 dat abstzaction: in: tenms.of 2
given representation algebra. The principal type of the.standard model gwil_.l,lhaggnﬂal»-be the
quotient of a specified subset of the principal type of {he;eprmatgon algebra with respect to
a specified equivalence felat;qn.: - The operations of the. standard model will be defined jn terms
of the operations of the «reprgl;‘gp‘itgtim algebra, as described in thgp{qumsm The rest of
this section is devoted to defining a rich setof .represeniation. algebras that <an:be.ysed as
b-p,ild’ingj blocksfor de_ﬁn;ng models.

Since it is not our aim:in the preseat work- to investigate the foundations of
mathematics, we will assume. that logic, truth values, sets,, cartesian products; patural numbers

and integers are primitive. An excellent formalization of these structures.can be found- in [48).
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We will use the notations summarized below.

T and F denote the truth values true and false respectivety ‘These are the only truth
values, and they are distinct. &, Vv, -, =, and = denqte the and, or, nef, implies, and equivalence
operations on the truth values, "‘P'FF!Y"'!"?M V and 3denote the universal and . existential
quantifiers. ¢, U, N, and - ‘dm&tc set membership, union, intersection, and set difference. Finite
sets are written { x; , ..., x, } and finite cartesian products or nwpare written (xp., .., x, ).
Th? i-th component of an niuple X is wnttcn X1t %0 fha;t: (_}‘_;:' "o +¥p ) =x;. The set of
natural numbers is denoted by N. 0, 0, +, s, <, and = denote zero, successor, plus, times, less
than, and logical equality on N.respecnvdy Tbe set of injegers isdgnoted by 4 and %,
quotient, remmmier abs % ancl deviote’ phn, t{mcs. tmmy) mlm:s o Mﬂatﬂ subtractton, the
quotient and the. remum!ki! of lmeger divmm the ‘ibsolute V:Né opérﬂ&m ‘the less than
refation, and the equals relation, respectively. We re!y on ;he comext tg dm‘etentiate betwem
operations on the integers and operations on the natural numbers with the same name.  The
usual ecimal netation will Ue used forinteger-constants, which are tinsidéred-to be an infinite
class of .HQMry“'opentm" from the forfial point of View. '

We will define a number of ways for deéfiing aliebras, namely finite enuﬁératioﬂs.
finite cartesian products, finite disjolnt uirons, firiite Pewet sets, finite sequences, and recursive
definitions (fixpoint equations). The set'of represemtation algebras is defined to be the set
generated by the standard model for the booleafr iw defined below with respect ‘to the
constructions listed above (ie, the smallest set of algebras ‘thit is: elosed with respect to the
constructions for generating new algebras). Each of the constructions supplies a set of
operations as well as a set of data objects; 30 that we are genenﬂng a set of algebras rather

than merely a set of sets.
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We also define two special purpose algebras, token and state(D), for use in defining
the phylum of system states in a state machine model. Tokens and states have interdependent

meanings, and are defined by a single module with two principal types. These two abstractions

codify the ways in which the operations of a state machine can depend on the system state.

4.3.1 Booleans

We want to have an image of the domain of truth va!ugs as one of our represematiqq
algebras. Since everything else depends on the boolean d&min gpredic;te operations return
values of type boolean), we cannot use the method; descnbed beltho define it without
introducing a circularity. We will define bobi’ems inter‘ms of the tt;uth values in the
underlying mathematics. A necessarily informal’ deﬁ’mtion in andtatfon similar to our
specification language is shown in Figure 4 Becat;Se.the meaniﬁg ’of a data abstraction i
defined. in terms of booleans (cf. behavioral equivalence, Chapter 3), we insist that the booleans
be given their standard interpretation irvall models under discilssion.

Note that the rqual-operation on the booleans'is the Satrie aslogical equivalence on t.he
underlying domain of truth values, which in turn is the same as the logical equaiity on the
boolean domain.  In keeping with our policy that the only externally observable properties of a
data:abstraction are those that can be calculated in terms of the bpef:tion‘é, we will always
interpret "="'as the equal operation of the defining abstraction’ of the type of the data objects
being compared. Thus it Is proper to'tise "=" in the definition of an-operation only if the

representation; type: has an equal operation. Care st be tikefi that the équal operation of all




Figure 4. Boolean Abstraction

type boolean as B

with true: —> B
false: .. —» B 4
not: 8—B as—~argl
and: BxB—>B as argl & arg 2
or: BxB—B asargivaerg?
implies: BxB—>B as argl = arg 2

equak: BxB—>B ~ ‘ sas argl -« arg 2
representation B - truth values

operations true) = T
false() = F :
not(x) = if x then F else T
~and(x, y) = if X then y else F.
or(x, y) = if x then T else y
implies(x, y) = (x) vy . =
equakx, y) = (x => y} & (y => x)
end boolean . A

the algebras defined is in fact an identity relation.! Logical equality is assumed to be defined
for the structures that have been imported. from thevaderlying mathematics, such as the
natural numbers.

The boolean type is isomorphic to the domain of truth values in-the underlying logic,
as indicated by the interpretations of the operations true and fals¢ in the s!aﬁdard model for-
‘t‘he booleans. The operations of the reﬁmsgnta_tig,n algabra axnapqld to- thoseﬂofr’the‘
propositional cakulus in the underlying logic. Quantifiess.are defined only in the ynderlying’

logk, and have no counterpart in the representation algebra. We will make heavy and imphicit

I. An identity relation equal must be reflexive, symmetric, transitive, and must satisfy the
substitution property equal(x, y) => P(x) = P(y), for any predicate P.
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use of the isomorphism between t.he booleans and the underlying domain of truth values; so
that the primitive predicates of any representation algebra, which return values of type boolean,
can be combined with quantifiers, and used in |f themdse expressnons both of which are
defined in terms of the underlying logic. The booleans are the only type for whlch we will talk
about properties of the interpretations of the objects duectly For a!l a%her types, we mll talk
only about the results of applying the primitive operations. The only dlrect connection to t;\e

underlymg mathemattcs is by means of the baoleans, which is why that type is given a

distinguished status.
4_73.2 Natural Numbers and Integers

" We import the systems of mtegers and natural numbers directly from the underlying
mathematics. Deﬁmtnons of these types are glven in Appendix 1. These defmltions serve to

pin down the syntax, and have nothing surprising in them. R IETE S &
-4.3.3 Enumerations = .. .

* Enumerations are useful for defining small ﬁhité oe-ts, éoch éé;ohafictcro. Larger finife
sets, such as fixed length integers, are most con;oniéntly described in terms of the inﬁmtescts
.:they'a‘re intended to appi'm-cimatefas will be illﬁ&r‘atéd iater‘”ih this thaoter.

“An éoumération {x| o X ) défineg an aj‘lgt}eb‘ra: whose pnncipaltype is a siett with n
elements, aho whose only subordinate type is boolean. The él‘gzeo?:ha; % nuilary operations, the
constants x; for 1 <i<n and ohe binéﬁ operatlon,equalwhacha"ows ;hé elements of the
principal type to be distinguished from eachi other. We want oq;lini.f;j) to be trise if and anly

if i = j. The indices range over the set of natural numbers N. There are »many models that
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Figure 5. Enumeration Types

type{x....x,} asT

with x; -7 L S
equak T x T —> boolean

repfesentation: natural numbers
-rastrictions: tsuchthatl Si<na
identity: =

operations: x{) =i 7 forlsi<n
~© equaKa, b) = fta = b then true éise fale o
end

exhibit the behavior described above. ‘Our Mandatd modet” shown in Figuire 5, uses natural
numbers to represent the elements of the enumeration. The “=" operation used in defining the

equal operation of the enumeration type denotes the equality operation of t{hc natural numbers.
403.4 Tllples » S A BRI DO menty tefre e o0 B

Tuples are labeled finite cartesian products. We will write topiel ?qs". . "'n f,;]
for the set of n-tuples such that the i-th component is a member of the set 5, and bears the

label w;, for each i in the range |x.<. i<n We wi}ll:\qme‘ ( WX W :;_n;gn;:) fqr,tﬂ,»l;gb tpp!é

n

containing the elements Xpoo o X

‘n. The projection, function mapping a tuple to its i-th

component is denote by plw;]. and if 1 is a tuple, then plw,X0) can be Zaﬂbbrevi:a,t‘gd‘gs te w,.; If

t=Cwy i, Wyt Xp )_, ,;hm.;??;?i;;? % for each iwil!: the range I s:s n., Two tup)es,a(e

equal if and only if corresponding components are equal.. Equality of tuples is defined for the

type tv',_'_'?'a[f?l R T Pl Sn} if and only if the dcﬁm L ajgebra of 5; has an equal opfrgtipn

for each i in the range | < < n which is an identity relation. If some of the component types



Figure 6. Tuple

type
requires

with

representation
restrictions
identity

operatlor)s

end tuple

tuplefw : Spo sty S,
S; : type ‘

construct: S, X . X Sn —>T
plw} - T—>S$ ‘
equal: T x T —> boolean
(T=S| X .. xSn
‘pone
equal

construct(xl JXp) = gy, X )
plw,Xx) = x Li

asT

fori<is<n

as(w|ix',...
asdrgliw,

SRS

) ,:eequal(x, P=ifYillSisn=Nx w; = ¥. w; ] then-true else false

Sl THDY

do not have equality operations, then the tuple type does not have an equal operation either,

although the type and all of the other operations on it are well de[i_g!gd,z .

This description is summarized in Figure 6 in an informal notation... Retall that

cartesian products are primitive, and that if x is an n-ﬁupb, f;lhga- x 1 i denotes the: i-th

component of the n-tuple.

2. An equal operation will be defined for every repfesentaﬁon algebra in_our basic set. [t is
also possible to construct tuples with components from user deﬁned types which need not have
an equal operation-(eg. stacks).. '




4.3.6 Oneofs

Oneoﬁ are finite labeled dlspmt unions. A oneof is the dual o( a tuple, in the. sense
that the projection I‘um;tims g0 in the other direcuoa Aﬂe will wrte mﬁﬂwl Sp : S,,,l
for the disjoint union of the sets” Sl . Sni Our standard model for
»oneof[wl : Spp e » Wy : Sy) shown in Figure 7, uses the set " U {UJ x Si. to rep;gsem tht
principal type, which coincides with the standard merpretauon for dlspint unions used in
classical mathematics. Each element of a disjoint whion is rcpresenteda; a pair coﬁféiﬁing an
element of one of the.compenent types, and-a fabel indicaling -whisti camponent the ek'ment
came from. If an element occurs in more than one of the §,, it will occur in several disunct

efernents of the disjoint union, distinguished by different values for the label component of thg

pair. : |

lypeanenﬁq tSp v 8y S s O .

requires S; : type ' o ferlsisa

with inlw,} 5;—>0 ssarglinw, fori<i<n
tolw,} O—>5;+(wrong type:) asargltow; forl<is<n
islw;} 8; —> boolean asarglisw; forl<i<n
equal: O x O — boolean

representation O- U {w}x$;

1Si<n

restrictions none

identity =

operations infw;Xx) = ( w,-..x )

tolw;Ko) = if o I | = w; then o | 2 else { wrong_type : )
islw; ](o) =ifoll= w; then true else false

equaKol 02)-|f(olll-o2ll&o|l2-o212)lhmtrueehefﬂsc
end oneof
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A oneof type has n injections from the component types into the disjgint union,-n
predicates indicating whether or not an element of the disjoint union came from.a given
component, and - projections, which retuin the element’ without the label if the label
corresponds to the component of the ,projectiign; ‘an'd_ ;{hich termmate in the wrongJ)?e

exception with no return value otherwise. The t;neof type iwas an eqﬁ&("ope:ration if and only if

&

B PR

each component type has an equal operation.
As we shall see below, one of the main uses for disjdim'pkg-ipns is in constructing

recursively defined types, such as trees.

We will write set[E] for the doféin of fiite ‘sibsets of tﬁetyge E. An infgrmal
definition of set[E] is shown in Figure 8. This construction is,valid only if the defining

edenmy relation, because

¥

abstraction of the type E has an equal operation that gxnputqs ab

equality is necessary for deciding set membership. Tbgrgéis‘pin l;uﬂary oper‘ation which returns

the empty set of the given type, and there are oper}atm%s forad&’hgaqdremving elements,

and for forming unions, intersections, sét differéfices: and restricttong‘rhercare also operations
O A R SRR TS M R L S T * R SR

for testing to seé if an ck'membelongi a glven set,,if one;etls; sub;et of another, if two sets
have the same members, and for finding the ;m of a set,’@lﬁchfs alWays defined because we
are dealing only with finite sets. Set ygst(igtiq? is"* Irca’teﬂaé ;li ih&eﬁmte!y large paran"\ktgrized
family of operations, where thepafaf?eters are t?!’bm:iévénabh and the body of a lambda
| expression defining a predicate (i.e., a fﬁnction fr‘om E to boolean). The size of a set isfdéﬁ"ﬁéj
to be an integer rather than a natural number, so'that sizes-can be subtracted and divided.

The natural numbers and the integers are defined in Appendix II.




Figure 8, Set

type setlEl as S

requires E : type with Efequal E x E —> boolean such that

with : nulk . =S o

: add: ExS—>S§

remove: Ex$s—>§s e
union: SxS—>$§ asarglVU arg 2
intersection:. SxS—>S . . . asarglQapgl.
difference: SxS$S—>S ' asargl- arg 2
restrictlx, p{x)} $ >S5 . - asix:axgliplx)}
empty: S — boolean
member: E x$ —>boolean = = agargls.arg2
subset: $ x § —> boolean as arg ! ¢ arg 2
equalk: S x $ — boolean ' asargl - arg 2
size: S —>imt asjargli .

representation S = mathematical sets
restﬂctlons s such tb;t s g Eand cardinak;;(;) CN
Tdefitity equal ‘

eperations m={}
add(e, s) = s U {el
removele, s} = § - {e}
~ umion(sl, s2) = sl U s2
" intersection(s], s2) = dfisg
difference(sl, s2) = sl - 2
restrictlx, p{x)Xs) = ['x ¢ slp(x)}
empty(s) = if Ix [x ¢ s1theo fabechetrue .
" member{e, sJ = if € ¢ s then true eke false
subset(st, s2) = if 3 x [ x ¢ sh& ~ ( x € 52 )] then false else true
equaKsl, s2)-lf(sl;s2&s2;sl)thentmehefake
size(s) = cardinality(s) et e e
definition ident_op(f) = = Vx[flx,x)1& e s
o Vx.y[ﬂx,v)=>f(y.x)]& -
Vxya [flx, y) & Ky, 2) =2 fix, 2) J&
yp Vx.y[l’(x y)=*(P(x) P(y))]

etyd set

In Figure 8, a definition of finite subsets of a type E is. given.in tesms of ordinary set
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theory. The notation in the figure is ambiguous, because we wish to use the standard notations
for the usual set operations as abbreviations for the operatlons of the representatton algebra as

well as for the set operations of the underlying mathematlcs The amblgmty is: resol’ved as

follows: within .the definitions of the operauons. thc standard set ﬂotauons refer to the

& = \5

operations of the underlying mathematics, while the as chu;es in the ﬂgﬂature section redefine
~ those notations, as- abbreviations for the operath)m of ﬁw represemanm algebra, for external
use (i.e, when using rgpresemation a!gebras;from the ut- fiinﬂy to define standard models for

other data ‘abstractidis). .
4.3.7 BSequences

We will write sequencelE] for the domain of fmue sequences. of elerments of ‘type E.

An informal definition of sequences in terms of cartesian products is shown in Figure 9.

Paaip ¢

Another definition, using a fixpoint construction, will be sketched intﬁenext section.

Sequences have an exceptional termination coad}ﬂon ;boy?!ds which is assoclated with
attempts to use elements of the sequence that (:lqypot exist quuences c?n be decomposed into
the first element and the sequenceconta!mngﬂtbuttheré;st element, and aiso into the last
element and the cequence 46f4 ailg‘ut the fast igleﬁsé@t, so fﬁit"n@iiﬁer" end of the sequence s
preferred with respect to ease of access. Subranges afespeciﬁed by.giving the first and fast
elements of the subrange in the original sequence. Tﬁ’e Iengthpfasubrange sta.b)is
1 +b-a Subranges with strictly-negative Iengtﬁs are not déﬁng?lg.;anq an attempt to construct

one will result in a bounds exception, with no return value.




Figure 9. Sequence

type sequencelE} as Q
with emptyseg > Q as () A
’ addfst: QxE—Q . aserg2+argt

addiast:  QxE—=>Q asarglls arg2
butlast: Q—>qQ

append:. . QxQ—>Q - asergliflarg?

subrange: Q_ximxlm—*Qo(bomds )nnrol(-roz mﬂ‘

oprefix: - Qxint > Qe(bounds: ) - asargtl. erg2])

restrictions
identRy
~ operations

suffix: Q x int = Q + (bounds : ) ssargilarg2.]
element: Q xint —> E + { bounds : ) aswgilarg2} -
first: Q> E + (bounds : )

last: Q—> E + (bounds : ) _
length: Q—int aseavgl
empty: Q —> boolean

equak QxQ—*boohn ' as argl - arg 2
.Q.,u fe)xE o 98 15 thie length
_none L

‘sequencefequal

emptyseq) ~ (0)

iddfirst((‘,e) (|’(.¢|)'e qnl q{.q]) R

 addlastlg, €) = (llsq), qlUk..  qlogl e )

butfirst{g) = qI2 .. eq}

_butiast(q) = qfl . (sql]

append(g, 1) = if oq = O then r
.else if or = O.then g

“else ¢ (sqhlor), gl .. qioqh il ., rlor] >

;qbrapg:(g?l =iflicDV(> qg),qugiﬂlmgbmndsf)

end sequence

else if | = i-l then (0)

. else (IO,H. qil - . qffl>

prefix(q, i) = q[l )

suffix(q, i} = qli . »q)

elementlq, i) = if (i < Dv > -q)lhcn (bounds )
. elseql (1+1) :

first(q) = g1

last(q) = gleq]

length{q) =q 1 |

empty(q) = if sq = 0 then true else false ‘
equakq, r) = if oq = or & Yi [ 1 < i < aq => gfi] = t{i] ] then true else false




4.3.8 Fixpoints

It is convenient at times to introduce algebras whose principal types have a "recursive”
structure, such as the algebra of binary trees. While it is possible ta defme lsomorphlc images
of such algebras using just the machmery tntroduced 50 i‘ar by introducmg approprrate

encodmgs into the natural numbers such a strategy does not contribute to the clarity of the

resulting specifications. lmtead we wrll introduce expltcit recursive (clrcular) domain
definitions, which are considered as flxpomt equations over the domain of all algebraic
structures.

The representatlon component ol‘ a spectﬁcanon wrll always be a domam equation '

In cases where the name of the algebra bemg deflned does not appear on. both sides of the
equation there is always a umque solution since we are essentlally solving l‘or the l‘ixpomt of a

73400y

constant transformatton In cases where the representatton algebra is defined in terms. of itself

2

there may be many drfferent solunons to the equatton Following Scott[46]. we will introduce an

" i , s oyd
,,,,, ,»mq

ordering, and say that a ﬂxpomt equatton denotes the mimmal solution w:th respect to that

R ooy oyt

ordering. We will use the pointwise containment ordering on algebras denoted by L= and
5 I3 . ’5 i E “‘%l -

defined below.

Definition 19 Pointwise Containment
Let @ and b be algebras. Then a € b |f and only if all of the followmg condmons
hold: v : .

a. typenames C b. typenames, -

Ya ¢ a.typenames [ a. phyla, C b. phyla ]
a.opnames C b: opnames, e ‘

VB ¢ a.opnames | a. operatlonsﬁ < b. operattonsﬁ ].
a. tcnames C b. tcnames,

a. arglength ¢ b, arglength,

a. argtype G b. argtype,




a.{C Q b tc,
a. rlength C b. riength, and

. cmrtmgb.“m_.; s
aeP! gb.Pt

facC b we will say that ais contamed in b This means tbat for every‘phyium of a, b has a
phy!um of the same name, ,and for every operation of s, b has an operauon wlth the same name
and type Every phylum of aisa subset of the co:respmding phybm of b, and evefy operauon
of aisa restrictlon of the corresponding operation of b. The larger algebra b may have types

and operations not present in a. The set of prtncipal types for a must be a subset of the set of

pee

prlncrpal types of b.

Note that € is reﬂexwe transitive, and amisynmric. and hence is a partial ordenng

LY

relanon Because C is antisynu'nemc, if a mmimal sohmon to a flxpoim equanon extsts it must

Y e

be unique If we restnct ourselves to express!om buﬂt from caamuws (with respect to G)

3
..... i

transformations on algebns. then tbe existeﬂee of a mbtion is guaranteed by Kleenes ﬁrst
recursion theorem [23). which also gives us an exphdt foﬂ:tula fof the“ solutlon

| Kleenes ﬁrst recursion theorem states that tf the !ramformation F is contmuous with
respect to €, then F(YF) = VF. and YF € A whenever F(A) = A, where VF - U Fi, u'
denotes the least upper bound with respect to E, FOA) = 4, FiYlg) - F(F(A)) and where 1
" denotes the least element with respect toE In otherweedsvif uemwﬂ‘ is the katt W
of the transformauon F In order to show that YF exisxs titﬂis wmc:em to show that there is an
algebra 1 such that 1 € 4 for every algebra A, and that everym !witlt respect to- & has a
least upper bound in the the domain of all exceptnon algebras lt umy to see that L exists it
is the algebra with all components equal to the empty set, contatmng no phyh .and no

OPQ"SHODS
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Theorem 5 : Every chain with respect to C has a least upper bound.

Proof : Take pointwise unions, details in Appendix 1.
End of Proof

In order to use this result, we need a means of defining continuous transformations.
This is also easy, because all of the methods for constructing algebras introduced earlier in this
chapter are in fact continuous. The reasoning required to establish continuity is illustrated for

the tuple transformation.

Theorem 6 : The tuple transformation is continuous with respect to E.

Proof : tuple preserves pointwise unions for chains of algebras. Details in Appendix II1.
End of Proof

Since all constant transformations are continuous, and since the composition of two continuous
transformations is continuous, it follows by an easy induction on the depth of the nesting that
any expression combosed from the constructors for enﬁmerations. tuples, oneofs, sets and
sequences defines a continuous transformation. Thus a minimal solution is guaranteed to exist
for any domain equation expressible in our specification language.

In order to make sure that the transformations defined earlier in this section are
monotonic with respect to €, we have to be a bit more precise about what the transformations
are. (If a transformation is continuous with respect to &, then it must also be monotonic with
respect to C)

We will add an implicit parameter to each of the transformations, which spécifies the
name of the principal type of the algebra resulting from the transformation. The construction
of the principal type and of the operations on the principal type has been described above.

The subordinate types of each input algebra are included as subordinate types of the output
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algebra if and only if they have a distinct name from that given by the tmphclt parameter
The names of the operations on the pnncspal !ype are taken from the definitions of the
transformations, and prefixed by the name of the principal type to make sure they are distinct
from the names of the operations on the suberdinate types.

For any composition of tuple, oneof, set, and sequence constructions, the imphicit
name parameters are to be chosen so that every occurrence of each constructor in the expression
~ is given a distinct name parameter, and so that the name parameters are dlstmct from any of
the names of any constant algebras occumng in the expre;sim With this proviso, any
expression that can be formed from the taple. oneof, set, and sequence transformations and
any algebra constants will be monotonic with respect to E£. It is also easy to see that the new
phylum defined by a fixpoint construction will have the same name as its image under the
defining transformation, so that the principal type is buik up:by successive approximations, as
usual for a solution to.a {ixpoint equation. Also.note that as.defined above, each of our
transformations maps complete models inte compiete models.

An intuitive justification . for choosing the minimal solution to.a domain equation is
that we would like aour;sian,;dafd .model to be reduced (ie, free of unnecessary data: objects).
The explicit solution to the fixpoint equation can also be used to argue that the minimal
solution is exactly the solution we would like to obtain, because it contains all of the objects:that‘
are finitely coﬁstructible using the operations of the representation algebra, and éonthers. To
see this.v note that any aperation can produce a data object:in a domain F ‘(.L) with an index § at
most one larger than the index of some. domain containing. an argument of that operation. (or
one if there are no arguments). Therefore the resukts of some ,{tnncicompunﬁen in terms of the

primitive operations can produce elements of F‘(.l) for finite natural numbers i, and all of those
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domains are contained in the principal type. of YF Co'nversely, if our transformation F is such
that eVEIy element of the pnncnpal type of F(A) is ftmtely consgrucnble whenever all of the
elements of the phyla of 4 are, then so are all of the elements of the phyla of Y F, since the
principal type of YF is just the um‘on{ of the frincipal t;pes gf,_a‘ll, of .the algebras in:the chalr_t
F"(Q. |

To mustrate the use of recursively defmcd repremtion algebras, consider the
definition of lmmutable bmary trees shown in Fxgure 10. Bmary_trce is a family of data
abstractions, pa rametenzed by the type of the Ieaf nodes of the tree. . The leaf aperation creates.
a leaf contammg a glven element of type E, where 2 leaf is a kind. of binary_tree.. The tree
epelatton constructs a compos:te tree wlth glven left and right sgbt(fe..,,r. e left and right

operations return the Ieft and ri ht subtrees of a co te and termma!e lﬂ thc M-J“b"“s
P 3 ‘f?'

Figure 10;

type binary_tree(E] asT
requires E :type R
with . leaf:. : o BT oo
tree: TxT—>T
right: T —> T + (no_subtrés: ) i
left: T —T + (no_subtree : )
value: T —> E + ( not_leaf : )
leaf?: T —> boolean

,,,,,

representation T - oneof[ leaf : E tuple[ Ien T rtght T ]]. o \

operations Ieaf(e) =€ in leaf
tree(x; y) = £ feft: X, right : y°) in tree
right(x) = if is{leafKx) then ( no_subtree : ) else to[tree](x). right
Teftéx) = if: is{heafX k) then: ¢ no subiréei: ¥ else toftreeXx). left
value(x) = if is{leafKx) then to[!anx) e!se ( not ieaf )
leafx) = if-isfleaf}x) then t‘fut“e!se false?

end bmary tree
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exception with no return values if applied tor a‘leaf. The predicate leaf? tests a tree to
deterrnine whether or not it i's’ a teaf. The ualue operation extracts the element contained In a
teaf node of the tree, and it results in a not_leaf exception if apphed ro acomposrte node. |
There is no qualitative difference between defininé the operotions of a model whose
representation algebra is defined by a fixpoint construction and defining the operations’ of a
model whose representation algebra is defined by some frnitecomposmon of tuples oneofs sets,
and sequentes. The domain equation specifies the structureof the representanonaigebra and
implicily ako the operations available on the representation ‘algebra, since each of the
transformations mentioned above rntroduees some operanons " For ‘\examplle since the
representation of a binary_tree is a oneof, the profcuons injecnons, and domaln test predk:atesv
of the given oneof type are available for use in defming the operations of binary tree. Thrs
uniformity is a consequence of the fact that the repreienrationmo‘!gebn is an exact solution to the
domain equation. |
The fixpoint construction can also be used to construct the natural numbers. mm
parameterized family sequencelE]l A convenient representation algebra for defining ‘the-

natural numbers is the solution to the equation
nat = oneof{zero : { 0 }, nonzero : natl

This equation is based on the fact that each naturnl number is eitner ;.ero or it is the successorv
of some other natural number. Thus zero.is represented as theelement of the arbltranly chosen ‘~
singleton enumeration type { 0 l and any. other naturalnumhr knprem&fby its predecessor
injected into the nonzero component of the dlSjoiM umon This :works. becwse each mjectaon

adds a tag to keep the elements of a disjoint union dmmct Thus zero is represented by the
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pair {zero,0), one is represented by the pair (nonzero, (zero,0) ), two by the pair
¢ nonzero, < nonzero,  zero, 0 ) ) ), and so on, where the natural number n has n tags equal to
nonzero and one tag equal to zero. A representation algebra suitable for defining sequence(E]

is defined by the following eqﬁation.
seq = oneoflempty : { A }. nonempty : taplelfirst : E, rest Vseqd) -

The reader is invited to ml in the details of the last two examples, to get some expgriehce in

workmg with recursnvely defmed representatlon algebras

Another treatment of recurslvely defmed domains can be found in [26 25] We prefcr

to avoud a category theoretic formulanon on the grounds that the subject can be treated

A1 i

samfactonly in terms of a more w1dely known mathematical setting

[

4.3.9 .‘S,ys.tem Btates : T

EA I

In a state machme model, the current system state funcuon is the dlspmt union of thc

current mdmdual state funcuons for each mutable type When defming a state machine model

BYE

in our specnflcanon Ianguage we wnll expllculy canstmct only the indmdual stake function for

< ¥k

the pnnapal type The mdmdual state funcuons for thewbordinate types are taken from the

LT
2

standard models for the dchnmg abstracuons of the subordmate typcs. and the dlsplnt unions

of the indmdual state funcuons required to gct a system state function are Iefl lmphcu

RS

We prov:de two abstractlons tokens and states, for use in constructmg the prmclpal '
type and the mdmdual state funcuons of a state machme model. The interpretatlon of the
prmcnpal type of a state machine will always be the pnncupal type of the token abstraction, and

the set of individual state functions for the principal type of the state machine will always be
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staite[D], where D is the set of data states for the state machine.
The token and state{l)] abstractions are defined by the standard model shown ln

Figure i These abstractions have been deﬁned so that the only property of a token that is

Y

externally observable is its identity, by means of the tokoniequal operatton The only way to
create a token or to extend the papulation of the..principal type-is: by means of the state
extension operatton.

: The only way to extract any information from an tndivtdual state functlon is to appiy
. R ﬁf B R AT R
it to a token to get the current data state of that token ll‘ all accesses to the state of a type are

Hmtted to the operations provided by the state abstraction then we can be assured that the

37 RIS q, ‘A IR N

only state mformation in a state machrne is that assoctated with 1he Indtvidual data objects,
T oE IS L ;

thus enforcing the assumptlon dlscussed in Section 32 and in Appendtx l
New states can be created by the init, extend, or updcm qltatbeis. #The init operation

creates an empty state. This operatron has been included for completeness since it is requtred

ﬂ«;

to defme the mmal state of the state machme The atatdextend operation creates a new state

e ST aYE

in whtch the data states of a" previously extstmg data objects are unaffected and in which a

v:,

o KL

new data object has been created wtth a gtven value as its rmtial data state Thts operatton is
used to descrrbe the dynamic creation ot‘ a data object The state&;pdate operatton constructs‘
a new state dlfrenng from the old one only ata single point in its domatn and it is used to
model operatrons that change the properties of some extsttng data objects |

| In addmon there is an mternal functton atatdused whtch tests‘whether a grven
token has ever been created in a grven state. Thts functron may not be used ln deﬁmng the

operations of a standard model but it is useful in asserttons and proofs about dynamrc data

abstractrons (see Section 5.4). Note that the used operatton wiﬂ say that an object that has been




Figure 11, Tokens and States

module
type token. .

with -
representation
restrictions
identity
operations -

ond token .

type statelD]
requires

with

representation .

restrictions
identity.-

operations

internal
definition

end state
end module

asT

equal: - T x T — boolean
int

X such that x 2 |

equal

equaki, j) = if intfequaki, j) then true else false -~

.as S
D : type
init: - S
extend: SxD—>S x token
update: S xtoken x D —> S + ( undcfmed _object : )
apply: - Sxtoken =P o o - asargi{arg 2)
S =sequencelD)
none
sequengelequal .
initd). = () e e

‘extend(s, d) = (s | d, 1 ‘(cs) )

update(s, t,d) = if 1 <t S esthens{. (t-1)] 1o d of s[(ts}) ]
else  undefined ob,ect )

apply(s, ) = if 1 £.t'< os then sithelse undefined. -~

used: token x-S —> boolean -

used(t, s) = if 1 < t < os then true else false

created and then destroyed (by changing its dat state back 4o undefined using state$update)

has been used, so that in general the used operation does riot' say whether a given object exists
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in the current state. (For secure data abstractions, the two notiot;s comdde)

The reason for defining tokens and states in the same module is-to limit aceessr‘:tuo‘l;le’
operatiens on tokens. Note that the definitions.of the ftate dperations use-the representatiow of
tokens, which is available throughout the module, but not outside it. If tokens mﬂﬂmed n
a separate module, then the represenlanon woulkd not be accessible Sandiawﬁonal operam o
tokens would have to be provided:soiﬁn%rthe:m(ze operations could bédeﬂned. Hwevenwe
do not want modules other than the definition of the state abstraction to have accessito &ny
operations on tokens other than equal. We freely admit that this is an ad Jmc sohtloa and we
refer the reader to [21] for a description of a general access control mecharusm for data
abstractions. e - -

. An mghm&i State function is resricted-1o:1ak€ on the speml value undefined
except at a ﬁmte number of tokens. This restriction assumiwdm*tbeMinqum meﬁ
i CELE
is countable, even though it is a function space on an infinite:demEini: i)netomequenceofm;
is that we have no need of limit constructions or transfinite inductionis ‘in reasoning ' #beut:
system states. R

A state machine modelfb;the ueiiq;te;_id:abstmtioa is shown inv:Figure 12. Siﬁce the
specification has a data states component nther tbn t 5 upreuntat&oer eomponem we kmm
that a state machine is being defined rather than an exception el;;bra and that the
representation of the principal type is implicitly defined to be the token abstracuuf%ddm"in
Figure 11. In this case the set of data states is a s&g@w.,mhmﬂatm.,type. At least one proper
data :s;ate:hﬂee@d to distingtrish the objects that have been *efeaxed froay those that have not
been (and have the data state undefined). Unique.ids are immutalyle:(omce a unique_id has

been created, its properties are fixed forever), so that one proper data state is all that is needed.
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Figure 12, Standard Model for Unique«~id
type unique_id as U

with create: - U ' i
equal: - U x U — boolean

data states D = { null } a ;_, _v R

operations create(sX) = extend(s, null)
equal(sXx, y) = (s, v)
where - v = if tokenBequakXx, y) then true else false

ISP

end unique_id

R A 3 A £

i

This example serves to illustrate the stiici"c“hari‘g;é"diiieéj %y thé creation of a new data object ‘in
its purest form. The unique_id abstraction is secure, since there are no operations thaf"&iéﬁiﬁ
- unique_ids. B o |

A state machiné rivodel for a memory éell contalhing a singié object of type E is shown
in Figure 13 Cells'are among the simplest tutatile ‘dath’ abliriictidhis. “Fhe create operation
returns. a new cell with a specified initial coritents. ~NUté that’ thé stateBextend opération
returns a pair of values, contalhlﬁg the fiew"stafe 4d 2 foken representing the newly ¢reated
object. The new state'is the first return Valie'of Every opetation’ 01’4 state machiné model, and
the old state is the first argiiment. I an ‘impleiéhitation, the state'is passed around implicitly,
while it is explicitly representedin a state'machifie Wodel “THié'is Feflécted in the sigriature,
whith has no mention of | the state, and ‘describes ofily thé t*yi)e structure visible 'exi‘em‘a‘ll‘y. The
update operation returnis i data objects, but It prodiices a new state ih which the given celi has
a new value for its contents. The confenis operation returns thé clirrent contents of a cell, and

the equal operation tests to see if two cells are identical. Both of these operations do not ‘modify



Figure 13,
type cci{E] as C
requires E : type
with create: E—>C’
update: CxE—>
contents: C—>E :
equal: C x C —> boolezn
data states D=E
operations create{s)Xe) = extend(s, e)

update(sXc, ) = state[DMupdate(s, c, €)
contents(sXc) = (s, s(c) )
equaksXct, ¢2) = (s, v )

where v = if tokenfequakdi, 2) then true eise false

gnd cgn

the system state. If v{e;vig\gg:geils g;,;hg,Levghgzg'o{ the vargm;.s ,Ng[ a_programming language
[cf. 50, then the equal operation can be used to determine whether or not there is aliasing
between two variables: an .assignment.to one variable (a celifupdate aperation) will affect the

Note that there is-no suchthing as an uninitialized cefl. If w: uﬁaﬁt‘ed .to.—zde{igie:;
different cell abstraction, in which cells could be created without ipging initialized, then we
would have to introduce an additional data state to indicate that a cell was uninitialized, since a
token with the data state undefined r;pres;gnt;-a cell that h?é not been created yet. Since we
require the,opera.ti_ons of a data abstraction to be dqtgrgpqq}gic, aﬁ_ attempt to find thg contents
of an un_imtla:n:l_i,’zgd cell ,’w‘o‘uld_cithevr havg tvo;_;resuflt in an excepnon condinon. or in some

constant default value.
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4.4 Well Formed Specifications

A specification is well formed 4f it denotés stine exception 4lgebra or state machine. -
This will be the case if the requirements déscribed in’the foowing subections are met. In
addition, a. reasonably defined: data abstrattion sholld  satisFy ‘the Tollewing ‘two ‘censtraints
{cf. 41,101 T R Lt R R R
Every operation of the abstraction d should eltl_jer ti!ke at |east one argumgnt from the
principal type of d, or it should produce atml;ast’ on: return value kin the normal termination
condition) from the principaltype of v or fromorse prinGpaTEFpear thete iy thore than one).
The purpose of this--consiraint is to rule out functions that have nothing to do with the
behavior of the principal type. | N
_ There shouid ‘be at least ‘one operstiof ‘that produces’a “Value ‘belonging 10 the
_principal type which does not take any arguments from th@principal typé. If this constraifit is
not met, then the:e is no way to compute any vah:gs of thc prnnc?)al type. and thus the
interpretation of the principal type in a reduced mod:I i;\the empty set. ?
~ Note that both of the above constraints can ‘be-easily checked given just the signature
of the data abstraction. They can:be viewed as-consiraints a:stractere’ muast satisfy fn order”to

(ST

qualify as a meaningful data: abstraction.
4.41 Type Correctness

All of the expressions in the specification must satisfy the type constraints contained in
the signatures of the abstraction being defined, the signature of the representation algebra, and

the signatures of the algebras subordinate to either. This means that every operation must be
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supplied with the correct number of arguments,;t;d t.h.a:t ;tb; deﬁnmon of ea;h opcr#tlon must
terminate in only these termination conditions-specified:in:the sigmaturs; and produce the right
number and types of return vakes. for. each. ‘This is not a: purely syntactic check, because it

may require praving that the expression defining. an dperation’ terfnimates: in 2 given

termination condition (usually the normal condition).
4.4.2 Béprers‘entatio_n Gﬁnsistehcy

The representation. algebra defined-by.the répresentation saction: must eitheér be a
member. of the sct of algebras generated. by the constructians given zuﬂicrfﬂ this chapter, or it
must have a previously defined standard model. If the represemtation algebra is defined in

terms of a parameterized definition, the -constraints specified -in‘ the ‘réquires :section of the

parameterized geﬁnu,iop;nm:gbenges;.
4}4.3 Repre'isen"tati;m"Inv‘az"iant -

(I a restriction on the. principal type of-the representation algebra Is specified in the
restrictions section, then the range of each operation-defined: must satisfy the restriction. This

condition can be established by an inductive argument: assuming that each argument from the

principal type satisfies the restriction, show that each return value of each operation satisfies the

restriction.




4.4.4 Congruence

If a nontrivial ‘equwa!ence relation is gwen in the }denmy sectton then itis necessary
. g Lrann

to show that each operation is consistent with the eqmva‘ence rehtion in the sense that it maps

SVUHES

‘equnvaknt arguments into equwalent outputs Thls requunrem‘em isa necessary condmon for thc
|mphc1t extension of the operatlons from the represemam;n al‘g(et':ra to the quoﬁent stfl;cture to
be well defined, as descnbed below ’ } T

The operations are explicitly defined as functions that operate on:the elements of the

principal type of the representation.algebra. The model denoted by a specuflcatlon is in genera!

'mi; i ;h e A s D %

a quotient structure, and the interpretations of the operations of the data abstract@n in that
model operate on equivalence classes of elements from the principal.type of the repreientation
algebra. "The operations can be extended to operate on equivalence chsses in the usual fashlon
If the operation f takes a single argument from the pnnclpal type ‘and returns a slngle valu; in

the principal type, then the corresponding opemioq o equivalenceciasses f.(is defined by
f=(x]) = [fx)]

where [x] denotes the equivalence class containing the element x. For-the relatipn defined by
the above equation” to’ b ‘sifigle ¥ilued; Snd “hence a function ‘on equwalence classes, the

function f must satisfy the following requirement: o i d ek g - L

x =y = fix) = fy)

Note that' if = Is the same as the logical equality relation on the principal type of the

representation algebra, then this requirement is automatically satisfied. An equivalence relation
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that satisfies the above constraint is known as a congruence ‘nldi:‘éii “with- respect :;. f A
defimnon of f.. and of the congruence requirement for a general ?gratm of an exception
algebra or a state machine is given below

| Let f be an operanon of the abstractnon A j clx xan—> U R.r where
Ry - X X rm(.,). and let d be the pnncipal typeof A Let = denote the relation defined by

the idenmy section of the specmcation Deﬁne the equivaleme rehuon “ by

eqix, ) =(xcd&kycdkxzPpv(x D&yt d) Ex=y)

et
G

and define the ';equivalecnce class” ec by
eclx) = if x € d the {x}. ese x.
HAxp . xp) = (T (o Ypy) ) ), then i is defined by

fs(ec(x[)-'-'« -den» - (T;&irc(h);:,,, .W))

and f must satisfy the requirement

P

Ve : 1se<n ] eqfxy, y) F=> o o |
(i, - Xp)) = (A, . 3l & Vj: 1IST) [ eqlobYAx,. - xg0 4.1 OBKARy — . uB 4 N 1

i

4.4.5 Termination

Every operation must be shown to terminate in one of the termination conditions
specified in the signature for any set of arguments of the proper type, given that any arguments
from the principal type satisfy the restriction given in the restrictions section of the

specification.
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6. Correctness of Implementation

Every well formed implementation of a data ab_strgctigpdeﬁng an implementation
model for the data abstraction. The construction of thé anleméntaﬁon model is discussed in
Section 51 below. Qur basig definition of correctness §s that the irﬁpﬁﬁféﬁtaﬁdﬁ model must be
behavierally equivalent to the standard model of the abitraction to be implemented. This
definition_corresponds to-the- intuition that there shoutd be no observable différence between
the behavior of the implementation and the behavior of ‘the ‘standard model, cast into the
framework ‘of deterministic sequential computations. Cod

" The classical way:to prove the correctness of ‘an’ implementation with respect to an
abstract m@tlieq:eciﬁcaﬁowis to exhibit & homomorphism: “In Section 5.2, we show that the
classical approach: is. spund it she' {andard  model’ and- the -imglementation model are both
exception: algebras; by-showing that the existenice: o i Romoworphisi fiom the implementation
model te'the standard model implies: that the t¥o medels are beaviorally equivatent. T was
shown in Section- 331 that the classical appronch is also compiéte for the static case, in the
following sense: if the standard medet is redﬁcl-d thén thiere exiité s hormorﬁhism from any
behaviorally equivalent lmplemmion modet te the standard model.

Section 53 discusses the case where the tanditd model is an exception algebra and
the implementation 'model ,is a state machine. It is shown' that a correspondence function
analogous to. & homomorphism can be used to demoristrate:beha¥loral equivalence. ‘

Section 5.4 discusses the case where the standard ‘modet atid the implementation’ model
are both state machines. In this case there is no useful analog to the homomorphisn theorem

of Section 5.2, and proofs of correctness rest directly on the,definition of behavioral equivalence.
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The proof methodology is illustrated by exaniple& |

5.1 Implementation ‘Models

A

An implementation of a data abstraction 4 supplies 2 represémtation for the principal
type, and an algorjthm for computing each of the operations.. It is uhﬁniyeay to: construct a
model of the abstraction from an implementation; if: the representation: abstraction and all of ‘the
subordinate abstractions have been defined:by abstrast medel specifications.

The principal type of the implementation .vadel . is the reachable  subset -of - the
principal type of the standard model for the repreventation abstsaction. ' The reachible subset
contains fust the elements of the principal iype. that ate eomputable by some' fte {losed)
computation in terms of the operations of d and.the absiractions: subordinate to d. - The
}gge,r_gfgtatligz.;pf .an operation of the prmnkapitm function -comiputed: by'the: pﬁoeﬁdm
implementing :;t:tgat operation. | The. pmwlmmm -of - esely- abstraction
subordinate to d are taken from the ssandard-model of the subordinate alistraction.

- The implementation model is complete by consiraction, sinoe it contains interprevations
for all subordinate abstractions. The. implementation, model m»ﬁ;my:swbe reduced. The
construction guarantees that every objec. of the. principal type-of the impileinentation’ model is
reachable. There is no explicit-equivalence class struciure in:the implementation moded, so-that
several distinct . implemenmimobj&ts ~may represemt -the same abma “object. - The
| implementation medel is reduced.if and only if mhmiohgmehamunmewmioﬁ

in the implementation model.
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6.2 Static Specification, Static Implementation

- The classical method for demonsteating: the ‘cofrettness of an implementation -with
respect to a standard model specification is to establish a homomorphism  from  the
implementation ,model to the standard model. - In’this Section: wé present ‘a tﬁeoremv that
demonstrates that the classncal method is <ound for cases whcre both the standard model and

the mplemamﬁon m are em:epﬁoh*alge&i‘as : ':' B
5.2.1 Homomo’rphis%n Theorem

Since an exception ‘algebra has a disjoint ‘ufiton structure not present in the
heterogeneous algebras of {f}, we have to extend the definition of a homomurphISm stightly. A
homomorphism between two excéption - algebras ‘muist ! preservé each’ operation, -which means
that the termination conditions of corresponding: operation ifivocations ‘must ‘be ‘thie same, and
that cerresponding teten valies mast be' homofirorphic ‘images, whenéver corfesponding
arguments are homomorphic images. More: préc&%y; 1" A-and"'B dre two exception algebras
with the :same signature, tNen a-hombinorphlsini A from At B .ié a' family of functions
ky : Asphyla, —> B.phyla,, where a ¢ A. typenames; with' the:foflowing: property.

Let P = A. phyla F = A.operations, § ¢ A.opnames, n = A.arglength(ﬁ)
let a; = A. argtype(B; f) and x; ¢ P, foreachtintherangﬂ‘t‘n

let (T, {yp sy ? = Fﬂ("lv""xn)
where T ¢ A.tc(B), m = A. rlength(T, ),
and where 7 ;.= A. rtype(T, B. ) and 9;¢ Py jbr eachij in the rangcl £ fSm.-

Let G B. operauons

- Then Gﬁ(”_al("l)‘ . h (x =T, Ch (71) I'\,,f(yﬂl?;) ).
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The "=" in the conclusion refers to the equallty relat:onﬂon al;ctract objects I;'or nnociels def;ned
-using the specification Janguage introduced imchapnev_ﬁﬁhbrehu'm::is given in tM identity
section of the specification. |
| Now we can.state the homemerphism theorem.
Theorem 7 : Let tMl’arrtd; M2 be complete excepuon agebra modelsvntha common signatﬁre.

If there is a homomorphism from Ml to M2 Which: redinoes, fo- the identity. mapping -pn: the
subordinate types, then M1 and M2 are behaviorally equivalent.

Proof : By induction on the length of the computation.. Derails im-Appendix Hl:: .
End of Proof

The existence of a homemorphism -indicates that the interpretation of any closed
computation C in Ml is a step by stepm,afﬂmmrprm of C in M2
Corresponding results (data objects) may have different representations in-the: two. models, but
phivmn is:required {0 -be the identity
): propesty. will guaramiee that any. primitive

they must haye the same properties. Smcenn on

biatn

mapping on the booleans, the | ;_
predicate will give the same truth valuefarcormmdjgg dats. objects:in Ml and M2.. -

. Naote that we are dealing with- complete spodels, which contain-she operations of every
type subordlclqta to the principal type. in addition to the operations of the princigaktype. A
homomorphism must preserve all of the operatms of an excepnon algebra, mcluding those
associated with the subordmate types.- It is swnsnent mxwam comkhr nnty cheopennens of
. the prmcnpa! type when proving the correctness of a mnc implementation ba:ause the
component of the homomorphism for each of the subordhlte mm is the- i&emlty faﬂctloh
which trivially preserves all of the operations of the defining abstraction of each subordinateg
type. The requirement that the homomorphism must reduce to the ldermty mapping on the

subordinate types is no restriction in practice, because of the way in which the standard model
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and the implementation model are constructed. In both cases the interpretations of the objects
and operations of the subordinate types are taken from the standard models of the defining
abstractions of the subordinate types. Consequently, the subordinate types have identical

interpretations in both models, and the natural correspondence between the two is the identity

mapping.
6.3 Static Specification, Dynamic Implementation

In the case where the implementation algebra is a state machine and the standard
model is an exception algebra, a correspondence function can be used to establish the
behavioral equivalence of the two models in a way entirely analogous to the homomorphisms
used in the case where both models are exception algebras. In the rest of this section we present
a theorem justifying the use of correspondence functions, and an ‘example to illustrate the
procedure for establishing the correctness of a dynamic implementation for a static data
abstraction.

The correspondence function that is used to demonstrate the behavioral equivalence of
a dynamic model and a static model is not a homomorph;sm on algebras, even though it must
have similar properties. Some of the differences between homomorphisms and correspondence
functions are outlined below.

Recall that a homomorphism is a family of mappings, one for each phylum. Each
mapping is a function from a phylum of one algebra to the corresponding phylum of the other
algebra. The abstract object represented by some implementation object must be completely

determined by the identity of the implementation object, since the mapping takes no other

arguments. This works well in the static case. In a state machine model, the properties of a
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data object will depend not only on the”i:dentityv of the object, but also on the current system
state. Consequently a coi’res;mndenée function must differ from ‘a:lion‘vomorphisro by takir;g the
system state as'an extra argument. | S A’

Recall that the principal type of a state machin; contains tokcni ‘represeo!ting all of mé
data objects that can ever be created. In each system state the population of objects tﬁag have
been created so far is the sqbset of the principal type.with a proper data state, while the objedts
that have not been created yet are all mapped into the (improper) data state undetined by the
system state function. In system states where a glven !oken has the data state undeﬂned the
token does not represent any abstract data ob;ect and after an operatlon ls performed that
assigns a proper data state to the token, the token reprcsents the newly created data object To
make the correspondem:e a total function we adopt the followmg convention A correspondencc
function must map a token into the special Objed undefined for any system state for which the
token les outside the current popuhtlon. » | d

The properties of the newly created object are determined at the time the object is
created, and have no particular’ relation to the idcmlty of the tokcn rcpresentmg thc object
.Drfferem computations can lead to states in which a gwen token has diﬁ‘erent properties and in
such a case the correspondence functlon must map the token into different abstract obpcts in
the tv;ro states. |

| The correspondence between the tokens of the implém:eo‘ta-t'ion model and the abstract

objects of the standard model is established byv a serie$ of approxiu;ogioni, correspondingxto‘ the;
steps in the computatioh:that create neﬁ objects of the principil type. lnitiaily, the populatioo
of the implementation model is empty, ind‘ the init_iai co}respmdmce,;s empty (i..é.. in the ioitial

state the correspondence maps every token into the |mproper objétt ondeﬂn'ed). As new
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objects are created, ;hg image of the token representlngthenewlz createfiloblect changgs from
undefined in the state just before the object was cr;ated. to the abstract ;)bject represented by
the newly created implementation object in the state just after it was created. For abstractions
that do not atlow the explicit' destruction of data objects, the cofresponidence functions for the
‘sequerice of system states produced by a closed ‘iompmaiiibhf ate a Series’of pure extensions. 1f
0; represents the state produced- by. the i-th “stepof some “closed tomputation, ¢ is a

correspondence function, and § < f, then it must be the case that -
(x, 0;) # undefined => (x0;) = x, 0 j)'

We will refer to this as-'th’é mbﬁn’tfi(y’n‘vpropg;‘ti*‘fdi‘ correspondmcr functions. Once an
implementa'tion object has been creatéd, and it has. come to repregent. a proper absttar.tobjcct.
the monotonicity property says that the implementitioni-object must continue to represent the
same abstract object in all su;seduent states_; 'i'his is just whatwe would gxpec(. if .wé crle_aje; an
implementation object and assigri ittoa v;ri,ablg, we would Jike to assert that the variable will
céminue to denote the same (1mmu®k}~abstraa?om.ubng as wedonot amgn a new value
to the variable. Spontaneous changes in the abstraclt‘ id:mtlty of thc valué are not accept‘al;leilr |

A correspondence function must Ar;e_dyce,to the identity roapping on the subordinate
types, just as for a homomorphism. Note that for the subordinate.types thefmrewm
function is independent of the system state. The abs;réctinns we are considering in this section
‘have static standard models, so that all of the subordinate types must be static, and all of the
objects of the subordinate types must therefore exist in all, pogsible system states, in. the

implementation model as well as in the standard model
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6.3.1 Gorrespondehu Theorem

- In this subsection we define correspondence funciions. precisely, and .we .present:a

theorem supporting their usefulness. Let 4 be a staje.maching and. let:B be: an-exception

.algebra such that the signature of . is contained: in. the signature of -A.. A correspondence

function from A to B is a family of functions ¢, :.4» phyla, x A phylay —» B.phyla, -where

a € B.typenames and where s = 4. 5. is the pame of; the phylum of smmfbrtbem

machine 4. A correspondence ¢ must satisfy the following property. _

Let P = A.phyla, F = A. operations, § ¢ B.opnames, n = 4. arghmth(ﬂ).
let a, = A. argtypelfl, Y.and x; ¢ Py for each { in.the range 1.5 {50, .

let 0 ¢ PS.

Tt (7, €0 gy, P ) ) = FQO, %) %),
_where T ¢ 4. 109’ ¢ Pyum -A-!lmgm(‘!;ﬁ)y

andwhererj A.rtype(fﬂj)andyj( ijoreachjlnthenngel<]$m. '
Let G = B.operations. : |

Then Gpleg (0. %)) - . ¢q (0. %)) = (T, {6 (0" " c',;'(or'; LR

x € Py & a ¢ As statenzmes & x-C-population(0) = {0, x) « ol0”, 2}
and x € P, & — a ¢ A.statenames => (0, x) = (0", x).

-

The correspondence property says that the correspondence miust pf_esénérall of the operations of

the target algebra. Note that the fiew state 0° produced by the opera sration of the state mathiné is

used to determine the correspondefice between the resiiits of the dpetition in the state machine

and in the exception algebra. - A cofrespondence function must also satisfy the monotonicity

‘requirement; as stated il the st two clauses.

A correspondence function is distinguished fom a homomorphisim since it takes the

system state as an extra argument, and since it satisfies the monotonicity property specified by
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the second clause of the conclusion. Since the»range of the mappmg is an exceptlon algebra
there is no component of the correspondence function for the ph;l;l(t;\ of sy;tcm states. |

The correspondence theorem assures us that two models are bc:aviorally‘equvivé:l;nt
whenever there is a correspondence function froglmto the other. - -

tag ks
3
iz

Theorem 8 : Let Ml be a state machine model and: let M2 bean-exception algebra modet. If
there is a correspondence function from M| to M2 which reduces to the. ademlty 'mppmg on
the subordinate types, then M1 and M2 are behaviorally equivalent:.c+i- .

Proof : By induction on the length of the computation. Be!alls in Appendix IL
End of Proof A

The proof is very similar to the proof of the homomorﬂism theorem, except that the
monotonicity property is required to transfer properties of a data object from the state in which

- it was created to the state in which it.is used as an.argument-49-a subsequent operation.
5.3.2 Simple Exami)ler |

A very simple example to illustrate .a proof - of ~the “cerrectness: of “a : dynamic
impjemqqtaﬂgu of a static data abstraction:ia developed in this:subsection. | We will consider an
implementation of gtpe{int;zaix abstraction in:terms-of atrayaef #uggusziliitpairk are immutable
pairs of integers, such as might be used to.represent rational awmbers origaussian integers. |
Operatigpé for constructing pairs, and. for.estracting :the Jeft .and : right: components “are
provided. . The intpair absuraction is very similarto -tupleltight :int, left intl  An exception
algebra model for the intpgir abstraction.is shewn in-Figure . = *

A state machine model-for arrays is shewn. in Figured5. -Arrays are mutable; and have
a variable size. It is not possible to create an awray with uninitialized elements. The atrays’

defined here are a simplified version of CLU atrays, which: have:more operations.
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Figure 14, Pairs of Iintegers

type intpair as P

with create: int X int —> P
left: P—rint
right: P—>int

representation P = tuplelleft: int, right:int}

restrictions - none
identity tuplefequal -

operations - create(x, y)= Cright : x, left-: y )
T left(x) = x. left
right(x) = x. right
end intpair

An implementation is shown in Figure 16, and the ifplemeitation model is shown in
Figure 17. The derivation - of the‘ implementation model _from the QMPk:ﬂ;ﬂl“"W is
straightforward. The operations of the implementation modelP aredescribed in lﬁe same
notation. as the operations of-the standard model t0:avold introducing ‘s’ host programming
language. We claim that it is useful to define the implementation: rhodel in this styte in d‘oing‘;
practical proofs as weil, thus separating the issues nvolved in establishing the correspondence
between two different representations for a data abstraction fM the problem of proving that a
procedure: written in a pa'nicular programming language implements a particular function. |

To prove the correctness of this implemenitation; we have to exhibit a mapping ¢ and
demonstrate that it is indeed a correspondence function. ?heﬁbe'hiﬂonl—equlﬁﬁic’g'df the
standard model and the implementation model ‘will then follow from the correspondence
theorem. In order to distinguish -the operations of “the implementation model from the

operations of the standard modei in the proof, we will prefix the'mﬁmmatioﬂ operations |
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Figure 15. Arrays

type array[E] as A
requires E : type

with create: int —> A
addh: Axint—> A
addl: Axint—>A
remh: A — + (bounds : )
reml: A — + (bounds: ) :
store: A xint x E >+ (bounds : ) asargl[arg2):= arg3
fetch: ‘A x int = E + ( bounds : ) asargl{arg?2]
equak: A x A —> boolean as argl - arg 2
low: - A — int ' '
high: A —> int
length: A > int
data states D = tuplellow: int, e: sequencelE])
restrictions none
identity tuplefequal
operations create(s)i) = state[D)extend(s, (low: i, e: ) ))

addh(sXa, x) = (state[D]JBupdate(s, a, (low: s(a). low, e: s(a). e |+ X)), a)
addI(sXa, x) = (state[DJfupdate(s, a, (low: s(a). low - 1, e: x +| s(a). &), 2)
remh(sXa) = if #(s(a). €) = 0 then ( bounds ;s )
else (state[DJfupdate(s, a, Clow: s(a). low, e: butlast(s(a). €)), a)
remi(sXa) = if #(s(a). e) = 0 then { bounds:s)
else (state[D)§update(s, a, Clow: s(a). low + |, e: butfirst(s(a). e)), a)
store(s)a, i, X) = if s(a). low < i < s(a). low + s(s(a). €) - |
then state[DJ§update(s, a, Clow: s(a). low, e: s(a). €[ i-1] |+ x +| s(a). eli+] .]))
else ( bounds : s )
fetch(sXa, i) = if s(a). low < i £ s(a). fow + #(s{a). €) - |
then (s, s(a).ell - low + ] )
else { bounds : s )
equal(sial, a2) = (s, tokenkequakal, a2)}
low(s}a) = (s, s(a). low?
high(sXa) = (s, s(a). low + (s(a). €) - 1)
length(sXa) = (s, #(s(a). €))
end array :

with a "1". To help the reader distinguish elements of the standard model from elements of the

implementation model, variables ranging over implementation objects will also be prefixed with
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Figure 16. Implementation
representation array{int]

operations create(x, y) = addh(addh(array‘creale(l) x) y)
left(p) = fetch(p, 1)
right(p) = fetch(p, 2)

Figure 17. Implcm.mn;on Model R . Lt

representation array[mt]

operations  create(sXx, y) = addh(s2Xp2yy)
where (s2, p2) = addh(siXpl, x)
(sl, p1) = arrayfcreate(s)l). . -
left(sXp) = fetch(sXp. 1)
right(sXp) = fetch(sXp. 2) |
a i,

The éﬁrrespondeﬁ& fi un;tm for wsmlek !ho Wus o
s, 2) = GeRt: s(a). eul’,n;ggmg(qi;é(i]>f. .

We have shown only the component of the cofrespendence for the princtpat type impatr The
correspondences for all other types are:- idenwg func;m SO

The proofs for the operations. create and left am sshoum tnbp The proof for the
operation right is similar to the proof for left, md Is Ieﬂ as an ;xercise for the reader..- The
proof relies on the implementation invariant X shown below, which is a restriction on the data

state of every object repsesenting an intpair. ..
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Let X, y be integers,
{a, lp be lintpairs,
1s, 150 be system states for lintpairs,

Let I = is(ip). low = 1 & #{is(Ip).e) = 2

create

Let (s, 1a) = Icreate(!s0Xx, y).

We have to show that c(Is, 1a) = create(x, y).

From the definition of create, create(x, y) = (left: x, right: y). :
From the definition of ¢, c(ls, 1a) = (left: 1s(la). ell], right: is(1a). e[2]).
Using the definition of tuplefequal, we have to show that

Is(1a). ell] = x and Is(la). e[2] = y.

From the definition of the array operations create and addh,

Is(la) = Clow: 1, e: {x, y>) and Is(ip) = IsO0(ip) for Ip = la,

so Is(la). e[l] = x and {s(la). el2] = y.

So c(ls, la) = create(x, y).

Since la is newly created and !s(lp) = 1s0{ip) for all ip = la,

the monotonicity property holds.

Since the array operations create and addh can only terminate in the normal condition,
¢ preserves the termination condition of the create operation.

So ¢ preserves the create operation.

Also Is(la). low =1 & #(Is{la). e) = 2 and Is(ip) = isO(ip) for ip = la,
so that the implementation invariant holds in state Is if it holds in is0.

left

Let (Is, x) = lleft(1s0, {a).

Let a = ¢(s, {a).

We must show that x = left(a).

By the definition of ¢, a = (left: Is(la). ell], right: is(la). e[2)).
By the definition of left, left(a) = 1s(la). efl].

From the invariant, 1s0(la). low = | & #({s0(la). e) = 2

50 150(1a). tow < 1| € {s0{ia). low + «(4s0{la). €) - I,

and by the definition of lleft and array#fetch, Is = 1s0 and

X = 1s0(la). efl - 1 + 1] = $s0(4a). elil.

So x = left(a).

left and lleft always terminates in the normal condition.

So the correspondence ¢ preserves the left operation.

Since ls = 150 the monotonicity requirement is trivially satisfied.
The implementation invariant holds since is = is0.

right -
Proof left to the reader.
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For the purposes of comparison, if immutable sequences had been used as the
representation of infpair instead of arrays, the ho'mmorphism would have been the following

for the analogous representation:
Ax) = ( left: x[1], right: x[2] ).

The proof would have been similar for the immutable case, em:ept that zhere would htve been
no need to show the monotonicity preperty, ard no. need to argue thﬂt tbe data states of
previously existing data objects satisfy the implementation inumm. a8 ‘we did for the creau
operation. For a mutable implementation, it-is-important to-include. this part of the argumem.
because the implementation invariant is 2 constraint on {M entim sys!cm sla&g. rather than just
on the images under the new system state of the data objects fe!umed A corrcaly mplement!d
operauon must preserve the invariant, which means that the inyariant must ho!d with: respect
to all data objects after the operauon is performed Thns mcludcs the objects retumed by the
operation, as well as any others whose state may have changed as a resuk oithe.operatm;

Note that the proof me(hodology presemed here has no difflculties handﬂng
implementations with benevolent s:de eﬁects If the couesgondense functlon A8, many 40 Qne
" then an operation may change the state of:an- imphm&tatm abjoct withou& affecting the
correctness argument, as long as the image of :he impkmematim object under the
correspondence function does not change. - Such: side. eﬁu:ts can be usefuJ in icases where an
operation rearranges a data structure to make fu(ua'e aponuaas on that structurc more zfﬁc;em

~ without changing the externally observable behavior of the structure,
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5.4 Dynamic Specification, Dynamic Implementation

The correctness of a dynamic implementation of a dynamic data abstraction can be
proved by constructing a simulation relation, and by showing that the simulation relation holds
for all closed computations. The method of simulation relations is a general solution to the
problem of proving the behavioral equivalence of two models, since it can be applied to both
static and dynamic models. If the standard model is static, then some simplifications are
possible, as illustrated by the homomorphism theorem and the correspondence theorem
presented in the previous sections. In this section we consider the fully dynamic case, where the
full power of simulation relations is needed.

Recall that each object. of a dynamic type is modeled by a token. Tokens have no
distinguishing features other than their identities. The properties of a data object represented
by a token are modeled by the images of the token under the current system state function. To
establish the behavioral equivalence of two models, we must specify the correspondence between
the tokens of the two models, and also the relations that must hold between the states of
corrésponding tokens. The first of the two correspondences is the correspondence relation «
described below, and the second is described oy the simulation relation. For a pair of state
machine models, the simulation relation is typically defined in terms of the correspondence
relation.

Since tokens do not have any distinguishing properties other than their identities, it is
generally not possible to describe the correspondence between the tokens of the implementation
model and the tokens of the standard model without reference to the computation that produced

the current state. The correspondence relation for tokens is easy to describe in terms of the
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computation, sinice the results of rcbrres'po'n&tng steps of the computatmn in the two models must
correspond to each other. The correspondence refation is defined mere precisely as-follows.
Definition 20 Correspondence Relation

If the computation C is feasible in models Ml and M2, if x is the i-th return. value of
the j-th step of the interpretation of C in M1, and if y is the i-th return value of the

Jth step of the interpretation of C in M2, then we will say.that:x.correspondstoy
and wewﬁlwritexu;
The correspondence relation applies to system states as well as to data objects | The
correspondence relation is symactk in nature: it ls deﬂned in terms of the structure of the
computation, without any regard for the ~meanings of the opentions. 0 that the same definition
applies to all data abstractions. | B
The simulation relation describes the rehtion that must hold between the states of
corresponding data objects in the two models for the objects to have the same externally
observable behavior. Examples of simulation rehtions can be folmd in the proofs of correctness
given in’ ‘the I‘ollowing sections. S ‘ o
A typical proof of correctness proceeds by mductnon on the length of the computationr
to show that for any closed computauon the termination condmon of the last step is the same in
both models, and that the simulation relation hokls in the fmal states of the two models The
_ proof splits up into cases on the type of the last operatlon of the compumnon wlth one case for‘ )
each primitive operation. |
To estabhsh behavioral equivalence, the snmubtion rehnon must imply that
‘corresponding’ boolean values are cqual Typncally the simuhuon relauon will be the |

cmjuncﬁoﬁ of a pumber of clauses, where each clause is an implicatlm The hypothesls of the

lmpticauon says that a number of pairs of objects have given types and are related by the'
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correspondence relation «. The conclusion describes the relations that must hold between the
identities and states of corresponding objects. The clause stating the standard requirement on

boolean values is the following:
belb=>b=|b

where we follow the convention that variables prefixed by a "l" refer to elements of the
implementation model, while variables without such a prefix refer to elements of the standard
model. Just as we required the homomor’phism or correspondence function used in a proof of
correctness of a static data abstraction to be the identity mapping on the subordinate types, we
will in general réquire a clause in the simulation relation for each subordinate type, stating that
corresponding objects of the subordinate type must be equal.

In order for the induction to go through, the simulation relation must be strong
enough to enable the simulation relation to be proved in the final state, given that the
simulation relation holds in all previous states. In working out sample proofs, we have found
that the definition of the simulation relation usually evolves along with the proof. In the
beginning, the simulation relation states just the required constraints on the boolean domain
and on the other subordinate types. In considering each operation, it is often found that an
additional hypothésis is required to show that the operation preserves the simulation relation
defined so far. As clauses are added to the simulation relation, it is of course necessary to go
back and show that the other operations preserve the new clause as well. If the implementation
is in fact correct, then this process will eventually terminate in a proof that every operation
preser\;es every clause of the simulation relation.

The use of the correspondence function & is one difference between proofs of
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correctness for dynamic abstractions ahti for static abstractions. Another phenbtnenon that
occurs onty for dynamic abstractibns is that sometimes it is nécessary to consider the operations
of the subordinate‘typgs in tt\e.correctncss proof, as well as theopentiomof the pﬂnctpal type
The operations of any mutable subordinate type must be considered, since they can modify the:
system state, and since the simulation relation (usually) depends on the system state. ' The
operations of static subordinate types need not be cotmdcred. bccausethcy cannot ﬁchattgc the
| system 'Stat.é or feturn objects of the principal tipeSmce al of the subordinate ty'pe;si:of a static
abstrattion are tatic, the opefations of the subordinate iypes of any statié abstraction need ot
explicith enter inio the correctriess proof. o

AWy iteractions between the observable behavior of a mutable data ‘abs,tracti"on and
the operations of its mutable subordimté typesdepe;vdonthe }u’uéttation of shand data objects
Stfice the subGrIREYe reldiion on models is'a well founded pariial order, It 1s not possible for
any of the 'opé:fhtions of a subordinate type toopentedltectlyon anyobjectof the priﬁcipai-
type. It’is possible Tor an objéct x of 'a subordinate 'ty;").e: to share some substructure with an _
object y of the principal fype, so that theexteméﬁydﬁs‘ernﬁebehasméf y can depmd on the
state of . ‘SNaring of this kind can occur by condtruction or by decomposition. In the first case,

some primitive operation takes & a§ ah afgument and incorporates it into 9, where either y is

3!

passed 4s an argument to the operhtion or created by the operation a

 returned. In the second
case, some primitive operation takes y as an argiment and returns the componen mponent x. o

* For an example of  case Whie ah intefaclich withi the operations of a subordinate
type is possible, conisider the mset abstraction described as follows, 'Mets are mutable ’séts,-'\éith;r
 the usual set operations, and also an elements operation that Fetuins an ‘akt'ratgy; ‘containing the

elements of the set. "In thé'stindard model, the elements operation returns a newly created array,
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without affecting the state of any mset. Consequently, a subsequent assignment to some element
of the array returned by the e/ements operation does not aff‘ect. the contents of the mset from
which the array was derived. An implementation in which such an assignment did affect the
con.ten(s of vthe msel would not be behaviorally equivalent to the standard model, but the only
way to detect the difference is to perform an array$store operation, which is an operation of a
mutabl'e type subordinate to mset. (Such an incorrect implementation of mset is plausible, |
since it would arise if the programmer chose to represent msets as arrays, and in implementing
the elements operation forgot to return a.copy of the array representing the mset, rather than
the representation itself) For such an incorrect implementation, it would not be possible to
prove that the array$store operation preserves the simulation relation, even though it could be

possible to show that every operation of the principal type does preserve the simulation relation.
6.4.1 Simple Example

In this section we present a proof of correctness q‘f an implementation of the unique_id
Aabstraction. This is just about the simplest possible data abstraction that requires a state
machine model. Recall that unique_ids are immutable, but they can be dynamically created.
The standard model for the unique_id abstraction is repeated for the reader's convenience in
Figure 18. An implementation of unique_ids in terms of arrays is shown in Figure 19. In this
implementation, we are taking advantage of the fact that arrayfcreate always returns a new
array (one that has not been used yet in the current computation). The implementation
depends only on the identity of the array, so that the contents of the array can be changed
arbitrarily without affecting the correctness of the implementation. A newly created array has a

length equal to zero, and a specified lower bound for the indices. The standard model for
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Figure 18, Standard Model for Unique_id
type anique_id- asU

with ‘ ereate: -»U
equal: U x U —> boolean

data states D= ljnuli }

operations create(sX) = extend(s, null)
v S eqta¥exy) S s, v )
where v = if tokenfequal(x, y) then true else false

end unique_id

Figure 19, lmplementatbn of Unquq_ﬁd
reprqsentation array[lnt]

operations create() = array[lnt]kreate(l)
‘ equalx, y) = arraylintMequakx, y)

arrays is shown in Figute 15 in Section 532. ‘The proof of cofrectness is shown below. As

before; we will prefix operations, objects, and-siites bebhgmg to the impknwntation with a "4°
to distinguish them from their counterparts th the standard médel. .

To prove that-unique_id and 1umque id are behavnorally equwalent

Proof by induction on the-length of the computation: °

Assuming the simulation refation R holds for all computatms c such that ] < Iength(C) <N,
stvow that R holds for-all'€ sdcl that ¥hgth{CP= N

Let s, 50, sI-be system ‘states for unique_id, -
1s, 150, isl be system statcs for lumquc _:d
"X, X1, y; ¢ beuniqie_ds A
Ix, ix1, ly, i1 be 1umque ids
‘b, b be booleans. '

Let R =X & IX &'s & Is = used{x, 8) = used{ix, Is)




- 12t -

Exolx&kyoly=(x=y)={x=1y)
&belb=b=1b

Proof by cases on the name of the last operation in C.
Case I: create

Let 50 o Is0.

Let unique_id§create(s0X) = ), x1) and lunique_id§create(4s0X) = {Isl, IxD),
so that sl & (sl and x1 & Ixl

By the definition of unique_id§create, statelextend, and state$used,
used(x!, sb) & — used{x1, s0)

and used(z, s0) = used(z, sl) for z = xl.

By the definition of arrayficreate, statefextend, and stateused,
used(Ix1, Ish) & — used(lxl, {s0)

and used(lz, 1s0) = used(lz, Isi) for iz = ixl.

So 1 & lz = used(z, sl) = used(lz, isl) for any z, {z.

So the first clause of R is established for si, Isl.

“ (lemma 1) if z = x1 and z & 1z then 2 = IxI:
used(lxt, Is1) & — used(ix}, 150),
but used({z, Isl) = used(z, s1) = used(z, s0) = used(lz, 1s0),
So lz = Ixl.

(temma 2) if z = xl and 2 & i1 then {z = Ixl:
Since z = x1, used(z, sl) & — used(z, s0).
By the first clause of R, used(lz, isl) & — used(lz, {s0).
used(lz, 150) = used(lz, Is1) for lz = Ixl.
So lz = IxlL

Let x & ix and y & ly.
Case ll: x = xl,y = x|
By lemma |, ix = Ixl and iy = Iyl
So x e Ix and y & ly in the prefix of the computation C.
So the second clause of R holds by the induction hypothesis.
Case 1.2: x = xl, y = x|
Then x = y.
By lemma |, ly = ixl.

By lemma 2, Ix = Ixl.
So Ix # ly and the second clause of R holds.
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Casel3: x = xl, y=xl
Similar to Case 1.2.
Casel4: x = xl, y=xl
Then x = y.
By lemma 2, Ix = Ixl = ly,.
So the second clause of R holds.

The third clause of R holds since create and Icreate do not nturn my boalean values.
So R holds. . .
Both create and Icreate always teyminate in the llonnd mndition

Case 2: equal

Let s0 « 150, x0 & {x0, and y0 & ly0.

Let equaKs0Xx0, y0) = (sl, b) and 1equal(lsOXlx0 110) (1sl b,

By the definition of equal, sl = s0 and b = (x0 = y0), .

By the definition of lequal, isi = is0 and b = (Ix0 » lyo), e

Since R holds in s0, (x0 = ¥0) = (I1x0 = {y0),.50'b = Ib, mx ,hglds,

Both equal and lequal always terminate in the normal condition.
So & preserves termination conditions and truth values. ,
Therefore unique_id and 1umque_jd are behavmmﬂy ,quiulem

The most important property of a unique;id- is that it is unique Thls JS expressed by

the second clause of the simulation relation R, which says that two xnique.id’s have the same
representation if and only if the abstract objects they represent are identically-the same.- The
third clause of R is just the standard requirement on_boolean. values, from mhk.;h» the behavioral
equivalence of the two models follows easily. . The .ont} opermm of urdquc...idﬂlai produces a
boolean value is equal, and for that case the third clause of R follows easily from the second
clause and the definition of equal. Establishing the second clause is harder, requiring the

addition of the first clause to the simulation relation, to strengthen the. induction hypothesis.

The first clause is based on that fact that correspondmg objects iﬂ the Implcmematlon and in
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the standard model are created at the same time, so that either both exist (in states after the
abstract object has been created) or both do not exist (in states before the abstract object has
been created). Since the object returned by unique_id§create is always newly created (and hence
distinct from previously existing objects), and since only one object at a time is created, the
unique representation property is preserved.

The proof shown above is a typical example of the argument used to establish a
unique representation property, treated in detail. Similar properties will be required in later
examples, and we will sketch the proofs without filling in all of the details, assuming that the

reader can adapt the argument given in this section.
5.4.2 Typical Example

A simple example of a proof of correctness for a dynamic data abstraction is presented
in this section. We have adapted the intset example from [18], without incorporating the bound

I A standard model for intsets is shown in Figure 20. Intsets are mutable

on the size of a set.
sets of integers. The empty operation creates a new intset, which is initially empty. The insert
operation inserts a given integer into a given intset, returning no values and changing the state
of the jntset. The remove operation removes a given integer from a given intset. The Aas

operation tests to see if a given integer is a member of a given intset.

An implementation of intsets in terms of arrays is shown in Figure 2I. This

1. If sets with a bounded size are desired, then an exception conditions should be associated
with the insert operation to indicate when an attempt has been made to exceed the size bound.
This will add another case to the proof without further illuminating the methodology, and
hence is omitted.
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Figure 20. Standard Model for Intset

type intset as |

with ' empty: —>1
‘ insert: I xint —>
‘remove: Ixint—>
has: I x int — boolean
data states D- set{mt]
restrictions  none’
identity setfequal
operations empty(sX) = extend(s, setfnulk))

insert(sXx, i) = update(s, setfadd(i, s(x))
remove(sXx. i) = update(s, sethremave(i, §x}))
has(sXx, i) = (s, setbmember(i, s(x)))

end intset

Figure 21. Intset lmplemen_tqtlon ’

representation intset = arraylint) L . .
restrictions a such that low{a) = [ & ( low{a) < < j, k< higha) & j = k => a()) = a(k) )
identity arraykqual

operations empty() = arraylinticreate(l)
‘ ~insert(a, i) = If ~ has(a, i) then addh{a, i)
remove(a, i) = if has(a, i) then { storefa, find(a, i), alhigh(a)l ; remh(a) } .
‘ ‘has(a, 1) = if Jjllow(a) < j < high(a) & alji«i] then true else false
definition fmd(a i) = if Jjlalj =i ) then j: alj) = i else 0 .

implementation keeps at most one instance of any given integer in an array, but the order of
the elements is arbitrary. The standard model for arrays is shown in Figure 15 in Section 53.2.

The proof of correctness is shown below. An explanation follows the proof.



- 125 -

To show that intset and lintset are behaviorally equivalent.

Proof by induction on the length of the computation:

Assuming R & I for all computations C such that 1 < leng¢h(C) < N,
show R & I for all C such that length(C) = N.

Let s, 5O, sl be system states for intset
s, 150, Isl be system states for lintset
x, x1, z be intsets
Ix, Ixl, iz be lintsets
i, il, Li, lil, k, n be integers
b, bl, lb, Ibl be booleans

Let R = ls o s & Ix o x & diei=>(iCs(x) = djil € j < o(ls(ix)s €) & di = Is(x). e[j]])
&lbeb=>lb=>b

Let I = ds(ix)low =1 & (1< j, k < s(Is(ix)e€) & j = k => Is(Ix). efj} = Is(ix). e[k] )
R is the simulation relation and I is the implementation invariant. '

Proof by cases on the name of the last operation of C.

Case I: create

Let 150 o 50, lcreate(ds0)) = (Isl, IxD), create(sOX) = (s, xID

Then we have Isl o sl and ixl o xI

By the definition of create, si(z) = s%(z) for z = xI

By the definition of lcreate, Isl(12) = 1s0{{z) for Lz = Ix|

So R and I hold for s = s, Is = Isl, x = xl, Ix = Ixl

For x = xl and Ix = lxl we have

si{x1) = setdnull), so i ¢ sl{xl) is false for all i.

Lsl(ix1) = Clow: 1, e: OO, #(Is(Ix).e) =0,and 1 € j £ 0 is false for all i.
So R holds for the pair of states sl, Isl.

Lsi{ixl). fow =1 and 1 < j, k <0 is false, so I holds.

o preserves termination conditions since both create and lcreate always
terminate in the normal condition.

Case 2: insert

Let s0 & 150, xl & ix], il & lil.

Let insert(sOXx1, it) = sl, Linsert(1sOX1x1, 4il) = Isl.

Then sl & sl

We have s0(z) = slz) for z = xI, and similarly for {s0,

so we have to show R and I only for x = x1, {x = Ix], s = sl, {s = Isl.
By the definition of insert, si(x1) = sO(x)) U { il }.
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Case 211 il ¢ sO{xl).

Then sKx1) = sO{xI), and hmce sh=s0,, . .-

Since R holds in 50, 3j{l < j < o(Is0(1x1). €) & uo(lxl). e[j] 1ill
So sl = 150 by the defmmon of linsert. .

So R and X hold by the induction hypothesis. .

Case 2.2: — il ¢ s&x]).

From R in s0, ~ 3jll < j < o(4s0(Ix1). €) & 1sO(ix). ef} = dil)
From the definition of linsert, isl{ix1) = (low: |, & IsO(ix1). € ). u)
%,[l £ j < o(3s0ixN)s ) & Ls0xA). efjl = dil) = -
01 < j < o(lsKixI)s ) - § & dsKixt). eff) = dil)
and {sKixi). elj] = lifor j = o(lsl(lxl). °),
. 50.R holds in sl, Isl.
From the definition of linsert, Ls(lxl) low =1
X holds for 1 < J,k £ s(}sO{ixl)e-g) = #ialixl). €) < | by the induction hypothesis,
and X holds for 1 < j <k = e(isKixl). ¢),
since = 1 < j < o(1s0(Ixl). €) & Ls0bxddvolf] » 34
So X holds.
& preserves termination conditions since both insert and linsert
always terminate in the normal condition.

Case 3: remove

Let sO & Is0, xl & Ix], il & Ji}, -

Let remove{sOXxl, il) = sl, lremove(lsl))(txl lrl) lsl.

Then sl o Ist.

We have s0(z) = sl(z) for z = xl, and similarly. fm'm Co
s6 we have to show RJﬂd.J only for ¥ « kKhJdx: -Lxl.s-:sl ds.= u.r -
By the definition of remove, sKxI) = s0{xl) - {It;i. S e

Case 3.1: il ¢ sO(xl)-

Since R holds in s0, 150, Jjll < j < «(4s0{ixi). €) & btns(‘)»(lxl').e{j] - 1if)
Choose n such that | < n < o{1s0{ix}). e) & Is0(ix1). eln] = $il.
X hoMds in 50 so n is unique and n = find(isOXixi, d41).

Case 311 n = o(1sO{{xl). €)

Then from the definition of lremove,. -
IsKix1) = Clow: |, e: 1s0(ix1). e{l.n-1]).

From X with k = n and the previous.line,

= 3jl1 < j'< o(dsk(ixl). €) & Lsi(ixt). eff] = L),
so R holds for i = il.
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Since Isi(ix1). elk] = 1s0(ix1). e{k) for | <k < n, :
N for i = il, 31 < j < o(150(Tx1). €) & 150(3x1). elj) = 1i) =
CO3j S < s ) & M(Txn em Ii]
So R is established in si, Isl. o
X in 151 follows from X in 0.

" Case 312: n = o{is0(Ix1). €)

Then from the definition of lremove, 1
~IsK(ixD) = Qow: 4, & q[i n- ll J+ qoq] o]kq[ml cq-l])
" whete q = 150(Ix1Y.’e.
From I with k = n and the previous line,
= i1 < < 1siixD). € & Lskixt). efj) = uu
so R holds for i = il.
" “since IsHIxD. elk] = 1so{ix1). kY for T'< k <'n- land nel<k< oq - l
and Isl(ix1). eln] = LsO(ix1). e[sq), )
Cfori= il A << .(156(1,(!). o) & 150(ix1). elj] = lil =
< < oisiint). ) & dskonl), el 2 0
$o R is established in sI, 1.
- X in U5l follows from X in 0.

Case 3.?: = il ¢ sO{x1)

Then sl(xl) = sO(xl) {il}= sO(xI) 508 =50,
Since’R hols in 0, - 33(1 < i< o(lsO(le. ¢) & 1s0{1xh). e[j] hl].
so sl = 150, by the definition of lremove and lhas.
So R and I hold in s, Isl.
« preserves termination conditions since both remove and 1remove
always terminate in the noﬂnd condition. =

* Case 4: has

"~ Let 30 o 150, x1 & ix1, jl o dil. I
Let has(sOXxl i) = (sl, bD, lhas(lso)(lxl hl) (lsl lbl)

THen'si' & Ist and bls 5]
From the definitions of has and lhas, sl - sO and lsl = 150
S0 ¥ holds. -
We need to show that bl = ibl.

By the deffnition of hasbl = it ¢ sii). 2 '
By the definition of lhas, 1bl = JjfI < is ousouxl). e) & lso(lxl). e[;] u]
By the first clause'of R; bl = bl
« preserves termination conditions since both has and lhas always
tertinate in the noraal tondition. )

‘Since o preserves termination conditions and the simulation relation,
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all computations are equeasublc in lm:et and in. Jinuet and each

computation producing a boolean value ,produccs the same valuq{a both models.
So intset and lintset are beﬁaviéraﬂy equivalent. C

The only primitive intset operation that can produce a boolean. value is Aas, and the

relationship reqmred for the Aas operation to give the same results jn bqgly {nodels is expressed

by the first clause of the simulation rehtion R. The o invqriant X expresses a

restriction on the implementation strudures thqt must I;e matmt;ped h’ chc operations of the
lmplementauon Note that the imp{ementation invamm dog aot.mention any objects of the
standard model, in contmst to the nmuhtioh reﬁtion, whidl k goncemed w!th the relations
between the two models. The hnplemenmim m\vamm ays, t&n all of the elements of the
array representing an infset must be distinct, and tbat “the low bound of the array must be
always equal to I (recall that arrays can grow and shrink from both cnds). The lmpiemntatlon
invariant is needed in. the proof to show that the rnng)enﬁpn ,pgm ;be simulation
relation. T PR RN

Whenever there is a state trannnonmuaﬂjytlglyyoa&tmnfm opention of fhe |
state machine, we have to reestablish that the properties required for our proof of correctness
are still true in the final state. There can be no s:mpk gegcral mk for transfcmng gmpertm '
from one state to the next, because there is no simple synncuc rdatkn bemeup tbc text
specifying an operanon and the set of data objects that can be affected by thq operauon In
general, the effects of an operatlon are not hmued to the dm ;obpm that: are. passed as
arguments to the operauon because tbe data state of au nbpa an, oomain ubcr data objects
which in turn can have data states cmtémllig still mpre dm ntgje;xs, L_;A,‘n jnyor.‘aftjpn of an

operation can potentially affect every object in the reachability closuse of the arguments, which
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can vary from one state to the next. Consequently we must establish the invariance of
properties of data objects with respect to state transitions on a case by case basis.

As can be seen in the proof above, explicitly arguing that each property is transferred
from one state to the next need not lead to unmanageable complexity. In a correctness proofv we
are typically trying to show that the simulation relation and the implementation invariant
remain true in spite of any state transitions that may be caused by the operations of the data
abstraction we are trying to verify. In the example above, the arguments are very simple, since
there is no potential for data sharing between intsets. In the example shown in the next section,
there is potential sharing among the objects of the principal type, so that the arguments
required to show that the simulation relation is preserved by a state transition have more

content.
5.4.3 Sophisticated Example

A sophisticated example, consisting of the nonstandard implementation for mutable
lists discussed at the end of Chapter 3, is presented in this section. This example treats a
mutable absfraction whose objects may share subcomponents. The implementation is not
reduced, so that more than one object (token) in the implementation may represent the same
abstract mutable list. The standard model for mutable lists is shown in Figure 22. The
implementat'ion model for mutable lists is shown in Figure 23. We have defined the
implementation model in the same notation as the standard model in order to keep the example
as simple as possible. Strictly speaking, this example shows a proof of the behavioral
equivalence of two models. The proof of correctness is outlined below. The proof for t‘he cdr

operation is very similar to the proof of the car operation, and similarly for rplaca and rplacd,
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Figure 22. Standard Model for Mutable Lists

type list as L

with ik =L
: - cons: - Lxd =L
car: : E—>L+{(nocar:)
cdr: L->Ls(nnedr:)
rplaca LxL-—>L+{(nocar:)
rplacd:. . L xL-—»Le(nopdr:) -
eq: LxL—>boolean '

S ;«"“"

data states D = oneof[null { nil } palr tuple[& L r: L]]
restrictions.  none . - .
identity token!equal
- operations niksX) = state{D)¥extend(s, nil in pull)
- - . cons(sXx, y) = statefDaxtend(s, <& X 1: y).in pair) . .
car(s)x) = if is{pairXs(x)) then (s, tolpairKs(x)). D)
else (no_car : s)
cdr{sXx) = if is[pairXs(x)) then (s, tolpairXs(x)). 5%
. else {no_ cdr s)
rplaca(sXx, y) = if islpairXs(x)) = -fcarssti RPN SR
then (state[D]tupdate(s, X, (l y, r to(paurls(x)). r) in pair) x)
else (no_car: 5)
rplacd(sXx, y) = if islpairXex))..
then (mte[D]!update(s. X, (I to[pa:rls(x)) Lr y) in pair) x)
: - Ch! (ﬁm&f‘ﬂ Gotatges :
eq(sXx y) - token!equa(x y)

end list

S

so-that only one proef.is given for each pair of operations, and:the other is left-to: the reader.

An explanation is given after the text of the proof;-

To show that list and list are behavnora"y equwalent

Proof by induction an the length of the computation: .

Assuming R holds for all computations C such that | < Iength(C) < N
show that R holds for all.C such that length{C)} = N. -

Let 5, 50, st be system states for list,
Is, 150, Isl be system states for ilist,
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Figure 23. Iimplementation Model for Mutahle_l.ists, .
data states D = cellloneof{null: { nil }, pair: tuple{l L r, L]J]

operations nil(sX) = state[hst]!extend‘(s?ate{tem:(‘tmd(s, n ih nulf))
cons{sXx, y) = state[list)lextend(stﬂﬁ e tend(s, <I f y) in pair))
car(s)x) = if islpairks(s(x))) 77 T T TR Lo
then (s, to[paers(s(x») l)
else {no_car: §¥ o
cdt(sXx) = if ls{palr)(s(s(xm T
* thei & tdpms*(sﬁg)» ri
ése Cnedt: 55"
rplaca(sXx, y) = if is[pairXs(s(x))
then stateftistlfextend(
state{cetiffupdate(
oS s(x), (I Lr to{pﬁlr]s(dx)ﬁ r) iu pair ), L
Y _

else (no_car: 5)

rplacd(sx, y) - “'SIP‘"K‘M*», o

W, X, ¥, 2, X0, yO be lists

iw, Ix, 1y, 1z, 1x0, 1y0 be llists,
b, {b be booleans,

ic be a cell.

" LetR=(xelx&seo ls& islhuitXsid) = is[wuaxumax»)
E(xolx&ksolsk |s[palr](s(x)) => is{pairlls(lﬂlx)))
&sm.hwsax» 1
v &)L T o IlIiK)). £)
&(x«lx&yaty&sass»(x-ﬁﬁa lx)-isay)}’) e
E(bolb=>b=Ilb)y 7 )

Proof by cases on the name of the last operationof C.
Case [: nil

Let 50 & 1s0.
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Let nil(sOX) = (I, w) and IniKisOX) = (Ish, dw).

Thensl e lsland w e iw.. L e
. sKz) = s0(z) for z * w, and strmhrly for 4sl. '

So we need to show R oy for x sy dx wdw. . .. . o

By the deﬁgltlmq(n&mm(‘!» g RO s

By 'the defirition of Inil, is[nuﬂllﬂ(isl(w))L .

So the first clause of R holds. . B

The second clause is trivially true for x = w, 3; " 1\0 i

since the hypothesis of the implication is fale. . . ST

Since w and IsKiw) are newly created, the. &lﬁ@ chim oﬁg holds.

Both nil and inil always terminate in the mm

A N T
.L:‘n&a i H ," ERLR LS

Case 2: cons

Let 50 «» 150, x0 « ix0, 104» y0.

Let cons(s0)x0, y0) = ‘1, w) and 1cons(150)(§x0, lyo) - Clsl, tw).
Then st & Isl and w & iw.

si(z) = s0(z) for z = w, and similarly for ;sl e

So we Reed to show R only for x = w, Jx=dw. ' .
By the definition of cons, is[pau;_x Qw))ﬁékw{ 1= x0, and sKw)e 1 = y0.

By the definition of dcons, i3 ﬁxﬂm)}, UsisKiw)). 1 = 4x0, and dsi(isKiw))e 1 = 1y0.
The first clause of R is trivia

Since x0 & 1x0 and y0 & ly0, the second chuge af R holds.

Since w and IsKiw) are newly created, th; M :hug‘gg R holds..

Both cons and lcons always termimte condition.

Case:car
Let sO & 1s0 and x0 & Ix0.

Case 3.1 is[pairKs0(x0)) !
!
Let car{s0Xx0) - (sl w) and kar(MXle) = (sl dw).
Thensl e Istand w e dw.
By the definition of car, sl = .0 and v- 50(5:0)“!
. By the dehmugn of lm. l;! - lsQ agd Iw = §30(1s0(x0)). |
Since sl = 50 and sl = J50, R. hoids in 3}, lforx,y=w. :
Since R holds in 50, 150, islpairXisO(isO(tx0)) and s(xQ)s | - La0{404xONx |
So w & lw for the prefix of C.
So R holds for s, Isl. . ‘ ae
Both car and lcar terminate in the nortn.l condmon for this case.

Case 3.2: isinullXs0{(x0))

Then since R holds in s0, is[nullX1s0(4s0{1x0))).
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Let car(sOXx0) = sl and $car(4s0X4x0) = Is.

Then sl » Isb

By the defmmon of car and 1car st = sOa:nd M 450, s0 R holds. -
Both car and {car terminate in the no _car condition for this case.

Case 4. cdr
Similar to Case 3, proof left to the reader.
Case 5: rplaca
Let 50 & 150, x0 & 1x0, and y0 & 4y0.
Case 5.1: is[pairKs{x0))

From R, is[pairX1s0{1s0{1x0))).
Let (sl, w) = rplaca(s0Xx0, y0).
Let {1sl, Iw) = rplaca(!s0X1x0, 1y0).
Then sl «» Isl and w « Iw.
By the definition of rplaca,
si(z) = sO(z) for 2 = x0 = w.
By the definition of drplaca, .
1s1{1z) = 1s{iz) for iz # lw and lsl(lc) 150(1c) for k * lsO(lw) lsO(le).
R holds in 50, 150, and from.the third clause of R;:

T zel1& 2 #x0=>150{1z) * 4s0{1x0). :

_ So lsl(lsl(u)) = 450(1s0(12)) for 4z ++ 3 %.%0.

~ So R holds for x = x0.
The first clause of R holds for x = X0 = w since: n[nulﬂsl(w))
From the definition of rplaca, w = x0.
From the definition of Lrplaca, Isi(iw) = 4s0(Jx0),
and M(lz) = 150{iz) for iz = Iw.
So the third clause of R in si, Isi follows.from R in s0, Is0.
From the definition of rplaca, si(w) = < yO r: sO(xO). r)
Suppose x = x0 = w. C e
Then from the third clause of R,
X & Ix => Isi({x) = Isi{iw), and tsi(isiix)) = Lsidsi(iw)).

" From the definition of rplaca, isfpairXisi{isi(iw))) and
Lst(isl{iw)) = (L 1y0, r: 1s0(4s0({x0)e 1.
‘We have y0 & 1y0, and since R holds in sO 150,
s0(x0). r & l{O(lsO(lXO)) r. . .
So the second clause of R holds in s, sl.
So R holds. :
Both rplaca and 1rplaca terminate in the normal condmon for this case.

Case 52 is[nultKs({x0))
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Let rplaca(s0Xx0, y0) = sl and irplaca(4sOXix0, 1y0) = isl. _}
By the definitions of rplaca and- Irplaca, sO = sl and {50 = isl, so R holds.
Both rplm and kphta termindte in the mo_car %mdutm f& tms ase.
Case 6: rplacd
Similar to Case 5, proof left to reader.
Case 7: eq
Let s0 «150, x0 « 1x0,and y0 « iy0.
Let eq(s0Xx0, y0) = (s, b) and leq(4sOXIx0, 1y0) =Usl, IB).
By the definition of eq, sl = s0 and b = (x0 = y0).
By the definition of leq, Isl = 150 and ib = (1s0(x0) = {s0{y0)).
Since R holds in 0, x0 & 1x0, and y0 « 1y0, (x0 = yO) = (hO(JxO) 15(X1)LO))
So b = b, and R holds.
Both eq and leq terminate in the normal condition.

So list and llist are behaviorally equivalent.

The mutable list example was chosen to Illustrﬂe several issucs arismé from the
sharing of mutablc data objects Smce we' have made 7 hﬂct dis:im:tim ba?ween tbe identity of
a token and its state, there is no notational difficulty 1"! statlng that one object is a
s_ubcon:ponent of the states of several other objects ﬂ‘.e.,» thitthe ﬁrsfobjectis shared by the
Iattervobjects). ' Note the use of the corfespondenceﬂ.'mo inmeconc‘luslon of the second
* clause of the simulation refation R, to indicate ‘that't!nv‘id"eml’tié; of the cdl;ipghents of a
non-null list must correspond in the two models. |

The example illustrates a case where the’ré may be many -disfigigt tgpygseqtatims for
the same mutable object. Every time a rplaca or rplacd operatim 18 péfl‘orméd on a list, 2 new
représentation object for that list is created in the impiementation De:pitethg multipl.e
representations, the externally observable behavior of mptable lists is correctly reali?éd in. the

implementation, so that the non-uniqueness of the representation used by the implementation is
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not externally observable. Whenever the state of a list is modified by a rplaca or rplacd
operation, the change is reflected in the states of all of the repr.esentations for the abstract list
that was modified, and not just in the particular representation that is returned as the result.
This is accomplished by introducing an extra level of indirection: the state of a hist in the
implementation model is a cell containing the abstract state of the list. In our notation, if s = s
are two corresponding states and if x o Ix are two corresponding lists, then the abstract state
s(x) corresponds to the concrete state !s(is(lx)), where ls(1x) denotes the identity of the shared
cell. The cell is shared by all of the representations of the same abstract list, and all of the
relevant state information is contained in this cell, so that any state changes are automatically
reflected in all “copies” of the list object. The eg operation computes the identity relation on
abstract lists, rather than the identity relation of the implementation model, which is not
externally observable. The identity relation on abstract lists is described by the third clause of
the simulation relation R. Note that the implementation depends critically on the fact that the
data state of a token representing a list (the identity of the shared cell) never changes, although
the data state of the data state of the token (the contents of the cell) may change. It is easy to
check that this property is maintained, since none of the llist operations applies a statefupdate
operation directly to a token representing a list.

The interésting part of the proof is case 51, where the normal termination of the state
changing rplaca operation is treated. Note the use of the third clause of the simulation relation
R to implicitly describe the set of representation objects affected by the operatibn.
Implementation objects other than those passed as arguments can be affected by a rplaca
operation, due to the shared mutable cell in the state of a list in the implementation model. In

the argument to establish that the rplaca operation does not damage the simulation relation for
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objects other than those passed as arguments. the retation gr\;en by the third clause of R is used
to distingmsh between the set of objects that is supposedtobeaffected by the operation frorp
those objects that are not suppowd to be affected; “I}t is j\istJ a; i‘mpoftnntz to e;tabhsh that allpof
brir s Powisdgenis ¢ gi s

r“ TR O Wi ER TR &

the ob_pects whose states are supposed to be affected by the opention reﬂect the change as it is

.,_ge,-iz L~_;~.rr‘, 5

to show that the objects that are not supposed to be affected retam thcir prevrous properties

31
[

While it may be dimcult to denve a descrtption of the set ol‘ ob]ects that is supposed
Criigliei IR 4
o be affected by a given operation from an implemenunon of an arbitrary mutable data

fuorh B e

abstraction it is impomm to make this set explxit because errors stemming frorn hidden

seH TSR 2 W e S BiE
LA ; g

interactions due to unmtended sharmg relations are very dift‘icuit to track down. The desrgner

4 ‘;'.~"~',“ }7 i

s sy L2 £
v..» F 4

should therefore pny exphcrt and careful attention to the cinracteﬂution of the set of data

o an!.i
objects that should ‘be affected by an operanon during the design of the implementation The
v nonive ity wd T eida SERUEE

intended restrictions on the sharing rehnonships should be written dwn as part of the duign

process, for fatet referénce and for possrbte use in proofs Thls suggestion is ana!ogous to the

- »)

suggetted prattice ‘of developmg ioops together vmh the associated loop invamnts The
suggestion is’ motivated by the fact that the required mformation must be informally considered

by the’ designer anyway and that it is easier to formaiue a famtliar but informal notion than it

!

is to derive the required properties from an unfamlliar mplemenm:on

iy
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6. Conclusions

In this chapter we review the concepts central to this work, present a comparison of

the algebraic and abstract model specifications, and suggest some directions for future research.
8.1 Central Concepts

We have been concerned with treating potentially sha:;ed mutable data. This
orientation has lead us to adopt an object oriented viewpoint, and to define the correctness of
an implementation of a data abstraction in terms of the behavioral equivalence of the
implementation and the standard model. To prove the correctness of an implementation, we
have found> it necessary to replace the representation function introduced by Hoare [I8] with the
simulation relation. | We have also found that a form of computation induction is an

appropriate method for proving properties of mutable data abstractions.
6.1.1 Data Objects

In this work we have adopted an object oriented viewpoint, rather than the more
conventional variable oriented view. This choic.e was motivated by our desire to treat shared
mutable data. If there is no sharing of data, then a change in the state of a data object can
affect at most one variable, and the change can be modeled as the assignment of a new
immutable value to the affected variable. If data can be shared, then a change in the state of a
mutable data object can affect arbitrarily many variables, so that the simplicity of the variable
oriented viewpoint breaks down.

In our approach, states are associated with data objects as well as with variables. A
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mutable data object is modeled as a featureless token, which sen-res to identify the ob;ect The
assignment statemems. WThe system sf;tq function maps each token inll}, Aty current data state.
For most mutable data abstractions all of the interesting properties of a mutab!e data object
other than its identity are subject to change, and are reprcsauéf by the data state associated

with the object by the curfem_sys;_em state runmon The state of a data object of a given type
can be aﬁ‘ected by the pnmmve operations of the ype.

By mtroducmg an extra Ievel of indirection in our mgdel we_achieve logalized
descriptions of operations that modlfy potentially shared data. If two variables share the same
dat e, thenthy denoe the same ke, 357 e th s st f thatiken wil
be reﬂectcd fn both v’ariagirles. ARer such a state transition, both variables retain their original

the iden 4, It the i

values, since the identity of the shared data object is not cha tlies of the

shared object are different in the new state.
6.1.2 Behavioral Equivalence

Theconcept of ‘pehaviorar_l equwa!e!\ce%f_models is Mral mthis work, .. Two.models -
are behavmra"y equwalem if every computa!;on resuts in che same termination condition in -
both models, and if any computauon wnh a bookan resp}t yields_the, same yalue in buh,
modeB.  This formal characterization of the externally, obseryable_behaviot of a mode).is .
intq?gively satisfying, smce it says that two models are behaviorally. equivalent if they have the
samev externally observz;ble properties. The charadterization is also useful because it allows us to..
compare models with quite differenti internal structures. We have to examine mly the names of

termination conditions and boolean values to appiy our definition of behavioral equivalence.
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The representation of the objects of all other typés is not explicitly mentioned, and can be
different in the two models to be compared. System state functions are never explicitly
compared, and it does not matter whether a model has a phylum of system states or not. It is
quite possible for a state machine model (with system states) to be behaviorally equivalent to an
exception algebra model (without system states).

An implementation of a data abstraction is correct if and only if it is behaviorally
equivalent to the standard model of the abstraction. We feel that this definition of correctness
with respect to an abstract model specification is the right one to use, because it reduces to the
classical one (existence of a homomorphism) for the case where both the standard model and
the implementation model are static (see theorems.4 and 7), and because it applies also to

dynamic models, whereas the classical criterion does not.
6.1.3 Simulation Relations

We have developed a method based on simulation relations for proving the
behavioral equivalence of two models. The method can be used to brove the correctness of an
implementation of a data abstraction with respect to an abstract model specification. The
method is applicable to all models satisfying the assumptions set down at the beginning of this
work, but it is most useful in the case where bath models are dynamic. Simpler methods based
on correspondence functions and homomorphisms are available for the cases where one or both
models are static, as described in Chapter 5. Simulation relations and correspondence functions
were introduced because it was found that homomorphisms do not suffice for dynamic models.

A simulation relation describes the relation that must hold between the representations

and data states of corresponding objects in the implementation and standard models in order
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for the externally observable behavior of the-objects tb be'the same. To show that two models
are behaviorally equivatent, a simulation relation is explicitly constructed, and it is established
that the simulation refation holds fof all reachable siatés by induction over all computation
sequences. To~ establish 'behivioral equivalence, the Simulation relation murst“‘i'inply that
corresponding operations on corresponding objeéts résuk ih” the same termination conditions
and boolean values. The simulation Telation riiust also be strong enough 1o establish all of the
properties of-the inputs that the operations depend on, so that theinduction ’w'ilfiéb:'t‘hr‘ot'lgh.

Stmulation relations are defiried in teris of the cofresponderice relation &, which
refates the identities of corresponding data objects in the two models. o is defined in terms of
the compiation sequence, by Saying that the resuks of corresponding ‘sieps of the computation
in the two models are related by «. Since the tokens of a dynamicmodel are anonjmous, ‘and
since operations that create new data objects result in .“tqke:n%slan;ggatgd’ toprevnously lgﬁqéw&
tokens, the only generally applicable method for establishing the correspondence is to appeal to
the history of the computation. A simufation relation “has ‘the same purpose as a
homomorphism, but it cannot be defined as a function in the dynamic case because of the
dependence on:-the-hinory: of the-tomyputation. . I the stati¢ casé, a simulation relation would
require that objects velated by «-are homomorphic images, but sincé there is no need to separatew
the identity of an object from its properties in the static case, the horfomorphism can be used in.

the proof directly, without intreducing:the « relation.
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6.1.4 Proving Theorems about Data Abstractions

In the main b'ody of this work we have concentrated on proving the correctness of an
implementation of a data abstraction with respect to a standard model specification. This is
only half of the process required to verify programs that use data abstractions. The other half
of the process involves proving that the invocations of the operations of a data abstraction in a
program written using the abstraction have the specified effect.

The intended behavior of a program is typically described by giving assertions
expressing the relations that must hold between the data objects manipulated by the program at
vario‘us points in its execution. For programs that use data abstractions, the assertions will be
written in terms of the primitive operations of the abstraction. For dynamic abstractions, the
system state must be explicitly included in the assertions, so that the operations can be treated as
functions, and used without regard for the context in which they appear (ie, there are no side
effects in the assertion language).

The problem of showing that a program satisfies its assertions can be reduced to the
problem of proving theorems about the data abstractions it uses, by using an axiomatic
definition of the control constructs of the programming language to eliminate the program texts
from the correctness requirements. The theorems derived from the annotated program texts,
which must be proved in order to establish its correctness, are called verification conditions.
The process of deriving the verification conditions from an annotated program text has been
extensively treated in the literature on program verification for the case where the data
abstractions uséd by the program are well understood domains such as the integers. The

process is not significantly affected by the introduction of static user defined data abstractions.
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The introduction of dynamic abstractions raises theproblemof imrodutmg symbollc name; for
the intermediate system states, which a(eimpﬁén m the program text. bu( which are required in
tbe ass4cﬂrtions.. ‘This proces; willv rg‘;;uife‘; ﬂpy analymof the program.  Previous work on
autdmatic veriﬁcatk;ﬁ of programs operating ‘_on mutable data [5), 32] has not explicitly
mtroduced states into assertlons avmdmg this issue. While we. have et investigated .the -
problem in detail, we foresee no essential dnmcu}ty in producing. verification cmdiuoas for
programs that use mutable data abstracttons

- The problem of provmg the vmflcation _conditions based on an abstract model
speciﬁcauon presents no methodologlcal probkms, although Just_about any interesting ‘data
domain has theorems which are hard to prove. It is sufficient to pmer@heilmpfpnmmmof
thé verification conditions in the standard models of the data abstractions used by the program,
: smce bghaviora[ equivalence guarantees that_all of t:t‘he_ ground terms . composed . from . the:
p;irﬁitive operations of thei abstratho.“ will have the sacﬁe truth va;uesinpojh the standard .
r'mr:'det{ and any bghav'ior‘auyue;quiya_!;ep_t implementguonmg@eL (SHRCC quann&en can be
re;friéteé to ;ra’ngve over omy thecomputabk objects of a data abstracnm. behavioral .

equivalence implies that any assertion will have the same truth valyes in both models.
6.1.6 Computation Induction

In doing the proofs of correctness ofﬁ implementation in Chapter 5, we have used a
form of com{putation} indugtion to'gstab}ki;h,gbat_the; smq!atim tehﬁmholds for ali (mchable)
objé.;ts and states of an abs(racﬁon. This t_erchn’lque is useful for proving propesties of dynamic
data abttracuons and performs the same funcum as the generator Suduam ;ule for..static data

abstractions. There are two essential dlfferences between the two kinds of induction.
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The generator induction rule requires us to show that all of the operations of a qata
abstraction preserve the property to be provedj;y;(/)‘\;r'c;ve ra' prt-)‘peirty; of the data aﬁstraction d
using the comptitation' induction rule, we must-show-that the operations -of any mutable
abstraction subordinate to d preserve the propeny,‘ in:addition to the operations of d. This is
{;ecessary because the operations:of. the mutable. subordiniate typés can cauise ‘state transifions
that can affect the truth of an assertidn.involving objects of type: o {see Chapter 5).

The generator induction rule requives us mahow that the objects returned by eacht
operation satisfy the property. we are trying: te«préut - The computation -iduction rule also
requires us to show that all of the values feuﬂthgimmm opération satisfy the preperty ‘we
are trying to prove, including the néwsy'ucm?mte*ﬁlﬁcﬁon that is afv implicit resuk of each’
operation of a state machine. Since the system state funttion ‘describes the carrént states of all
of the data objects in-the system, we havie te:shew that the property ¢ are trying to prove
holds in the new.system state for all data objects, aind wot fust:for’thie data objects that were
passed as arguments to the.gperation or.that were: retiirned s results’ This is necessary because’
an. operation can cause state changes'in: objecis that'were fiet passed:as arguments; but which

are reachable.from the arguments: - - ' T e
6.2 Algebraic vs. Abstract Model Specifications

I this section we point out some of the relations befween tlie abstract model and the

algebraic specification techiniques, and present a critical comparison betwéen the two techniiques.
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6.2.1 Relation of the Téchniq;les' |

The algebraic and the abstract model: techniques-are both iconcerned :with specifying
the behavior of a data abstraction, and hence both. ave:desling with'the “stme class of
mathematical structures, althaugh there ase shght: techmical differences i the way In which
different researchers define the class. ‘There-are.several- welt known:resulty relating ‘an algebraic
specification to the class of models satisfying the specification.

One- of the main algebraic results relevant to the algebraic spedification technique 93
is a uniform construction of a.canomical-model for:any. axiomatization consisting ‘of a set of
equations, where the exprcssiom.on§bo!_h~sidu:apf<mitreqtntiur are composed from the
operations -of the data abstraction.. The model resuking: from this: construction -is-a quotient
structure, whose elements are equivalence classes of  expressions,  where two expressions are
equivalent if .one i;;d_cr;vabie;fmqu the other from the axioms: in finitely many steps. Tms‘:
thearem establishes a connection. between the proof theory of:anzabebniif specification and an.
algebraic model for the specified -abstraction. The ithesrem allows us to view an algebraic
specification as a prescription for constructing a standard model forthe datx abstraction ﬂiﬁtsh
specified, so that an algebraic specification can be'xconsidered either as an axiomatization or as
the definition of a standard model S o o | |

_ Another important algebraic result is that the. canomical model constructed as
described abave is an initial algebra in the category of .algebras satisfying the axioms {9), which
means that there is a homomorphism from the initial algebra to any other algebra in the
category. In view of theor'em 7, and the existencébf the homombrphisms guaranteed by the

initiality property, all of the elements of the category are behaviorally equivalent to the initial
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algebra. In view of theorem 4, if the initial algebra is reduced, then there is a homomorphism
from the initial algebra to every other algebra behavwrally equrvalent to it, so that the whole

category is an equrvalence class with respect to behavroral equrvalence lf we restnct ourselves

S s

to static abstracrrons and to axiomatizations that define a reduced canonical model, then the set
of all models satisfying the axioms is the same as the set of all models behavlorally equivalent to

. s
ooyt B {té <3

the canonical model and our definition of correctness agrees wlth those used in the axromatlc

approaches [17 10, ‘l] For the case where the canonlcal model defmed by the axioms is not

reduced there is a lack of agreement on the proper defmltron ol‘ the set of |mplementat|ons

consistent with an algebratc Specrﬁcatlon [12 9 221
6.2.2 Critical Comparison

" The criteria for evaluatmg specmcahon techmques glven in [3l] are: (l) formaltty, (2)

¥

constmcnbrllty. (3) comprehensrbrlrty (4) mrmmalrty, (5) range of appllcabillty, and (6)
extensrbtllty B
" Both the algebraic techmque and the abstract model techmque as developed in this
work are sufﬂclemly formal, since both techmques have been glven mathematrcal vdeflmuons
" Both techmques result in mlmmal speaflcatrons "**" has oﬂen been (mcorrectly) said
that abstract model speclflcanonsiare not mrmmal because the model may have trrelevant.
characteristics. As our definition of correctness |llustrates.fonlv thosepropertlesof a modellthat
are externally observable in terms of the operationsyof the abstractton are relevant, and those
propertres must be defmed byany contplete specuhcattorlu Nerther abstract model specrftcatlons

nor algebralc specmcauons constrain elther the representatlon structure or the algorrthms that

may be used by an rmplementatlon as long as the externally observable behavror of the
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abstraction is realized.

From a less formal pornt of view, it could be argued that the abstract represcntatton is

not dtrectly observablo in terms of the operatrons avattable to the user of the abstractlon. and

e wEL L

that thrs rntroduces the burden of keeping track of whtch details are dlrectly observable and

i

Awhich details are not The axiomatic approach has advantages with respect to thrs criterion,
| since there is no exphcrt mentlon ot‘ the representatlon vttd‘has been shown [52] that there are
»abstractrons that cannot be axromauzed wrthouttntroducing auxrhary functions Since the
auxrlrary functrons also compute vatues that'are not dtrectly‘observable in terms ot' the
operatrons axiomatic specifications can also have details that ’need not appear in an
implementation. SIEEE
Another argument that has been used to suggest that abstract model specrfrcatrons are
not mmimal is that the abstract representatron tends to suggest an tmplementatron Thrs is
possrbte but concern with issues of time. and space efficiency onen requrres that the
representatron used in an rmplementatton differ stgnrhcantly from the representatton used in
the standard model which is usua;ly the srmptest structure that wrﬂ exhrbrt the desired
behavior. The abstract representatton is often defrned in terms of mathemattcal structures not
dlrectlysupported by the host programmmg Ianguage sothat tn many cases tis not posstble to -
use the spectfrcatron structure in the rmptementatton
| At the time of this wr mng, the abstract modet techmoue has a clear advantage wrth
. Ui X
respect to range of appltcabrhty over the atgebrarc spectncatlon techmque smce it treats shared}
mutable data while the atgebraic techmque does not. We expect thts advantage to be a
temporary one whrch wrlt drsappear as further research Je:ttends axromattc spectfrcatrons to

£ PR R

apply to thts domam also
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We have found abstract model speciﬁcations significantiy easier to construct and to
understand than aigeb’raic specifications. Thisf.vis a subjective i{mpression‘bas’ed on our own
experience, and we urge the reader to try both techniques and to i’orm his or he_r own opinion.
We con;ecture that part of the reason for our expencnce is that the set of data objects is
exphcrtiy described .by an abstract mode| spectficatton whtie it ts tmphcitly det‘ined by the

interaction of potentlally lat'ge number of axioms in the algebralc technique. The result is

SYE TR vs RS

that the operations can often be understood and defined one at a time and based on fairly local

considerations when using the abstract model technique, whereas the interactions between a

4 .. XL TR B

number of operations must be considered in the algebraic approach, requiring a more global
analysis.

We have found that abstract modei speciﬁcations are stgmftcantly easier to modify

B

than algebratc specifications, especraily in the case where the meanmg of one operatlon s

changed but the meanmg of the abstract representation is not changed because only the

uperatton that is changed need be constdered ln an algebratc specnfication every axiom that

_mentions the operation that waschanged must be (reexamined and usuaiiy each operatton is
mentioned in more than one axiom. " The ‘efiort of extendtng the specrfication of an abstraction
by adding a new operation”ls roughly the same as that requtred to defme an operatlon in the’
mmai destgn and aéatn we have found that the nrocess is easier usmg the abstract modei

techmque.

An algebraic specification can also be viewed as the definition of an abstract model

on

whose representation is the word algebra, containing all of the expression that can be
constructed from the names of the primitive operations. For abstractions whose operations are

relatively easy to define using this representation (ie, syntax trees), the algebraic specifications

g
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are relatrvely simple, while for other abstractions the operations may be qmte awkward to det“me

using this representation ‘and an abstract model using a representatton algebra with a

PR

sigmncantly different structure may be much simpler than thc corresponding algebraic
speciflcatron From this point oi‘ view the abstract model technique is easier to use simply

because it oi‘fers a wider choice of representation structures to start from By usrng the fixpolnt

HEA R

constructron to define a representatron domain of syntax trees. it is always possible to dei‘ine an

Tepeid s I

abstract model with essentia lly the same structure as any given algebraic deﬁmtion

Another crrtenon l‘or Judgmg a specrﬁcatron technique is the relatrve drmculty of
checking whether a grven specrfrcation is well l'ormed If we are interested in usrng
speciﬁcanons in the desrgn process, itis helpi'ul for the process of constructing the specificatrons

to pomt out inconsrstencres in the design. or at least to make them easier to l‘ind We would like

R S £k E
ISR S

g

ili formed specil‘icatrons to be easy to reeogmze

To check that an abstract model speciiscation is well formed it is necessary to check
B S I I T “ LA .

that the operatrons are well dehned functrons and that the operations preserve the constraints

adopted when defrnmg the model For each operatron it is necessary to check that the resuits
LR RN T T

of the operatron satisfy the invariant relation specrﬁed by the restrictions section oi‘ the‘
POMTRIRAINY AN B :

-specrficatron lt is also necessary to check that each operation wili yield equivalent results when

f SR !;,‘s ;’;' oW

applied to either of two data objects related by the equrvalence relation defined by the identlty
section of the specrfication ‘These propertres are i‘airly easy to check informally. and they are

generally not too difi‘icult to prove rigorously lt is also usualiy i‘airly straightl‘orward to check
W - 3 3 o

that the operatrons are defmed for all inputs. and result in unique values lt is necessary to

show that each invocation ot‘ an operation that can raise an exception will terminate in the

RER L

expected termmatron condrtron and that each recursive dérmtion and each iota expression (see
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Chapter 4) is well founded. Showing that a recursive function terminates is undecidable in the
general case, but that seems to have little practical significance. In cases where something is
wrong with the design, the designer will usually be unable to produce a function definition that
even appears to be well formed.

In the algebraic approach, there is no analog to the data invariant, and the
equivalence is guaranteed to be consistent with the operasons by construction (of the canonical
madel). If an attempt is made to define an operation that attempts to produce different value
for expressions representing equivalent abstract objects, then the result will be an inconsistent
axiomatization, where the multiple values are redefined to be equivalent. In such a case the
subordinate types of the canonical model often collapse into singleton sets. Incomplete
definitions introduce extra data objects into the subordinate types, which are produced by
expressions that cannot be reduced to bona fide elements of the subordinate types by the
axiomatic definition. Rather than leading to an easily recognized failure, the algebraic
technique will typically redefine the previously defined types in cases where the basic design is
flawed.

Determining whether a given axiomatization is complete and consistent is generalli
acknowledged to be a difficult problem in modern mathematics, and there does not seem to be
any straightforward procedure for checking the well formedness of an axiomatization. There
are mechanical procedures for checking whether an axiomatization is complete and consistent
that apply in restricted cases (the general problem is undecidable), but it is not clear whether
these procedures can be used as practical aids in the design process.

An advantage of algebraic specifications is that fairly powerful automatic theorem

provers for algebraically defined data abstractions have been developed. This advantage is
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probably also temporary, pending the development of good domain s;iecifk theorem pro;rers: for
the domains used to construct ‘standard rodet specifications. For the domain of sta-tizcd d’ata

abstractions, it is possible to define an’ ‘abstract model using equauonal axioms, by introducmg
an auxiliary operation that maps an object of the representation a|gebra into thé abstrac; object
it represents (cf. Hoare's abstraction functioh, [I8]). “Such an apﬁmch allows laking advamage
of known properties of the medeling domain, and also of exlsting theorem provers for
equational axiomatizations:: - It Sufférs from the disadvantage of not being immec!iately
applicable to mutable data abstractions. SR
;pedfmtams for-the purpose of desighing programs. The algebraic specmcamm !echmque has
advantages for the purpose of provifig the corfectness of programs at the current time, since it
has been more extensively developed, but we feel that a Iong term advantagc has not been-

o

demonstrated. .
6".3 " Directions for Future Research

One interesting question that has'been’ raised but not resolved by the current work is
whether ar not abstract modet specifications sre bettér than axiontatic specmcanons w:th respect
to.program verification. Since the abstract representation of each data t‘ybé?n‘ﬁist be conszdered
when using abstract model. specifications, and need hot be considered when using a'xkiﬂéo‘:r-v;tic |
specifications,. a naive analysis would indicate that proofs ‘with respect 1t§ ;bstrac\t{;‘nﬁddi
specifications are more complicated than the corresponding ‘proofs withrespect to axiomatic
specifications, based on the sheer volime of detait to be expected. However, in the proofs we

have dane (manually), we have found that kiown properties of the todeling domain can often
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be carried over to the abstract domain, leading to short and simple arguments. This
phenomenon may have an analog for mechanical theorem provers, since special purpose
theorem provers designed for the particular modeling domains used in constructing abstract
models may be more efficient and more powerful than a general purpose theorem prover that
must work with arbitrary axiomatizations.

If proofs of correctness are to be used for certifying software, then it is necessary to
develop mechanical proof checking procedures, because proofs developed manually are at least
as susceptible to errors as programs written by people. While a completely automated theorem
proving facility would be nice to have, it looks Iikeiy that in a practical system the theorem
prover will need human guidance, perhaps in the form of an informal out|in§ of a proof, which
the mechanical proceﬂtnre tries to augment until it either discovers a formal proof or an error.

Our experience with proofs in terms of abstract model specifications indicates that an
intuitive understanding of the model derived from familiarity with the underlying modeling
domain often acts as a valuable guide to discovering a successful proof strategy. For axiomatic
specifications this intuition is often lacking, and the process of trying to construct a proof
degenerates into fairly blind symbol manipulation and syntax directed searching more often
than for abstract model specifications. If the theorem pfover must rely on human guidance,
then the ease of finding intuitive insights can be an important consideration. We also
conjecture that the extra structure provided by the abstract model is useful in constructing
heuristics to guide the search strategy of a completely automated theorem prover.

In order to settle these questions, special purpose theorem provers oriented to the
modeling domains used in abstract model specifications should be constructed and integrated

into a program verification system.
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Another question that is of mterest is the extension of the framework developed here
to incorporate nondeterminism and partial operattons Both of 'these extensions require a
refinement of the idea of behavroral equivalence | o |

r the operattons of a data abstraction can be nondeterministic-then a computation no
longer has a unique value, but rather a set of possible values Strict.equivalence of the
behavior of two models would require that the set of possible results of a computation be the
same in both models. Since a more determmisttc implementatlon of a nondeterministu:
operatton is presumably correct if it always exhibits one of the posstble behaviors for the
standard model an approximation relation that requires the set oi‘ possible results for the
implementatlon to be a subset of the set ot‘ posstble results for the standard model ts a more
approprlate metrtc for the correctness of an implementation. provided that the set of possible
results is never empty | ‘

Some abstracuons have potentially useful operations that arednherently partialr
functions One example is the domain ot‘ expresstons t’or a Turing complete programmmg%
language with an operatlon for evaluating expresslons ln order to develop a model ior such ap
structure, some sort of provision has to be made for cases in which the operations do not

%

terminate. The impact of such an extension on tbe rest of the tlteory should be investigated.
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Appendix I - Assumggfi‘uagg‘sggés Restrictions |

1. Partial Operations

The operataons that can be dermed m a programmlng lauguage are in general partial

R

fuhctlons since there ‘may be circumstances under whtch they do not. termmate -We will require
’the operatlons of a data absttactlon to be total, because we feel that it is bad programmmg
practxce to desngn (abstractlons W|th phlmltnve operattons that may fall to terminate. Some recent
work on specnfymg data abttracuons with ?artlal operatmns can be found in {2n.

| M any data abstracuons have operauons that make sense only for some proper ! subset
of the mput domam (le dlvndmg by zero is not well defl_ned) lf an operatlon is invoked with
arguments that are outsude its natural domam of defmltiun the oyeratton should terminate by

ralsmg an excepnon to mdlcate that somethmg unusual has happengd _The reader should

note that it is possnble to transform a computable pamal functmq into a computable. tatal

functlon that raises an exceptlon onty if the domam tof dehmtiou of the partial function_is 2

ey ,_:.'3‘ ER 533 X2

S

recursive set. An mterpreter for any Turmg-complete Ianguaﬁe has a domam of defmmon that.

is not recursive (otherwnse the halung problem would be dectdab!e) demonstratmg that there

LS sPFET

are mterestmg functnons that cannot be made to satnsf! our restrictlon . Partia) recursive

PR
EE R = L0

procedures that compute such functnons can of course be deﬁned in terms of. the primitive

"i’

operatlons of a suntable data abstraction but we do not allow them to be included as primitive

operations of the abstraction.
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2. Nondeterministic Operations

We would like to distinguish' between * partially: - specified operations and
nondeterministic operations. A partially speufied operation is deﬁned only for some proper
“subset of its'input type, and presumbly the designet does ot care what the operatton does lf it
is ‘presented with an mput outstde ‘of that subset We feel that it is bad deslgn practlse to

. produce’ specifications of this type, because of the pombihty of undetected errors in the use of

.},

,,,,,,

the abstraction. The oniy case in which we truiy do not care what an operation does on a

certain input is if we know that it will never be caiied with that mput A weii designed data'
RS TIPE T T SOEE T L0 P
abstraction should raise an exception for aii inputs for which no normai response is specified s0

that attempts to use the operatton outside of lts domain of vaiidity wili not pass undetected
Data abstractions with nondeterministic opemions are potentiaiiy interesting, but are

rrrrr

not treated in the main body of this work An operatton can be descnbed by an’ input—output

refation R, which refates the inputs of an operatton to the iega| output values for those inputs

L3

For a deterministic Operatlon. such 2 refation is stngle vaiued and is in fact an ordmary
function. Some operations are most naturaiiy described by rehttons that are not smgie vaiued.

. SRR Fa Rt
q

the programmer wants the operauon to satisfy certainAcnteria (eg the relatton R) and does not
care if there is a umque ‘result, or which vai:d result is actuaily chosen if there is inore than one
valid choice.” We do not recommend mtroducing extra constraints withthe soie purpose of ﬁ
restricting R to the point where it becomes a functton Such constraints comphcate the ;
spectflcatton by introducing irrelevant details, and also may exciudeﬂsome of the simplest and |
most efficient implementations, which would be perfectly acceptable without the artificial

contraints.
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A non functional input-output relation R is consistent with a whole class of operations,
some of which are deterministic, and some of which are not. The reader should note that it is
quite possible to implement a data abstraction with. nondeterministic operatlons on a
deterministic machine, because an abstract data object need_not ho_ve a unique representation in
the irnplensentotion. For example. eorrsider' the dota“ akb_str’vaction{ conststtng of thc finite sets of
nattrral numhers, togerher with the nsual setitheorette wera’tjons.ion:d a choase operation. Thﬁ.’
choose operation returns’nn -element of a given set if the set is nonempty, and raises an exception
otherwise. It is not specified which element of the set is to be “c‘hosen if there is more than one.
Absrr-oct sets are immutable, an‘d‘two sets‘ are equol if :a)nd only if they have the same elements.

ln an rmplementatron sets mlght be represented as lmked hsts and the clroose operation might
LIS A -

wo Al
T

return the first elemem in the ||st However, since. there are manx dlfferent representations for.
 the same set, with the elements stored in different orders, the choose operation appears.to. be.

nondeterministic when vuewed as an operatron on abstract sets.

. Ty begernry LE gl
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We know of no work that has been done on specnfymg data abstractlons with
nondetermrmsnc operanons Some work on specrfymg nondetermrmstrc operatlons in terms of.

relations is reported in [31].

3. Concurrency

Concurrent access to data objects by parallel processes is an interesting subject that is
beyond the scope of this Thesis. It is profitable to consider parallel proces_sing in the context, of
data abstractions {20, 16, 6 38, 21] because processes need to be synchronrzed only if they

operate on shared data. Even though a qutte a b|t of work has been done in thls area, the

issues involved in specifying the correctness of a data abstraction in the presence of concurrent
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mutation of data objects are not yet well understood.
4. Exceptions

Since there is no generaiiy accepted modei of exeepuons and exceptwn handlmg we
have chosen a pomt of view that srmplifies the mterface presented by an q;eration and which
helps to separate the externaliy visible behavior of an operation from the intemai processes that
produce that behavior. - |

We assume that an operation termmates whenever it raiaes an exceptlon Thus an
operation may terminate in any one of 2 number of conditions. one ofwhrsch is normal and the
rest of which are exceptional. In generai the results of the operanon in each condition‘ wiil be

different, and must be specii‘ied for all possible termination condittons in a complete description
of the operation. D

The alternative to our pomt of vnev; is to aiiow an exceotron to cause some eventr and
then to continue performing the ongmal operation at the pomt where it feft off This\
aiternative is not attractive because the separation between the specmcations of an operatlon {
and the details of its implementation breaks down. Given a specificai:on of an oberatron that
describes the results of the operation for the normal termination cm&iﬁdﬁf'iﬂ’gi% the
conditions under which each exception occurs, and given a specmcation of an exception
handler for each exception raised by the operation. we Stl“ do nothave enough mformatron to
predict the behavior of the operatlon in the context oi‘ the specrfied exception handlers lt is
necessary to anaiyze the mpiementauon of the operatton with respect to the specnfications of the

exception handlers in order to determine the eﬂ'ects of the operation Since different

invocations of the operation can occur in the contexts of difi‘erent exception handiers we cannot
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treat an operation as a dosed module lf we adopt the resumptton model of exception handling.

Exceptions are dlscussed further in Chapter 2.
5. Own Data -

We assume that the operanonsof a data abstraction are functlona! This means that
an oneratlon mnst not have any mternal state, sothat the results of an operatlon depend only
on the information contained in the data objects passed to the operatron as arguments (whlch,‘
n;ay tnetude refer ences: to other objects) Data objects may themsetves have states, so that we are,
not excluding the possibility that an operat‘ton mayreturndtfferent _?rre_:sqlts if it is invoked with
the Same argum_ents at tno tiifferent times. This restrtctton is meant to prohibit type managers
(ie: SIMULA classes, CLU chisters, ALPHARD forms, etc) from kceplng mutab!e own data,

which introduces a component of the state associated with the type asa whole rather than wtth

 the individual data objects. This issue is discussed further in Section 3.2.
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Appéndix' II - Basio Type Definitions

The definitions of the natural numbers and the integers are imporsedidirectly from.
the underlymg standard mathematics. The definition of the natural number abstracnon is
shown in Flgure 2¢. As in the defmtnon of sct ln Chapter 1 tbe standard notatlons for
natural numbers and integers are used in the deﬁnmons of the operatlons to refer to the
standard operations of the undeflymg malhemancal domains, whﬂe the same notations are
introduced as abbreviations for the operanons of the excepnon algebra for use in the

definitions of other modules. The only nonstandard feature of thls defmmon of the natural

Flgure 24, Natural Numbers
type nat as NN

with constant{n} —> NN asn fornc N

zero: —> NN as 0
successor: NN —> NN as 0(arg 1)
plus: - NN x NN — NN asargl+arg?2
times: NN x NN — NN as argl v arg 2
Jess: NN x NN — boolean asargl < arg 2
equal: NN x NN — boclean as argl = arg 2
representation natural numbers N
restrictions none
identity natfequal
operations constant{nX) = n
zero{) = 0

successor{x) = o(x)
plus(x, y) = x + y
times(x, y) = X « y
less(x, y) =x <y

end nat
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numbers is the infinite parameterized family of constants. These operati,c')?‘s*_g‘r?er _jntrqducgﬂ 0
that we can use the familiar decimal notation for natural numbers in our specification language,
~ rather than having to build up each number from zero using »;heigq»c‘c'gssor function, which

.

quickly gets cumbersome.

The denmﬁ;ﬁ of the integers is shown m Flgure 25. lntegers also have an infinite
supply of constant oﬁmnms Note the conversmn operanbns mteger and nn, which serve to
convert integers to natural numbers 'ahd' vice versa. ;The ‘_quouenl ‘and (c:matndcr operations
have exception c:o’r‘ndmon;s in the cases where the’ s:ta'ﬁdard mathematical definitions are
undefined. - '{h; quaﬁ‘cut‘#peration rounds f&ﬁ%*‘ir?es&étfve of the si;g“’ﬁ ‘of its arguments, in
agreement with the usuai mathematical definition, and in contrast to the‘wg‘y division worksln
most programming languages (eg., FORTRAN).

The astute reader will have noticed that we have ommed thc definitions of the
operations >, #, <, and 2, even though we have used themfr&'imthcsegciﬁcanon language.
The astute reader will also be able to supply the standard defmitiﬁrﬁxforthe,se operations, and
is advised to do $0.

These types are mten&ed for ﬂse in tﬁe specuﬁczuon hnguage The corresponding
types for a programmmg language should prdB&My be deﬁgne& dlﬁ‘erently. to inciude
limitations on ‘the sizes of the numbers excepti;m condmons fér cases m which those size

limitations are exceeded, and additional operations for converting strings of decimal digits into”

numbers, and for printing out numbers. .



Figure 25,

type int as |

with

representation
restrictions

identity

operations

end int

integers

constant{n}

integer:
minus:
plus:
difference:
times:
quotient
remainder:
abs:

nn:

~ less:

equal:

integers Z
none

int§equal

constant{n)) = n

>
nat —> |
I—1
Ix]—=>]
Ixl—1
IxlI—1

lxl—’h(leﬁ:divide )
I x1—>14 (zero_divide.:). - -

1—1

[— na,,t} (wrong sign : 2.
I x I — boolean
I x]—>boolean .. .

integer(n) =n in Z.

minus{x) = -x

difference(x. y) = x - y .
times(x, y) = x o y

quotient(x, y) = if y = 0 then (zero_divide : )

;s n fornc 2
as - &gl
i a8 arg:l s arg 2

as argl + arg 2

asargl+arg 2

as|argl]

as arg ! < arg 2

. o esergle arg 2

else q: 3r[x-q¢yor&0<r<abs()f)]

.zemamder(x y) = if y = 0.then Qero.divide : ) :
elser: 3q(x-qoyor&0<r<abs(y)]
abs(x) =if x <Othen -x elsex . v
nn(x) = if X < 0 then (wrong_ gn )elsexlnl

less(x, pl=x <y

equak(x, y) = x =y
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Appendix III - Proofs

An exception:-algebra differs from a 'hetér’ogéhemis a|gebra a&defmed in'm by h;vin‘rg
a disjoint union structure for the ranges of the operanons wl-gt;re the das_pmt union is mdexed
by termination condmons and wheae the componems of the_ disjoint.. union are. caneslan
products of the phyla ln a hetérogemous alge’bra ‘the range o[ each operaunn ha& to- be some
phylum of the algebra. The definitions of basic algebra.@c con;epl@ such :as. subalgebras.
congruence relations, quotient structures, and homomorphisms have to be adapted mghﬂy to fit:
into our framework. The required extensions are concerned mostly with termination condmons.“
For example, a congsuence relation is an ‘equivalence elatic:mthat éresen)es all of the‘
operations of an exception algebra, so. that ir correspogding ,a,rgumem.s«of an operau'on are”
~related by the congruence, then the tenmmatlon condmon; q[ tl\e two mvocatiom must bef
identical, and corresponding return values must be rdated by the compmmts of the cmucme« :
relation for the appropnate phyla Asin [1], an equivaknce rel,ituii Qn an excepuon llgcbra is

defined to be an mdexed set of equivalence relations, ore for each phylum

Theorem 2: Every equivalence class of static models with respect to the behavioral equivalence

relation contains a reduced model.

Proof: Let E be an eqmva!ence class of modets wnb respect,to hehavioral equivalence, .

and choose.M < E: This will always be poisnble '

since equivalence classes are nonempty by definition. v
Let M’ be the subalgebra of M containing only the reachable objects of the prmupal type
and with the same subordinate types as M.

M’ is closed with respect to the operations of M, since it contains all reachable data objects.
M’ is behaviorally equivalent to M

since the value of any closed computation C in M’ is the same as the value of C in M.

Let M™ = M'/=, where = is the external equivalence relation defined in Chapter 3.
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M" is well defined because = is consistent with all of the operations by construction.
Then M” is reduced and behaviorally equivalent to M.

Every element of the principal type of M” is reachable,

because any such element is equal to [x] for some x in. the principal type of M’

and every siich ¥ s reachible, by the construction of M'.

Any two elements of the principal type of M’ that are externally equivalent must be idcntical
by the construction F'M” from M".

Hence M” is reduced.

M" is behaviorally equivalent to M’ because it Isa homonnrphic image of M

under the natural homomorphism 4 defined by Mx)» [xllfx €4 and Mx) s.x otherwise,
where d. is the prificipal type of M".

Since behavioral equivalence is transitive,

M is:behaviorally equivalent to M,

and the theorem is estabhshed

End of Proof -

Theorem 3: If two reduced models are behaviorally equivalent, then they.are:isomorphic.

Proof: Let Miand Af2 be reduced and behévidially equivalent.

Define the isomorphism f as follows.

For every closed computation C, lef f{vale(C, Ml) - value(C, M2)

By Lemma | below, whenever va!ue(C Ml) = value(C', MI). .

them value(C. M2) - valu¥C’, M2),

so that f is single valued, and hence a function.

T he inverte mapping is-6btzined by mferchmging M and M2 in the above de!miﬂon
and it is also single valued, by (he same argumem N S SR R :
Sofish:L

The operations of the algebra are preserved by construction,

so the lsomorphlsm is estabhshed :

 Lemma I: Let M1 and M2 be behaviorally equivalent exception algebra models, let ¢ and c be
closed computations, and “let vatue(C, M) = va!ue(C Ml} Th@ vahe(c M?) ts extcmmy

RS B T A
B

equivalent to value(C , M2).
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Proof: let M1 and M2 be behaviorally equwalent exception algebras,
let C and C’ be closed computations, ‘
let value(C, M) = value(C', M1),
and let CO be an open computation.
Then value(CO, value(C”, M), M) = value(C"§COM),:
for any exception algebra M,
where C™[ICO is the concatenation of the computations C” and cors. Iength(CO)].
and where the step indices of all of the argument speaﬁcattons in CO
have been increased by length(C")-1. ‘
then  value(CO, value(C, M2), M2) = e
value(CliC0, . M2) = . bythe definition dfmcamna’uon
value(CliCO, M1) = since M1 and M2 are beha viorally equivalent
value(C0, value(s, Afl), MD = - fbr!ﬁe*ddiﬁﬁmt?mmﬁf‘emnon
value(C0, value(C', M1), MI) = by assumption,
value(C'llC0, M1) = by the definition of concatenation,
value(C'liCO, M2) = since M1 and M2 are behaviorallyequivalent,
value(CO, value(C’, M2), M2) by the definitian of cqgcgtgnaum
So value(C, M2) is externally equivalent to value(C', M2).:
End of Proof

i

o

Theorem 4. If M is behaviorally equivalent to M* and M is re;:luced. v'tﬁe\ﬁ:e‘tl_;ete.i;ma

homomorphism from a subaigebra of M’ onto M.

Proof: Let M" be the subalgebra of M’ containing only the reachable

objects of the principal type of M’,

and with the same subordinate types as M'.

The quotient of M” with respect to the external equwalence relation is reduced
and behaviorally equivalent to M’ by The'orem 2, 4

and by transitivity of behavioral equivalence, it is also behavnora“y equwalem‘to M.
Then by Theorem 3, the quotient is isomorphic to M. ihE
The composition of the natural homomorphism, from.A4"" to the quotient‘aad
the isomorphism guaranteed by Theorem 3 is a homomorphism from M” to M,
so the theorem is established.

End of Proof

Theorem 5: Every chain of algebras with rqs(;éctjto c has aﬁléasg upperbmmd
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Proof: Let 4; : i ¢ ‘N be a chain of algebras with respect to C.

Then 4 = U" A;, where 4 is defined as follows. _
ic

Ya ¢ A.typenames [ A. phyla, = U A-.pﬁyhal,

VB ¢ A.opnames [ A.operanonsa U "i'm’ﬂ"

Aex = U A-x
ic N

where x can be any one of the following components:
typenames, opnames, tcnamasglmgu; afgtype. tc.rﬂeng‘lh rtype or pt

By Lemma 2 the operanons and typeducnpm fcmuom m*&%ﬁﬂd

AiEAforallz( N,

‘ smcesjg U"sjforanyj(ﬁ |

So A is an upper bound for the ‘chain Ai
If A; € Bforalli < Nthen AC B,
sinces-gSforalH( Nimplies U sigs.

So A is the least upper bound fo: ;he chaln Ap
End ‘of Proof a

Lemma 2: If f;:i € N is a chain of functions with respect to &, then'j-i I(J lff*‘ is a well

RSSO RN

defined function.

Proof: We have to show’ thatf. u /} is smgle BM ) o
Proof by contradiction. - : _ e B T
Suppose f is not single valued.

Then for some x, (xa)tfm(xbhjwher!a#b
Sincefrr U j; - :

pick n, m such that <x, a) ¢ f, and (. b) C f,,.

Since f; is a chain, f, € froay(n m) 30 fin € fnax(n, my
So (x. @) C frv(n. m)and (x,b) ¢ f;nax(g m)wherea b e

But f; is a single valwed fimtm"!‘or all 1 ¢ N, contradiction. {,

Sa f must be single valued.
End of Proof



- 165 -
Note that we are tieating a funcuonfas the. set of aH*paam (r.ﬂx)) such:that x € domam(f)

Theorem 6: The tuple nansfozmauon is coutmuous with rgspecuo Q

Proof: Let '44' be a chain with respect to €.

Let U denote the least upper bound with respect to C.: cont

(U A )IxSox..xS,= U (A xSoxi. 8% ' 10 = L
icN ] 2 "irn(’ 2 '}

from the definition of union and cross prpdy;l. .

The definition of each operation is a functional F from the phyla to gperations on the phyla,
with the property that the value of an operation on any input depends only on the mput values,
and not on the phylum ; as a whoie .

(The finite quantification in the definition of eqyaf can be czpanded

into an equivalent finite con;unchon)

So F(US, )(x) = F(S )(x) for any Sj such that x ¢ Sj

F(S Xx) is undnfmed if~xt S,

So F(U SXx) =U F(Sj)(x).

The definitions of the signature firictions: sto- have' this propety 07 \
So the tupte transformation:en algebrus, iswmiaum mwmwg S
End of Proof

T

Theorem 7: Let M1 and M2 be complete excepuoma‘!gm moiieis*' wﬁ'h fﬁé‘m ﬁgnature and
Tyepb bl b
the same interpretations for- the suqulmwkﬁypcs. mm&hﬁa hmmhm I!‘Dm Ml to

g EER RS
:M‘ £~

M2, such that A is the identity mapping on all df the suborqgnatg type& Tpen Mi and M2 are

behaviorally eqmvalen! ‘

Proof: For every finite closed computation C, we have to show that: .

A. C is feasible in M1 if and only if C is feasible in M2 T

B. value(C, MIJ = valuelC. M2Y whenever C i feasible in dt’i’q’r‘!&i;é}édpc:es a boolean value.
Let H(C) = ( feasible(C, M1) = feasible(C;:M2Y )& = - R

( length(C) 2 | & feasible{C, M) )= MvaloelC; M)):e vthe(ﬂ Mﬁ) 7

Assuming that H(C") holds for all C’ such that length(C’) < length(C),

show that H(C) holds.

Case I: length(C) = 0
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H(C) is trivially true, since the antecedent of the fimplication is fake.
A. holds since the empty computation is feasible in any model.

B. holds since there are ro:computations of leagth 0 proffdcing 3 boolean value.

Case 2: length(C) > 0

Let length(C) = n and let C' = C[l . n-1} ‘
Then H(C’) since length(C’) = n-1 < length(C).

A. To show feasible(C, M1) if and only if feasible(C, M2)
- Case 21: € is niot feasible in_Mi. .

Then by the induction hypothesls H(C), C' is not feasible in Mz
Since C' is a prefix'of C, C is niot feasitle in Ml or M2 o
S0 A. holds for case 2.

Case 2.2: C' is feasible in M1,

Then by the induction:hypothesis C' is feasibledn M2 . -~ :
Therefore the termination canditions of-the argwments match:the mpmmem

for every step of C’ in both models. o
C is feasible in M1 if and only if the termination conditions of the atguments of C[n]
match the requirements of step Clnl

i gd‘arggmbx, BM”W"%&Y B R AN PR T E C AN DL R L A
where length(C;) 2 | and where C; is a proper preﬂx of C.
* By the-inducion hypotiesis Kvilae(C;, MT) = vatielC,, M2).
Then te(k{value(C;, M1)) = tc(value(Cat M2), »
since homomorphisms préserve termination corditions.
Therefore the arguments will match the requirements for the interpretation.of
C in M2 whenever they will match for the interpretation of C in M2.
So A. is established for case 2.2.

B. Assume C is feasible in ‘M1 and leﬁgth(C) 21
Show A{value(C, MI)) = vatue(C, M2),f; o

Each argument x; of the last operation of C is the result of some prefix C; of C,
where | < length(( )< lengthC).
By the induction hypothesis, Kvalue(C;, M1) = vakie(C,, M2).

Since 4 is a homomorphism, A preserves the opentlom of Miand uz
So Kvahse(C, MD)) = value(C, M2).

So H(C) for all computations C.
If the principal type of Ml is boolean then Ml = M2,
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since there is a unique standard model for the boolean domain, |
and otherwise boolean is a subordinate type.
In either case, A, jean 15 the identity mapping.

So if a computation results in a boolean value,
it must result in the same boolean vatue in ‘M1 and i M2,
So M1 and M2 are behaviorally equivalent.

Then H(C) holds for all finite computations C.
End of Proof

Theorem 8: Let M1 'be a state machine model and fet M2 be an exception algebra model with
the same signature and the same interpretations for the subordinate types. Let ¢ be a
correspondence function from M1 to M2, such. that ¢ returns its second argument for all

subordinate types. Then M1 and M2.are behaviorally equivalent.

Proof: For every finite closed gompgta.tiop c. we ‘ha,‘ve;&‘n show that:
A. C is feasible in M1 if and only if C is feasible in M2

B. value(C, MI) = value(C, M2) whenever C is feasible in Ml and produces a boo!ean value.
Let state(C, M) denote the final state produced by
the interpretation of the closed computation C in the state machine model M

Let H(C) = ( feasible{C, MI) = feaslble((‘ M2) ) P S

(length(C) 2 1 & feasible(C, M1) ) => c(state(C, M), value(C, Ml)) - value(C MZ)
Assuming that H(C') helds for all c sueh that kngzh(c') < lcngth(C) R

show that H(C) holds.

Case I: lengtth)- 0

H(C) is trivially true, since the antecedent of the implication is false

A. holds since the empty computation is feasible in any model.

B. holds since there are no computations of !englﬂ o prﬁducmg a bootean vaiue.
Case 2: length(C) > 0

Let tength(C) = n and let C' = Cli .. n-1]).
Then H(C') since length(C") = n-1 < length(C).
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A. To show feasible(C, M1) if and only if feasible(C, M2)
Case 2.1 C’ is not feasible in M. . :’é' R

Then by the induction hypothesis H‘C’LC’ lsmfnﬂbkdn M2
Since C' is a prefix of C, C is not feasible in Ml or M. o s =
So A. holds for case 2.1.

Case 2.2: C’ is feasible in A1

Then by the induction hypothesis C' is feasible in M2.

Therefore the termination sonditions of the-argumenis-maich the requirervemts -
for every stepuf C' in both modes.

C is feasible in M1 if.and enly.if the termination canditions of the. arguments of Cia}
match the requirements of step Clnl ’
Each argument x, is the value.of €, - . 0 s ot o

where length(C ) 2 1 and where C; is a prefix of C ‘

By the induction hypethesiszistale(C;, M2, vlue(C;, MT) « valie(C, M2)."

Then te(c(state(C;, M1), value(C;, M1) = te(vakie(C,, M2)),

since correspondence functions preserve termination oendithqs T e
Therefore the argufits: Wi match' the requid ‘for o ’
the interpretation of C in M2

whenever they will match for the'interjifétition of C WMz

So A is estabtishcd fm' case 22

B. Assume C is feasible in Ml and length(C) 2 L
Show c(state(C, MI) vaiue(C Ml)) - value(t bﬁ)

.....

Each argument x, of the last operatm of C is thc resui; of some, preﬂx Ct of C,

where | < length(C;) < length(C). o

By the induction’ h’f’pothgsis. t(state((.“. m), yah;g(%@ﬂ) - vaMQ.M?)-

Since C; is a prefix of C, t(state(cl. M), "i) = c(state(C, M), x), artnd U T
by the monotonicnty property of correspondence functions.

Since ¢ is a correspondence function, ¢ preserves the operations of Ml and M2. = -
So ¢fstate(C, M), value(C, M1)) = value(C M2) _
So H(C) for alt computauons G :
By the hypothesis of lhgnzbeo;qn,cis the Mpmgwmmmw

So if a computation results in‘a boolean value,

it must result in the same boolean value in M1 and in M2,

So Mt and M are behaviorally equivalent.

Then H(C) holds for all finite computations C.
End of Proof
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Appendix. IV - Byntax. -~

The syntax of an abstract model spgcsfmn is given below in an extended form of
bnf. [X] means that X is opt;ona(l. Larg‘e parecuheses () are symbols of the meta language
used for groupiné terms. Small p“a"r'enthé;e,s and square bmkets "("* "):;.'[", andlf']" éré wf&ﬁhal
symbols denoting the respective characters themselves& X*meamﬁx can ,bcupeated zero or

more times. X* is the same as X X* (X may occur one or more times).

]

<specification>:= <module> | <type definition> =
<modules:~ module <type definition>* end moduh '

<type definition>:= type <type'names {anparammr lm}{dbﬁfevhtmb]
[<requires>]
<signature>
<rep spec>
<q]s>
[ <auxiliary: signamure>} -
[<definitions> ]
end <type name>

<parameter list>;= [ <parameter-name> { , <parameter name> )* ]
<abbreviation>:= as <abbreviation body> '

<reqmres>.~.= requires <parameter type> (. <parameter typ§> )
<parameter Lype>:= <parameter-name> : ctype name> [ such-that predicate> }

<signatuse>:= with <function type>’ SN Ly
<auxiliary signature>:= internal <function type>*
<function type>:= <function name> : [ <domain spec> ] —> [ <domain spec> ] <condition spec>*

<domain spec>:= <type name> ( x <type name> )"
<condition spec>:= + { <exception name> : [ <domain spec> ] )



-o-
<rep spec>:= <domain equation> f<restriction>] [ <equivaterces]
<domain equation>:= <domain name> = <domain expression>
<domain expression>:= <domain name> | { <domain name>*} . '
| tuptel [ Mexpmsson tist> ] 1
| onooit{ dtibited éxpréssion ist> 11
| set] <domain expression> )

R ‘ '|'sequeneel: domdin expression> ]
<labe!ed expression list>:= <labeled expmshn >{, + <labeled ion> ) -
<libeled expressionis:= <label> : <lomatn’ expression> '
<restriction>:= restrictions none | mtrlcﬂom mm> such that <predlcate>
<equivalence>:= identity eoperﬁtnn name>

T & FieT.
KA TR

<ops>:= operations <operation definition>* .
<definitions>::= definition <operation definition>* _ .
<operation definition>:= <operation name> a;gumeqt
<argument list>z= [ ( <identifier> ) ] ( <idemmer>"' )
<operation body>:= <identifier>.| soperation name>. W% Lt o n
| <identifier> : <predicate> e
| if <boolean expression>
then <operation body>
else <operation body> e
<expression list>:= () | ( <operation body> (, mp«atbh«qup)’)
<locals>:= where ( <variable> = <operation body> )’ R I

Siik

The grammar shown’above specifies ‘only tbe mxt ﬁu pn of: due hngulgc
There are a number of addmonal constralms that must be met for a we“ formed specmcation
For example, the number of wgmem expms o an opemiuf M1nopemm body st
be the same as the number of type names in the domain spemu ‘the*operation ,‘m"the'

signature.
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