
......... 1..,,, ,_
•••••••••Data••I•-••

by

Kw••••---

e 1f11radl I •• lltdll If f/1 Tedi.,,,.,

,..., ..
Thia••••• wa1wcn• .,1u,1u11u1 •••• fl•• dllllan
............... 1 7

L••-••sr r.a11111ntf11•1•-••
•

This empty page was substih,ted for a
blank page in the original document.

This empty page was substih,ted for a
blank page in the original document.

This empty page was substih,ted for a
blank page in the original document.

This empty page was substih,ted for a
blank page in the original document.

-3-

A.cdulowltNia•••ts

I am gratefully indebted to my thesis supervisor, Professor Jack Dennis, for hls

guidance when most needed and for the frttdom of research throughout this wtJrtt. Without

his encouragement and patience, this document would not be possible. Thanks are due to the

assistance provided by the thesis readers: Professor Peter Illas in the preparation of tM thesis.

and Professor Stephen Ward for many interesting dilCuuau and suggestions for

improvements.

The friendly environment of the Computation Structures Group has bred many ideas

and provided warmth when the going is rough. I thank Clement Leung for, being a critique on

many drafts of the thesis and a friend throughout the years, and his wife, Inid, for

innumerable warm meals. Sheldon and Sandy Borkin have gen«OUsly offered me invaluable

friendship in many ways. I wish to thank Dean Brock for providing me insights into

nondeterminate computations, and for invitations to the CQfflfoa1at,le home that his wife Ruth

has made. I feel a sense of indebtedness to David Misunas with whom many nights were spent

on discussions. Randy Bryant and Andy Boughton have been _patient' ,when we discussed

technical subjects. Bill Ackerman has opened my interest in the Packet Memory. .

I thank my wife, Michelle Hoshi, for her understanding during the difficult years of

being a student's wife. I owe much to my brother Sam Weng for being a responsible son to my
parents who have supported me both financially and emotionally.

- f -

Abstract .. 2

Ack~~g~ts ... ···············.-·····--························~··· ~ ~ 3
Table: of CcJtl~ ... _••t••·· f

Chapter I. lntr-<llluctm '7
J.L Corlcurr.fflt syaern.s ····:··············-•-•"••···••-i-••······ .. ·'•··································· 9
1.2. Concurrent programming languages • . . II
1.3. Data flow concept-.. 13
l:f. set,pe. of t~ thesis .. · 17
t.5. Synopsis .-.................... ; ... ·" ~···· ·.·.' 21

Chapter 2. Data Flow Schemas · .. 23
2.1. Recunive data flow schemas 23
2.2. WeH fonned data flow schefnas :-...... · ... 29
2.3.

\"c .-_ ""

Apply actors : ... 29
2.-t. Data ·structures · .. : 34
2.5. Discussion· : · ... ::H 43

Chapter 3. A Textual Language ~ 45
3.1. A value-oriented language .. 45
3.2. Correspondence between the language and data flaw schemas 51
3.3. Discussion • . 59

Chapter i. Implementation of data flow schemas in a data f1ow processor 63
i.1. Data flow processor • 63
i.2. Procedure structures and activattan records .. 66
i.3. Procedure activations : : 77
...... Tail procedure applicattons .. 81
4.5. Disct1ssion 8S

- 5 -

Chapter 5. Streams, Nondeterminacy, and Fora II 87
S.I. Streams .. 87
S.2. Implementation of streams 90
S.3. Foran .. 105
S.i. Nondeterminate merge of streams ... 114

S.S. Discussion 117

Chapter 6. Supporting Data Structures and Activation Records . 123
6.1. Packet Memory . 123
6.2. Activation records and holes 132
6.3. Remarks .. 136

Chapter 7. Conclusion ... _ 139

Bibliography 145
Appendix A .. 151
Appendix 8 -... '. 1M

- 6 -

This page intentionally left blank.

-7-

Chapter 1. Introdactlon

In this thesis we are concerned with issues arising from the need to achieve

concurrency of operation within a computation on a large scale. Several factors contribute

toward increasing interest in systems capable of exploiting the concurrency of computation.

Concurrency provides the potential for performance improvement through con.current operation

of hardware components such as processors and memory modules. This results in better

utilization of total resources and in faster response if a computation hu a high level of

concurrency. The dramatic progress of technology has made concurrent systems more

attractive as an alternative for high performance systems. In particular, systems that have many

replicated hardware modules can take advantage of the projmed potential of the processing

capability of a single chip devtce which can be .very economically produced. Such systems may

further offer better fault-tolerance capabllity and extendability of system performance.

So far, concurrent programming has not been adequately dealt with in conventional

programming languages. It is our belief that future systems must depart from the prevalent

view of sequential computation both at the programming language level and at the machine

organization level if a substantial progress is to be made toward practical large concurrent

s.ystems.

The goal of this thesis is to demonstrate that an adequate computation model can

provide a basis both for a good programming language and for an architecture that can fully
• e •

exploit the inherent concurrency in algorithms expressed ,ln the language. To this end, we show

how a value-oriented language can be implemented based on . a model of concurrent

computation known ·as data flow sclannas [DenFo73) and how this implementation can guide the

design of an architecture that achieves a high level of concurrent operations.

The model .of computation ts based on the notion of data driven computation, in the

-8-

sense that an operation in a computation is executed as soen a,, d of the requlnd operandi

become available. Thus, there is no notion of sequential control of execution. Data flow

schemas allow many concurrent subcomputations to take place without creating side-effects.

The lack of side-effects is essential for several reasons. First, the existence of side-effects among

concurrent processes may cause the outcome of the computation to be dependent on the order In

which the processes are executed -- that is, the computation Is nondeterminate. In most

applications, it is desirable to achieve concurrent operatien while preserving the uniqueness or

the result of the computation. From the semantic point of view,· a language that ls free or

side-effects is easily formalized using denotational· semantia CStoy77]. Furthennore, when a

computation is expressed in a side-effect-free language, concurrenq in the computatAon ls easily

recognized as subcomputations which do not depend en results of other subcomputations - and

this data dependency is manifest in the program structure.
' • ~;;:. ',~ .~ • :. • ~ f

We introduce a simple value-oriented language that has two Important features:
. ,-.. - -

streams which are sequences of values communJcated between computatAons, and foraH

constructs in which one can express concurrent operations on components of data structures. A

computation expressed in this language is guaranteed determinate 'unless explicit forms or

nondeterminacy are used. In this thesis, we consider a limited form of nondet.erminaq that

merges two sequences of values in a nondetetminate manner,· We discuss limitations of the

language in Section l.i.

The architecture presented in this thesis is based on a form of data flow pnx:essor

proposed by Dennis and Misunas [DenMi75, Misun78l We show ·~· the language can be

effectively implemented on this architecture such that concurrency of a computation can be
- -

exploited. The main extension includes suggestions for the design of the storage of a large
-.,-·; .--·'..

number of activations of procedures and data structures such that mntentlona tn accessing data

structures can be alleviated.

In the next two sections, we give a brief discussion of computer systems designed for

achieving highly concurrent operations and programmtng language far expressing concurrent

computations. Section 1.3 explains the data flow concept

I.I Concurrent Systems

Many computing systems {Kuck77, YauFu77, Ensto77] have departed from conventlonal

computer organizations to improve the capability for concurrent execution. A class of such

processors belong to the category of SIMD (Single Instruction Multiple Data) machines

CFlynn72]. For instance, there are array processors represented by the ILLIAC IV [Bamo68l

associative processors like the STARAN [BatchMl and vector processors such as the CDC

STAR 100 [Hintt72l These processors perform well only when the computation can be

expressed In program and data structures which areftlily mapped onto the particular machine

structures. Array processors require that data structures be ·mapped onto a fixed strUctUre

imposed by the physical arrangement of the processors, such as a two. dimensional array.

Associative processors require that data structures be ttnear Hats of words so that associative

operations on parts of these words can be efficient. For vector processors, data structures must

be in the form of one-dimensional arrays to allow ptpeftntng of operations oft successive· array

etemmts. Furthermore, programs must exhibit a htgh degree ef locality of reference such that a

significant amount of data structure movement is not n«essaff during the execution. This

dependence on locality of reference arises because the performance is achieved by short

instruction execution delays and by sp«tal pipelined execution units or by many tightly

synchronized independent execution units.

Unfortunately. the class of cO(Jlputations having these properties is rathe~ limited;

hence, much effort has been devoted to transforming programs -- either by the application

programmer or by compilers -- so that efficient execution can be achieved (Lampo74, Kudffl

- IO -

In fact, even in the limited domain of numerical ~ons for which these processon are

designed (or intended), there is a high degtff ~ irregularity ffl. computatiCJns IO that these

processors can not easily achieve their .potential perferma•.l

The strong dependence on locality of reference and special features such as vector

instructions inevitably tempts the programmers-to be explicitly aware of the hardware features

of the processors. This awareness often leads to programming errors due to concern with the

optimization of programs. In this sense, these .pn;1WSQfl shar, the ~ problems. that the

programming issues are neglected alld that the perfomtance can neither be readllJ extended by

introducing more execuW>I} units nor by moving from a p,acessor of one configuration to

another without a substaJ1tialamount of effort in prCJlf&m corwenion.,2

There are concurrent proce$SOTS that belong to category. of.MIMD (Multiple Instruction

Multiple Data) machines. A typical realiiaUon of thisJorm of machina i$ based on mu~iple

processor and shar~ multiple memory .organization. EJ.ampllS of such processor.s are PJurJb~s

[Orns,:,751 C.mrnp [Wu1Be12l and CM• {SwFuS'11l3 Tbe predaaunant problem of U..

processors is that the system performance is ~ on. die ~ of locality of reference

ac:hieved by programmers' explicit partitioning of a ~ FurtherlllOl'e, became the

semantics. of the languages supported by these systell'IS are baMCl on· the nQtlen .of sequential '

execution and operations which have 1ide-efftds. ~renc, i& adlleffd thraugh careful

analysis of programs to prevent possible ~dlocklc.and: battlenecu in.memory references.

I. We refer the reader to [KisRu75] for an exa.atple of how program miXtUres have affected
the performance of one of these processors. It is interesttng to note that the CRAY computer
[RamLi77] is designed with more recognition of thli fact,111aft pwridUS fldOr ··.computers by
improving operations on vectors of short length.
2. Note, however, that the difficulty of transporting softwaie anionf different systems Is a

pervasive problem of existing systems as well. . .
3. We refer readers to [Ens1o77} for a more detalled discussion ori machines based on multiple

processor organizations.

---·- --

1.2 Concurrent Programming Languages

Yet, what is a good concurrent programming language? There are two essential

properties of a program: correctness and performance. The motivation behind structw-,tl

programming is a consequence of the concern over the difficulty of establishing correctness of

programs and of improving the productivity of the programming task. The task of concurrent

programming, however, is much more difficult than tha.t qf sequcnt~I programming because

the existence of concurrency makes any interaction between concurrent processes nontrivial It

should. therefore, be an essential design objective of a concurrent programming language to

have the property that unnecessary programming difficulty is not introduced to improve the

concurrency exhibited by programs.

There are several c~ocepts which are unique to concurrent computations. In the

execution of many concurrent processes, it is poutble that the order in which the operations are

performed affects the outcome of the computation. Such computations are said to be

nondeterminate. Conversely, a computation whose result are guaranteed to .. be the same when

the set of concurrent subprocesses are executed in any .aUowable order ts said to be dttnmtnatt.1

Since many concurrently running processes may depend on the results of or synchroniiation by

other processes, it is possible that a set of processes may become simultaneously dependent on

the results of each other. If none of the processes can proceed further, then the set of processes

are said to be in deadlock. Deadlocks occur in many forms depending on the possible situations

which can arise to prevent a process fiom being a.ble to proceed. The purest form of dQ(llock

is that the computation itself can run into deadlock. e¥.en if the amount of computational

resources is infinite. In this case, what causes deadlocks ii the ~tics of the computation

l. A computation which contains nondeterminate subcomputations may itself be determinate.
Thus, the class of computations expressible with operations which cannot introduce
nondeterminacy is strictly contained by the class of determinate COfRPHtaUons.

-12 -

rather than the manner in which resources are allocated.

We now give a historical perspective of the problems of various approaches to

concurrent programming, then outline in Section U an approach we feel may alleviate these

problems and is followed in this thesis.

A natural development of concurrent pregra""'""I has been to extend the exilttng

semantic basis to indu<fe explktt proms c:ontrol · priffltttves. An example ti the introductlon or

call and wait primitives of PL/I whieh provide':explicit control over the creation and

resumption of processes. The coordination of ditlcutNrlf processes 1 Ii achieved by additional

control primitives which interrupt and resume the' control of an pnass' with expltdtlJ spedfted

stgnals and with conditions which dictate when the control of• ·proctsS may be lnfluenced by

signals from other processes. Another approach wes lMldtaflbms sudl as 1nw.fll,ores and P

and V primitives to coordinate tbese proceua tDIJks68l

These forms of concurrent programnttilg are at tao 1ow a level of abstraction to ~

good programming constructs in severatways.

It is often the case that a: gtven computation when expresSed in different sets or

primitives resu1ts in quite different program strUCtUm. These dffl'erenca arise not rrom the

conceptual scheme of the computation but rather from the explidt contael mechantsms that must

be Used.

Another consequence is that programmers tend to become very aware or the efficiency

of the mechanisms. For instance, the cost et ~ and ccintrvlltng a process is often

prohibitively high due to the inherent complexity of the semantio or that programming

languages. The programming task ts, therefore, further tmped«l because 1llin often create

processes with explicit concerns over resource management (This, tn a sense, Is analogous to

the situation when programmers had to be egp~~JJ . aware - the. memorJ. ma.._.ement In

writing large programs before use of automatic memory ma~ ·aftd became. comman

practice.)

In many situations, one finds that the computation is inherently determinate, but the

program ·expressed in these forms is non-determinate in the presence of programming errors.

Thus, there is no way to ensure determinacy when it is desirable. Tnu or proofs for the

program behavior are, therefore, unnecessarily complex; since the possible outcome of a

computation is a set whose site depends greatly on. the number ;bf interacting processes.

Furthermore, even in the presence of desired nondetermtnacj, none of the lndtvtdual

subprograms can be validated independently~ Thls deficiency for Independent validation ls

attributable not only to the semantics of these primitives but also to the use of global variables

that many concurrent processes can access and modify.

More recent approaches for concurrent programming emphasile the ease of validation

of correctness for concurrent programs. Examples of language conlltdcts using these

approaches are monitors tHoare74l path expresstons fLaUCa75l ~nd guarded commands

[Dijks7SJ. Note that these constructs are defined in conjimttiOn'·Widl restttctet! use of variables

and the flow of control. These represent steps toWarcf a more'ltl'llChm!d and 11tgher ·teve1 of

concurrent programming. A common feature of these apptoldm, flbwever, ts that concurrency

iS created explicitly with construct$ such as the cd>qih Moc\ :or the guarded command blocb.

Thus, ~he concurrency expressed is at the level. of processes. radter t'han at the· level of

operations where a ·substantiahmount of contorrency also exists.

1.3 Data Ftow Concept

Developments in the theory of parallel computation have motivated a computation

model called data flow sclilMs [Deofo73l Thu JJlOdel is ene ~,fD&RJ J1I0@'1JJ01Se'12, Kqsln73,

ArvGo77] based on the data flow concep~. The mociel rep~ua:c:ompt,tltion only in terms of

data dependencies between instructions, and reveals inherent parallelism without unnecessary

-H-

constra tnts on instruction sequencing imposed by the canventtonal machine level

representations.

1.3.1 Data ~ Lan&uaces

Because the data flow model ~. graphical In .natutt •.. ~ous. studies. [Omns7'1.

ArGoP77, Rumba7S, Kosin73, Weng75] have ~ to deftfte tptttal programrrttng

languages hued on these models. While It is pouit,fe to 4efine an algorithm that transforms

programs written in existing sequential progra~._npaps •-data flow schemas. such an

algorithm is complex because of the semuttks of: the sequertttal ;programming languaga.

Furthermore, the inherent concurrency of a ~tion 1$ often llicklfn from . the translator

because there are .additional corJstraints that ar, bu.iltln Jo .tbe. e,q,ressiveness_ or sequential

programming languages.1 We beliive t"--t high Je~,~.ta no,w,~mmtng languages wtll·

allow algorithms for concurrent computaUorJ .tq ~ eaailJ ~

Programming languages based. on the cla" flow mncept are s,ffidently expressive to

encompass conventional prggr;unming ~ ~ _f&ldt.· u. ttcratiGn"'· while-~.

conditionals. procedures. and datJ types such u da'- ttructu~ apd procedure ,a1ues. These

constructs. however, are embedded m a ~nttc:s "hkh, Is ~. ff .,.b stde-effects and the

sequential control of exl(Utlon. The clisti~e)ad of control t.ramfer prlmitiYeJ such as

GOTO's and operations which introduce s~ allows,-~ to asilJ detect data

dependencies between operations in a program. Languages With these charactertstks have been

shown to have simple denotational formal semantta [StoyH, Brocl711 .

I. This phenomenon ts a well known fact -amang researdlers worttng an epttmtimg c.empilers
both for sequential processors and cona1rrent preceuon. For,ee..11se of a,,.y indexing
and common variables m large Fortran programs mil• many· apitniaatklnt- dffftcult tr not
impossible. ,

- 15 -

Additional features such as forall constructs, pdmlUns for stream value$, and

constructs for nondeterminate computations are. faund a:o -be: -.,tural exten .. s to these

languages. The forall constructs allow pr<)ll'affifll'rl to s.,«if) QIIICUrr• . .,,...uons on all

components of a data structure. The notion of strttnt: .Pf9YidM p_ttve to the use or
coroutines and synchronization primitives for exprcsunc computattona paNlng sequences or
values among their component modules.

A very important characterjstic of these 0 laapaga is that the d•mmacy of a

computation is guaranteed when the computation il expressed nee using primitives or features

explicitly provickd for situations where non....,.._,. i$ ~- . In conventional

languages, nOfl(leterminate computation$ are·...,.-~. using --,l}ON prtmWvea. · call and

wait primitives, and lllORitou. Tilt of thfle: p....,._ tae.we,er. aN not conatstent

with the semantics of 4ata .flow langUJga. • . .aecau. thtre an ~nt .appljcations where

nondeterminacy is necessary, the .formal setM.ntks ef ._.1,11_.. wtth ,...~, pr#lliUves

is still an active area of research [~lotk'l6, Milllell,.Xelle'ffl. - tho dlail. ,_.,have dtoMn a

very primitive form of nondeterminaGJ which aeetn1 euenUal ,as a buk- for higller le¥41

constructs. for nondeterminate <OmpU~ialtf.

1.3.2 l2!!! Flow Processors

Data now schemas are not only a suitable yehicle f<»r r~resenting concurrent

computations but also provide a simple operational semantics which has suggested several new

.computer architecture designs. Another characteristic of the model which is not often cited is

that data flow graphs are very flexible bases for machine _level representations. These

representations are applicable to a wide class of computer archttectures, including architectures

extended from conventional processor and memory organizations.

The common c;haracteristic of all da'- flow .. prclQIIIOD is t111 use of some machine level

representation of data flow graphs. Assuming that a data flaw pn,gnm already restdes in a

processor, tts eK«Ution requires mechanisms for

(I) detecnon of concUtton• for 111 lnslractaotuo w txtCUlabte.

(2) execut.ioll of the instructtoll, and

(3) transmission of the rfflllt to the lftsttuctleftl •rtnc I u-• operatlc:I.

The processor proposed by Dennis and MtlUftlt· · •· Mtaun'JIJGJllliltl or five

sections: lmtruction Memory, Arbitlati!M MtlllOry, , • ..._....,_ NetWorlt, and

Packet MemGry. The lnstructton Me,nary stoNS·tftt:....._ •Wnf litlpNlllitattrtft of a .._ f1oW

graph so that -enabled iftStrtlctwis an tit lftdepetdiildj .HlltNll'lfMI tent'•te,thif'Arbflratllln

Network as operation packets, The •·Arblntat dd· DM.Mldiif NttWIWlt• are patlM

swttthtng netWbrtts. 1:t,e, f unctioflt! UMt ,,_...;"P••• ,.._~tll a· ptpel111f'fuhlelt.

The Pacltet MffllOrJ perferms data stl'UCIUN.,....._,_.1,r t The lflfllt

dtstmptshtftg characteristic of the processor la that' tb' ,_,.,...._ 11 ·not let'Wetl· ftClilt ~

assumption about the locality df allocattons eftftit ~ tMd,•llt;~ ts·not

dependent on where each ·instnfttien ·restaes; ·. f>ft'rNlt ,...,.,.. abillt tt. toca1kJ ·r1

computations result in great diffe~ences in the archlteett••·•e.k11htill,l'ft•••ll'I. 'Whtlt It It

often the case that a computation exhibits locality of: rererenc..1 It has not been demonstrated

that concurrent processors taking advantages of thia fact are m,t IUbjli."t w· atgnlflcant

performance degradation when this· assumption is V1Dited by parts of a campulation.

I. In particular, Swan has observed that references to the codes of procedures represent I large ·
portion of nwmory references and exhibit high degne W liltatftf Gf'•-••u:e· {1-....,aJ. ·

- 17 -

1.4 Scope of the thesis

In this thesis we present an implementation of a programmtng language on an

extended form of the Dennis-Misunas architecture. The extension lfldudes storap'of p,ot:edure

activations, stream values, and data structures ~ the Packet Memory and we suggest a way to

perform memory management for copies of data structures.

We chose a well defined programming language as the basts for extending the

capability of the processor. This language has features which allow concurrency to be

expressed in two forms and still guarantees that the· coMpilatlon Is determinate and

deadlock-free regardless of programming errors. The first form ls blsed on procedure

activations which automatically create concurrently executabW procedure ·instances: thls is the

most familiar form of concurrency. The second 'form is based on the notion of stream

computations (or, pipeline computations in some Sfflse►.' thls form of'concurrencJ' ls frequently

seen in large software such as compilers or in many operating system functions such as

input/output which are often expressed either in the form of corounnes or ln the form of

coordinated procene$ [Conwa63, Mcltr68, Hoare18l

Based· on the notion of stream computations we provide a primitive for expressing

nondeterminate computations by merging two streams of ~alues ·· in ·a first-in-first-out manner.

Though this is a very primitive language ci:mStruct, we·feel It is anessential low level primitive

for implementing other forms of nondeterminate constructs.

There are two ways In which some reader may consider our language limited. The

language does not provide any construct for expressing a set of concurrent processes whose

communication path forms a cyclic structure. This Hmitation is due to the general belief that

the deadlock property for such a set of processes is not decidable in general at compile time.

The second limitation is that we have not included procedures as. values. This ls because we

have not found a satisfactory solution to its imptnnentatton. The data structures tn the

-18-

language do not include any cyclic data struaures such as doubly Inked Ibis or qdk graphs.

The extension . of the language to indude such- .JIIIIDRI. aa . be based on the notion of

immutable abjtcts which contain cydk lb'UctUnS 181h dlaUhe-. oUhe data SlnlCtUNS

is free of side-effects lHende7il This is an 11111!1 Hling illue Ill t.llh -pradkal- and thearelkal

importance that we have not been able to KAltiluieift ~ in ddt,...._

U.1 Related Wgrk

T.he DIOdeJ:ot: data flow <:omputattan p~ ~Y'.NYiDd.alV! Oostdow (ArvGo77] is

based. on an int~fpret~ that is _qt,ite.different_itl ~yJrom da~ flow SC~$._ Thf

model does not lntrodpce the i'lotiof1 -~--~~-_pfJmle ~fffr- op'. which data _nc,w ,c~s are

based, and res~lts iQ. aJI arc;hitocture cUffea:ent front.die ~u-1,Ji_.. auc~~e. OtJler:
• •"• - • ~ • • ; - • ; L > , ' • - •. • • ~ • ; ' ~ • • ••

data flow re$earch l~lu4! t~., DQMI mcx.lef_ ~ -~'~ ~•tJ111. ,,_ ~el by K~sltl

(Kosin73l the graph ~el introcluced ,t UCLA CB,lk>q91 the L~U system,{S,cot-177). Gurd

and Watson [GurWa'Tl]. and Treleav~ [Trele77J.JT~.._ it ~1 .,, ,11 ~e.)

More recently, many workers have,~ .to~"~''"""'- 9f -~- data, flow

concept within languages ~lttcb have ~~~free-~ ~' ll$ lt~~ language

(Berkl75] artd fFP lJS':ffllS (Ba~ku7&l and LISP. __ ._.. s,-. tfo~4••- ~~PaL78l1 These· . - . -~ ,__ " -.... . ; - .

tangµagr -~•e _ a. ~Uffer:• apef'OlC~ ~,-,,~ ~- and maJ have

interpreters whose operations are hig!dJ CQ1Qrpn& •·" "" .._,~,fre,. Mlllfe of the

languages.

- In analyling the str:uctures ef data flow procasors._ ,- --~" define two cla~ of

processor orpnlzatiQns In the broad -$p1Cb'Uffl ef 1111,• ..-. tllaJ_,.._~ beat pruposed . .

I. The Actor semantics lHewit76) based an the message ,,...- style of programming also
ptovide_ an basis for-UinQ1m11t c.an,utatian.

-19 -

The first class consists of processors tbat have a large set of homogeneous modules

connected by a network. F.ach module ha~ a: futtcttoftal uatt and • local memory, and all

executable instructions are performed withtn the fllCJdule;. Praceuon of the second class do not

have uniformly identical modules. and each nodule ii spedalized ·• perform a particular

function, such as detection of execu~ble mstrucdons. ex«udOlt o(«alar operations. or swttching.

of packets containing instructions or data. The types of networks for l,oth classet range from

simple bus structures to routing networks for handling packtts,Gf varying lengths. These

networks are not intended for performing oommunkations over a very long distance and

therefore may not directly imply that the proceuon •ftlrllJ · ntend to ~eographkally

distributed systems. 1

The processors proposed by Davis, Syre, and Arvtnd and Gostelow can ~ considered

to belong in the first class, and the JeCond · dass is represented by the, ,rcxesaor proposed by

Dennis and Misunas.

Davis has proposed a hierardtical procasor ltruchlre similar to a tree in whidt each

processor module ts allowed to communicate with its parent amt a fixed number of c;hild

modules. Each module is capable of storing large segments of data flow programs and of

partitioning a segment into subsegments whkh are sent to· chikt processors as ·cOl'tCUfrentfJ

executable subcomputations. Becaust!! of its tree-ltkt ltructllMi this processor has the potential

problem of unbalanced utilization of modules. The partittontng of a computation can also

result in communlcatiOn problfms, since communication· between cMld medulll!S ts made through

parent modules. It has been proposed that these difflculdes may be overc:ome by acldtttonal

connections between leaf nodes or-the tree.

I. The problems of detection aad recovery from faqlty CQfMIUftac.tion links or processors, and
those of resource managements are but some of the issues that are highly emphasized In
distributed systems.

Sytt proposes a bus-ortente<l q«worl-OIIIIMCIU'I a, llt of .alulll. each, of whkh has a

special contret mechaftilffl for detecting___.., tllstrutetallt. TIM. ~._or p~ to

the modules is partly petfc,lnwd by the-~ that prepnmnzr ap p,ocedure by dwkting it

into segments for easy allocation of, resources at nm time.r Sola·lldurnatialt aeeded far compile

time allocation are 1Upptied btthe pr,agraw -in ,the tttpJlwl ..-. u .pragram. The bas . .

network is adequate for -conntaiRg a limtb!d,_ ti_, bat -is nut ataaclable to a

much larger numbers of modules.

Arvind and Gosltlow· propose •· nng ·wetwat tolltailling a RUmber of ring intmfaces

- each of whkh corm«tne a tet ol modulattlruaglt a bla ._.. _ _, dllse moduln aho share

a memory controller which provides accesses and movem1nts of data between a IIIDdule·~· •

large memory.

The main 'differences l>Etwee11 our proceuar ud tllae patftlUtl are the Packet

Memory which is needed for general purpose campucattons and lhe ••••plhln abcMlt the .
. -

requimnents of the networks. It ts wot•di!ar ·• aiw and flldJ an t,e eft«ttvely
t

tmplemenftld- c,n these processors.

, 2 !:l!nl problems

k 1'emains untested whether programllling ._.,....,; , • dte;Nttan of data flow.

or the notion of sldNtffect-free Nffllftda at1t .,,...... to,• _ . -- CIQUllterpartl of

conventkMat operating s,-m functions and • _ UftOIII ,.._... . .- helll'illk· PAIi''''°'""
found m the area of artificial ilttellipnee.

For any system that is capable of creating a luce_.. ~ ~••Atta. ~here

are several inherently .hard problems that need be solved .. The most -crtttcat problem ts the

resource m11ragenwent whkh ffltlSt 1IOt ·only be tffldlMfer •~ a pn,cess t,ut also provide

mechanisms for controlltng concurrent activities so the system ts nat Oftl'whelmed by an

- 21-

excessive number of activities. For. systems that mtend to support a Wide range of applications.

it may ·be necessary· to provide mechanisms for aborting a a,mputatton whtch might never

terminate or whose results are known not to be neeckd. for-,ttal computers. these

mechanisms are supported by controffing the process states tn the process queue of the system;

but, for a highly concurrent system where activities may spread over a large number of

hardware resources, it is not clear how these functions can be auppuwtecl without degrading the

performance promised by concurrency. For pregrammlllg languages whkh can. express

computations that may result in deadlocks due to mutUal data dlpendendes among processes, it

ts also necessary to have the above mentioned mechantsms;

It ts important to realize that the limited· nature of the scope or this thestl ts due to our

lack of understanding of the above problems and lack af simple solutlans to them. It should be

of great Interest to readers to exam1fte various proposed systems whidl exhibit a high degree of

concurrency, whether they are based on the data flow concept or not, with awareMSS of these

problems.

1.5 Synopsis

In Chapter 2, we present data flow schemas for completeness. This chapter also

includes a short introduction to data structures. We have excluded data f1ow schemas which

correspond to language· constructs such as while-loops. and instead, we use recursions as an

equivalent form of such constructs.

Chapter 3 introduces a simple programming language which. is value-oriented. This

language demonstrates that a clean programming language can be defined and translated into

data flow schemas presented in Chapter 2. The procedure names in the language are globally

defined. We include a discussion on issues related to extending the language for defining local

procedures and handling procedure values.

Chapter 4 shows how an tnaJding el data flow IChelnu can • defmed. We give a

short introdudien to the structure of the data. flew proceuor ad . .- the- repraentaUolt of

encoded data flow schemas can be used to ~,pni•llure acdYatkllls.

Chapter 5 introduces the data ftow aperatorl ,dlat an.. .,expNSlian of stream

computations in a natur.al manner. The straightforward ~ of s&Rams based on

these operat«s is· very iMfftdent. therefore. we show an imp""""'latten: of streams that II b;ue4

on the notion of ./aol1J. Wt· also ~ a .primiltN thal_,ntnalely merges two

streams. We. descrJhles Jlow .several . ..-., .. ~ ot .fmlt~ aa " translated into

recursive forms which exploit the conaHNnCJ in aJtalUr.,hn~.,._. •,,

Chapter 6 shows haw ~ fer MllRI ~_._...,. ca,a be aflocated and ·

supported. We show how simutt.~ ac.-1arto.-.,,.,~,~·be. halldJecl In a

multi119ft and mullkache metRGrJ •P•-'•tcMlle •••--.. ujaqµ _,,., memQl'J

management.

Concluding remarks and directions of further raearch are 1ft Chapter 7.

Chapter 2. Data Flow Schemas·

In this chapter we introduce an operational model for concurrent computation that has

evolved from many similar graphical operational models used for studying the properties of

concurrent computation. The earliest models were pioneered by Adams, Karp and Miller, and

Rodriguez [Adams68, KarMi66, Rodri69]. These models were intended for investigating the

decidability of properties of concurrent computations such as deadlocks, nondeterminacy,

equivalences of program graphs, and comparative power for expressing concurrent computation.

Later works [Denns7-t, Kosin73, ArvGo77] are more oriented toward defining

operational models as a basis for programming concurrent computations, and as a basis for

investigating the degree of concurrency achievable. We are interested in the Data F1ow Schema
-

proposed by Dennis and Fosseen [DenFo73l because this model has evolved-to the point that

we are able to express naturally most language features found tn existing htgh level

programming languages. Furthermore, this model guarantees that computations expressed In

the model are deterl'!linate while exhibiting a high degree of concurrency. We present a slightly

modified version of the data flow schemas that does not have qclic schemas and allows

recursions.

2.1 Recursive data flow schemas

The data now schema is an operational model of computation and consists of a graph

representation and an interpreter which operates on the representation. A data flow schema Is

a directed graph whose nodes are actors connected by directed arcs. An arc pointing to an actor

. is called an input arc of the actor, and an output arc is an arc emanating from the actor. Each

actor has an ordered set of input arcs and output arcs. There are five types of actors: link.

operator, switch, merge and sink. The five types of actors are shown in Figure 2.1. An (,n, n)

(I) link

(2) operator

v,

(3) switch

- 24 -

(4) merge

(5) sink

signal

data input

control input

Figure 2.1. Data Flow Actors

- 25 -

data flow schema must have m link's which do not have input arcs, and n Hnk's not having

output arcs. T~ese link's are respectively called internal input ~1 and Internal output link's

of the (m, n) schema. Further, we require that the schema must be proper In the sense that all

other actors must have the arcs required of each type and each arc must be connected at both

ends.

Description of the operational semantics of data flow schemas requires additional

concepts: availability of data at the inputs and firing rules tt.at define how a computation

proceeds. A configuration of a data flow schema is the graph of the schema together with an

assignment of labeled tokens to some arcs of the graph. An assignment ofa token to an arc ls

represented by the presence of a solid disk on an arc. The label denotes the value carried by

the token and may be omitted when the value ls irrelevant to our presentation. lnforrnaRJ, the

presence of a token on an arc means that a value is made available to the actor to which the

arc points. In this thesis, we shall assume that ·the tokens carry values Qf types lntqer, reaL

boolean. or structure.

To describe a computation of an application of an (m, n) schema to some Input values,

we introduce the notion of snapslaots: a snapshot consists of a configuration connected to a set of

input and output arcs as shown in Figure 2.2. ;The conq>utation of a data flow schema when

applied to a set of input values is described lly a sequence of snapshots. The initial snapshot

consists of the graph shown in Figure 2.2 a""d an initial configuration which only has tokens on

the input arcs as inputs to the computation. The computation advances from one snapshot to

the next through the firing of some actor that ts enabled in the previou~ • snapshot.· · The

condition under which an actor is enabled is depicted in Ftgure 2.3. It should be noted that a

necessary condition for any actor to be enabled is that each output arc does not hold a token.

(a) Initial Snapshot

(b) Final Snapshot

An (m, n) Schema
with no enabled actors

. . .

An (m, n) Schema
with no enabled actors

- 26 -

Figure 2.2. Snapshots

• 27.

(l) link (2) operator
V

⇒ ⇒

V

⇒ OR ⇒

(5) sink

-⇒

Figure 2.3. Firlnc Rules

- 28-

Firing .Rules

A typica I actor is enabled by presence of a token on each f"l>Ut arc; - with the exception

of a merge. The firing of an actor absorbs tokens from lts tnput arc:s and places a token on

each of the selected output arcs. · The vahtes of the output toktns areluncttonally mated to the

values of the input tokens. A link simply replicates the value received and distributes tt to the

destination actors - actors to which an output arc is connected. The effect of the firing of an

operator · is to aJ>ply to the inputs Vl,.. .. Ym th, function associated with the operation name

written inside. the operator to yield the outputs Ul,Un. We generally require that labels be

used to identify the type of the values carried "by each arc. but wtn omit them when their tn,es

are clear from the context. The switch and !!!!!It.are used for controHing ~ flow of tokens. A

switch r~ires a data input and a conl!C)I input ~ value from the set I~ false}. The

firing of a switch replicates the input token on one of the output arc:s according to the.boolean

control value. The arrival of a token on either input arc enables a mm:u, and ~Jinnl~·.a

token of the same value is placed upon the output. The ~avlor of a ·am&! ts. tnherentlJ

nondeterminate when two input tokens reside on the ,;nput .arcs; neither token is lost, but the

firing rule does not specify in whtch order the otatput tok~ wtn lwpnented.i A - absorbs

the input tokens upon firing and places a special token il!!ll on the output arc. The purpose

of a sink actor is to absorb unwanted .values; the !!CBI!. output token ts nassary ror the

implementation of schema application is described in Chapter 4 ..

The set of functions commonly associated with an operator actor tnclucJes the scalar

arithmetic operations and constant functions. ·

I. We choose the merge instead of the deteimlnate ~ of (Denfo73l because In recursive
data flow schemas the chosen nondeterminate l!!!!I!. can safely replace the determinate l!mll
and its use results in less complicated graphs.

- 29 -

2.2 Well formed~ flow schemas

Unrestricted use of switcb and merge is undesirable since arbitrary connection of these

actors may form schemas which deadlock or are nondeterttinate. Because these properties are

undesirable for reliable programming, we choose ,a subclass of such schemas which will satisfy

the needs of programming.

An (m, n) wtll Jormtd data flow schema is an (m, n) data flow schema formed by any

acyclic composition of component data flow schemas, where each component is either a !!!!A, a

sink. an operator, or a conditional subscAtma. TIie structure of a conditional subschema is

shown in Figure 2.4, where the heavily darkentd arcs are labeled by ·letters denoting the

number of arcs they represent. If P is an (m, n) subschema, Q.is an ftp, n) subschema and D is

an (k, I) subschema whose output is of t_ype boolean. then the conditionahubschema is an (m, n)

subschema. Constructing a conditional schema from subschemas_.of different arity can be done

by patching sink actors within each subschema.

2.3 &!ruI actors

The class of well formed data flow schemas as defined'cannot express program features

such as procedures, procedure applications, and iterat& We introduce an operator !1!1!JJ.

whose symbol is shown in Figure 2.5. The first input to an YJ!)x. actor is a token carrying a

name uniquely associated with an (in, n) well formed data flow schema which may also contain

!1ll!1I actors. An apply actor is enabled when a token resides on each input arc.l The effect of

firing an apply operator is to modify the mapshot by replacing the actor with the (m, n) schema

I. This enabling condition is actually a very restricted form of procedure application. and does
not satisfy some requirements of models which have the property of referential transparency
(Stoy77]. Furthermore, this form of firing rule reduces asynchrony of the computation. We will
discuss this in greater detail in Section 2.5.

- 30 -

m

m

Figure 2.4. A Conditional Schema

(a) Notation for ~

u1

(b) Firing Rule

- 31 -

Figure 2.5. The ~ Actor

- 32-

designated by the name as shown tn Ftgure ll Thia nplac:ement ow.Mdl the tnpat ara

carrying values V 1, ... , V m to the m tnput ~s of the schema and die II output !In'• to the

output arcs u1, ... , Un of the ue!1 actor. Notice that the symbol1'f an appiy:·ope.ratur allows

one to define a data flow schema which involves recursive applk:attcww .,.. the sune schema by

naming each data flow schemas. In this model, thin, dwN ii a ~ ""'9' ..,__ bl whkh al

schemas are defined a unique name.

An example of the use of mJI actors ls shown in Fipre 2,8. It ts a (3', 2) Khema that

is recursively defined, and computes the factorial or an ..., pter than one. The ftnt IIDk.

actor labeled triaer is an input link whose functtan is to trtgpr CGftltMt •~ for

constants. The second !m,t labeled f is for carrying the fll fhe praature to the ltnt lnpUt

of the ~ actor that u•• name ~te another,_ el -,:., .. ,, · · The l!!![I!
..... '.., . . .·~~i

actor labeled signal is to allow a proper c:enstrUCt• or a aand___. ---·~•, a111tatft

subschemas which uses stnkacten. (Nectce that the 1111!. ac:ter has a lfllP!II OUtpUt arc whkh

carries a signal value. This is a convention that we have adopttd a,NL.ca4fbe In

many situations.)

We have not included the class or data flow schemas which carreaponcls to tanguage

constructs such as while loops in Algol &O or Di statlfflllltl in fertran or PUI. Such data flow

schemas [Denfo73] are constructed by cyclk connecttans or data flow actors, thus. the firing rule

of actors that require -the output arcs to be empty for their must be obserftd. To

implement thlS firing rule faithfully would requtre each actor te recelff an acknowledge llgnal

from each of its destination actors in addition to mput tok1111,I hi addtdon. the !!mil actDr

must be a determinate merce actor [DenFo13] which requlreS a atntrel tnput to determine which

input tokens to be passed to the output arc. The 1111 or adtnowlldp Jtpall. howffer, can be

1. .We refer the reader to [Mtsun7!',] for an example illustrating"'" point.

• 33 -

f
2

f : (3, 2) schema

Figure 2.6. Rec.ursive data fl9.!L schema f2!: factorial
f(x) - [x •< I then x else x • f(x - I) end

eliminated when the schemas are free of cyclic connections. This has the advantage that the

firing of each actor is not delayed by waiting far acknowledge aipals from its destinations.

Furthermore, there is no need to encode Into instructtonsthe tnfonnatlon required for returning

acknowledge signals. This leads to a simpler mechanism for implementing procedure

activations if the class of data flow schema is restrJcted only to acyclic schemas.

For these reasons, we choose- to implement these language leatures in their equivalent

form of self recursive applicatjon of data flow _schemas. This has the desirable property that.

'
without any compile time analysis, the mechanisi'I for procedure actlvation allows simultaneous

execution of different instances of the data flow IC...._ w.,hicb--m1'111paftd to different tteratklns

of a While-loop.

2.i Data ·structures

In this thesis, we are interested in an interpretation of ~ta flow schemas wh~h

requires the types integer. real, boolean. character_strm,1 and structure.·· We wtn assume that

the set of operations defined on the data types other than data stl'UCQU'a is wen understood.

We now define notation for data structures and the set of allowable operations. (The material

presented here is based on (Denns72, Ellis7'tl)

The stri~t definition of the semantics of data structures must include an data flow

actors which have at least one input or output arc for carrying data structures. Thus. the set or

actors would include link. switch. merge. sink. and operator. The function or !!!!tm and !!ml!

I. We restrict ourselves to characterJtring of bounded length which can be treated as a scalar
value. For character_strin& of variable length, the lmp~ta~ will be quite different.
Furthermore, if selector names of a data strutture operattan is of variable length,
implementation of data structure operations depend on how variable length character,,Jtrtnc Is
implemented.

- 35 -

is purely for controlling the flow of values and ts naturally extendable to data structures. The

function of create, append, select, link and sink determines the number of the instances of data

structure values that exists in the system. These actors, therefore, are related to the function of

resource management of storage for data structures. Semantically, the function of the link and

sink actors are the same as defined previously. The primary type of actors that we define here

will be the class of operators which perform operations on data structures.

A data structure can be either a nil structure which has no component or a structure

having n component structures dl, ... ,dn whose stltctor names are respectively sl, ... ,sn as shown tn

Figure 2.7(a). The selectors are either character strings or integers and each selector name must

be different from all others in the same data structure. Furthermore, these selectors are assumed

to be ordered lexicographically. An alternative linear notation for the structure is

(sl : di, ... , sn : dn).

The set of data structure operations are defined below, where d and d' are data structures, s Is a

selector name, and c is an object of any type:

(I) create ()

The create operation causes a nil data structure to be returned as the result. (Figure

2.7(bXI))

(2) append (d, s, c)

The operation returns a data structure d' which is identical to d except that the s

component is c regardless of whether d already has a component with the selector

name s. (Figure 2.7(b)(2))

(3) delete (d, s)

The result of the operation is a data structure d' which does not have an a

component. (Figure 2.7(b)(3))

· (i) select (d, s)

- 36 -

d ,,

Figure 2.7(a). A Data Structure

(2) append
d

J
s1 s

1 l
Id \ I \
\ I/ \ C J
~ ~

⇒

C

~
/ C \
\ I
~

- 37-

⇒

Figure 2.7(b) Effects g[~ strugur1 qperations

• nll

- 38 -

If d has an s component, the result is the object c associated with that component.

Otherwise, the result ls the value undefined. (Figure 2."7(bX4))

(S) nilJtructure (d)

This is a predicate whose value is true if d is !!!L otherwise itJ value ii false.

Examples of the effect of these operadons are illustrated In fipre 2.'7(c). Notice that the effects

of

delete (d, s), and

append (d, s, !!ill

are different, since the the delete operation would remove the tuple (s,-, while the aepend

operation would replace 0it wtth (s, !ill). In generai It. il-fJOSSlble to distinguish ~ween these

two data structures using the select operation, slnct tt returns the ni! ltl'Udltre for one while

returning undefined for the other. It should be mentioned that an array is simply a data

structure whose selector names are all integers.

The set of operations together with the link actors and sink actors provides a complete

set of operations on data structures. 1 These operations allows one to create dynamic data

structures of arbitrary size as opposed to data structures which are declared to be of fixed

structure and mapped into linear representations at the compile tlme. The function of _..ge

allocation- for the data structure operations is implicit In these ~tions, while conventtonal

programming languages which allow this form of dynamic data atructures often use explicit

storage allocation primitives ...

This form of data structures can represent sparse arrays in a very efficient manner.

Since selector names can be character strings, it is possible to lmplem!!nt algorithms an data

structures _without having to explicitly encode the character strings Into other forms such as

I. Complete in the St'llse that the set of data stnlCtUrtl ts dosed under the operations.

- 39 -

[~ !! ! structure

d " " s

⇒

Figure 2.7(c) Effects of data structure operations

~
1 c I
\ I
'-"

-10- .

integers used as subscripts tnto an array. Thus. the user need nat be aware of the parttcular

structure or the internal repraattat6on. TIit NlfllMa .-,/ the- • ..,. operatlalls defined .
,.;_;;. .'

above is f'!_f! or stde-effem, becMne a data struc.tuR apnttan·.._,. ,..._ a new data

structure without ~ dala ltrtlCtQres 1111d Ill •, ,.. Ill; thc..i«hmlL Thus. the

computation ts free or~. e1l'eels. We feel thae •.....-... ~• ,,......._. tasks.

The _implementation.~ data stnKtures e111 • 11111d • 119' of unu: Art Item II

a storage node that ll'associated ~h ~,_ (llid) al~-- a tet of tuples of

the form (s, c) where c II either a utd el ,...., .. • a allr nlllt and I II_ the

selector of.~ component. Thus, a data ttrildlft Is,._._.~ a allct• ~~• In the

definttton of data structure apmttons (exapt die --- al tact,,~ on •

data structure semanttcaly cnata a new data stnadlln •••Jllll die ,_. fll the aperatton.

In this tmplemelltatton ol data atructures. the ,_. ef a .._ ••-- Is a scalar value

or simply the uk:I of the 1elected conipinent The .,.._ ef 11M ■IN eperatian.

however, must maintain the ltde ~ me,,..,.,., ne,... el

append (ex, s, A) . ,

is the uid or an item conttilllRf ~ new set of tuples which dlffffl ,,_ « OIIIJ III the tuple ,(s, >.) •
., .

Using items, an effictent tmplementatlon can be dtftMII.....,. ._I..., HflN creating

. a new set of tuples and ctoes •iot c:apy tht tlltin •ti fll lhe Thus. the

Implementation allows many con.,a11ent ltnlC:tllNI te N p11,-1y while •ifttalntng

the ~ect free natlml el the operattons.

There are many h1lpllmentattaf that ..,_ the effld•IICJ of these data

structure operations.

First, we must provide mechaftbftll far ,..._ ffllllll••t Thele ftlllthanisms must
.,.·.;

allocate items and must determiM when· the·_.... can l,e ,-1111ne&1. The latter must be·

dependent on the behavior of the pragram and • ... data •--- ..,...... may. provide

additional information for the resource manager. In traditional systems using dynamic resource

allocation and automatic rt$0Urce management, this information ts obtained by maintaining a

root node from which aH nodes accessible by the computation are traceable.

We choose a different approach to the garbage coltectton- problem. This approach is

possible only because the semantics of the data ttructure operations allows an implementation

that always produces an acyclic structure of items. For each item we include a rq,rn,,c, count

which indicates how many references (instances of its uid in the systena) to that item exist. Each

data structure operation modifies the reference count of the items. The set of operations. that

affect the reference count must include all actors which carry tokens carrying data structure

values; for example, the link actor which copies the uicl of a data structure must increment the

reference count of the item, and the sink. actor must decmnent Its ·reference count. Thus. there is

an overhead associated with each data struGtUreeperatilln •for maintaining the reference counts.1

The other concern ts that of the siae of the ftPde far storing the tuples. Since the

allocation of a variable size node is quite difficult, .we t.M only seen proposals that use fixed

size nodes. This restriction raises the problem of how to represent a variable size node with

fixed size nodes. An approach is to require that selectors have the property that each can be

considered as a sequence of symbols from a fixed silt alphabet. Then a variable node might be

implemented as a tree of fixed size nodes such that each path from a root node to a leaf node

represents a selector name. We refer readers to further radmp [Rumba75, Acker77J on this

I. It has been argued that the overhead associated with reference count storage management
scheme may be higher than that of garbage ·cone«ten schemes on cycftc structures. This
inefficiency argument against the reference count scheme is not valid when we adopt a scheme
called. split reference count: a uid to a data stn:Jcture is· conceptually a tuple (utd,
reference_weight), a link of two output arcs that receives (ex, n) fires by productng two tokens
carrying (a, n1) and (a, n2) such that n • n1 + n2- We should mention that this ls an alternative

form of managing items and its feasibility needs further tnveltjption.

- 42 -

subject.

Another important characteristic of· the operations Is that the form of data structures

created using these operations ts always an acyclk graph. This ii quite different from

conventional programmmg languages whtdt allow one to create -.,bttrary strUCtUres constructed

by manipulating pointers. We have explicitly dtsalluw«l SUGh eperadalls for sneral r~sons.

The creation of cycles is a programmiag techfltqae which has proved effective in

sequential programming. It is not dear, however, that·,sadt tethlffllueS are suttabte tn · a

programming language which does not allow side-effects; Tht progtammillg t«hntque can

indeed be Jimulat,d in a language not having cyclic structures by introdudng procedures which

interpret the acyclic counter part of the cyclic structure. ·It ti. destrl.ble tbat we can provide a

comparison of programming task of t.Jle two ·apptoadtes.. Unfortunately, we haft neither seen

nor found good cases against or for either approach. While<we dcJ-ltnow that semantia baled

on immutable cycles is a possible approach [Hende'5); jt · remains to be shoWn that cycles are

indeed an essential form of data strudUm.

The other reason for disallowing cycles ii based on a resource ·management argt11Re11t.

For systems such as.the LISP kltetpreter, the existence of cyclic data structures results in the

need for garbage cc,Hection schemes which rnaTk al of the accmible data stRICtllrel and

deallocate those that are left unmarked. This has the undestrabk effect that a computation is

interrupted during the process of garbace ~- Same tea!ftt. works [llaker'18. Bisho771

have reduced this effect by introducing garbage collection schemes which allow computations to

be running concurrently during the garbage collection. In a system which does not create cyclic

structures. the garbage collection scheme can be baaed en ,...._ munts and need not -reaort

to the elaborate schemes that have been developed.

In this thesis, we have restricted ourselves to acyclk data structures because the

implementation of procedure activations and streams are erthogonal ·to this ilAMt Tt.erefore.

we leave this as an area that can be investigated by others.

2.5 Discussion

The ~ actor presented in Section 2.2 requim that all input· values to be present on

the input arcs to become enabled. This has two implications.

First, the language definable based on the me!! actor must define ltS semantics based

on "call by value", that is, a procedure (or, interchangeably, schema) application ts well defined

only for the case when the computations prcxlucing inputs to the procedure terminate. This can

be contrasted with the more general form of procedure appffcations which allows a procedure

application to take place even when the computation of some of the input.I: does not terminate.

The more general form of procedure application flas a desirat,le semantk property whtch is

ofl:en referred to as rtjtrtntial transpa.rtn'7 or the property of substUution [Stoy771 Let f and g

be two procedures such that f appears as an application tnside'9'~ and let g' be the procedure

obtained from g by substituting the text of f tn pla~ etthe applltation. In the language that ls

referentially transparent the specification of the functional for g will not depend on any

specification of the termination property of f, thus, the functtonal for g and g' will be

equivalent. In the language whose procedure applications must depend on the termination of

the procedure f, the procedure g and g' would be of different functionals. Thts is because the

.substituted procedure allows the computation to proceed Without watting for all Inputs to be

available. The difficulty with designing a system which supports a referentially transparent

language is that it needs mechanisms that detect when the result of a subcomputation ls not

· required for further computation and prevent the nonm-mtnatiftg subcomputation from wasting

computing resources.

The second implication is if the operation of the apply actor ts Implemented in a

straightforward manner, the degree of synchrony of the computation ls reduced. Because, in

- ff -

most cases, th!fe are parts of the computation that can prvceed u I08ft as some of the input

values become available and need not be constrained to watt for the arrlval of other inputs.

For a referentially tnnsparent language, this asynchrony ts achlnable. while for the language

with call-by-value semantics this asynchrony is _._.... _.. ane knows that an

computations terminate.

A consequence of lide-eff«t4ne data struc:ture is that some operations

whkh seems rather simple to perform ta atsUnt 1-.....- bete111e more complicated.

Consider a data structure A from . which a data llnle$Ure A' is l:o be canstructed whkh ls

ldemkal to A except for the component

mt(m.l{ A,. •a 1, •ci.

To construct A', we need the fellowing ~ -"° 11..-..-..a suprJag_ b provided: ·

aR£Mll(I(~ •a•, (

append(~ A. •ai>. •c•,c')).

Thus, from the criteria of eut of expmuen, ane ~---i...., lev,& operattan•.need to be
.•

defined.

There are many ilSUel that reqwre further SludJ te ~ .ft.la, tile .,akatton of

the side-effect free semantks. We have alrea4y_. \N1eftJ on die is5'eUWI c,cltc structures.

Another interesting issue relates to the ~•~.Qf,maay algorithms that have

been .found to be effkifflt bU,tJ,ave ,_ beelu.._ to.bl .-,,~t ~ ~- free

operations. Examples of such •Jconthtns ar, heap ••-. -:~hHoU15l . Thtls, .the

criteria· for choosing appropr._te. -algetithml fa' .,,._.. •J bl. lipifkandJ dirrer.tt

depending on whether MOdtficaUant are,anc.d·• data........, Stlll anotller ara
I

ts the semantics of nondeterminate computatlona.

Chapter 8. A Textual Language

In this chapter we introduce a programming language based on the model of data flow

schemas _described in Chapter 2. The language departs from conventional sequential languages

in many ways. We have removed the noHon of sequential control flow of a computation by

introducing value-oriented semantics. There are no explktt llnguap prtmttl'Yes for Introducing

parallelism. The concurrency of a computation ts determlfted by the data dependency Within

the program rather than by explicit creation of COl'ldimnt processes. White it is possible that

compile time analysis can be performed on sequential programs to produce an equivalent

program of greater concurrency, this does not help programmers to express computations in a

form which exhibits high level of concurrency. Furthermot,, no complle time analysts has been

able to extract the inherent concurrency from a program containing unnecessary constraints

which are the result of language features based on the assumption of sequential computer

organization.

The language does not have the notion of memory locations or variables commonly

found in conventional sequential programming languages; instead we introduce the notion of

naming for identifying a value in a computation m Y'1'J _mµch the same way mathematical

notations would use names. With the value oriented semantics, we expect programs now can

exhibit the inherent concurrency of an algorithm, and may even provide additional motivation·

for designing new algorithms of greater concurrency.

3.1 A value-oriented language

The language is value-oriented in the sense that each syntactic unit corresponds to a

function whose evaluation produce a set of values. The computation associated with a syntactic

unit called an ,xpr,ssion does not interact with the computatkln of other expressions in the

-46-

program. While the purest form of value-oriented ~ does not use-names for defining·

values, we introduce names for defining procedum and for connnlence of programming since

naming is a useful mechanism for identifying values rA expressions.

In this thesis we will not be ~ •--- many ~• dalgn issues that arJJe In

making the s.yntax and the semantics of the language rich enough for• u~ to program in.I

The language is intended only to demonstrate the ,xutence of a l'QSOPable syntax and to

facilitate the discussions in later chapters. The set, of Jlata types consists of intger, mJ,

boolean. character,,strin&, and structure. We Jhall call,~.da• types st•l1l• do.ta i,p,s. The

set of operations defined on integer, ml, booJ,ag, and S;hl4$(,,,fW91 are the usual operations

seen in many languages. The operalioN on sl11PUl:fl'e the• of'~ structure operations

given in Chapt(!r 2.

The syntax of the language is given in Figure 3.l A p~~re deflnttiQn consists of a

list of procedure definitions followed by an expression. A procedure definition is of the form:,

-· a 11st or procedure deflnltlOns _

<expression>;

end P;

This defines a p~ure P that requires m lnfnll ooltus a1,....am of types T 1.-... Tm respectively.

The names a 1,. .. ,am must be distinct and can appear in <eXpressian>. The evaluation of the

I. The language described here can be regarded as a subset of the language called VAL In
development at MIT [Ack:De78l

- i7-

Notation : { < E > }+ means < E > I < E >. { < E > j+
{ < E > } means <empty> I { < E > i+ .

< program > ::• pr9&ram { < procedure def > } < expression > end
< procedure def > ::• < name > • procedure (< tnpat fiSt >)

yields < output list >;

{ < procedure def > }; < expression >

end <name>
< input list > ::.. { < type declaration.> }
< type declaration > ::• < name > : < type >

< output list > ::• { < type > } •

< expression > ::• < primitive expression >

I { < expression > i+
I < let-block expression >

I< conditional expression >

I < application >
< let-block expression > ::•

let { < type declaration > }; { < name def >); tn < expression > end
< name def > ::• { < name > } • < expression >

I < name def>; { < name > } • < expression >'

I< empty>

< conditional expression > ::•

!f < expression > th!!!, < expression > ~ < expression > end

< application > ::• < name > (< expression >)
< primitive expressi~ > ::•

< expression > < primitive operation > < expression >

I < primitive operation > (< expression >)

I < name > I < constant >

< simple data type > ::• integer I real I boolean I character-strinc I structure

< type > ::• < simple data type > I ~ of < simple data type >

Figure 3.1. Syntax of ! value-oriented lancuace

- -18-

procedure yields an ordered set of outf>Ut Nbus of types R1.....Rn resulting fn,m the evaluatian
. .

of <expression>. While each procedure in the list of procedure definittons may Itself contain

procedure definitions, we adopt for simplicity the scope rule that all procedure names are

globally defined - that is, no two p~ can have th,--- oameJn the entire pqra,n.

An expression has several attributes: arity and ardertng. Each expression yields an

ordered sequence of values. The arity of an exprlllion *'-~he size of the sequence of values It

yields. We give a recursive definition of the artty. A(E), of each or· the'*. tt,eJ of expresstons

as follows:

A(<primitive expression>) • I.

A(<exp1>, ... ,<expk.>) • A(<exp1>) + ••• + A(<eXfJt.>), ·
A(<let-block. expression>) • A(let <definitions> in <Up> m!l)

• A(<exp>).

A(<conditional expression>) • A(if <exp> then··~>·-_ ~..Pr>end)
- A(<tXPt>) (and must equal 'A(~~)). .

A(<appli~tion>) • the number of rc.flJlll Ustec:t. ill tilt. - ~~we of the procedure
definition.

For a procedure to be well defined the arity of the expression of a pi'GCl!dure must match the

number of result types declared in the yields clause. Names appearing ln an expression must be

defined either in the input list of the procedure od,.,......re--.

In many situations it is convenient to introduce a name for an expression because It Is

a common subexpression of a larger expression or because it is necessarJ to build a new

expression whose values are permutattons of another.'· 'The •~ tipresslon ls used for

introducing names each standing for an expression of ¥itJ one. A tel-block expression, ll of the

form:

let { <type declaration> }

<name-list1> • <exp1>;

in <exp> end;

Where the names in <type declaration> of a let block. are temporary names· meaningful only

within the block, and any reference to tftese names outside of' the block is not defined. These

names must be distinct from each other amt may appear in the expressions <exp1>,. .. ,<expk >,

and <exp>. Since they may conAict withnames·fet Inputs of' the procedure or names dtflned In

outer let-blocks the scope rule is that innermost cleflwitlons tale p'9Cedence over the outer

definitions. Type declaration of names is in the form:

name1 : type1, ... , namek : typek;

where type1, ... , typek. are one of the allowable types.

We requtre that the number of names in a name-ffst be equal to the artty of the

expression on the right side of the equality sign. The value of a name in a name-list ts the

value of the corresponding expression appearing on the right hand side of the equal slgn, and

the value must be of the type specified by the type declaration of the name. The value of a

let-block expression is the value of <exp> enclosed by !n and !f!5i.

A conditional expression ls of the form:

!f <exp1> then <exp2> else <eXP3> !!!!;

The expression <exp1> must be a boolean value of arity one. The expressions <eXf>2> and

<exp3> must have the same arity and the corresponding vahR in ach expression must be of

the same type. The value of a cenditional expresstoR· ts: <e~ if. •JCPJ> evaluates to the

• !'JO.

boolean value true; <exp3> tf <exp1> evaluates to false; otherwise. undeflned.1

A procedure application expression ts of the form:

P(<exp>);

where the arlty of the expression <exp> is the number of input values reciuired by procedure P

and the type of each value must match that of the input specifkalion. T'9e result of the

procedure application is a sequence of values of size and types specified by the yield clause of

the procedure heading.

A primitive expression is an expr~ioll that uses die • of. primitive operations

defined on the data types. for hl$t0rlcal rflMJIIS we ~ two forms of prlmiUve

expressions: inflx and J,rtflx. An infax exprasion. ts of • fomt

<eKpf?,operalion <e~;.

where the operation must be a binary ~ and <Ul't~ and <Uf12> must be JJf adty one

.and of compatible type with the operation. A prefax pt.ifl)jtive ~Pf'ISios, aof the form:

operation (<exp>);

where the expression .must be of aritJand.typecampatiblew.llh tbt0opertUon.. ·

I. We wiA assume that, most data flow actors produce die value updeftned, if IOl1le nqutred
input value is undefined.

- 51 -

An example

We give a procedure that defines a paralleUactorial computation below:

Factorial ,. procedure (n : integer) yields integer;

Product • procedure (n1 : integer. n2 : integer) yiekls integer;

if n1 >• n2 then n1
else let middle : integer;

end

end Product;

middle • (n1 + n2) quotient 2;

/t,, this is an integer division .,

in Product(n1, middle) • Product(middle+l. n2) end

[n < 0 then ~ else Product(l, n) end;

end Factorial;

3.2 Correspondence bgween tl!!, lancuap !M data flow schemas

A procedure of m inputs and n outputs corresponds to an (m+I, n+I) data flow schema.

The m input links corresponds to the m inputs of the procedure. The data flow schema has an

additional input link called the trigger link whose purpose is to send trigger values to constant

actors in the schema. The additional output link .is for passing signal values from sink actors.

As a convention, we require a tricger input link and the !!&D!l. output link be there whether

constant actors and sink actors are used in the procedure or not. Internal actors of the data

flow schema evaluate the expression of the procedure.

The translation of a program in the language into data flow schemas is quite simple

due to the value-oriented semantics of the language. We give an informal and recursive

translation procedure below. In this translation procedure each expression is translated Into an

(m, n) schema S whose input links are labeled by names. We shall use the notation In(S) to

- 52-

denote th~ set of names used as labels for the input links of the schema S. The notation Sue(a

) defines the number of dlsttnct names tn the ,et u; (a U ,-) def'lnel the unkin of two seti a and ,-;

(u - tl) defines the set that contains the elements tn a which -are not tn fl.

Given a procedure P, r~ contains a set of procedure definitions { P1) and an expression E.

(I) Translate each procedure Pi into an (m1, nt> schernatanl a,d tilt name P1 to the global

name space of the program; Since pnddure names •ie untcpaely defined , there is no

conflict of names in the name space.

(2) The translation of an expression is defined by cases acm1-~the syntactk structure

of the expression.

(a) E • < primitive expression >

If E is a name, then it is translated into a smgle link actor labeled by that Mme. If

E is a constant, it is translated into a constant actor whose input arc ts connected

from a link actor labeled b1.U![ad ~...-m a:'llllllec:ted to• - If E ii

. a primitive expression,

<primitive operator> (Ei),

then the resuking schema S for I ls an (m, n) sc:hema where m. • "'J assuming E1 Is
. .

translated into an (m1, n1) sc:hema s1. The connettlon between the input arcs of the

primitive operator and the output linkr or sdtema'S1 Is' lmplkttly defined by the

ordering of the expression Ii u · i1loWft ln.l.Jgtlte' 3.2.(a~·- ;Tfle tnput finks of s1
become the inpUt links of S. The output a,-d die~•• cprator-.are cannected

to the output links of S and an extra .wtpyl link ts. «.atld a.nd labeled 111!!11 If the
. . .~ -- - - . . . -. . .. - .: :> . . - -

schema S1 contains an output link labeled st&nal Thus. .. " Is either equal to the

output arity of the primitive operator or ls larger than It by one.

(b) E • E1, ... , Ek

Translate £1• ·- • Ek tnto s1• ·- , sk~ wMte-ath s1 · as ur'(fttt, n~ schema. The schema

- 53 -

(a) E .. < primitive expression >

E •<name>

• name

(b) E - E1, ... , Ek

tri,,er

E • < constant > E • < primitive operation > (Ea)

tricger

• •

(
.

S1 ... (Sk

•• . . .

Figure 3.2(a), (b) Translation RYJ!!

S is an (m, n) schema such that

m • Size(ln(S1) u ... u Jn(Sk))

n • n0 • the sum of ni, for i • I, -· • k, if none of the output links of s1 are

labeled signal; otherwise

n • I + no - (the number of output abtled Ul.!!!J).

The construction of S from s1's is by conn«titlg Che set of m input links to the input

links of each Si according to the labels of their taput links and bf, mnaecttng an
output links of s1, ... , Sk to the n output links tn ,the order defined by the expression

such that a 11 output lh;ks labeled signal are ~ected to the only output ~ink of S

labeled signal. (Refer t0; Figure 3.2(b).)

(c) E • let T, N result Eo end

The type definition T only provides information for compile time type checking; N. ls

the list of name definitions containing k names; and F,o ls an expresston. The

translation of expressions in N yields an (m1 •. n1) schema Si -where n1 • k or ~•I

depending on the existence of~an ou&put link labeled nnal These k output links

are labeled with names in N a«Ording to the definitiolt. The translation of Eo yields

an (mo, no) schema So-

The (m. n) schema S is constructed by cascading s1 and s0 such that the set or
input links in s0 labeled ~ith the names in N are comleCted to the output links of S1.

The set of m input links are labeled with names in the set (ln(S1) u (ln(So) • N)) and

are connected to input links of s1 and So according to the labels. The output links

of S includes the n0 output links of s0 and may contam an output link labeled !!1!!11
if one of the following three conditions is true:

(i) s0 or s1 contains an output link. labeled ·!!&!!!I: In this case simply connects

all such output links to that of$.

(ii) The set (N - ln(So)) is not empty. This implies that the set of names

defined in N are not all wed tn the expnulln Ee,; and. therefore, must be

discarded using sink. actors which are then (Ollnected to the output arc labeled

signal

The resulting schema is shown in Figure 3.2(c).

(d) E • if. E1 then E2 else E3 end

Let s1• s2, and s3 be (m1, ni>, (m2, n2), and (m3, "3) schemas translated from E1, ~

and E3 respectively. For a well formed conditional statement, note that n2 diffen

from n3 . at most by one. The S is an (m, n) conditional schema such that m • Size(

ln(s1) u ln(S2) u ln(S3)). This conditional schema tQntains m' switch actors, where

m' .. Size(In(S2) u In(S3)). (Notice that m' may be less than m3 becuase some inputs

are used only in the predicate of the conditional schema.) It contains n3 merce
actors, where n3 • maximum(n1• n2). The true branch· of the conditional schema Is

obtained by modifying s2 by adding additional • actors If m' > ~ the f.!!!!
branch is similarly constructed. This construction rmllt itl a · schema S shown In

Figure 3.2(d).

(e) E • < procedure application > • P (Ea)

Let P be the name of a procedure which is defined to have m input values and

yields n output values. The translation of the expression Et produces an (ma,, n1)

schema. The schema S for E is constructed using a constant actor of.value.,,. and

an um!x, actor of m+2 inputs and n+I outputs as shown tn Figure 3.2(e). The !1!eJ1
actor requires m+2 inputs because the first input is for the name of the procedure

and the m+I inputs and n+I outputs are for the (m+l, n+l) schema translated from the

procedure P.

(3) The application of the translation rule to the expression E yields an (m'+k, n1 schema

S, where m' = m, or m+I and n' • n, or n+I, if the procedure P is defined to have m Input

values and n output values. The extra k input ara are due to the procedure names used

in the expression E, and m' and n' de~nd on whether a triccer input !!n!, and a signal

output link is produced during the translation. We obtain the final (m+I, n+l) schema for

P by adding constant actors whose values are k procedure names and by adding a trigm

- 56-

(c) E • let T. N in £o end

for s1 for s1 uSc)
trigger r----"'----. ~

. . .

.. . . .

.

Figure 3.2(c) Translatton r!fn

(d) E • !f E1 then E2 else E3 end

trigger

- 57 -

Figure 3.2 (d) Translation rules

- 58 -

(e) E = P(E1)

~

Figure 3.2(e) Translation rules

and a signal link if necessary.

This concludes the translation procedure. The result of the translation procedure on the

· procedure definition for computing the factorial of an integer is shown in Figure 3.3.

3.3 Discussion

We have not introduced data type declarations for arrays or records. It is desirable to

introduce additional dedaration mechanisms for defimng data structures of specific forms such

as array, record and ~ types, because such declarations provide effective compile tlme

checking which would otherwise be costly at execution time of a program. These are regarded

as extensions not of our primary concern in this thesis.

The implementation of procedures as values (or, procedure-values) is a very subtle

issue that involves, both the representation of procedures and the manner in which procedural

values are used. In this simple language. we have only allowed application of procedures that

are defined at compile time. The use of a global name space for procedure names ts overly

restrictive in that there are many situations where definitions of local procedures are desirable

without regard to use of names. The use of a global name space also violates principles of

programming methodology which emphasize the importance of modular program structures

and language structures which guard against the propagation of unintended or malicious

side-effects.

In a more general programming •nguage, we would like to be able to dynamically

create procedures by compiling a procedure definition or by combining existing procedures to

yield another procedure whose function is the result of oompositlon of others. "f o implement

these operations on procedure-values in an operatton model that ls free of side-effects presents

several problems.

-60-

X

2

F : (2. 2) schema

trigger

Figure 3.3. A example of translatiOn fl!l!!:2!l'!M pngdun f:.
F•procedure{!_:intm,)~....,,.
. . -If X .-< 1 · thfW X. 4' 'Jt t'P(I • I) end - -end F .

- 61 -

The creation of procedures cannot simply cause updates to the global name space, since

this would create side-effects for the processes having references to it Another problem relates

to the construction of recursive procedure definitions. In Henderson's binding model [Hende75l

the construction of recursive procedures is cast in an operational model that allows data

structures containing cycles. In the language presented here, we have been able to allow

recursive definition of procedures by introducing a global name space such that no cycles are

created. While it is possible to extend this scheme for constructing recursive p~ures

dynamically, it seems premature to define any implementation of procedural values without

further conclusions regarding the desirability of data structures containing cycles.

- 62 -

This page intentionally left blank

- 63 -

Chapter 4. Implementation of Data Plow Sohemas ln a Data Plow

Processor

The data flow schema model presented in Chapter 2 is based on the graphical

representation and a data flow interpreter that implements its operational semantiC$. ·in this

chapter we present the structure of the data flow processor and an implementation of the

interpreter. Section 4.1 introduces the structure of the data flow processor, and the remaining

_sections describes the representation of a schema as a data structure and that of an activation of

a schema. In Section 4.3, we present additional modifications on data flow schemas for

implementing the semantics of procedure activations.

,U Data Flow Processor

· The structure of a data flow processor for supporttng the execution of recursive data

flow schemas is shown Figure 4.1. It consists of six subsyst•s: functional Uniu, Structure

Controller, Execution Controffer, the Arbitration and Distribution Networks and the Pack.et

Memory. · Tlle proctu-or is based on a packet communica.tlon desig~ principle that has been

advocated by Dennis [Denns75J. The arcs between subsystems represent channels through

which packets of the specified types are sent. Two major subsystems of interest to us are the

Packet Memory and the Execution Controller.

The Packet Memory holds data structures as collections of storage nodes, CJlled it,ms,

each of which represents a tuple of a one-level data structure. An item may have scalar values

and unique identifiers of other items as its components each identified by iU selector. Thus, a

collection of items can represent an acyclic directed graph where each arc corresponds to a

unique identifier component of the item representing its origin node. The Pack.et Memory

maintains a reference count for each item and reclaims physical storage space when items

result
packet

result
packet

data structure

Structure
Controller

command ----rn

instruction fetch
command

Distribution
Network

activauon record

(Data Structure)

Packet Memory

(Procedure Structure)

Execution
Controller

data structure
operation packet

Arbitration
Network

--CD
~-activation r«ord

command response

(Activation Record)

Packet Memory

Functional

Units

Figure -U. D!l! f.12!. Processor

scalar
operation packet

- 65 -

become inaccessible.

Structures held in the Packet Memory have three roles in the execution of data flow

schemas:

(I) as operands for the data structure operations implemented by the Structure

Controller;

(2) as proctdurt structur,s that represent data flow graphs and have as components

instrnctions of a data flow procedure which are encodings of actors and their output

arcs in a data flow schema; and.

(3) as activation records which hold operand values. i.e. tokens arrived at an actor, for

each actor instance while waiting for their enabling cond,ition to be satisfied.

The concept of a Pack~ Memory System was introduced by Dennis. and the design

issues for these systems and the Structure Contr.oller have been studied {Denns75, Acker'16l In

Chapter 6, we discuss in greater detail the properties of the Packet Memory that must be

satisfied to support these structures effectively.

The Execution Controller fetches instructions from a procedure structure and operands

from an activation record that are stored in the Packet Memory and forms them into operation

packets. Each operation packet is passed to the Arbitration Network for transmission to an

appropriate Functional Unit if a scalar operation is called for, or to the Structure Controller for

the data structure operations. Instruction execution in the Structure Controller and Functional

Units generates result packets which are sent through the Distribution Network to the

Execution Controller where they will join with other operands to activate their target

instruction.

The Arbitration and Distribution networks are both store and forward networks and

-66-

·can forward a packet from any one of the input ports to any one of the outpllt pons.1 It II

important to realize that the delay or packet traffl'SII througli- the netWOrks ts subject to

variations due to the resolution of contention for buffers among packets in the networks. Thus,

the ExecutiOrl Controller ha, to store the resuit packets as -operatldi and 4etect the enabling

configuration of an actor regardless of the order of arrival of these packers. That thls can be

Implemented· correctly will be seen later wlifn • gtw dtitled represellfatloAI tA procedure

structures and actf.vatton records.

Although the Execution Controller, Structlare Controller •nd lhe·Packet Memory are

shown in Fig1:1re <I.I as single units, each is m fact a c:10ltec.ttiNI of,_., tcllnttcal units. For

example, the Packet Memory sabsystemwould'CoMistof ...,....,_..8'adt,boldtng an items

whose umque · identtflffs belong to a welt dt!flMd -~ lJf t11e, address" tpam or unique

identifiers. The Executton Controller 111btys(IM ..,_ :fl icllntkat modules each of whtch

would serve a distinct subset of procedure 1t1tvatlons.

4.2 Procedure Structures and Activation Records

This section P!esei'.lts- several alternatives to the representation of procedure structures

and activation records. Smfon·'l.2.1 presents a simple tepreientattoa:and tnay incur unnecessary

delays in instruction execution. Section 4.2.2 gives two other altemattves. In the rest of the

thesis, however, we wiU assume that the simple representitton presalieicUn Section 4.2.1 ts used.

L We refer readers to [Bough78] for further readings on a possible approach to the design of
such networks.

- 67-

i.2.1 Procedure Structures and Activation Records

A data flow schema is represented in the machine by a kind of data structure called a

procedure .structure. A procedure structure corresponding to a data flow schema of n actors Is a

data structure having n components with integer selector names from I to n assigned to the

actors. Each component, called an instruction, is an encoding of an actor and its output arcs.

An actor having n output arcs is encoded as a data structure shown in Figure 4.2. We

shall call the components fields of an instruction. The Operatton field defines the function

performed by the actor, the destination fields DI, ... , Dn define n output arcs. Each destination

field has three subcomponents: the Inst component ls the integer selector name of the

destination; the Input-Arc component is an integer designation of an input arc of the

destination; and the count component is the number of r.esuk packets expected by the

destination.

Since multiple instances of the same schema may be concurrently active in a

computation, each activation (an instance of a procedure execution) is represented as a separate

activation record whose representation is shown in Figure 4.3. Each actor in an activation ts

uniquely identified by the tuple (A, i), where A is a uid of the root node for the activation

record and i is the integer assigned to the actor In the pr«edure structure. A token of value v

on the k-th input arc of an actor (A, i) corresponds to a result pad,tt that carries the

'
information (A, i, k, v, count), where count indicates the number of tokens (or operands)

required for the enabling of the actor.

An actor is enabled when the number of resuk packets having arrived at the operand

record -- the i component of the activation record A - is the same as the count in the result

- 68 -

(a) procedure structure

I
r

I 2 • • •

L l
/ ' / '

(instruction) ()
'- ,/ ' / - _,.,. ..__ -- _..

(b) instruction

I I
r

I
operation J_ • • • Dn

1 _l_
/ ' / ' (destination) ()

' / ' / ---- ---
(c) de5tina tion

I
Dj

I I I
Inst Input-Arc Count

l 1 1

Figure 4.2. Procedure Structures

- 69 -

(a) activation record

r
• • •

(b) operand record

"arrived"

Figure 4.3. Activation Records

- '10 -

packet. 1 The detection of enabling is a function of the Execution Controller that processes

activation records. Upon enabling of an actor instance (A. i), the instrUCtlon of the actor is

fetched from the i component of the procedure structure.

An activation record shown in Figure -t.3 has comporierits· with integer selectors for

operand records and an additional •text• comportent that is the procedure structure for the

activation. On our implementation, this component may be shared by other activations of the

same schema.) An operand record may have as many integer subcomponents as input ara of

an actor, and also contains aft •arrived• su~t indicating ,tllei~ of arrived result

packets. Since an activation record stores values of arrived mutt packeu in Its components.

operations on an activation record modify its components. The operations on activation records

are defined below:2

(I) create-activation{ P)

This returns a new activation record with P as its "text• component and with f'.IO

other components.

(2) insert(A, s, v)

The operation adds to A an s component with value v. The selector s ls or the

compound form i.k where k denotes the k-th input arc of the instruction i. The

operation increments the i."arrived• component by one and returns the Incremented

value. If the 1.•arrived" tomponent is undeflf\!d 0.,wiue is tak-. as zero since It

I. With the exception of the merge actor, the enabling condition is easily implemented by test
of equality. Under the restricted use of merge actors tn·wn formed data flow schemas, a D!!!I!
actor is enabled when it receives one input token.
2. We have treated each operand record as a structure with selector names. This should be

considered an abstraction that can be implemented m , an optimtzed form. A practk:al
implementation of the operand record would be based on some mapping of the fields Into
operand records of a fixed size.

- 71-

indicates that the field is non-existent.

(3) remov~ A, i)

This operation deletes the i component of A; and ts perfermed by the Execution

Controller upon the delivery of the operation packet· for the actor instance (A. i).

(4) fre~ A)

The operation deletes the entire activation record A. The section on the

Implementation of procedure activations gives an exafflf)le of Its use.
\

The Execution Controller consists of independent modules that provide caching of

activation records. For each arriving result packet containing (A, i, k, v, munt), the Execution

Controller performs the operation insert(A, i.k, v) and· tests the value of the •arrived•

component against the count compenent of the result packet. If the vahtes are equal, the

instruction is fetched. Upon the arrival of'the lmtruction pack« •t the Execution Controller,

an operation packet containing the information (A, instruction, operands) Is sent to the

Arbitration Network containing the instruction afld operands from the activation record. The i

component of activation record A is then deleted by the Execution Controller.

The fetch command issued to Packet Memory is of the form:

< fetch, P, Inst, A>.

This packet causes the instruction structure of the Inst component of the procedure structure P

to be brought into the Inst component of the activation record A.

4.2.2 Two other alternative representations

In this section we present two alternative represen~ el procedure structures and

activation records that have some advantages.over the one praented.

The procedure structure of the first scheme is the same as that of Figure -t.2, but the

- 72 -

activation records now have a •text• component for each operand recx,rd u shown in figure

4.4. This component is supplied by resuk packets destined for the operand record. for each

enabled instruction,. the Execution Controller can, therefore, dtredly use the ukl contained ln

•text• component of the operand record to fetch the instruction Without- having to obtain the

uid of the procedure structure from the activation record presented in the previoal scheme. In

this scheme a result packet must, therefore, carry the information (A, t. k. v, count. P), where P

is the uid of the procedure struct~re.

The second scheme is a further optimization of the first. This scheme eliminates the

redundant information, the •count• and •ten· component. camed by:all result packets for each

operand record. The procedure structure is shown in fipre U. wher~ the •tag• component of

the destination field is a boolean value of either !!!!-or f!m and stptfl• the die values for

the "count" and the "text• component of the -destn,a• epennd rec:.ont · are to be tent if It ts

~ otherwise, ooly the operand value is containecl:in the result packet. The boolean value ~or

the "tag" component of each destination structure mmt·be assigned, by the compiler such that a

true tag is associated with one and only input arc of an actor. A schematic Illustration of an

example of this assignment is given in Figure i.61 where the broken arc represents the

destination field to which we have assigned the value ~ 1ft this f'igllre, we have chosen .the

assignment rule that assigns true to the rightmost input arc of an actor. Note that a merge

actor bas two broken· input arcs, this is because only one branch of a condkional schema ls

executed.

The content of a result pack.et is the tuple (A, i, k, v, count, P) lf the tag for the

destination (A, i) is true; otherwise, it is (A, i, k., v). The structUre of art operand record b

shown in Figure 4.7. lnitialfy, the two components !'arrived• and ~• are nil- For each

result packet the •arrived• component ts incremel'lted by one and the-resulting value ls tested

(a) activation record

r
I

/l~
/ operand\
\ record J
\.. /

---- -
(b) operand record

- 73 -

A

r
n

(A, i)

I k • • • "arrived" "text"

/l, l,
/ \ I k-th '
\) \ operand, ' \ / _..,,,, -----

/ l" /1"
/ number of\ /procedure\

\ arrived J ~tructure /
operands; , _ / , _ _,,,

Figure 4.4. Activation Records

(a) procedure structure

(b) instruction

operation

l
(c) destination

I
Inst

l

- 74 -

r
2 •

• •

I I
Input-Arc Count

l 1
"tag"

l
/true',

I -
or I

\.Jals~/

Figure 4.5. Procedure Structures

F : (2, 2) schema

tri&&er x
l 2

-- -·--

triggtt (~ --r---
I I

----=-~-\
~I I I

1 I

~ \
\ \
\ \

\ \
\ \ I
. _ _ _,, __ _...,_..

......... -,-..< _,,,.,..-,_:;;v v.:..
I 2

Figure 4.6. An example oft!&, asstgnmeng to the JChema shown in Fi1ure 3.3

I
I

/

I
l
1
}

(a) c1 cti va tion record

/ operand\

\ record /
'\.. ./ -

(b) operand record

J

I

- 76 -

A

(A, i)

n

l
/' '\
l l
\ /__

I
"arrived" "text"

l, /1,
(umber or\ (ilrocedure\

(arrived) ~tructure J
\ operands /_ /
'- / -

Figure 4.7. Activation Records

- 77 -

against the "count" component.1 In addition, for a result packet of the form (A, i, k, v, count, P),

the "count" component is written with the value count and the •tex,• component is written with

the uid P. An instruction Is enabled when the values of •count• and "arrived• are equal.

Notice that in all of the schemes presented, the instruction for an enabled actor is

fetched only when it becomes enabled. Thus, there is an added delay between the enabling of

an actor and the delivery of an operation packet. A further elaboration of the instruction

execution scheme can be based· on use of the "taf field and ~n allow the instruction of an

actor be to fetched before the actor becomes enabled.2 This is achieved by requklng each

subsystem that processes an operation packet to ·issue to the Packet Memory an instruction fetch

for the destination operand record as it awaits for the arrival of other operands.3

These two schemes introduce additional changes to the implementation of procedure

activations, since the input links and output links serve as the ,interface between procedure

activations and must conform to the schemes described. We will not detail such changes, and

will present the rest of the thesis based on the scheme described in Section 4.2.1.

4.3 Procedure activations

The problem of implementing procedure activations has been investigated by

[M isun78, M iran77]. we present here a scheme that is consistent with our representation of

procedures. To implement application of schemas, we introduce four additional actors: linka&e,

make-ret, distribute and extract-uid. The symbols for these acton are shown In figure 4.8. For

I. if the "arrived" component is !:ill, it is assumed to be zero.
2. This is similar to the instruction fetching schemes of lookahead processors. We mention

that in this scheme the assignment of tags may be important.
3. In this case, the enabling condition can be modified such that it treats the instruction as an

additional operand required for the enabling of the instruction.

(I) linkage
activation r«ord

A

signal
(optional)

(2) make-return
activation record . base

A I

(3) distribute
(A, I, K)

(A, I)

- 78-

when. constants m written i!!!2 th!~
y A v

!!hm constants m !tlmn i!!J2 tht ggg:
number.~mub . ,c·

K

(4) extract-uid

(A, l+K-l)

Figure 4.8. ~ f2t ima'mmltin& ~ure 11?J)llcation

- 79 -

brevity, we illustrate the implementation with an example. The schema shown in Figure f.9 is

a translation of the schema for the factorial fUnctJon sha.,p in Figure 3.3, and ~ies the

~dditional actors. This embodiment ts based on an tnstructton asstgnmnat rule that assigns

integ~rs to each actor of the augmented schema. The moc:tpkation creates an (m•2. n) schema

from an (m, n> schema translated fnnn a textUal ,,,_,.,n·-described in Section 3.2. The

instruction assignment rule is the following (referring to Fig~re f.9):

(I) The link actor labeled ret is assigned the integer one.

(2) The link actor labeled env is •~~igned the integer two.

(3) The remaining m input link actors ~lespectively assiglled 3, ... ,and m+2.

(4) The link~ge actors that:suppty • ,rakles to the new activation and actors that

receive output values from it are resp«dVely a~lgned consecutive• integers. In

Figure 4.9, the actors labeled I, I"~••: ... ,1+3 are lmk!$e acton JUpplytng input values,

and the link actors labeled JJ+I receive rosuk values from a procedure activation.

(5) The assignment rule fot t.he fflhaining actors ls arbitrary.

In Figure 4.9, the first inpuf H!!k actor 1'bcJea •ret• expects a. value that encodes the

destinations to which output values will be returned. T,t,e encoding CQnsists of the uld of the

activation record, the smallest integer HSigned to the link actors receiving output values, and

the number of output values. The distribute actor decompose,s thb tuple into destinations and

forward them .to output ·link.age actors of the new activation. A linkage actor communicates

between two different activations and expects three inputs: a value v, an lnstruc:Uon number I,

and a uid of another activation A. The firing of a linkage actor (A1, i1) ln an activation Aa

sends to the op6and record (A, I) the resulr packet (A,J; I, v). In addition, ~his Hnkace actor

may have a signal output arc destined for an actor within the activation At·

The second link actor expects the ui' of the ,nvtronmnat structur~ that contains all

procedure structures with their names as selecton.

The semantics of the ~ actor is implemented by using create-activation to allocate . "

an activation record. The create-activation acter· requires two -,uts: a uid of & procedure

F: (i, 2) schema
ret
I

- 80 •

mmt
- 3

X

4

Figure i.9. An example for the implementation of the U!l!!1 ~

- 81 -

structure and a signa I that is generated only when al·Jnput arguments for the activation have

been computed; and its output is a free, uid A. The uid of a prvcedure is selected from the

environment structure using the name of the proctdure. The uid,of the activation record A is

sent tQ the linkage actors I, ... , and 1+3 which forward arguments to the activation. For these

linkage actors the instruction number of the destiutians are respectively·assumed to be I, ... and

4. The value encoding the return destinations for the new actt1Jltten ls constructed by the

const-ret actor using the output of the eKtractjlid aelQI' which ex.tracts from a resuk packet the

uid of the activation; and it is sent to the first input UH, of the invoked activation through the

linkage actor, I.

A free actor releases the activation record and is enabled only when all activities within

the activation have ceased.l In Figure ._9, notice that,,... ICD!l output arcs of the outpUt

hnkage actors on the bottom of the figure are connec:ttd to the (!!! actor through a sink. Thus.

the free actor cannot be enabled until all output linita·•_.. have deUvenid their outpUt

values. The uid of the attivation record is returned to the pool of free ukl', mauged by the

Packet Memory.

The translation of textual programs into augmented schemas u 1.tNlghtforward and

can be based on the translation rules presented in Section 3.2, and we WiH omit further details

of the process.

4.4 Tait procedure application

In sequential programming languages, a tail procedure application is a procedure

application that occurs as the last statement in another procedure. For our value-oriented

language. a tail procedure application is identifiable as a procedure application in the

I. This is guaranteed by the compiler that translates textual programs into data flow schemas.

- 82-

expression of the· body of a procedure who•u1utput •aloe as nlllmed as the ••lue of the entire

procedure. For languages that have iterative ~the tra~ of an iteration loop tnto

its equivalent recursiv,e form of mmputatMn·esutts, itl l"latt reaH1ne proa!dure. Oftl!II, ane

recursive programs can be transfauned into tail .na,rtlaitJ as wetll In p,ugrams with tail

procedure applications. the result of a tail·procedUre appttcattan of Pt Wilhln Pl ts limplJ tfte

result of the procedUR application P2. (If pt and pt aN the •• then ttte, form a tall

recursive procedure.) SUch tail prooedurf applk:llttaltl. OCCllt, fnrqUmtly enourgh thac .the

activation record of Pl should be deallatated as-110UR0as-:pallibll. Wttttuat IUtt. eptlffltiacton.

the outermost procedure activation remains until all nested procedure activations are fh!ed~

Smee the subjf!ct a compiler optimintton is na1 WitMff. U.;ape of ttaJs thesis, we wiU

simply present an n•mple toJIUSffllte t.ow IUCh •ilnir.ltlOft mtgllt be .•,...._. wkh the

procedure application xheme ifltfocluctd. . 1ft Fipre .f.lO. we Ci" an altemattve- reclll'lffe

program for tht- computation- er th.ttfa<toriaf :func:tien. · In tllis ldlaaatk tllustratien, the Bu,

actor labded ret provides die MteSSary infarmatioll fer Che ; l8 :idd adOl'I ID 'form the

necessary linkage between the deepest nested procedure activaUon and the outersnelt proceckn

which invoked the factortat CGmpUWioft;

In Figure .fJt, we give uamplfs·-of' 1iCWMMll':wlMre ta11-,,..Stll'e application cm be

optimized. While it is possible to optimize on reuonable cases of such tall procmwe

applications, it is not clear that the complexity introduced is desirable.

I. These translations ~re. "<:>t assumed _to be an i~nt_ oart of _the task ~ the ~ler, but
such optimization may be tm&edded if feaSible.' Fdr~•:J.rt.tanpap-whldt haYi':iliedtton
constructs, the translation would naturally lead to tail,_......, atld-thut theepp--•ltJ for
this optimization should be taken advantage of. ·

G : (5, 2) schema
ret

I
trigger

3

--83-

0 • p~ur~x. y : i!)1tger) yields integer
. .. -~!!-x SI then y
~ 0(x·l, (x-l)s)y)
end

Figure 4.10. An example of !. tail procedure appligation

(I)

r =

(2)
f: .

_,,,,,,,,...--- -------
(. \
I I
I . I
I .---r ~------ f

I f
I I
I ~ ~ I
\) -- -

f is a tan recursion
in SOf1IC cases of a
ealllltealOhalnestillg.

r2 is a tail procedure application
wtrfttn f; a,ad r2 atntalns .a tall

applkatial'I of r.

Figure -..11. Examples of t!ll. recuniQm

- 85 -

4.5 Discussion

In this chapter, we have presented a processor that is capable of supporting the

semantics of the data now schemas and the concurrency of operation. We have presented an

abstract view of the operation of the processor and have discussed several alternatives of the

instruction execution schemes. The choice of the execution scheme would depend on many

factors that need further investigation. Some of these factors are: the delay characteristics of

packet traversal through the networks, and the trade-off between the amount of storage needed

to store operand records and the delay of instruction execution.

The instruction execution schemes we have presented are all called piecewise coP,lng

schemes, because each instruction is not fetched until the instruction is known to become an

enabled instruction. Another alternative is to fetch all instructions of a procedure structure into

an activation record at the time of creating the activation. This scheme would require that the

instructions for actors on one branch of a conditional schema be deleted when the test outcome

of the predicate for the conditional schema becomes known. This scheme also suffers from the

larger storage required to store the instructions at any instance of time during the activation.

Its advantage is that instructions can be fetched possibly with a single request to the Packet

Memory rather than with as many requests as the piecewise copying schemes; thus, it reduces

significantly the amount of packet traffic to the Packet Memory. At this level of discussion, it ls

not clear that this scheme offers greater advantages. To analyse this further would require

further elaboration of the architecture and some understanding of the behavior of piecewise

copying schemes.

The implementation of data structures and activation records by the Packet Memory

has not been discussed in this chapter. We elaborate on this subject further in Chapter 6.

We have not detailed the translation from the language to the augmented schemas, but

the details a re straightforward and present no additional difficulties once the translation rule

- 86 -

presented in the Section 3.2 is understood.

- 87 -

Chapter 6. Stream, Nondeterminacy, and Forall

In this chapter we introduce several extensions to the language described in Chapter 3.

These extensions are useful for expressing many forms of computation which are not

conveniently expressible in conventional programming languages. Streams are an important

abstraction for expressing computations on sequences of values. The implementation of this

abstraction does not constrain the inherent concurrency of these computations and is guaranteed

to be determinate when primitives for nondeterminacy are not used in the program. Another

form of concurrency arises when a procedure is applied on all components of a data structure to

produce new data structures or scalar values. The forall construct introduced in section 5.3 ls a

useful feature for expressing this form of concurrency.

Nondeterminate computations, computations that may depend on the timing of

execution, can be expressed by merging two streams in a nondeterminate manner. It is

important to realize that there may be computations which are not easily expressible with this

extension of the language. This limitation is due to our lack of understanding of semantics for

nondeterminate computations and of how such computations can be expressed in a

value-oriented language.

5.1 Streams

The concept of a stream is an alternative approach for expressing computations that

have conventionally been expressed as coroutines or a set of cooperating processes. For

example, the organization of a compiler is often viewed as a set of coroutines each

corresponding to a phase of the compiler, and we often view processes that perform input and

output operations as a set of concurrent processes that coordinate using process synchronization

primitives.

-88-

The significance of programming uung streams hatbel!rl recagnlzed in many works an

formal semantics [Landi65] and on programming languages [Mc11r68. Denns69, Burge15,

FreWi78].

There are many reasons for expressing computations in these forms. Large

computations tend to create many large intermediate data structures that take up storage space.

Coroutine mechanisms are often used to alleviate this problem by partitioning intermediate data

structures into smaller units such that the total amount of storage used for intermediate data

structures is reduced. The second reason is to allow these subcomputations to be concurrently

executable by using explicit synchronization primitives. The third and subtler reason ts that

program structures expressed in these forms are more JIIOdulcr in the following sense: program

modules can be expressed as a function over streams and their overall behavior can be

characterized as compositions of these functions using denotational 1emantics [Kahn74l

Writing programs for applications that lead naturally to these forms of computatior:tS.

however, has been difficult in sequential programming languages that have explicit coroutine

mechanisms and synchronization primitives. Because these primitives require explicit

initialization of either control sequences or common synchronization variables, the correctness of

these programs is more often than not difficuk to establish and programming errors may result . .
in deadlocks or unwanted nondeterminacy.

Since many of these computations are inherently determinate, it is desirable to be able

to express them in a more structured manner and without these undesirable properties. Using

streams as presented here, one can express computations of these forms such that the inherent

concurrency is not lost and the resuk of the computation is detea:mmte and free or deadlocks.

5.1.1 Stream operations

A stream is a sequence of values, all of the same type. that are passed in succession,

one-at-a-time between program modules. The operations on values or type stream of T are

defined below where s and s' are streams, and c is a value of type T.

<o a
The result is the empty stream which b the S8lflJffl(,1t of length zero.

(2) cons (c, s)

The result is a stream s' whose first element is c and whoa remaining elements are

the stream s.

(3) nrst < s >

The result is the value c whkh is. the first tlemeflt: of s.. · If s • U the result Is

undefined.

(•t) rest (s l The result is the stream left aft'ef l'lfflClYlng:the..flrJt eJemJmt of s. Ifs •

{l the result is undeftlled.

(5) empty (s)

The result is true ifs • U and is. false otherwise.

For a non-empty stream s, the following property is, satisfied:

s • cons(first(s), rest(s)).

We shall use U, 2, 3] to denote a c~t of,J,ypt. !1£9RlJt alSier whose stream

elements are the intege.-. I, 2. and 3. Using tbe notaC.orL"' gt.ve -,xamples of operations on

str.eam values below:

Let x • [I, 2, 3] and y • 5, then

first(x) • I,

rest(x) • [2, 31

cons(y, x) • [5, I, 2, 31

empty(x) • false. and

~(])-~

5.1.2 An example program

- 90-

The problem of generating all prime numbers less than a given integer n ls a good

computation for illustrating how our data ffo• encutiaft.xhetne an-aprm. lligbly concurrent

computation using streams. The sieve of Erastosthenes [Knuth69] expn!IN.d Jn, «1r textual

language ts pttSffited · in Figure 5.1.

The proctdure •generate• produces the sequence of integers beginning with 2 which ls

processed by "sieve• to remove· nonprime elements. Procedure ~sieve• aperaltl. by taking the

first eferMllt of its input as a:prtme ancl using wfridt,al ,.....,.... ue:,lllfflOved by •delete•

before applying "sieve• recursively to the remaining elements of its input su.ffl,· ·

In Figtll? 5,2,, we -ttlOW •· snapshclt ef-the altllt• oUhe. pn,grt.111 pritne..pnerator .. It

can be seen that a substantial amount of concurl'fflCJ ~ •; dMi camp8tation if each

activation of the procedure •sieve" can .be executed as soon as the firlt 1llmat In the input

stream is available. Section 5.2 shows·how:lhis concuf'RIKy can be:achlevtd.

5.2 Implementation of streams

In this section we trrst present- a' cbrffct ancr efftdent tmplementatan,f streams. and

then discuss why another alternative scheme II 'Milt ad•t& '"". ~ schel'M, ts

presented here because it is a natural consequence of thinking in terms of toH111°ia-0 the-data

flow model of computation, but it neither correctly nor~tflkteMIJ -lttlplement the --ntia of the

language.

- 91-

prime_generator • procedure (n : ~) yields stream 2[tntser;

generate • procedure (i, n : intuer) yields stream 2[l~,ar;
ifi<nthltl[}. - - ~ m cont (I, generate(&+I, n))
end;

end generate;

sieve • erocedqre (s : 1tream of integer) yields stream of tngzer;
I! !!!!1!tt < s > mm l l .

end· ::.:..::,_

~sieve:
~ ~ '

else 'let x : intger. 52- 53 : !tt!!m. g[iSffr;
X, 52 • first (S), [!!! (S);

53 • delete (X, 52); .
m. 9!!! (x, slew(53))
end;

delete • procedure (X : lnt5er, s : ~ of intp) J!!ld! !mm. !!f integer;
tf m!!tt (s) tl!!!l []

end· ::.:.:,

end delete;

else ~ y : integg, 52- 53 : f!r!!I! 2l iJkar;

Y, 52 • um< 1 >dJit,>.
53 • delele (x, 52 }.

in !f divide (x, J) then 53
m S!!!! < ,. 53 >

m

sieve (generate (2, n));

end prime_generator;

Figure 5.1 A prime number CftPIO[mm, f[eamS

(I) prime_generator

(2)

n: integer

(

I
I
I
I
I
\ --A stream of

prime numbers

- 92 -

stream or
inteier

This is a stream or
prime ~ n. , ~-:r:-·--

, '
I . -t 1---r
I I
I f

1 . I t

·-----
First activation
of sieve

t I
I l
"--'------

K-th activation
or sieve

Figure 5.2. A snapshot for the prime number computation·

- 93 -

5.2.1 Implementation of stream operations

The implementation presented here is~ on translatto,I :ci ~h stream operation

into one or more data structure operators that include operations on •holes•. The notion of

holes used here originated in the work of Hendertan O:lende7&] who used the term •tokens•;

and it differs from the notion of suspensions d~ibJ Friedman and Wtse (FreWi78l1 In

this implementation, an empty stream is represented_ by the nil structure, and ~ stream s is

represented by a data structure whose •nrst• cornpaMftt is firm s) and whose •rest• component

is the data structure representation of rest(s).

The implementation of the stream operations (except cons> ls shown in Figure 5.3, and

is simply a replacement of a stream operation by a simple data structure operation. The cons

actor is implemented by the. actors shown in Figllre- !U, where the actors crate-hole and

write-hole are special data structure operators defined as follows:

The output of a create-hole actor is a unfl)l1d hole H ~hich is a uid and a f4f in

{filled, unfilled}. The tag of a hole represents its state and affects operations on it: In

the unfilled state, all data structure operations on the hole are simply pooled - except

the write-hole operation. Upon the completion of the wrlte-hok(H, v) operation, the

hole H changes its state to filled and contains the value v; and all previously pooled

and subsequent operations are pr'?(~ without further queuin~ 2

1. The notion of suspension allows one to force the evaluation of some values which ls
promised; and a promised value does not necessarily evaluated as soonapouilbe.
2. The implementation of the write-hole operation must, in addition to writing the value In

the address, allow the operations pooled for the hole to proceed. It should be mentioned that
the operations on holes are used in a restricted context such that only one write-hole operation
is performed on each he~ thus/ t.ftete is no possibtlitJ; ef race between several write-hole
operations on the same hole. A simple way to implement the pooling of operations Is to queue
them as a list the uid of its head is stored in the hole.

(a) first

~ofT stnldUrt

T

(b) rest

stream of T

stream of T structure

!ttm!lofT structure

boolean boolgn.

' '

Figure 5.3. §ttBm Aal.1~~

(d) cons

V :T

stream
of T

l
"first•

~'

/ V \

\ I
~

stream
of T

"first"

I -/ V \

\ ' V

1
,,,,-- ---~--~

(v·: T \

'
I

I I
I I
I I
I I
I I
I I I

f

I
I I
I Boal I
I I

structure

'
,.

\ I
\.. -·- ---

__ /
"rest"

Figure 5.4. Cons

2

!Jt;eam
ofT

- 96-

Referring to Figure 5.f, the effect of the 92!!! actor is to construct a data stnlChlre

whose •nrst• component is the value v and whose _•rest• component Is the· hole H from the

output of-.the create-hole actor. The write-hole actor recet,es as iftpUts the hole H and a data

structure representing a stream. Notie that the i~tion of the 91!! adOI' creates an

output after receiving the inp_ut value v aad does not wait,for tlM oon~ fl(the wrBl::J!ole
. .

operation.' The write-hole operation has a siCnal output used for ensuring that the activation

is not deleted before its operation is campleted.

The Jirst(s) actor is translatecl into a ~- •nntj, and the mt(s) actor ts translated

into a seJect(s, ·rest; data structure operation.2 · The tmJ!!l • ts translated Into the predkate

nil-structure(s).

Using the ~rlier example program for the prime ,......, generatiOn, we Illustrate the

concurrency M operations°" streams. The schemas for thtl two prucedures •steve• and •delete•

are shown in Figure 5.5- and 5.6. From the schema for •s1e,e•, It can be seen tha& the output _of

the cons actor is generated after the first value mthe input stream from the •genierator• ts made

· available as the "first• component of the input stream. T.tie s,cond prime nllfJlber ts produced

by the second activation of the •sieve• and ls not available untll the first value of the output

stream of the "delete" becomes available. Figure 5:7 shows how various activations of schemas
·,:

may relate to each other, where we used the flC)tatton Dij to denote 1"' J-th activation of •c1e1ete•

within the i-th activation of "sieve" Si.

I. By making the •nrst" component a stream, the language could be extended to include stream
of < stream type >.

2. Without going further into the details of the imp~tion of data structures. we simply
state the requirement that operations on data. strUetura'. with holes as compa1tents have the
property that once the holes a~ filled, they behave as nannal data SbUctllres.

sieve = procedure (s : stream of integer) ~ Hmm 2[intei;e,:;

!f empty (s) lbm, []

else let x : integer, s2, 53 : !t!!!fil of integer;

X, 52 • first (S), W! (S }.

s3 .. delete (x, 52 }.

in f.Q!!! (x, sieve(53)) end; end;

end sieve;

Figure 5.5. Data Flow Schema for •sieve•

T

- 98-

delete • procedure (x : integer. s : stream!{ intp) yields H!!!m.2£ jnteier;
if ~ (s) then []

end
end delete;

else let y: integer. 52, 53: stream 2f. intcer; ·

y, 52 • first (s), mt (s);

53 • delete (x, 52);
in !f divide (x, y) then 53 else cons (y, 53) end;

end;

trigger X s

Figure 5.6. Data Flow Schema for •delete•

·•·
\ I C/ltt,

\ , ... ,; l/
I -- --1

I *
\. - - I ~ I ~ ..

* ·-
1J "' - I

J
A*

Q--
I •

J
s

\
. -

\
l ur * j

ii ~ \ _/ I I \ '
~

I,
N ki, ,<. *

..
) ~

\ M

'-...f_ - --- ---

Figure 6.7. A snapshot for the prime number computation

- IOO-

5.2.2 A token passin& scheme

To illustrate the difficulty of implementing streams usmg. •token passing•, we inll'Odute

a set of data flow actors for streams [Weng7S_l Tlmc . .-..-e 1hdlfied· bftl' streams In the

sense that an arc typed m!fil carries a sequence of tok.1111 fl tile same type ~natecl by a

special end of_stream (or,~ token - hence, the term "-ken passmg•. The notation and the

operational semanti~s of data flow actors for stream values are shown in"Figure 5.1;:wbere the

behavior of each actor is described by a set of firing rules based an the~ratian of tokens

and the state of the actor. Each actor, except !!! and ~•iAA::COl1,· bas.twQ~$lates'.JirJt and r•st,

and is initially in the first state.

An est actor is simply a constant function whic~generites the spltlalf!t tot.111. A cons

actor enters the rest state aft~r placing a token from the first inpUt arc an the output aft, and

returns to the first state upon passjng from the second. mpu.t. •re JI{ ~~ ending with an Ul

on its output arc. A first actor enter.t the rest state afler placing a token ·trom its Input arc ~

its output arc, and returns to the ftrst sta!e upon absortling ... remai.Ding tokens m the stream.

A rest actor enters the rtst state after absorbing the first token, andJetums to-. the flrst state

upon passing all remaining tokens in the input stream; Ao !!!!l!tt attor tests -if an stream is

empty. In the first _state, if the arriving token is an g, token, ·die output is ~ and the actor

returns to the first state; otherwise, the output is f!!!!. and It enters the r11t state. The actor

returns to the first state after the remaining_ t~ are _absorb«I.,. _An st;:switch actor takes a

boolean input and a stream input, tokens forming -, stream ·a1t·.,aned te, .__-° Olilpllt arc

according to the boolean value. An st:merge simply passes the stream to the output fron'I one of

the input arcs. We restrict the use of st-swttch and st-merp actors only to the constructlan of

conditional schemas corresponding to the restrictien imposed on mitch. and ~,actors

presented in Chapter 2. An st-link actor replicates a stream by copying each arriving token and

by distributing them to the output arcs. An st-sink is a sink actor for stream values and

(i) est

(iii) first
strea
of

- 101 -

(ii),gm_

ru!!.!!l.
ofT

v:T

Figure &:8(a). ~ cons, first, and r.sa

=>

(v) empty

@.·., e.s·t mt .•

(vi) st-switch (Complementary action
occurs when the_l,oolean value is false.) :

stream
of T

stream

...
⇒

- I02-

(Viii) st-link
!!!:9!m

(ix) st-signal . ,
f - V r

◄,f~--t[!}-1 _. ~ ◄4.--.... [j}INi----
Signal ~ .. "!!mm

, V

.::?,>
r .. -m-- • ~

i est I .. iij,;.- ~ •• @~
signal.

- I03 -

produces a signal to the output arc when an !!l_ token is absorbed.

Deadlocks

The set of actors presented above do not implement stream operations correctly,

because the substitution of these stream actors for stream operations results in a schema that

may deadlock when the predicate of a conditional subSCberna ls an arbitrary expression on

streams. This deadlock situation is best illustrated by an •~le.

Consider the conditional expression, C:

!f first(rest(rest(s)))

then s else rest(s) end;

where s has the type -stream of boolean.

The translation of the conditional statement C yields a conditional schema S shown in Figure

5.9. The predicate of the schema S consists of a chain of stream actors. Execution of the

schema for an input stream s • [true, true, ... , true) would deadlock because the input link

marked with the symbol(• is prevented from firing by the left output arc holding a token. This

situation arises when the predicate control-ling the st-switsh aqQr requires an arbtt_rary number

of input tokens to produce the decision outcome. Most predicates, however, (an be analyzed at

the compile time so that additional link actors are added between-the tnput·st•link actor and the

st-switch actors to avoid deadlocks.

This example illustrates a very important property: the arcs of the data flow schema

are finite buffers. In a computation model that allows infinitely buffered ar~ it ~n be shown
,;i,:

that the history of tokens passing through each arc agrees with the histc#y obtained by the

mathematical characterization proposed by Kahn [Kahn7tl _;for computat• models based on

arcs of bounded size buffers, the history observed is a prehx of-that,observable if arcs are

unbounded buffers. No mathematical treitment has been tc,p~ whkih sholQ how to derive the

exact history for models with finitely buffered ara. This property of data flow schemas Is

•

(i) Jnitia I configuration
est .

!O .

•.-----

(iii) After·the firing of the enabted rest

first

. Therf tsnoactol' enabled;
notice that the ft-link labeled •
is not eftaM1ll!iNDusecthe,output an:
to the st-swttcb 1s occupied bf ~· .,(' ··-·

Figure 5~9. An example of!- sl!adlott situation

-105 -

undesirable, since the output history would depend on the amount of buffering provided by the

number of link actors in a, data flow path and cannot be-characterized in a clan. formal

semantics.

Inefficiency

We use the prime number computation presented in f igUre 5.2 to illustrate the

ineffidency of implementing streams as a sequence of tokens passed along an arc. Referring to

Figure 5.2. if we regard each stream operation at a tok• passing actor, the computation ls

inefficient, because stream actors form a chain that alt tokens in a stream must travel. threugh

during the computation. For example, the prime number that ts generattd by s1 must travel

through the chain of (i-1) ~ actors to reach the output of the s1. In fact, the number of

firings of a data flow actor to process a stMm of length·n is ,proportional'10 n. and for a chain

of n actors it is pr-opo,tiOnal to rt2 itt the wont case.

The0 rate at wttich streams an! gtn~ , or consumed; however, ts not neceJDTlly

reduced due to this· traversat because all tolent Clfi be tta,e1-, ·a chain of stream actors

simultaneously if the execution time of aH streamopentiill•,ckJes ·:not ha~e a larp vartatton.

The execution delay caused by the trayersal would be much larger if some stream actors ln a

chain are delayed such that sections of the pipeline~- .u.::stream--actors are void of

stream elements.

5.3 Forall

In many applications, operations on components of a data structure can be performed

concurrently. We presmt a eonscruct for expre~smg a,ncurrentcomputations an arn.ys. First,

we define a data type array of <Simple data type>. The form oE a.fQfatl expression ls:

- I06 -

<forall expression>::• foraU <range clause> <eval clause>!!!!I;

<range clause> ::• <name> in [<npmsi0n1>• ~]

<eval clause> ::• { eval operation <expression> i♦

I~ {<type detl>}; {<name def>}!!!. ceval clause>;

It is required that <eXpression1> and ~ are of utty one. and of type intger.

Furthermore, the values lb• c:expresskJni> and-lib• <CUfH!HN¥ must •tisf'J lb sub. The.

expressions in the eval clause can contaia, referllaJ te M. ·the,. of the range·clause. and

must be of arity one. The resuk of the feral -,maia•is an-apnuion of anty k..·wlaere ll •

the number of eval's in the-evat clause. Jtsj-th valae-tsec,unleftt tothe NSUlt of the fc,llowtng

expression:

Ej(N - lb) oj Ei N. lb+I·) oj ... ,ef Ef N~).

where Oj and Ej denote the operation and the«preUion tn,dle,;,th,:.aal dauae. and t~

notation Ef N • i) denotes- the j-th·exprasian eYUlatauainf dwe.cfree vuiable N with the

value i. For the above aprmion to be JVtll defined.,w,Atrther ••••re. that die apsatiana OJ

are binary (requiring two operandi) Hd altCldUtvt.

Consider the-foHowtng example:

fora II i • [5, 100]

eva1 + A[i l

eva1 ,:, (A[i] + R[i-3] - i);

The resulting expression b. of arity two: the fint value ii simplJ the aum el an values

A[Sl ... ,A(IOO] of the array A. and the second ttlue is the pNdtKt of the npresaons A(l]+Bli-31-1.

for i ranging from 5 to 100.

-107 -

The construct can be easily translated into a recursive procedure as follows:

P .. procedur~lb, ub, <free-list>) yield R1, ... ,Rk;

!f ub < lb then undefined, ... , undefined

else

!f ub :s lb

then E1(N=lb), ... , Ek(N•lb)

else let middle: integer,

x1 : R1 , xk : Rk,

YI : R1 , Yk : Rk;
middle • (lb + ub) / 2;

x1, ... , xk • P(lb, middle, <free-list>);

Y1, ... , Yk • P(mlddle+I, ub~ <free-fist>);

in x1 o 1 y1, ... , xk Ott h;
end;

end;

end

end P;

where the <free-list> is the list of identifiers (other than the identifier N appearing in the range

clause) that are free in each expressions Ej'

It should be noted that the recursive procedure as defined ts not the only translation

possible, since each recursion can create any fixed number of activations. The translation ls

only intended to show that the construct can be supported within the framework of our

architecture without additional special functional units for dynamic creation of concurrent

computations on arrays. It is interesting to observe th~t similar types of forall expressions

cannot be easily defined on data structures that are not arrays. The problem is that we do not

have any information about the selector names of a data structure.

- I08 -

5.3.1 Constructing data structures

It is possible to devise a mechanism for defining a more general form _of forall

expressions on data structures provided ·that the imp1ementati0n of data structures Is known.

As we have mentioned in Section 2.-t, a data structure p: rep~ by a collection of Items

each containing a set of tuples of the form (s, c), where·c il eithet' a scalar value or a uid of
. . ~ . . .

another item. While it is possible to implement items tapable ·ot storing a variable number of

tuples, an efficient implementation can be based on au,tag.e nodes that can contain only a fixed

number of tuples - we shall call these nodes primitive items. In the latter scheme, an Item may
?: . . ,'

be represented by more tl'lan one primitive. ite{n. Ari exa,qpte of the representation of an array

with primitive items is shown in f,jgure &JO. Eachftinlitn\e item.(pttem) canslsts of two tuples:

where c1 and c2 are either scalar values, uid's of other pitem, or nifs. The example Is an

array A such that:

A[4) • 2,

A[2] • 3, and

A[i] .. !ill, for all other i from O to 6.

In this representation, the traversal from the root node A to a leaf node defines an ordering

from less to more significant bits of the binary representation of the Index to the array A.

Using this representation, we show two ways of constructing an amy using the fmll construct.

We define an associative operation construct for constructing an array from two arrays.

This operation is defined only when indices of non-nilelements of the two ~rrays are dlsjolnL

This is satisfied when construct is used within the .. fm!l construct In a fuhlon auch that the

condition for disjoint indices can· be determined ·at CGmp11e time. The construct aperatlon ls

defined recursively as:

- 109 -

{ This node contains the pitem

/ { 1·0· , uid1), n· , nil]

"I"

"I"

nil 2 3 nil

l A[·010· J • A[2)

A["100") = A[4)

Figure 5.10. An array representation

-110-

construct • procedur~ A, B) ~ structurt
![nil A) then . B
else if nil(B) then A - -- --ml !fscalar{ A)!n4B!!!(B)dm!,tr.m

else If gl!!.(A) l.!!!Pdltatf!(A. B)
- If scalar.(1)thm migrate(B, A)

else ~ Cc> lit CGftfJ'¥(t(Ae"'ff, Be"O.);
G • _,,get(AeT, 11e1_·);

m ~ mm .,..f.o. c, > >
end· > • •

=
end· end· end.· end· --" =::;:=,::;.:.:.=,=~

end construct;

The operation • is defined such that the resut . .of.1Ae-0- reca,ms 1, where A is a pitem
' ..

containing tro• : s), ,I" : t)}. The result or male pnm(G-~ Is a pttem {("O" : C1), (i• : ~)).

The function or the make-~ x) operatian b''9 crate a hole Jf~whtch is returned as the

output of the construct and which is later flffecfwith:the Item x. The pn,cedure •mtgrate•(A, B)

takes a scalar value A and stores it into the teftmest·avatlable eonJpanent of B whose selector ts

formed by a sequence of bits "O•. Ftgute S.U lllustlates tht ,-n;ter In 'whkh the resuk of

const~A1, A2) is created.

An example or the use of construct in a foralhlliutJ'UII b:

forall i in [5, l00]

eval • A[I 1 • B[i l
eval construct append(ml, t+I,

end;

!{I• 5 then ~.J) + A[t+I]

g(l; IOOlm!.Al 1:-1 J + A[I J * A[t-l)+A[t)+A[l+I]

mend;)

Notice in this example that the resulting array contains tndia!s tn the. range (6, 1011 In general,

the expre~ton for the selectCJr Inside the u,em! mdlt be N!ll;tlmd to simple npmstons to

nil

the result of

- Ill -

nil 2 3 nil

c;S --~...-- resulting structure ofconstrug{At, A2)

I
\
"- {("o•: uid(Ho)), (•r: !ill)}

QH0 ,.) . { the muk or CXll]Slnl!;\(!!!!, nu l

I
\
'- {("o• : uid(Hoo)), ("a- : uid((A~•o;.i•))}'

Hoo,.>' (the result of Q construct((A19-o-,.1•, (A~"O")e1")

construct(
((A1ct"0")e"O")e"O-,

((A2•"0")e"0")e"0")

Figure 5.11. An example for !I!! workin& ol construct

-112 -

guarantee the disjointness of the indeces;1 and we leave this as an iSSiUe for language design.

In the forall construct as presented, the range clause may only be integers. This is

undesirable in cases where the range is,much larger than the number of data elements In the

array, because the number of activations created would be much larger than the number or

elements in the array. We introduce another form of specifications of the range clause:

<name> !!!.. ~ of A.

where <name> is an identifier that can range through all one levd indices of the array A; thus,

the range clause is not usable for specifying compound selectors ras the indices [l. J] .of a two

dimensional array.

An example of its use in a for.alt is:

forall i in range of A

eval t.• A[i] + A[i+l l
eval construct append(!ill, J, A[i] + B{ t])

end;

The above fora II expression can be translated into the,Jollowing call to the recursive procedure

P:

P(A,A, B,!!!!);

where

P .. procedur~ a, A, B, i) yields integer. array;

[nil(a) then I, nil

else !! scalar(a) then A[i] + A[i+l l A{ i] + B[t]

else let 1efto. left1 • P("ae"O", A. 'B, "O"•i);
righto, right1 • P(ae"I", A, B, T:.t)

in leftp • rightc). ma 1te-pitcm(1eftt, r~,)
end;,

I. If the expression is an arbitrary function on i. then there is nb simple compile time check for
this condition. One must define the semantics of data structures very carefully, If any
expression is allowed.

(
J

- 113 -

end;

end P;

The result of the expression "O"•i is a concatenation of two bit strings such that, ,if i••oor, then

the result is "ooor_l The procedure P works by "tracing" down the array A for each primitive

item a and by creating recursive procedures for the components aa"O" and aa"I" of the primitive

item. The construction of the resulting array C by using the make-pitem is possible because the

selector in the append expression is of the simple form i; if not, the expression

ma ke-pitem(left1, right1)

must be replaced by

construct(lefl:1, right1),

and the expression

A[i] + B[i]

must be replaced by

append(nJJ, exp, A[i] + B[i]).

The reader can verify that the number of procedure activations created is the number of the

leaf nodes of an array representation. A further step for optimization is possible for the above

example: notice that the value of the expression A[i] equal a when the predicate scalar(a) is

true. Thus, there is a significant amount of compile time analysis involved for translating the

forall construct into the procedure P. We note that the above translation together with the

optimization can result in significantly efficient programs.

The two forall translation schemes presented provide more expressiveness for the

language but are dependent on the representation of ·data structures. Further exten'stons for

allowing the range clause to include data structures in general can be envisioned. In particular

I. We will assume that the representation of such bit strings is not difficult.

- llf -

the latter form of range clause can be readily extended to data structures.

5.4 Nondeterminate merge of streams
. .

In this section we introduce a primitive that can be u~. to produce a stream bJ

nondeterminately merging two streams .. We belieVe t.his primitive may be u5'd $uccessfUIIJ ifl
i . •

building well structured progr-,ms. Often, nondet~rminacy in,~ ~utation can be ~~pressed
. --.; . ·, . - ·- .' - .

using arbitration among streams of values, and procedures: t11J.t, _operates on the ,resulting
••• • f

streams. (It is not clear that there are not form of nondeterminate computat~ that have on.lJ

awkward realization in terms of streams, and this is an a'- f~. further research.) The

particular implementation of the nondeterminate merge of streams is in te~ .of' a recurslye

procedure and is reasonably efficient.

A primitive nondeterminate merge actor, n-merie actor shown in Figure 5.12 has two

inputs 11 and 12, three outputs o 1, o 2 and o 3, and has twoatattsftrJt.!ll!d.s«ond. In the.first
'~- . ' . '; . .

state, an n-merge actor can fire as soon as an jr1~.t tqken~ ~rrj~~,~t et.tiler.~ of the input area

11 or 12. Upon firing, it places the input token on o1• and, on the second output arc Ot, It

•. places an integer i if Ii is the input arc having recei'led the token. After the firing, It enters the

state stcond to expect another token. In this state~.~~~. tf)ken ls simply absorbed and a
I i" • · . : J-.' < ~ ,~ ' '

signal is plac~ on o3~ and the actor returns to . the first s~te. If two tokens arrive

~imultaneously, then: one token is selected and pfa:ced an 0~ an mie,er, indk,ating tbts selectkm

is placed on 02; a signal is placed on 0 3; and the discrimtnat«I !Oken Is simply absorbed. We

show a correct implementation of the n·fflfJle in Ap,endtx A. 1

I. Since the firing rule depends on the timing of the arrival of input tokens. an Execution
Controller must implement this critical region correctly. furthermore. the n::mern actor
requires two firings, and the implementation must be COJtsistent with the instruction executtan
scheme described in s«tton f.2.

- 115 -

(a) Firing rules for n-merge

'• '2

⇒ steond1

Figure 5.12(a) Firing rules f9!: n·merce

- 116-

(b) Firing rules for n-merge

Jtctmd1 ⇒

Figure 5.12(b) Firi!I f!!§ fSB: D-mem

- 117 -

The recursive procedure "N·Merge" in Figure 5.13 defines a nondeterminate merging of

two input streams using the n-merge actor. Each activation of the r~sive procedure obtains

the first elements of streams s1 and s2 and merges the two values nondeterminately with an

n-merge. The first arriving value is cons'ed to the recursive call on the other stream and the

rest of the arriving stream. This recursive defmidon performi the merging of two streams at
•'.

the expense of some redundancy in the number of first operations on the streams to be merged,

since the slower of the arriving values first(S1) and first(52) at the .n~ge: actor Is discarded

and the subsequent recursive activation also performs a first operation on the slower stream

value. Thus, the number of first operations on two lnpUt streamS of length. n and m is bounded

above by 2(n + m). Another problem of the recursive N-Merge is that the number of

activations is about the same as the number of operations waiting for stream values which have

not been generated.l It is possible to remove these inefficiencies by introducing a set of data

now actors connected in a cyclic fashion (see Appendix B). Unless the lnefflclency of the

recursive definition is severe, the cyclic definition is unnecessary.

5.5 Discussion

There a re a number of extensions that are convenient for writing procedures on

streams. In many situations we find it necessary to generate a stream of values with a base

value followed by values of some constant increment. This stream value can be simply

expressed as:

[base ~ increment until final_value].

I. Notice, however, that the cost of keeping these activations active is relatively little, since only
a very sma II number of operand records would reside in the system. But this situation can be
intolerable when one of the streams is never generated or gets arbitrary behind the other.

- 118 -

N-Merge = procedure (s1, s2 : stream of T) yields stream of T;

let x, i = n-merge(first(s1), first(s2));

Y 1, Y 2 = rest(s1), rest(s2)

in if i = 2

then if undefined(x) then s1 else cons(x, N-Merge(S1, Y 2)) end;

else !f undefined(x) then s2 else cons(x, N-Merge(v1, s2)) end;

end;

end N-Merge;

Figure 5.13 A recursive nondeterminate merging of two streams

-119 -

Conversion between an array and a stream is abo oftea necessary.

A more important language problem, however, ts whether data types stream of <Stream

type> are needed. The implementation described in Section 5.2 nat"r~lly extends to stream of

<stream type>. It is not clear, however, that such extensions are of significance to expressing

concurrent operations on streams. From the point of view of defining formal semantics for the
. .

language, it is much cleaner to have data types stream of stream. or array of stream.

We give an example for illustrating the expressiveness of stream of stream. In

performing computations on arrays it is often useful to have the type !!m:!!!, of stream. The

program in Figure 5.14 is often referred to as a "hyperplane" computation on arrays. Figure 5.15

is a diagrammatic explanation of the manner in which the ~tion "Hyper• is performed.

The top horizontal array C corresponds to the ·stream C, and the left vertical array B'

corresponds to the stream B. In the lower right quadrant bounded by the two arrays C' and B',

the two dimensional array D' correspoods to the .output .of the procedure "Hyper". Each point

on a row of D' is computed using the procedure "Compute" by taking the west, the north-west,

and the north neighbors of the point. The value of the point is computed by applying the

function "Neighbor" on the values of its neighbor. The dotted lines show how points of the

array D' (or the stream of stream D) are produced as the computation proceeds.

In this example, the amount of concurrency is at most the number of elements in the

stream B, but this concurrency is not achievable if the computation is expressed with arrays.

Extensions of the language to include other forms of nondeterminate primitives are of

critical significance. Can streams be used to implement language primitives similar to the

monitor [Hoar72]? We leave this as a further research issue.

-120 -

Hyper .. procedure(B, C: ~2{intoger} xi!lil ,ll!Bm9£Hmm2[.intepr;

!f empty(B) then 0
else let b : integer. D: stream;

b • fill!(B);

end;

end Hyper;

D • Compute(C, b k
in con~ D, Hyper(mt(8), gm!(b, D)))

<end;

-,. ' ,,

Compute • procedur~ C : stream of inteier, b : intp) ~ SrD!!!. st intger;
If mm.tt(C lthffl []

end· =

~ !! !mPJ1(rm(C)) tl!.m tJ
else let d : i~er;

d • Neighbor(b, f!r.a(C). '!!!!,(C));

in · W!!!(.,,<'Adlp I ' mt(0-). :ct:})

!!!Sli.
end· =

m!! Compute;

Figure 5.H &!. example 1W!!1. S!Bm I! 8!D!!!

Array B'

B'[I]

·. B'[2]

- 121 -

Array C'

C'[OJ C'[l] C'[2]

• • • • • •

/
/

/ /
/

/
,,...--

/

/
/ ,,

/ I
I

/ _,.

0'[5, 3]

//
~ I/ Compute(C', B'[l])

I\._ Compute(D'[l,t.,], B'[2])

~ Compute(D'[2.~•l, B'(3])

Array D'[row, column]

NW N

w~
D'[i, j] = Neighbor(W, NW, N)
{forall i, j}

Figure 5.15. An illustration of!. hyperplane computation

- 122 -

This page intentionally left blank.

-123 -

Chapter 8. Supporting Data Structures ancl Activation Records

In this chapter we state several requirements for designing the Packet Memory to

support the structures used to implement the language. The Packet Memory stores three types

of objects: data structures (including procedure structures), activation records, and holes. We

propose the implenwntation of all objects is based on allocation of items· which are of fixed size.

Based on this design decision, we show how operations on these objects can be implemented

efficiently. Sine~ the design of tbe Packet Memory ha•J~ttrLpursued previously by [Denns75,

Acker77l. we will not treat the Packet Memory in great _detail.' What concerns. us ts the manner

in which the Packet Memory must be used to correctly implemeflt the objects. Functionally, the

Packet Memory maintains a pool-of -uid't--for free item1'. Each ftem contains a fixed number of

tuples (s, c), where s is a selector name of $Orne predefined size and c is either a scalar or the uld

of an item. For brevity, we will often"use the word ••rem• to mean the content of the item

and/or its uld.

We discuss how these objects can be efficiently implemented in a Pakcet Memory

organization that has multiport and multicache memory. Of particular interest In thb

organization is the cache organization which achieves concurrency of simultaneous a~ to an

Item; and this organization may be applicable to other concurrent systems.

6.1 Packet Memory

The organization among the Packet Memory, Structure Controller and Execution

Controller is shown in Figure 6.1. The Structure Controller receives data structure operation

packets from the Arbitration network and send, result packets to the Distribution Network.

The hole-operation output port of the Structure Controller is connected to an Input port of the

Arbitration Network. (This connection· is not shown in Figure f.l of Chapter f.) The function

operation packet
to Arbitration Network

result packet
' from Distribution Network

j

ECM· I

'

• • •

'

--

-

operattort packet for holes
to Arbitration Network

result packet
to Distribution Network

.. aa~;~:'lf!HfF operation packet
from Arbitration Network

--

SCMj • • •

' \ '

,/
' RSP CMND

,
, ~

I
I.
l
I
I
I
~ -

RSP CMND RSP CMNO

Packet Memory Network (PMN)

• • • •

Figure 6.1. Organization among SC. IC. and f.M.
--- -J

RSP CMND

·· I
I
I
I
I
I
I

,,I ---

-125 -

of the port is explained in Section 6.2. Each Structure Controller Module (SCM) and

Execution Controller Module (ECM) is connected to the Packet Memory via a Command

(CMND) port and a Response (RSP) port A Command port HCeiYff commands on an item

specified by its uid, and the response is eventually returned to,tlw Response port associated with

the Command port The types of commands .. incfude reading an item, wriUng an item,

requesting a free uid, and changing the reference count of;an item. These commands are issued

by both ECM's and. SCM's. and processing of a resutt packet or a data structure operation

packet may require more than one commands.

The Packet Memory consists of a Packet Memory ,Network: (PMN) and a set of

Memory Modules (MM). The PMN is a packet routing -network whose node may be cache

modules (CM) that ha,v.e cache memory for frequently auessed items and necessary control

functions for management of the cache. One approadt .for generating unique ldenttfters ts to let

a uid be an address from the .physical address spaa forfnld. by storage nodes of the lowest level

of the memory hierarchy of the Pack~ Memory.1 for example, 1.lling current technology, the

physical address space would consist of aH addresses of secondary on-line storage devtces such

as disks. Each storage module in higher levels of the hierar~ ms as a cache, and in general

each entry in such a storage module must contain both the data of the item and its full phJskal

address (i.e. its uid). Many techniques can be applied to the design of caches for finding an

item: for instance, searchihg(possibly including tree search ttchnkples), hashing~ or hardware

I. Another method for generating unique identifien is. to use counten that are never reset, or
are · reset very infrequently. Our approach is shared by Snyder's work [Synde79] o,t

architectures for object-oriented languages- hie CLU (Lisko78l The' matn rtaSOJIS''fOr not
choosing the counter scheme are that it requires the lowest level memory to store both the uid of
an Item and the data an·d that accessing an item can be prohibltlvely expensive If ~rch needs
be conducted at the lowest level of the hierarchy. W,e, 1hqu~. remark that the emctency
arguments presented here may riot be justified considering the projected· technological
developments and increasing sophistjcation of storage devices.

-126 -

associative matching. The criteria for placement and replllGelllent of ,an item in a cache ts nat

of central issue to qs here. but a possible candidate n · u. ·a.c •ltf Used· :(LRU) ,..,...._.t
algorithm that has prOftll attractive for ,demand papng: ,__,,"nanagemmt. for furcher

study. we refer readers to: (Ader11J for detafls; of ~ possible lmpli!assentaUOII of the Packet

Memory including the design ofOM's. [Smith78lfarset •~vemet11Gfforpniatilia, and

[Denng70] for a general discussion on paging sysmns.

Assuming that each Memory Module ttores·a diltiPG-mblet '6 the:total uicl'a. a b..ac

design consideration is the manner in whkh aa itela an be:S or capied An PMN.

Informally. we say a caching ,,cheffle is a "t.tniffue ac:cm" schemerif, fer each ltear. the set of

reachable caches from CMND ports to a MM farms • ftlleat path; otherWise, ·ft u callld

·muki-access" if the set forms paths containing bnadla. ·• F.jpre ..._) :tllusnus a .,.._

11ccess structure where the Mtwork routes ~ ,-.- ftr lht Mint ilea fran .llftJ

<:ommand. port to the .same cache medule, .atld · Fipt'e-6.2(1,) ~ ,(d fllustrale. t'WO tm1IIHac~

struc:turft. It· is often possible tlw-a 11Mlk~acceaachmg; ""1ke a untque access

structure whffl used -in a restricted mumer. · far_iCllfflfflallds .on an Item •re

always presented at the same input port Gf the cache .,..M .,._.ift~-6.2(b), the an1J

ca<hes reachable from the port to the MM .aueciateclcttidtlhe,••tlanns,:.a linear path. The

strucn.tre in Figure ~.2(c) does not haw this prapeltJ --• U.. let/of caches on the paths

from the input port ft to the memory modult MM9:daa ndt rorm ,,liftear·path;

For PMN, we expect its caching structure to belong to the class ·exemplified by the

structure in Figure_ 6.2(b). . W-e dassifJ ._ into_ ,two ..._, r,slrlttlfl and a,,valt'kfH

according to 4Du, tA'7 art ustd. We do not staticJIIJ.~ .Uitlals into two classes ~we

it is desirable to be able tc;, use a free it~ in either manner ,rteJ bequse .the dlstrtbuticNI of

their usage is not a parameter that we can chitermine . safely. Using thb dasslflatlon, we

describe the manner in which an item ts handled t,ythe-<adle ltf'UCtllffof the Pack« MNlory.

- 127 -

MM0

Figure 6.2(a). ~ unigue-access ~ Memory Network

- 128 -

MMo. MM1 Mt,f3 MM-a

Figure 6.2(b). A multi-access Packet Memory Network with unique-access property

- 129 -

al al

14 15 15

MM1
- MM2

a2

17 Is lg

MM4 MM5

a3

Figure 6.2(c). A multi-access Packet Memory Network

-130-

Since a restricted item is accessed only through a partlcular CMND port1 and an
commands result in memory references along the un~

1
path, there is no need to have several

copies of the item. A restricted item is, therefore, n:-,wd along the caches on the path rather

than copied. The first use of a free restricted item is a writing command to a CMND port

which creates an instance of the item. Subsequent...,..nds on the item must be from the

same CMND port and may cause, the item to be ~ :into a cache at a higher level or the

PMN hierarchy. Such items have a nice property that-they can be updated without the

consistency problffll of multiple copies in several caches (or, the multi-cache coherence problem).

A consequence of this property is that a restricted item Clh--.,_ prt:Jlge collected u soon as its
' -,, ,"

reference count becomes zero. As we shaff see IA Sectia 6.2, we use this property or restricted

items to implement awv.ation records and bolts.

For unrestricted items, we allow copies Ill __ ._ JI\ 1,evml CM's -to provide the

opportunity for alleviating contention over a single cop' of'-~ item by storing several lnsta~

of the item in different caches; We sha• call ~h copies Inst.nus of an it~. lniMa~ly, an item

must be written by a command from some CMND port. This command must write through aU

caches leading to a unique memory module MM from which aH higher level caches can access

the item. The command does not acknowledge completion of the operation until this

write-through operation is completed. Subsequent commands on the item may cause Instances

of the item to stored in caches of higher level and operation& are perfornried on them. It is

evident that it is possible to have inconsistent instances if the content of an unrestrk:ted item

can be updated. · Therefore, ~ require that aH subsequent aperattons on unratrkted items are

I. The particular port for accessing an item is fixed over the lifetime of an item - t.e. from Its
removal from the free uid port until it is garbage collected again - but need not be the same In
different lifetimes for the cache structure shown in Figure 6.2(b).

- 131 -

commands on reference counts or for reading the twm. This requirement is naturalty satisfied

by the semantics of the tanguag~ whose data. structure operations are free of side-effects. We

now present a scheme by which an item can ;be garbage coffec:ted correctly. This garbage

collection scheme is correct only when the set ofiuchtt reachable fer, n item forms a tree-.like

structure with the MM as its root such as the struefure shown kt Fjpre 62(b).. liurthermore. no

garbage collection is performed on copies in the PMN.

Each instance of an unrestricted item contains a ,o,,, count indicating how many copies

have been made directly from it. Each time an item is copied from one cache to another, the

reference count and the copy count of the new instance is set to zero, and the copy count of the

source instance are incremented by one. Upon completion of copying, commands can be

exercised on the new instance. If an instance is displa.ced from a cache, its reference count Is

added to the reference count of the source instance whose copy count is then decremented by

one. We require that an instance is displaced from a cache only if its copy count is ,-era, this

ensures that all existing instances form a properly.connected tree and that only instances at the

leaf nodes are displaced. For all instances .created by the initial write-through, except the one in

MM, reference counts will be zero, cc,py counts will be one. The .instance In MM contains a

reference count of one, and a copy count of one; and possibly a tag identifying it as the root

node instance.

This scheme allows an inaccessible item to be garbage col~ eventually as the resuk

of merging instances of inaccess.ible items displaced from caches. T.hat the reference count or

the final unique instance is correct can be seen by noticing: the correct r#'erence count ts the

sum of all reference counts, some negative, of all instances; and the strict displacement algorithm

and the tree-like access paths ensure that the copy count of the unique in&tance is zero if and

only if all reference counts have been accumulated. Tt.e garbage a,llection on an Item takes

place if the reference count and. the copy count of the root node instance are found to be zero.

-132 "'.

The scheme can be very slow in reclaiming inaccessible teems if sanll' imtana ts not dtsplaad

from a cache. This situation could be a p,oblem if free Items tn ttie Packet Memory are In •

short supply and the the system bin a state stKh:that,-tnantmiaR,not'displaced from caches

due to lack of movements; of ttems in tlle l'tcklt Memory~ Thts · lhattM, boweYer, would not

arise frequently in a well designed Packet Memory.

6.2 Activation records and holes

We implement activation records and holes With restrkted ttems because efficient

implementation of these ~Jects requires updating the contents of ltfmS; · OperatlOns on

restricted items are handled differently in knplemfntinf thae'otije(ts for effldency. The

lif ttimt of an item is dermed from its removal from ._. free list to the next time it iS placed on a

possibly different free list. If an· item is used by· an ICM as a part fl an activation record. then

alt subs~uent commands are guaranteed to be issued by the same ECM. But lf an Item Is ~

as a hole, during its lif~ime, its uid can be sent to dlffertftt 'ECM"s or stirs. Thus, there must

be a way to guarantee an commands are received by the same CMND port. Conceptually, the

CMNO port can be different over different lifetimes. But this ts dlfficblt to implement, since an
EC M's and SCM's must somehow know the different CMND ports· designated to different

lifetimes of an item. The simplest way to ensure that all ECM's and SCM's send ·commands on

an item to the same CMND port is to assign the CMND·pott aadcdy Uslhg some function F

from all uid's to CMND port Identifiers. We t1aborat-, 1Jff this· •hen we discuss an
implementation· of holes.

6.2.1 Activation records

An activation record is a dynamic tree-like strudtlre repmellting an array such that an

operand record for an instruction instance (A, i) can be J'eldMd. fna the .raot node Item A bJ

- 133 -

accessing a set of items using the binary bit representation of the selector t.. Each item may

contain an operand record, or either one or both tuples in { ("O" = cio), (i• : «y }, where ao and

a1 are uid's. We envision that an operand record,can be ssored ift an item since _we can make

all actors have a small number of input and output arcs.

Initially, an activation record consists only of the root node A with a single component

"text".1 The Distribution Network routes a result packet (A, t; k, v, count) to an Execution

Control Module ECt-f H(A) determined by some hash function H from utd's to indices of

ECM's. The arriyal of the result packet modifies the actlvatton structure A using the blt string

representation of i by accessing all items until the operand. m:ord is found. If the operand

record is not in the activation record, the last item on the path of access is modified to include

the necessary items by acquiring more fr.et resl'fteted items. •Thus. the first llfTiving operand

always results in aUocauon of free items, :and subsequent arrival of operands to the same

operand record simply modifies the e,cisting operand record.

record:

We now present how referfflce cotmts can be used to manage items in an activation

(a) create-activatirurl P)

This operation creates an activation record A whose reference count is one and the

reference counts of items. teading to th'e "'text'-' ctwnpo111m are set to one. . The leaf

item has the uid of the procedur~ strUCture P.

(b) insert(A, i, v)

This operation adds one to reference counts of all itema 1ea4hng from the root node

A to the operand record (A, i).

I. We assume that the selector "text" can be encoded as a binary bit string without conntctlng
with integers used for instruction numbers.

-134-

(c) remov~ A, i)

This operation is .performed by an SCM whe11 it Andi lfl ilHtruction is enabled after

an insert operation. The operation~•~ c:ountl ol ttents.leadinJ

to (A, i) by the value of count.

(d) fr~ A)

This decrements the refertnce count of the root node or the activation record by one

- thuJ, a11owing it and the •text• component ~-:pdtap CQlfeUed.

The scheme maintains the reference count of an -item ludt that it ts -,.1 to the number fJI

arrived operands ifl operand records which a,e waiting for ~,ud can be reached from

the item.

The presentation has been made lmed-on theUSUIRptkln. _,., a ,eltaor name used m

each item is a single. binary digit "O• or i•. Thts:::-mak11-operatten1 on .a.cciYaUGII NCOl"ds easier

to understand, but introduces an apparent;intflidtncJ:dlal many._. -~c-reqaired to-etmde

the instruction number i. Since an activatioru«.a is liMIJ- m .,..,_ most of tha time, it is

possible to reduce the number of items used to represent the sparse structure by using pn1fix

compression. An example of such a representation of is showft.,,ill.Figt.lre 6.3. This added

saving on usage of items .results in faster -instruction exec:a,tiGft,on die aver.age. While this

representatkm using prefix eompre$Si09-r4'quifes a...,.,...,_ .,.. ~ on Items, we

feel the complexity is justified considering the .. vf. an it.._

Similarly, we believe prefix compression can be applied prafitablJ~;l~ representation

of data structt.treS in general·

6.2.2 Holes

The create-hole operation simply obtains and tags •unnlled• tnto an item; and the uid

is marked as a •hole• and returned as its result. If the hole iS tn ·the •unnlled• state, data

- 135 -

(a) An activation record not using arefix compn;ssiQo

(b) An activation record using prefix compression

After inserting {& "IOIII")

Figure 6.3. An example of prefix compression

-136-

structure operations or commands1 on a hole t~t require reacting Ats data are simply stored as a

pool of items storing these operations. Commands such as refffl!IICe count updates need not be

stored since they do not need to use the data of the hole. Since•• hole may occur as a

tomponent of a data structure, a Structure Controller may encounter a hole when processing a

data structure operation pack.et. The hole-operation output port allows a- SCM to send a data
+

structure operation pack.et through the Arbitration _Network to a specific SCM associated with

the CMNDF(uid) port. To guarantee this, thttdesign of the Arbi~tion Network is much

simplified if the function F is implemented in the routing algorithm .
• • .. -o - - ""' -

The reference count pnx,essing for restricted itemS used for holes Is the same as
-;,.

reference count accounting for items used in data str~res. ~. ~~t operations pooled for a
\._ -·

hole should not change the reference count of the item uqti1 the hole ia filled. This avoids the

potentia I problem that the reference count of a hole ,MIJ becolne ~ before these operations

are processed.

6.3 Remarks

We have informally discussed how activation ~• lfld holes can be Implemented

using restricted items. This is based on the assu,aption)(hat the Oii\iibutton Network must
-~.: , ' ... ~- ~- '· - ~ : ; -...

route all result packets with the destination (A, i) tf.ttlte same,ECM. Thus, an operations on
'·, """,• ~-

' "

restricted items used in the activation record A are IU'tanteed to be sent··lki·the same CMND
-~ <• :cy,

port. Using this representation, then, a natural optimization Is to allocate an activation record

"close" to the procedure structure or its copies in caches. Similar Gptimizatton is possible for

data structure operations if the Arbitration Network can try to route most data structure

I. We do no mean commands only here, because holes could be used to hold part of data
structures on which we want to further perform data structure operations.

-137 -

operation packets 01;i an Item to the same SCM if the contention for the same SCM is· not

severe. This optimization will tend to make effective use of the cache memory bandwidth by

allowing a higher hit rate on the item.

The question of how far this optimization based on locality of data access should go

depends on the understanding of program behavior and ts a challenging issue. On the other

hand, for a large procedure, it may create more enabled instructions than a single ECM can

handle; in this case, a different approach for storing activation records may be devised that

allows an activation record to be distributed over several ECM's.

- 138 -

This page intentionally left blank.

-139 -

Chapter 7. Conclusion

Summary

The expressiveness of a programming langu~ge affects not only programming tasks
. l ' .

but also how the underlying architecture can attain high ~rformance through concurrent .
operation of hardware. We feel that a language based on an applicati~e style of programming

is sufficiently expressive for most applications and, augmented with additional features, can

provide an approach for structured concurrent programming. Tbat an applicative style of

programming is preferred is based on the observation that unex~ted side-effects greatly

compromise the confidence in correctness of programs. For applications requiring high

performance systems, data flow analysts must be ~rformed on programs to reveal the hidden

concurrency and this analysis is more complicated than necessary because of language features

based on sequential notion of execution. In this regard, APL has been suggested as a language

for vector and array processors, because it Is more amenable to such analysis. APL, however, is

limited ·.in its expressiveness because data structures presented in Chap~ Two of this thesis

cannot be easily mapped into arrays. Concurrency is expressed In several ways In the

value-oriented language that we introduced. Procedure activations allow many activations to be

simultaneously executed. Streams can be used to express concurrency In computations with a

strict ordering on accessing sequences of values. The forall constructs are for explicitly

specifying concurrent operation on data structures, particullrly a~,.

The implementation of streams can be readily extended to.!!!!!!!!. of stream and is

based on the notion of "holes". Two forms of fottlf tottstrects have beert defined -and can be

used to express computations on components of data ltroctun&·ustng assoctative operations.

Concurrency expressed in these constructs derives from the :property of associlitlvity of

operations on components of. data structUres.

-HO-

:ro show how concurrency in computation can be exploite.d. we used 1«1.1rsive data

flow schemas into which a program in the language can be translated. We proposed an

extended form of data flow processor that Implements recursive da~ flow schemas using

procedure structures and activation records. Thew objects are suppotted by the Packet

Memory with a mukiport and multicache storage structure. A solution Is given to the problem

of maintaining the consistency of reference counts used for memory management; and this

allows simultaneous accesses to multiple instances of a data structure; We suggested in Chapter

Two a spltt-rtftrtnc,-a,ttgltt scheme of' memory management that fflllOYes the 11-1 f~ reference

count updates for each data structure operation. Thts scheme is of particular Interest when a

data structure is frequently copied as it is the case in foralf's. ·

Data flow architectures differ from conventianal concurrent systems particularly

because concurrency at primitive operation level is easily achieftCI; ~nd 'the difficulty of process

switching in conventional multiprocessor organizations Oft be avoided.

Suggestions for further research

We first discuss language issues: the generality of streams and data structures whose
components may be aft holes; cycles in data stnM;tUres and In, COl'IIIIIUhkatton paths between

processes; and nondeterminacy. We then discuss archtt«ture Issues.

Streams and data structum With hm,

The concept of &trtamJ Gft be uptur~,in terms of lists.~ and arrap whkh are

a..ccessed in a constrained manner. Streams pw,ide a reasonabll.-•~ for expressing

concurren~y amon, cooperating-tioftl,. Nt • ,.. $GIIII . ._. fJf •stfflfflt to

think in terms of ~ of vatueL Siftce the w in _wfttda ~•-to JUUctUres are

constrained may not be immediately obvious to a taMl·uscr"tt-, ,_ be -,,to Me whffl.Jhe

- HI -

notion of stream is applicable. We see many computaUoos, such as the hyperplane

computation illustrated in Chapter Five, where concurrency is SQbsta,ntially improved .if we

expressed programs using streams. But as the reader may note, it is easter to under.stand the

recurrence equation for the compu.tation than to understand the. lertgthy program using stream

of stream. Should we provilie a .compile~ tratUlaUon . .for ~h ,quattons? How general can

such translators be?

If we allow data structures which ·are •~ssible when they do not have all of its

components, do we need streams? The author's opinlon is that streams c.an be d~ined in terms

of a recursive data type whidl can be accessed w~ some of tts components may not be

-available -- using holes. But does use of such data structures cause undesirable situations to'

arise? One can conceive of a situation where the Pa~ Memory q over~ded with referen~es

made to components which do not exist yet. How often do theses situJti()ns arise? Can one

control such situations?

Another issue relates to the general question of defining semantics of auregates of data

values such as data structures, streams, and a list of expressions. 1!1- thjs thesis, we assumed_ that

all computation terminates and errors in the constituents of an aggregate do not imply the error

of_ the whole aggregate. In this view it is desirable that we can define a consistent way of

dealing with nonterminating computations which supply the component values. In general, it

may be required to determiM when the output value of a nonterminating process ts not needed

so a computation can be forcibly terminated to avoid wasting computing .resources. This can be

done either continually. periodically or only when resources beGcxne ,scarce. One scheme of

garbage collecting unwanted processu continu.lly has been pr:oposed by Baker [Baker78l Can

and should the scheme be applied to the data flow concept of computation?

- H2 •

Cyclic data structures and comrm.antcatton !.!!!2t!I processes

The need_ for cyclic data sttuctures and tycltc co.nfnmtitation paths between proces~

are actually two separa~ issues:

The need for some representation of conceptuil't;fles In representation of obj«ts Is

undeniable. But how are sud,·· conceprui1 striittutesd,.pped' lilt& clata structures whose

operations have no side-effects? Consider the example of a doubly linked list L from wftich we

need to delete a node N. T~ are Wm wiys to reprtiatt'l~ ttst widtoot ~ by u~ing

immutable cyclic structures based on f'ffflderson's work '(Hetitk'15l or by using an acyclic

structure. In the scht!me ustng immutable qdft, a delete. ope;Mlbrt ·requtfft about the same

number of operattom rs tfte number of nodt'S In the·. ,ist' t., beaiuw • new' cydlc structure must

be co,utructed to avofd sldHffects: Thus die pbydcat ~, of ~ immotable cycHc

structure to conceptual cyd!s dots not imply the eo1~fsimpfktty of &!lete·operations on

such a cycle. For the scheme using acyclic structures, one can see that a ctme· operation ~

can be performed as a data structure t,perattbn wt.kfr•rougMJ t:OIU'tag(n) oiperltlons on items,

where n is the number~of"riodes·tn·ttte ltst L. Ttus·obserntton an ... extended to operations

on graphs of other forms.

The implementation of procedures as values is· related to data· 1tructum with cycles

when we need a . mechanism to constrUCt i ptocedore trorit ntsMg· 'oiiei using 6imftnr of

procedure names to its representation [H~'15l Using ttnrnutatil!;~:to represent r«unlve

procedures seems natural in that there ls no need to tntroduce .the' fliJtioti of envlr«-.ments in the

definition of procedural values. But the operations mvot.ing tjdic ~ of procedure

representations will have the same prot,lerit as:we- have discussed 0prnkluily.

Many forms of programs att more naturaly expreued as a set of processes

communicating amongst themselves using cyclic communication paths. Examples are often seen

in various distributed message passing systems. Constructs of this form are not included in this

- H3 -

thesis, because we have not found one that allows deadlock. property to be determined at

compile time. It may be possible. however, to provide deadlod. detection mechanisms at

runtime'. · If the mechanism does not intr~uce too much overhead for computations that do not

deadlock, such an approach may be desirable. In addition, tt may also detect deadlocks due to

resource allocation. Much work has been done for deadlock d~ion of processes due to

resource allocations. . Not much work, however, ~n be found . in the area of detection of

processes which are in deadlocks due to either synchl'Qniiation or me5$age handling. We hope

further work in this area provides additiooal insights to the complexity of these deadlock

detection schemes.

Nondeterminacy

In large systems such as data base systems, operating systems, real time control systems,

and point of sale systems, the function of the systems ls not necessarily determinate. Often, an

implementation of such systems must allow ~ degm of ~nacy and possibly tolerate

temporary inconsistency in their data base to achieve a reasonable performance criteria. The

nondeterminate merge function that we· ha·ve in~~ in thts· thesis Is Inadequate for

expressing many such forms of nondeterminacy.

Architecture

In the architecture we presented, the performance is d~ived from concurrency on a

large scale. We made no assumptions about how concurrent operations can be mapped into

Execution Controllers such that two instructions are located In some close neighborhood to

reduce c~munication delays -- thus improving tts performance.

Is it possible that heuristics for allocating instructions close to each other can degrade

the potentla I performance of the processor due to bad allocation strategies? (Such processors

must have functional units ck,je to the Execution Controller Modules and the network

-H-f-

structures may be quite different.) It is hard· to evaluated these suggdtions without

understanding both the behavior of programs and the tedmotagy of rhe hardware modules.

This issue is important b«ause the · cost or euffllndnfc:atton ltatdware ·' h tierermtned by·

assumptions about locality of computation.

The· issue of fault-tolerance inust be adequately inswered for·• system such as our data

flow processor which has a large number of modules. We 'emj,twlze that when we ·are dealing

with a faulty system some additional operating system ftfflctlons for handling faults may be

needed.

Ideally, we hope that a system based on data flow concepts can suppc,rt a COffln'lUntty of

users with the performance that cancurrent operation can provide. Such a s1stem ~sari,y

must provide a_ set of programming languages. and variaus lllfUl and ou~t furKtions. In

addition, it must provide reasonable mechanlsmslar cont~ .total activities tn the .system

such that finite computing resources can be used effectively. In conventjonal systems these
" -:• - •' A.' •~•-.__-,- ,;~,: >.•' •• :•:• ; ~-•• •, ~ > > •• •

functions are supported by software and expff.cit machine ~•- rt~•es far controHtng
. • ' • • • 1 ; • . • ~ . • - "i ; ~ • -~. . ., -

processors. How these functions can be provided on data flow ~ is a very Interesting
: , .. ;: . .:-: . - ·-,·.-. -;;: , ... ;·-_:-"' ·•'\' ', . --. · ..

research issue.

- HS-

Bibliography

[Acker77] Ackerman, W. B., •A Structure Memory for Data Flow Computers; LCS-TR-186.
M.I.T., Sept.

[AckDe79] Ackerman, W. B., j. B. Dennis. ':'VAL Reference Manu.al; Computation Structure

Group, Lab. for Computer Science, M.J.T .. Camb .. Mass., 1979.
[Adams68] Adams, D. A .• •A Computation Model With Data Flow _Sequencing; School of

Humanities and Sciences (Technical Report CS-117), Stanford University. Stanford.
Calif., Dec. 1968.

[AhHoU75] Aho, Hopcroft, and Ullman, The ~ and Analysis g_f Computer Al&orithms,

Pub. Addison Wesley, 1975.

[ArGoP77] Arvind, K. P. Gostelow, and W. Plouffe, 1ndeterminacy, Monitors, and Dataflow;

The Sixth ACM Symposium on Operating s,-ems Principles. Nov. 1977.
[ArvGo77J Arvind, and K. P. Gostelow, "Some Relationships between Asynchronous

Interpreters of a Data Flow La~;" Proceedings of the IFIP Working

Conference on Formal DescripUon qf ~rogramming: CQncepts. August 1977.
[ArvOo77] Arvind, and K. P. Gostelow, •A ~r Capable of Exchanging Processors for

Ti01'; Proceedings of 1·F1I> Congress 1977, August 1977.
[Backu78] Backus, J., •can Programming Be Liberated from the Von Neumann Style?. A

Functional Styli and Its Algtgrti of Pr0f1tnn""11g.; Comm. of ACM. Vol. 21, No. 8,

August 1~73.
[BaBoE70) Baer, J. L., D. P. Bovet, and G. Estrin, •tegality and Other Properties of Graph

Models of Computations," Joumat of the ACM, Vol 17, No. 3, July l970.
[Bahrs7-f] Bahrs, A.. ·operation Patterns,• Lecture Notes in Compu,ter Science 5,

Springer-Verlag, New York 1974.

[BakHe77). Saker, H. G. Jr., and C. Hewitt. · ,-he Incremental Garbage Collection· of

Processes: ACM SIGART-SIGPLAN Symposium. RQCh: N;V., Aug. 1977.
[Barn..-.68] Barnes, G .• R. Brown, M. Kato, D. Kuck, D. Slotniek, and R. Stokes. "The ILLIAC

IV Computer." IEEE Trans. on Computm, C-17-8, August 19&8.
[Batch71] Batcher, K. E .• •sT ARAN Parallel Processor System Hardware," 197-f NCC, AFIPS

Conf. Proc., Vol. -f 3, pp~flO.
[Berkl75] Berklin, K. J., "Reduction Languages for Reductiort Mad'lines." Proceedings of the

Second Annual Symposium on Cemputer ArchMCture. Jan.- 197&,. ppt33-lf0.
[Bisho77] Bishop, P. B., "Computer Systems- with a Very Large Adclress Space and Garbage

Collection; Ph.D. 'fhtsis. Depl of EECS, M.I.T., also LCS·TR·l~-M.1.T.

-H6-

(Bnx:k.78] Brock, J. D., "O~rational Semantics of a Data Flow tanguap." TM-l20

Laboratory of Computer Science, MIT, December· 1978.
(Burge~] Burge; w: H., "Stream Procmlng ftffidfollS, ~ IBM :Journal· of R~rch and

Development, Vol. 19, No. I, Jan. 1975, ppl2-25.
(Conwa63] Conway; M_. '£,•Design c6 a SeparabflfTransffloit-Dlagram Compiler," Comm. of

the ACM, Vol. 6, No. 7, July 196t
[Davls78] Davis, A. L., "The Archftedore and System Method of DDMI: A Recursively

Structured Di.ta Drtven Machine; tarot. of•ttwe Fifth "Annual Symposium on
Computer Architectu~e. Computer Architecture News &, 'f(April 1978), 210-215.

(Denns72] Dennis, j. B.; ~ the-i>mp W !ij,edfbtkln fl· a:eomn• Base Language.■
MAC-TR-IOI, 1972. M.J.T.

CDenns74] Dennis, j. B.; "First Version of a Dall Flew- Procedure Lattpap." Uttutt Notes

in Computer Science. 19 (~ Oaos aflCf'J. ftiiffiiuls/&k~}. •Sptii.,e~ Verlag, N. Y ..
1914, pp 362-3'6.-

(Denns75] Dennis, j. I., '1'aclcet CommlmtcatiOft ·Arthitecttlre;• Pnlcft!dlngs of the 1975
Sagamore Computer~itift,V.~. ,

{Denf o'73] Dennis, J. B., and J B.- · ilos.ten, -...mmllln ·•to: Data Flow Sc:hemas,"
Computation Stt'IKtUtt Gradp,:lflfttif:wt,itab. ftJr:Olmputer :Science, M.I.T ..

Cambridge Mass., Sept. 19?3. - ·
[DenMi75] Dfnnts, J.° 'B., and D. 1'. Mtsunas, •~ -~ Arddtttture for a Basic

Data-Flow Processor.■ The Second Annual Sympostum oil-C:..Awplller Architecture:

Conf~ 1'retffllmgs.Januarylf1S.
[DenWe7] Dennis, J. B., and K.-S. Weftg/•~tian 41F· Dini' flow Computation to the

Weather Pro1>1em.■·Preceedmgs etw.,....._ on Hip Spew'~· and
Algorithm Organization, April 1977.

(Dtjls68] Dljkstra, E. W'.; 'Thi: SMl<fureit9f.'fHE•Mdtple$J11fflt: Qnnl of the- ACM,
Vol. 11, Nodl; Mayl968. .

(Dtjks'15] Dijkstra, E, W., '"Guarded ~ Nondeteluetfl•q and _F«mal Deflflttian . of
PrografllS,-~C:Mlm. of the M1M{Ve1. .. ,_.,Aug., 19a

[Ents7+J ERls, D., 'Semantks of Data Srructtns alldlt,fah!nas::·MAG-Tll-fff, ltM, M.I.T.
(Ens1o77] Enslow, P.H. Jr., "Multiprocessor O~ ... A SufftJ,• ·ACM Computing

SUtveys. Vc,t 9, No. t, M_atth•lffl_;-
[Flynn72) . Flynn, M; J., "Some-~Cotnpiiteir··•Otpti aftdLnetr Effecdveness,• IEEE

.. - Tmts. Gemplltm0-21,*Sqftt«Mt"1"£ ·•~>

[Fosse72J Fosseen, J B., "R'f)resmtatten of ~ t,J l.fawWMa, ·Parallel Schemata," S.
M. Thesis, Dept. of E.E.C.S., M.1.T., ~ .. Mass. 1972.

- 117-

[FrtWi76] Friedman, D. P., and D. S. Wise, 'The Impact of Applicative Programming on
Multiprocessing," Proc. of tbe l9l6 International ConfeNia on Parallel Processing,

Aug. 1976.

[FriWi78] Friedman, D. P., and D. S. Wise, •Aspects Of Applicative -Programming for

Mukiprocessing,• IEEE Trans. on Comp. Vet C•~; No. 4, April 1978.
[GurWa77] Gurd, J., I. Wa~. •A MulUtayered Data Flow Camputer Architecture.• Proc. of

the 1977 International Conferencem Audit Ptioce■lng, Aug.1971.

[Hende75] Henderson, D. A., 'The Binding Mode►. A Semantic Base for Modular

Programming Systems: Lab. for Comp. -.SCt. TR .. 141, Peb. 19'5. M.I.T., Camb.,

Mass.

[Hintz72] Hintz, R. G., and D. P. Tate, •eontro1 'Data Star-lOO Processor Design;

Proceedings of CompCon 72. IEEE Computer &ciety Conf. -1972, IEEE Press.

[Hoare7i] Hoare, C. A. R., •Monitors: An Operating System ·Stnlctdrlng Concept," Comm. of.

the ACM, Vol. 17, No. IO, Oct.19'7t.
[Hoare78] Heare, C. A. R., •eommunkatihg Sequeftttat ~•Comm.of the ACM, Vol.

21, No. 8, Aug 1978.

[KarM i66] Karp, R. M ., and R. E. Miler, •properties of a Modef for. Parallel Computations:

Determinacy, Termination, Q.ueuing," SIAM joumat:of App1led Mathematics Vol.

Ii, Nov. 1966.
[Ke11e77] Keller, ·R. M., 9Denotational Models for Parallel Programs with 'Indeterminate

Operators," Fonnat Desaiptioo !!f.Pt.911 -CdncgtJ.-(L :J. 'Nedhofd, Ed.),

August 1977" North-Holland Pub;&., N~. ,.,;v:; 1)p33:'1r366.
[KePaL78] Kelter, R. M., S. Patil, ad 0. Lindstrom,'!~ 'Architecture" for a L«,sely-coupled

Paratltt Processor (Draft),• Dept;,of c..np~ Sd. (UUC&-'18-I05), University of Utah,

Salt Lake Ctty, Utah, July 197a.
[KisRu75] Kishi, T, and T. Rudy, "STA-Jt TREK~• OOliJPCON 75, · IEEE, N.V. 1975,

pp.185-188. _
[Kostn73] Kosinski, P. R. "A Data Ffow Language for Opeiating Systems Programming.•·

SIGPLAN Notices, No. 8, 1973.
[Kuck.77) Kuck, D. J., "'A survey of Parallel. Madline Organtiatten and Programming,•

ACM Computiftg Survey, Vol. 9, No.l,Malch 1971;
[Lampo7i] Lamport, L., 'The Parallel Execution of Do Loops," c.omm. of the ACM, Vol. 17,

No. 2, Feb. 197f. .

[LauCa75] Lauer, P. L, and R. H. campt,ell, i:orm,at Semantics of a ems of High-Level

Primitives for Coordinating Concurrent Processes.• Acta· lilfennattca, Vol. 5, pp

297~332, Springer·V~rtag 1975.

[Mcllr68) Mcllroy, M. D, •Coreutines: SanaRtics in Sardi of a SJntu: Oxford University
and Bell Laboratory~ Inc. (UnpublisMd ,Paper)

[Mi1Mi79] Milne, G., and R. Milner, •eoncurrent Processes and Their Syntax; Journal of the

ACM, Vol. 26. No. 2. Aprjllffl,t»P 302--32t:
[Mtrann] Miranker, G. S., •~ of Pnl:edum ca a Class of Data Flow

Processors.• Proceedmgs of. t~ "17 lntematianat Conference on Parallel

Processing, SJJaCUSe UtJtv~ 1£££. ·.
[Misun75) Misunas. D. P .. "Deadlock Avoidance in Dati.;flow Architettuff.• Proc.·ofthe 1976

lntematienat Q!Af. of Parallel,Ptocessing,AugdlR&. ·
[Misun75) Misunas, D. P., '"structure Processing In a Data-Flow C,omputer; Proc. of the 1975

Sagamore Computer Conf. on ParaW Compatatlan.
[Misun78) Misunas, D. P .. •A •Compulet Atc:ldb:dllR ,_ Data :flow Computation;

· LCS/TM-IOO. Laboratory for C'.onlplbr$denet.0M.I.T~ Cantb., Mass.
[Orns*75] Ornstein, S. M., Growth, W.R., Kl!t1ey,M;f,. ...,.~,Jl;D.;lftcllel, A., and F. E.

Heart. "Pln1bul -. A R..,_ M1111iplM1111r:·1911; NCC.. MIPS Conf. Ptoc.
pp551-559.

[Plotl76) Plotkin. 0,. • A P~rdamain Cemtnlctton.' SIAM· jaumal ef Computing, Vol. 5,

No. 3, 1976. pp 452-i87. _ . .
[RamLi'76) Ramamoorthy. C. V .• and H. F. Li, '"Pipeline Architectllre.• Camputing Surveys,

Vot .9, No. ,t, Mardi· 1977.

~u~'JS,J- Rumbaugh.J. E.. ·6,Panlet AsyntMORQUS~ ltrchttectute.for Data· Flow
. Programs.• MAC4R'IS0, 19JS, • .I.T;Crtnllilidte,:M• •. ·. ·

(Stoy74) Stoy, J; E.; "Preof of OorredneSI of, Dataa.w:~-• Computation Stnactare

Group Memo-11&,.l.abontory for c.omputer.Sdero,M·IT, StfMtlnber 197-1.

[Stoyn] Stoy, J.E., Denotational Semantics: Jll!~ h it Pgramminc
Language 11leotJ, 1trr·~·CaflllN1dte Maa.. 1977 _ ·

[Swan78) Swan, R. J., the Switching Structure and Addressing Archit«tUre of an

Extensible lhltiproteuor: .CM,.~. CM~'Jl-111, Ca~don University,
Computer Science Department, August ,a. ·

(SwFuS77] Swan. R. j., S. H.,,:Julllr,· ,ud · D. P. Stewiorek,' "CM• : a Modular,
MUiti-Microprocessor; AflJ>S Coaf.',Pl'oc; ,vat ,f&. 1911, Natienal Computer

Conference.

[SyCoHn] Syre, J. C .• D. Comte, and N.Hifdt. '"Pipeline. Parallellslll aad Asynchronism in the'

LAU System,• P1ac:eedtap·d tMmt 111en&1· Clnfewll ail P.allel Procastng.
August 1977.

- 149-

ITrele77] Treleaven, P. C., ·Principle Components for Data Flow Computers; Computing

Laboratory TR-108, University of Newcastle upon Tyne, Newcastle upon Tyne,

England, July 1977.

[Weng75] Weng, K.-S., Stream-Oriented Computation in Recursive Data Flow Schemas,

Laboratory for Computer Science TM-68, MIT, Oct. 1975.

[Wulf72] Wulf, W. A., and C. G. Bell, •c.mmp - A Multi-Mini-Processor; 1972 FJCC,

AFIPS Conf. Proc., Vol. ii, No. 2, Apr. 1965, pp 270-271.

[YauFu77] Yau, S. $., H. S. Fung, •Associative Processor Architecture - A Survey; ACM

Computing Survey, Vol. 9, No. I, March 1977.

- 150 -

This page intentionally left blank.

- ISi -

Appendix A. Implementation of the B"'IMDI• •otor

The impfementation of n-merg:e actor presented here requires two firings and

needs an additional input value F which represents the first state of the actor. For convenience,

we use a notation ln(l:v1, 2:v2,3:F) to mean that an operand·nc:.ord mntatns three input values

v1 at the first Input arc.•~ at the second input arc.and F attlwthird input arc for the state. If

there is no value present for an input an: we use the symbol I lei its place. For example, lnCl:I.

2:v2, 3:11 means only one- input ms arrived at the~ml record. We-use a similar notation

Out[l:v1, 2:1. 3:11 to mean that the flting of· the actw produces two outputs v1 on the first output

arc, I on the second output arc, and no token on the third output arc.

The enabling count of the actor is defined to be two. thus, the actor is enabled

with any two of the .three inputs. ~e describe the possible firing by cases:

(I) In[l:v1, 2:1, 3:F)

The output is OutCl:v1, 2:1, 3:ll and in addition a result packet containing S,

representing the stcond state is sent to the same operand record at the third

input. Since the only value that has· not arrived is v2, the next firing will

contain ln[l:I, 2:v2' 3:S) and the result of this firing is Out(J:I, 2:1, 3:signall

(2) ln[l:I, 2:v2' 3:F)

The output is OutCl:v2, 2:2, 3:1) and In addition a result packet containing S i~

sent to the same operand record at the third input. Since the only value that

has not arrived is v1• the next firing wtR contain ln0:v1, 2:1, 3:S) and the result

of this firing is Out{l:I, 2:1, 3:stinall

(3) ln[l:v1• 2:v2, 3:1)

The firing must choose one of the two possible outputs:

(3a) The output is OutC1:v1, 2:1, 3:I] and tn addition a result packet

containing S is sent to the same operand record at the first input. Since

the only value that has not arrind is F. the next firing_ win contain ln[l:S,

2:1, 3:F) and the result- of this firing ts OutD:I. 2-J. 3=HI!!!!).

(3b) Tt.e output ts OUtfl:~ 2:2. 3:ll Mid tn addition a NSUlt patket

containing S is Sfflt to the same operand record at the first Input. Since

the .onlJ :VallJe that has not Mq~ ~,J"~,~-,.. ... will,contain ln[l:S,
2:1, 3:F] and the resuk of this "tiring is Out(d, 2:l 3-.-JJ.

The firing Nies above does not indude die we far aB three iftput values to IJe •

the operand record. This is beause the i!!m;apntilll;Maftiaperand~ Is Implemented

as a critical Rgion that allow one inlertialJ to aue place. at • time !aad an aperanct · recorcl ii

enabted as soon as two •alua arrlff. Nottae, that,•dt•flrillti•tltcame-n lmtructMn feed..

and thll'i~ the COllte tbat wewauld --~!Caabllllm ..,,,.oce.-a1t.tn5'Mtlom

in the same manner.

- 153 - .

Appendix B. A cyclic schema for ~erpng two streams

The schema shown in Figure B has two inputs s1 and s2 each receiving a stream

represented as a structure, and Out is the output of ttuqchema. The n-merce2 actor Is enabled

as soon as one input arrives and produce two va~: the'stream value arrived on the s output

arc, and a boolean value on the output A: true if it is the first ·input, and false if it is the second

input. The schema uses a false gate F in the model of Dennis and Fosseen to avoid txcessive

use of sink actors. The two actors con~ and write-ho)e together form the Q!!! actor introduced
,;t_ -

in Chapter Five. The capitalized letters at the efld on each arc Implies connections between

actors to avoid confusion.

The cyclic schema works by constructing a stream using the con52 and the

write-hole actor for each value of the two input streams. The schema recycles the arrived

stream · structure to the proper input s1 or 52 determined by the boolean output 8. The

construction of output stream is rather complicated because th.e whole schema must signal its

completion of operation in some manner. And this is achitved,~j"tylng the UC!!!! output of . : " . ~~· .· . -· .

the write-hole actor .. T~ schema terminates its- operation when·,ne of the Input stream is

empty and this adds addiUonal complexity to the clJic.ram.

trigger

C

,I
I
\
\

t_rigger

a

D

-,.- l . '~~;'
, ___ _

,... / ________ ,,

!!&!!!I, for completion

Figure B. A cycltc·schema f!!r. merging !5 streams

A

