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I. INTRODUCTION 

There is an enonnous literature of numerical algorithms, for such applications as hydrodynamics, image 

processing, and weather forecasting, that require very high pcrfonnancc computers, much higher than can be 

attained without the use of parallelism. These algorithms arc commonly executed on vector, pipeline, or array 

"supercomputers", which exploit parallelism in the program to a limited extent These algorithms can in fact 

exhibit incredibly more parallelism than conventional supercomputers exploit ('lllis is especially true since, 

as faster computers become available, these programs arc written to use an ever finer grain in their analysis or 

simulation of physical phenomena, which increases the parallelism even further.) lllc reason that 

conventional supercomputers fail to fully exploit the parallelism is that they can only take advantage of local 

parallelism. Their design has a "bottleneck" between the control section and the arithmetic processing 

section. This bottleneck makes it impossible to exploit parallelism except in a local and restricted way. 

Tremendous overall speed can be achieved if programs are executed on a computer designed to eliminate the 

bottleneck and take advantage of parallelism in a more general way. Applicative programming makes such 

computing systems feasible. The goal of this thesis is to show how to break the bottleneck and exploit the 

parallelism. 

The bulk of this thesis is a presentation of transfonnations that can be made to applicative programs to 

achieve high perfonnance. These transfonnations should be made by an optimizing compiler. This thesis can 

therefore be thought of as a description of the principles on which such an optimizing compiler ought to be 

based. 

There is really only one aspect of computation that makes the program translation problem difficult -

arrays and other "aggregate" structures such as records. For this reason the major focus of the thesis will be 

array computation. It will be shown that, if the program is written in an applicative language and represented 

in the fonn of a data flow graph, the potential parallelism can be exploited in a natural way. A suitable 
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Jircct·execution computer for such graphs. that is, a data flow computer, should be able to achieve extremely 

high performance in executing such a program. 

1.1 Background 

Array processors like the llliac IV [12] have many processors operating in lock-step. This makes it 

possible to do repetitive array operations at a speed that is not limited by one's ability to shave nanoseconds 

on one processor. This in turn makes the bottleneck extremely fast (potentially as fast as we like, for 

sufficiently large arrays and sufficiently large computers), but it is still a bottleneck. The reason is that the 

computer is still doing essentially only one thing at a time. Vector and pipeline processors [28] perform 

repetitive operations on arrays sequentially, but with substantial overlap from one element to the next. 

In vector, pipeline, or array processors, the only places where massive speedup can be achieved are 

repetitive, nearly identical computations on arrays where there is no data dependence among the 

computations on the various array elements. That is, the only data that are available for the computation of a 

particular array element are the data in corresponding positions (possibly with shifted indices) in other.arrays 

(including "mask" arrays of control information that can enable or disable certain operations) and global data 

that affect the computations of all elements. 

This amounts to an inflexibility that seriously limits the parallelism exploitable by such machines, in 

comparison with the parallelism achievable in principle. Among the lost opportunities for parallelism are: 

1. Scalar operations. Although high perfonnance computers sometimes have impressive 

.mechanisms to speed up scalar computations through data caches, instruction caches, 

instruction lookahead. and "on the fly" optimum scheduling of functional units, the vector, 

pipeline, or array hardware of the big supercomputers is completely ineffective for scalar 

operations. As supercomputers become more powerful in their ability to process regular 

arrays, this "scalar bottleneck" becomes proportionally more serious. 
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Consider the following fragment of a program to be executed on a conventional 

supercomputer: 

~some scalar computations 
that do not depend on the 
outcome ofA, but arc needed 
before C can begin 

C another very intense 
vector computation 

Assume all three blocks take about the same amount of real time, but of course blocks A 

and C contain vastly more computation than Band use the computer's vector mechanism to 

perform it. B1ock B could in principle be executed simultaneously with A. Since it actually 

performs an insignificant amount of computation in comparison to A, it would be very little 

additional burden to the computer's processing units. It ~ould double the computation 

speed (assuming a long sequence of these alternating vector and scalar blocks) by letting the 

intensive computation C commence as soon as A completed, thereby keeping the vector 

mechanism busy all of the time rather than half of the time. The problem here is that, 

while the arithmetic units are very powerful, the computer's control mechanism lacks the 

flexibility to schedule operations in this manner. 

2. Irregular array operations. Conventional supercomputers have very little ability to perfonn 

different computations on different elements of an array. Their ability is generally limited 

to use of "mask" arrays that can enable or disable specific instructions on specific array 

elements. This, too, is a lack of flexibility in the scheduler. The computer's vector 

mechanism runs at such a high speed that it doesn't know what it is doing in terms of the 

control structure of the program. It does not have time to stop and think about individual 

array elements. 

3. Sequential data dependencies within iterations. Some operations on arrays have an actual 

data dependency from the computation involving one element to the computation 

involving the next. True simultaneous processing is of course impossible here. However, a 

large amount of parallel processing is usually still 1)()$ible, because only a small fraction of 



the arithmetic operations arc in the "critical path''.. Conventional supercomputers, 

however, can't take advantage of this because the operations in the critical path arc deep 

inside the pipeline and can't be "fed back" at full speed from one point in the pipeline to an 

earlier point. 

All of these shortcomings arise from one fundamental problem: the control mechanism ("scheduler") of 

conventional supercomputers lacks the flexibility to take advantage of the parallelism actually present in the 

algorithm. 

1.2 Data Flow Analysis with Scalars 

For algorithms not involving arrays, the method for "optimally" scheduling operations to take full 

advantage of parallelism is well known. It is the data flow model. The instructions of the program are 

arranged in a "data flow graph", showing their interdependencies. 

For example, the FORTRAN program 

1 P = X+Y 
2 Q = P/Y 
3 R = X•P 
4 S = R-Q 
6 T = R•P 
6 RESULT• S/T 



- 11 -

would have the following dala flow graph: 

Fig. 1.1 

(6) RESULT = S/T 

Data items are transmitted in programs in FORTRAN and most other languages through the writing 

and reading of variables. In a data flow graph this transmission is shown by an arrow from the source 

operation to the destination operation. For programs that deal only with scalars, the translation from 

conventional languages is not too difficult (7, 20, 46). 

The ideal parallel scheduler will execute each operation as soon as the operands that it requires become 

available. One can visualize the operation of such a scheduler through the "token" model: ·Results of 

operations are created in the form of tokens (shown as black dots) that flow along the arrows. The ideal 

scheduler will therefore execute each operation when it has tokens present on all of its inputs. 
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A possible state of the execution of the above graph might be 

Fig. 1.2 

X y 

p 

(6) RESULT = S/T 

1 & 3 have completed 
2 is undergoing execution 

Any scheduler that uses this criterion for instruction execution will find all opportunities for parallelism, 

without regard for locality. The possible parallel instruction executions will not be limited to a single locus of 

control, or even a local "window" of control, or even some collection of regul~r. repetitive operations. 

Computers capable of direct execution of programs encoded as data flow graphs have been 

proposed (9, 16, 17, 22, 21, 33,401 and some prototypes have been built 

The design of practical direct . execution data flow computers requires a few enhancements and 

refinements to this model. Some of these refinements will be described briefly here -· detailed consideration 

is not crucial to this thesis. A dynamic data flow graph can effectively expand and contract during execution. 

This is typically done when a function is invoked. A function invocation is initially encoded as an "apply" 

node. When a token reaches that node, it turns into (that is, the computer operates as though it had turned 

into) the graph representing the function body. A slalic data flow computer can only handle static graphs. In 

static graphs, function invocations are expanded at compile time, before execution begins. This necessarily 

precludes general recursion at the hardware level. 
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Another refinement is the use of special nodes to control conditionals and iterations. In the standard 

model data flow graph [23. 24] these nodes arc called "T", "F", and "MERGE". 'Inc 'T" gate takes one 

argument of arbitrary type and one boolean argument. If the second argument is true, the first argument is 

passed on as the result. Otherwise it is simply discarded. The "F" gate docs the opposite. "T" and "F" gates 

control the initiation of conditional computations and the recycling of values during iterations. The 

"MERGE" gate takes two arguments (labeled T and F) of arbitrary type and a third argument which is 

boolean. It accepts and passes on as the result whichever of the first two arguments is indicated by the third 

argument. The unused argument is not absorbed and is not even required for the operator to fire. This 

operator is used to merge the results of the various arms of a conditional, and to define the initial loop 

variables for an iteration. See [18, 46] for a detailed description of the use of these gates. In this thesis, data 

flow graphs will be shown in a level of detail that does not involve these gates -- conditionals and iterations 

will be shown in terms of the more abstract nodes described in Section 2.3. 

1.3 Applicative Programming 

For algorithms that deal with arrays, achieving "maximally parallel" execution is a far Jess tractable task. 

One reason for this is fundamental and will be discussed in Section 1.4; the other is that array computation is 

usually not performed applicatively. This second reason is not fundamental -- it is an artificial problem 

arising from conventional ways of conceptualizing computation. It must be disposed of before the real issues 

can be addressed 

The processing of data in arrays is commonly perceived in terms of the "von Neumann" architecture, 

which is not compatible with true data flow analysis. In this model of architecture, one conceives of a 

computer as a machine that manipulates data stored in a memory, by executing commands in some sequence. 

For programs that deal with scalars, it is not difficult to recast one's thinking in terms of data dependencies 

instead of sequential command execution, nor is it difficult to translate programs into data flow graphs. The 

reason is that the 0memory slots" of the machine's memory can be thought of as nothing but "pipes" between 
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arithmetic operations, that is, variables in the program become arcs in the data flow graph. Hence, the von 

Neumann style of thinking is not a serious burden in this case 

The von Neumann style of thinking has a much more profound effect when arrays enter the picture. 

Inst.cad of being simply "memory slots", the memory consists of "blocks" that arc treated as having a very real 

existence. The need to pass entire arrays from one part of the program to another, and the expense of copying 

them, means that tl1e memory blocks that arrays occupy have a very real existence in one's conception of what 

the program is doing, and in the execution model that a programming language presents to the user. 

Execution of high level languages on von Neumann computers is customarily performed in a way that 

requires that this execution model be pervasive in the external behavior of the "virtual machine" that defines 

the language. So pervasive, in fact, that for a great many high level languages, such as FORTRAN, BLISS, 

and C, the target machine for which the language was designed is clearly discernible from reading the 

langqage manual. 

This intertwining of the von Neumann conception of the way arrays are manipulated with the way 

humans write programs makes the bottleneck difficult to break. Vector and pipeline supercomputers are 

designed to do their vector operations by regular manipulation of successive words in blocks of memory, 

because that is the way programs are conventionally written. It is nearly impossible to get truly flexible 

parallel execution without getting away from the notion of memory blocks manipulated exactly the way the 

programmer specified. But it is nearly impossible for a compiler to translate a program as anything other than 

such a memory block. manipulator, because the actual data dependencies in conventional programs are so 

obscure. 

What is needed, then, is a style of programming that does not enslave the computer to the von 

Neumann style of execution, and a style of translation and execution that can truly exploit the parallelism. 

Such a style of programming exists: it is called applicative programming (4). In applicative programs, all data 
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dependencies, even those involving arrays, arc apparcnt.1 (The reason it is easy to deduce the data 

dependencies of programs that do not use arrays is that such programs arc essentially applicative anyway, no 

matter what language they arc written in.) 

For the purposes of this thesis, the important characteristic of applicative languages is the following: 

Whenever any array (or other data aggregate such as a record) is modified by some computational step (say 

A), the effect of that modification must always be made known, by some mechanism, to other computational 

steps (say B). If the transmission of that effect takes place because B "knows" where the array is, perhaps 

having known its location since before A modified it, the language's model is not applicative. Most languages 

are not applicative -- in most languages those statements that refer to the array X are compiled into code that 

knows where X is allocated, whether on the stack, in a COMMON block, or in some local or global memory 

space, and the code manipulates X through that predetermined address. 

This type of transmission of effect (called a "side effect") is not compatible with data flow scheduling 

because the constraint that step A must precede step B does not take the form of a token transmission from A 

to B. 

In an applicative language model the only way computational step A affects step B is through direct 

transmission of its result value to B. The result of A is a new array (conceptually at least), containing the 

outcome of A's action. Only steps that receive this result can sense A's action -- no other step can sense it 

indirectly by reading the array that it knew A would modify. (Of course, in an implementation, step A may 

very well write into memory. It is the job of the implementation to make sure that the behavior is consistent 

with the applicative model.) 

1. We do not consider data dependency removal that might be effected by rearranging the algorithm, or by 
using mathematical identities beyond the normal purview of a compiler. 



- lh -

This type of transmission is fully compatible with data !low scheduling. One allows tokens to carry 

array values as well as scalar values. Array operations arc pcrfonncd by functional operators such as the ones 

to be described shortly. 

The use ·or applicative arrays is a very radical departure from the conventional methods of computation 

in numerical applications. It has led to widespread and severe criticism regarding its efficiency in such 

applications. A major goal of this thesis is to answer these criticisms. 

A few words about array nomenclature are in order. The differences between applicative arrays and the 

"arrays" (or "subscripted variables") of conventional languages are profound. It is very easy to use slippery 

language that confuses the two concepts. In an applicative system, an array is nothing more or less than a 

series of values, along with the low and high bounds information indicating between what index limits these 

values lie. The array is the information. In von Neumann style thinking, on the other hand, an array is a 

place where values may be stored in sequence. 

Strictly speaking, it is therefore incorrect to speak of "writing X into array A at position J." One should 

only speak of "producing an array with X at position J and otherwise identical to A." In practice, however, 

the way array computation is performed in numerical programs is not much different in a von Neumann 

system or an applicative one. In FORTRAN, an array is filled by subscripted assignments to it, typically in 

DO loops. One can quite properly speak of "writing X into A at position J." In an applicative language, one 

would use an iteration variable which is an array and which is repeatedly rebound One should speak of 

"rebinding the iteration variable A to an array containing X at position J and otherwise identical to A's old 

value." In practice, the two operations are analogous to each other and are used in the same way in 

algorithms written in conventional and applicative systems. respectively. 
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In this thesis, the more convemional nomenclature will ofien be used, even though applicative array 

operations arc being described. The reader should be aware that "writing into an array" is something of an 

abuse of language in this context. 

1.4 Array Computation in Applicative Systems 

Having disposed of the fictitious problems with array computation, we can consider briefly, if 

imprecisely, what it is that really makes array computation difficult to deal with. 

The fundamental characteristic of arrays that makes computation with them difficult to analyze is that 

arrays, in general, contain an amount of data that is incommensurate with the size of the program structures 

that manipulate them. Programs that manipulate scalars only need to deal with as many data items as there 

are names to denote them appearing in the text of the program. (Of course, it can be argued that the 

information content of a small collection of scalars can be increased without limit by increasing the precision, 

that is, the word length. However, this has no effect on the complexity of the program's behavior as long as 

the data are treated as indivisible units. If the program looks inside the data words instead of treating them as 

indivisible units, they become, in effect, arrays.) 

Any arrays that are of small fixed size present no problem.1 The reason is that such an array can be 

treated simply as that many scalars. Data dependencies can be analyzed for the various array elements 

individually. Random accesses ("subscripted array references") can be rewritten as conditional program 

structures that test the index value one case at a time. 2 

1. The meaning of "small" is of course subjective. Any number is small if we are willing to make the control 
structures large enough. Practical experience tells us, however, that 3 is small and 100 is large. 
2. It is an aversion to 100-armed conditionals that leads us to say that an array of 100 clements is not "small". 
It is clearly not efficient to let the control structure of a program grow in proportion to the size of the arrays. 
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IL is when arrays arc large. however. or when their sizes arc unknown in advance and hence might 

conceivably be large. that they exhibit their difficult behavior. In this case, program structures such as 

conditionals can no longer encompass the range of the possible array indices. Then the indexing operations 

for reading and writing arrays become essential and nontrivial. When a compiler secs just an expression like 

A[J] 

it knows nothing, in the most general case, except that J is the result of some integer computation which it 

perhaps can't analyze, and which it must use to fetch the appropriate clement from the array A. whose internal 

structure it can't discern. 

The fact that the manner in which data are written to and read from arrays is often unpredictable makes 

it very difficult to organize programs for extremely efficient parallel computation. When unpredictable, or 

"random" access to arrays occurs, it is desirable to store the array in a localized area in physical memory, so 

that the hardware will be able to make the accesses readily. This is _the antithesis of truly bottleneck-free 

parallel distributed computation. 

Arrays that are accessed unpredictably are the bane of conventional supercomputers also. The vector 

and array mechanisms of these machines can only deal with fairly regular algorithm structures. The various 

optimizing compilers and program transformers for these systems search the source program for 

computational structures (00 loops. typically) that can take advantage of the machine's array mechanism. 

1.5 Spatial Distribution of the Computation 

The way to achieve very high performance is to distribute the computation across many distinct 

processing units. Since we envision execution on a data flow computer, the first step is to distribute the 

computation across a data flow graph. The second step is to map that graph onto many processing units in 

such a way that those units can proceed as nearly independently as possible and with as few constraints as 

possible. The mapping problem. while extremely important, will not be addressed in this thesis. We will 



· I 9 -

consider parallelism that is visihle in the da1;1 flow graph to be parallelism aehicvabk by the computer. In 

effect. we will consider each instruction to have its own processor, so that "ideal" execution is obtained -- each 

instruction in the graph can fire when its operands arc available, independently of anything else that is 

happening elsewhere in the computer. This allows us to ignore the mapping problem. In an actual computer, 

one processing unit would have to serve the needs of many instructions, so the mapping must be chosen to 

balance the loads on the processors. 

The representation of a program as a graph constitutes a distribution of the program over many 

processors and consequent exposure of its parallelism. This amount of parallelism is not enough. Additional 

parallelism, enonnous amounts of it, will be found among the different cycles of iterations ("loops"). To 

expose that parallelism in the data flow graph, the cycles will be unfolded(or "expanded" or "unrolled"). This 

is the principal technique whereby huge increases in . computation speed are obtained. Of course, this 

unfolding takes up space in the machine representation of the graph. Very high perfonnance computers will 

have to have a large "instruction space". The total speed of a system is limited by the product of the 

instruction space and the processing speed per instruction. (The latter quantity depends on the speed of each 

processing unit and the number of instruction cells that it must serve, that is, the degree of deviation from 

ideal execution.) This thesis will be oriented toward extremely large machines executing programs whose 

loops have been unfolded accordingly. 

1.6 Spatial Distribution of Arrays 

The translation of programs written in an applicative source language into static data flow graphs is not 

too difficult a task. This is so even if array operations are used,· if the execution mechanism for the graphs 

supports the array operations directly, exactly as they appear in the source program. Such a direct hardware 

support for arrays means that arrays appear as tokens in the data flow graph, just as scalars do. The operations 

for reading and writing arrays look like any other operations in the graph -- argument tokens flow into them 

and results flow out. Implementing such a scheme is rather tricky. Since it is not feasible to carry all of the 
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array tbta in an aclual token, a mclhod must he worked out whcrchy the array data arc stored in a memory 

unit and some sort of pointer to it is carried in the token. It is the job of the implementation (hardware, 

finnwarc, and compiler) to ensure that the resulting mechanism is equivalent to the idealized mechanism in 

which the entire array is carried in the token. The details of such a mechanism arc beyond the scope of the 

thesis. The interested reader is referred to [J], in which an implementation is described for general dynamic 

arrays, or [25] in which it is described for a restricted class of array operations for which efficient execution 

may be obtained very cheaply. For the purposes of this thesis, it is assumed that some appropriate hardware 

mechanism exists. 

This still leaves a serious bottleneck in the handling of arrays, especially in unfolded loops operating on 

a very large, high performance computer. To circumvent this, as we expand the loops, we will expand the 

arrays also. The general representation and translation technique that will be used is spatial interleaving. A 

linear array is rearranged as if it were a two-dimensional strip of fixed width. If the given array's size is known 

at compilation time, the strip's length is known as well. 

Fig. 1.3 

column index --+ 

0 1 2 3 

-1 -4 -3 -2 -1 

0 0 1 2 3 

row index 1 4 6 6 7 index in array = 4 * row index 
l + column index 

2 8 9 10 11 

Each column is then treated in the hardware as a true array, which is implemented by whatever 

mechanism the hardware provides. These column arrays are handled independently. High speed is achieved, 

as on conventional computers, by wide interleaving, that is, by making the strip very wide and having many 

independently handled arrays. Unlike conventional computers, the separate arrays do not need to pass 
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through the same bottleneck. so the amount of possible interlea\'ing is virtually unlimited. The interleaving is 

perfonned by Lhe compiler and is invisible to the programmer. It is the job of the compiler and the hardware 

to make the <werall computation faithful to the programmer's (uninterleaved) intentions. 

When the array is more than one-dimensional, a si1:1ilar interleaving is used in each dimension. 

1.7 Regularity of Array References 

The techniques to be shown in this thesis work well only for array operations that take place in regular, 

repetitive patterns. The bulk of the array references (reading or writing) must be inside iteration loops, with 

the array index of the datum being accessed related to the cycle number in the loop by an affine mapping 

function. An affine function is a first degree polynomial, that is, a function of the form f'(x) =Ax+ B. A 

typical iteration that obeys this rule is something like 

DO 10 I= 1, 1000, 2· 

10 CONTINUE 

We can actually relax the restrictions in a number of ways at modest cost in efficiency. These relaxations will 

be presented later in the thesis. One relaxation is that the function mapping the relative time of data_ access to 

its array index can be a piecewise-affine function. This means that it can be broken up into a "small" number 

of pieces, each of which is of the form f'(x)=Ax+B. The question of how small is "small" is answered in the 

usual way: it should be small enough that program structures of that size (e.g. a conditional with one arm per 

piece of the array) are feasible. The number of pieces is typically very much smaller than the size of the array 

itself. 
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Common cxampks of picccwisc-artinc .irray mapping can- he found· in the handling of boundary 

conditions. All clements of an array except the first and the last arc created in a regular sequence by a 

unifonn method, but the first and last clement~ arc computed as special cases. Such an array might be 

expected to be produced in three pieces. 

Perusal of common numerical application programs shows that they generally satisfy the restrictions on 

regularity of array access. Of course there arc exceptions, but those exceptions arc relatively rare and do not 

usually occur in the computationally intensive part of the programs. It follows that. for many numerical 

calculations, tremendous perfonnance improvement can be obtained through the use of the data flow 

principles to be presented. 

1.8 Synopsis 

Chapter 2 will define the conventions and notation to be used in the rest of this thesis. Chapter 3 will 

describe the two basic operations that we will perform on programs to obtain high performance: unfolding of 

loops and interlace of arrays. Chapters 4 and 5 will describe how those operations will be made to work in 

practical situations. Chapters 6 and 7 will describe additional important transformations. Chapter 8 will 

discuss the special problems that arise when programs "write" into arrays. Chapter 9 will discuss the types of 

transformations that must be made when the compiler has less information about array reference indices than 

we would like. Chapter 10 will describe how parts of a program can be permitted to get "out of step" with 

each other for improved performance. Chapter 11 will describe a final transformation of arrays just before 

they are mapped onto hardware structures. Chapter 12 will describe how occasional "irregular" array 

references are handled. Chapter 13 will show how these methods apply to programs with nontrivial structure, 

presenting two real example programs: a tridiagonal equation solver and the fast Fourier transform. Chapter 

14 will describe some special array optimizations that can sometimes be made. Chapter 15 will present a few 

thoughts about the design of the actual computer upon which these transformed programs should run 

efficiently. Chapter 16 will present some conclusions about the manner in which a practical optimizer might 
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2. TIIE EXECllTION l\10DEL AND ITS NOTATION 

The execution model that will be used is the static data flow graph. This is an ideal model for the study 

of parallelism in applicative programs, since the data flow graph of such a program faithfully represents the 

possible parallelism in its execution. Since there arc no side effects. the execution of any operation can take 

place as soon as its immediate predecessors in the graph have computed their results. It docs not need to wait 

for any other control signal; no other activity in the program could possibly affect it. 

The appropriate computer for this model is an idealized "data flow computer" that can "fire" (execute) 

all operations independently. Such a computer, in the ideal limit of true simultaneous execution of all 

enabled operations, can take ultimate advantage of the parallelism in an applicative program. 

In the static data flow model, the data flow graph does not change its structure during program 

execution. This property assumes that functions are expanded "in line", prior to execution, as if by a macro 

preprocessor, and makes execution of recursive functions very difficult. The graph·consists of nodes which 

can perform predetermined applicative operations, and directed arcs carrying data "tokens" among the nodes. 

Except for the special nodes to control conditional and iterative computation, the nodes have a 

straightforward firing rule: a node can fire whenever its input arcs contain tokens and its output arcs do not. 

When it fires, it absorbs its input tokens, using the data they contain as arguments to compute its function, 

and places a copy of the result of that computation on each output arc to be sent to other nodes. 

As noted previously, the translation of an applicative program into a data flow graph is not difficult if 

only scalar values are involved. Likewise, the qualitative analysis of how such a graph would be executed on 

any reasonable data flow computer is trivial. When arrays are involved, the transformations that must be 

made become rather involved. 
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Since all array operations must he performed as applicative operations encoded in the data flow graph. a 

set of "basic" machine level operations suitahlc for high speed computation must be chosen. These are the 

data flow computer's analogue of the indexed load and store operations that arc the basic array instructions of 

conventional computers. The fundamental operations are 

select" 

append 

written as: A[J] 

written as: A[J:V] 

Select performs the same "subscripted read" operation as in conventional languages. Append returns an array 

similar to the argument "A". but with value "V" at index "J ". replacing whatever "A" has at tl1at index. While 

different operations can be devised, applicative programming requires that any "subscripted write" operation 

be somewhat similar to the append operator. 

There are a number of alternative forms of the append operator. Two that are especially useful for the 

sequential creation of arrays are: 

addh written as: addh(A,V) 

addl written as: addl(A,V) 

These return an array whose upper bound has been increased, or lower bound decreased, respectively, with 

the given value as the new element (We assume that the low and high bounds of an array are part of the 

information associated with the array.) 

2.1 The Source Language 

Programs will be written in a suitable subset of VAL (5]. This language is, for the purposes of this thesis, 

a rather ordinary and typical language. It is applicative, it has the desired array operations, and it has suitable 

control structures. The properties of VAL that set it apart from other languages such as Id [9] or pure 

LISP[42] relate mostly to syntax and type checking, which are irrelevant to our concerns here. VAL is rather 
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simple-minded in its approach to functions, in that functions arc not treated as "first class ohjccts".1 This 

makes it suitable for translation into static data flow graphs. Languages that treat functions more generally, 

such as Id, LISP. FP [11], or KRC [45). may be more difficult to translate for the execution efficiency that we 

envision for V Al.. (This is not to say that they will never be implemented as efficiently as VAL, but we 

believe that. further developments in architecture and compiler design will be required.) The restrictions 

imposed by using V Al. and static data flow graphs do not impose any undue hardship for many application 

areas. 

The principal array operators of VAL are SELECT and APPEND, described previously. When building 

arrays with append, one often starts with the array "array _empty". Because VAL is applicative, this is a 

constant. The semantics of VAL provides detailed rules governing the behavior of SELECT, APPEND, and 

array_empty, particularly regarding how array bounds "stretch" when an APPEND writes into a position 

out of the existing bounds. These rules will be ignored in this thesis -- they are not important for the kinds of 

regular array creation we will be dealing with. We will just assume that application of a series of APPEND 

operations to array_empty will always do the right thing. We will not even assume that array bounds are 

part of the data carried by the token. The difference between the assumptions being made and the actual 

semantics of VAL ( or any similar language), and the difference between those assumptions and the actual 

behavior of a target data flow computer, are details that may be left to the design of a compiler. 

Other array operations have been proposed for the VAL language, but they are not important. Most of 

them perfonn "housekeeping" operations involving the array bounds. 

1. This means that function names and definitions may not be passed as parameters, bound to variables or 
arrays, or otherwise manipulated. The only thing that one may do with a function is invoke it, and the only 
thing that one may invoke is a function name which is pennanently bound at compile time to a function 
definition that the compiler can find. 
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The notation for iterations in VAi. b shown in the following example: 

for J, K := N, 1 

do if J = O then K 

% J and Kare loop variables 

% exit and return this value 

else iter J, K := J-1, J•K enditer 

end if 

endfor 

The body of a for block may evaluate (depending on the values of test expressions involving the loop 

variables) to an itcr clause. If so. the loop variables arc bound to the new values as indicated, and the body is 

evaluated again. Otherwise. evaluation of the for block is complete. As noted in [4}. this is typical of the way 

iterations must be expressed in an applicative language. 

The VAL language also has a forall block exemplified by 

forall J in [LO. HI] 

construct A[J]+B[J] 

endall 

% "vector sum" of A and B 

In this thesis, the forall block will be considered as nothing but a "sugaring" _(short notation) for the 

appropriate for block. All considerations of iterative program structures and their transformations will be 

made in terms offor blocks, and the extension to forall blocks will be implicit. For example, the above forall 

block can be considered a sugaring for1 

for J, A := LO, array_empty 

do if J > HI then A 

else iter J, A:= J+l, A[J: A[JJ+B[J]] enditer 
endif 

endfor 

1. This ignores a minor difference in the way the VAL semantics treats pathological values of the array 
bounds. 
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One may wonder why we artificially scqucntialile the for.ill block. The object of the g.1me is to uncover 

parallelism, and the forall block is designed to show the compiler where parallelism lies. so destruction of this 

in formation seems counterproductive. The reason we do this is that the correct translation of the forall block 

is the same as the correct translation of the equivalent for block. as will become clear later when "loop 

unfolding" is "introduced. When a forall block is converted into an iteration and a loop unfolding of N is 

performed, the resulting code simultaneously computes N consecutive instances of the forall. and then moves 

on to the next N. and so on. If N is as large as the machine size will support this is the best way to translate 

general forall's. 

If the forall limits are known to the compiler and are reasonably small, converting it to an iteration loop 

is still the correct thing to do. Complete unfolding of the resulting iteration will generate the "intuitively 

obvious" parallel forall code. 

Whether an optimizing compiler actually converts forall's into iterations, or just acts as though it had, is 

a minor implementation detail. 

2.2 Compile-time Parameters 

It will soon become apparent that it is very important for an optimizing compiler to know the numerical 

values of certain parameters such as array sizes. Of course it is not appropriate for such parameters to be 

specified as manifest constants at the points where they are used. The Fourier transform procedure, for 

example, should be written with the array size as a symbolic parameter: 

function DFT(ARG: array[complex] ; N: integer ... 

(The reader who is curious about what comes next should refer to Section 13.2.) 
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In any given run of a program, it will be known, for each invocation of this li.mcLion and others like it, 

what the value of N will be. Typically, the programmer will want to specify the numerical value at the 

outennost level of the program, leaving it as a symbolic value everywhere else. It is for this reason that some 

languages such as FORTRAN77 (29) and ADA [6] have a "parameter" or "constant declaration" feature. 

Using "parameters", values that arc required to be known prior to execution can be specified numerically 

only at the outcnnost level, and left in symbolic fonn elsewhere. 

A nice property of functional languages is that there need be no difference between such a "parameter" 

and an ordinary "variable". There is no need to tell the compiler that, in one case, a parameter will be 

numerically specified at the start of the program, and in the other case, that a variable should have memory 

allocated to it. Since a "variable" in a functional language can't be changed once it is defined, there is no need 

to allocate memory for it. 

A definition such as 

let N := 2048 

in 

endlet 

is completely equivalent to substituting 2 O 48 for all free occurrences of N in the block. The same is true for 
I 

definitions made by passing arguments to functions. 

Therefore, it is reasonable that "compile-time parameters" will be specified, using normal mechanisms 

of the language, by a top-level function such as the following: 

function TOP_LEVEL(DATA: array[real] returns array[real]) 
SOLVE_NAVIER_STOKES_EQUATION(DATA, 2048} 

endfun 
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2.3 The Graph Model 

In this 1.hcsis data flow graph fragmcnL'i will be exhibited in a very simplified notation designed to 

convey just the essential aspects of each graph. Ordinary connections among operators will be shown in the 

natural way, with arrows. The select and append nodes will be illustrated by nodes with abbreviated names S 

and A. The index argument to these nodes wilt be show1; with an open arrow: ~ . Where possible, that 

arrow will be horizontal. ·111e other argumcnt(s) will be shown with plain arrows. The append operator takes 

two other arguments. The one on the left will be the incoming array; the new value will be on the right. 

Where the actual graph stnicture would be more confusing than helpful, ordinary expressions will be written. 

X y 

means 

J 

Where several nodes receive the same index, an arrow will pass throuib all of them: • 

Arguments will occasionally be subsumed into nodes: 

1 

means --4>-
N/4 

means -J-
The ubiquitous constant array_empty will be written as "A". 
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The notation for conditionals is as lt11lows: An IF node t;1kcs a boolean ·argumclll on the side. and data 

at the top. The left data argument is used if the boolean is true: otherwise the right argument is used. 

X y 

if P then X else Y endif is represented as 
p~ 

The actual representation of a conditional in a static data flow computer is quite different -- a 

"MERGE" operator plays the part of the If. but "T" and "F" gates arc placed at the top of the subgraphs 

computing X and Y to allow tokens to enter only the chosen subgraph. 

Several I F's in a row can have a single boolean arrow going through them: 

Iterations have the most complex notation. (This includes loops made from the VAL forall feature -

the latter is treated as an abbreviation for a sequential loop.) The body of the loop is surrounded by a dotted 

line passing through "LV" nodes at the top and a FOR node at the bottom. The "LV" nodes are sources of the 

Loop Variables for each cycle. The data shown going into them at the top (outside of the dotted line) are the 

initial values, computed only once. Just above the final FOR node is an IT ER IF node controlling the loop. It 

is a variation of the I F node of ordinary conditionals. 

The body of a VAL iteration loop is an if/then/else, one clause of which is of the form 

"iter < vars> : = <newvalues> enditer", and the other of which defines a tuple of ordinary values.1 That 

if /then/ else will be an IT ER IF node. The boolean control value will enter on the side in the usual way. The 

"data values" going into it will be "iterating anns" or "returning anns", drawn as boxes with "I" or "R" in 

them. An iterating arm has as many arrows going into it as there are loop variables. If that arm is selected, 

1. The VAL language actually allows many variations of this. 
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those \alucs arc used as tJ1c new loop variables. and another iteration cycle takes place. That is. the tokens arc 

considered to be routed back to tJlc respective "LV" nodes and to re-enter tJle loop body. A returning arm has 

as many arrows going into it as there arc values returned by the entire loop. which is tJ1c number of arrows 

emanating from tJlc FOR node. If a returning arm is selected. tJlosc values arc returnrd. That is, tJlc tokens 

arc considered to pass tJlrough tJlc FOR node and out of the loop. 

If J and K arc tJlc loop variables, then 

if J = O then K 

else iter J, K := J-1, J•K enditer 

end if 

is represented by 

J 

J K 

ITERIF 

and 

for J, K := N, 1 

do if J = O then K 

J 

else iter J, K := J-1, J•K enditer 

endif 

endfor 

is represented by 

N l 

' / 

I 
I 

I 
I 

ITERIF / 
; 

' FOR 
/ - - - - _ .. .. _ - - - _,.. 

K 

' 
r 

I 
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J. ITERATION UNFOLDING AND ARRA\' INTERLACE 

The principal program rcstmcturing operation that we will perfonn is that of loop unfolding, also called 

loop expansion. This basically consists of writing out multiple copies of the loop body. ln a data tlow or other 

suitable parallel computer, these copies arc expected to execute simultaneously, instead of the forced 

sequential execution implied hy the original iteration. 

Recall that, in an applicative language, the purpose of an iteration is to apply some transformation to a 

set of loop variables repeatedly, until some predicate is satisfied. We will be primarily interested in 

transformations that are performed a certain number of times, known in advance. These arc characterized by 

having one of the loop variables be a counter, and having the predicate be a test of that counter and the 

transformation involve incrementing it. 

The standard iteration might look like 

%% compute fN(INITVAL) 

Z := for X, I := INITVAL, 0 

do if l=N then X 

else iter X, I := f(X), 1+1 enditer 

endif 

endfor 

In a static data flow computer, and most other forms of computer, this suggests only one locus where f 

is computed, and hence strictly sequential evaluations off, unless the situation can be improved upon. 

A simple form of unfolding would be to rewrite this as 

%% compute fN(INITVAL), N is even 

Z := for X, I := INITVAL, 0 

do if l=N then X 

else iter X, I := f(f(X)), 1+2 enditer 

endif 

endfor 

This transformation is the standard model of loop unfolding. 'Inc 'function f inside the loop is duplicated (or 
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rcplic.1ted some number of limes) and Lhc copies strung LogcLher in-a series. The iteration then needs to cycle 

only some fraction of the number of times it otherwise would have. The intention is that, when the 

transfonned program is loaded into the computer, the separate copies will execute simultaneously, except 

where data dependencies constrain them. For example. on a static data flow computer the operations of the 

different copies would be placed in different instruction cells that would fire independently. In -an array 

processor the copies would be operated in lock-step by the different processors. 

This loop unfolding is similar in concept to the "loop unrolling" sometimes used in conventional 

compilers (8. 14). In conventional systems, however, the objectives are very different There the aim is to 

reduce the number of times the exit test must be performed. There is rarely any assumption that the 

execution of the loop bodies will overlap at all. 

The benefits of making separate copies of the transformation f can vary from virtually no overlap to 

complete overlap. On the surface, it might appear that, if we are computing f ( f ( f ( f ( X) ) ) ) , the 

innermost function must complete before the next can begin, so one might as well leave the function in a 

loop. This is true for some functions, such as mathematical functions. If we need to compute 

1 og (log ( 1 og ( 1 og ( X)) )), we can't do the 1 og operations in parallel. In a typical transformation, 

however, there is little or no actual data dependence among the evaluations of f because they refer to 

different parts of the set of loop variables. In particular, the different evaluations of f typically compute 

independent elements of a result array from different elements of an incoming array. 

Any iteration made from a forall (and we expect that many iterations will be) necessarily has complete 

independence of the evaluations of f. Other iterations may not have complete independence, but will have 

near independence, with some sort of "critical path" encompassing only a small part of the computation. 
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.11 Loop Unfolding 

The standard unfolding is what was described previously, and will be called just loop u11.fhlding or loop 

expansion. The u11fiJ/di11gfac1or is the number of copies off that arc expanded. 

Herc is unfolding factor 4: 

%% compute fN(INITVAL), N is multiple of 4 

Z := for X, I := INITVAL, 0 

do if I=N then X 

else iter X, I := f(f(f(f(X))}), 1+4 enditer 

end if 

endfor 

For simplicity, loop unfolding factors will always be powers of 2 in the examples. It is expected that this is the 

situation that will almost always arise in practice. If the unfolding factor (or the interlace factor, to be 

discussed later) is not a power of two, things become somewhat more difficult. This will be discussed in 

Section 4.6. 

Since many iteration loops will come from forall's, it is useful to examine the loop unfolding of a forall . . 

%% compute Z[I] = g(I), O <I< N, N is multiple of 4 

Z := forall I in [O, N-1]_ 

construct g( I) 

endall 

becomes 

Z := for X, I := A, 0 

do if I=N then X 

else iter X, I := X[I: g(I)], 1+1 enditer 

endif 

endfor 



which hrcomrs. with unfolding of 4 

Z : = for X, I : = A, 0 

do if I=N then X 

else iter X, I := X[I: g(I), g(l+t), g(I+2), g(I+3)], 1+4 enditer 

end if 

endfor 

where X[ I: a, p, -y, 8] is the VAL notation for an append that stores several values at consecutive indices. 

To get the fu11 benefit of the unfolding, we assume that the 4 storage operations can be performed in parallel. 

Array interlace, described later, will accomplish this. 

3.2 Initial Unfolding 

Another transformation is called initial unfolding, and consists of taking some number of copies off out 

of the loop altogether and doing them first. For example, we might do the first 3 cycles initially. 

%% compute fN(INITVAL). N ~ 3 

Z := for X, I := f(f(f(INITVAL)·)), 3 

do if I=N then X 

else iter X, I := f(X), 1+1 enditer 

endif 

endfor 

3.3 Final Unfolding 

The third transformation is called final unfolding: we execute the loop until some fixed number of 

cycles remain, and then do those cycles separately. 

%% compute fN( INITVAL), N > 3 

Z := for X, I := INITVAL, 0 

do if I=N-3 then f(f(f(X))) 

else iter X, I := f(X), 1+1 anditer 

endif 

endfor 



We can combine all three types of unfolding in a single lootJ, The following has initial unfolding= 3, 

loop unfolding= 4, and final unfolding= 2. 

%% compute fN(INITVAL), N = 5+some multiple of 4 

Z := for X, I := f(f(f(INITVAL))), 3 

do if I=N-2 then f(f{X)) 

efse iter X, I := f(f(f(f(X)))), 1+4 enditer 

end if 

endfor 

If the number of cycles that a loop will undergo is known, and we perform an initial or final unfolding 

by that number, the loop will disappear completely. This is because the loop that remains after the unfolding 

will have its end test satisfied immediately. A popular example of this is a forall with fixed limits. 

Z := forall I in [O, 3] 

construct f(I) 

endall 

This loop will have 4 cycles, which is a small enough number that we can perform a complete initial 

unfolding, obtaining 

Z:= [O: f(O), f(t), f(2), f(3)] 

14 Unfolding When the Number of Cycles is Not Well-behaved 

Each of the transformations, as shown in the comments of the programs above, requires that certain 

properties of N be satisfied It is expected that, when an optimizing compiler makes any of these 

transformations, it will know whether the requirements are satisfied This is because N has been specified as a 

"parameter", in the manner described in Section 2.2. It is still pos.sible, with extra code, to handle the general 

case. Consider initial unfolding. If we did not know that N ~ 3, we could write 
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elseif N=l then f(INITVAL} 

elseif N=2 then f(f(INITVAL}} 

else 
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for X, I := f(f(f(INITVAL)}}, 3 

do if I=N then X 

else iter X, I := f(X}, I+l enditer 

end if 

endfor 

end if 

A similar sort of thing could be done for final unfolding. There is considerable waste of space. but the waste 

of time becomes relatively insignificant for large N. 

For loop unfolding, if N is not the required multiple of the unfolding factor, we do this 

%% unfolding= 4, but can handle any value of N 

Z := for X, I := INITVAL, 0 

do if I< N-4 then iter X, I := f(f(f(f(X)))), 1+4 enditer 

else 

if I=N then X 

elseif I=N-1 then f(X) 

elseif I=N-2 then f(f(X)) 
else f(f(f(X))) % I= N-3 here 

endif 

endif 

endfor 

The waste of time in this should be comparatively small for large N. 

If N is not a multiple of the unfolding but its remainder modulo the unfolding is known, we can do 

better than the above example. If N mod 4 = 3, we can use an initial (or final) unfolding of 3. What is left 

over will be a multiple of 4. 
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To summari1e. it is only when the number of cycles is not known (as opposed to known but not a 

multiple of the unfolding) that we need to put in extra conditionals. Wherever possible, the compiler should 

know the number of cycles of the important loops in a program. 

3.5 Loops That Have No Obvious Index Variable 

The foregoing has been defined in terms of an index variable that counts up to a fixed limit. This was 

done because most of the loops that arc important in numerical programs (including all loops arising from 

forall's) arc of this type. However, loop unfolding, initial unfolding, and final unfolding can be performed on 

any loop at all. 

A typical loop is 

for X : = INITVAL 

do if P(X) then R(X) 
else iter X := S(X) enditer 

endif 

endfor 

where X denotes all of the loop variables, P denotes the exit predicate, R denotes the value(s) to return, and S 

denotes the next-state function. 

Ifwe know that this will cycle at least 3 times., we can perform an initial unfolding of 3: 

for X := S(S{S(INITVAL))) 

do if P(X) then R(X) 

else iter X :• S(X) enditer 

endif 

endfor 

If we know that this will cycle a multiple of 4 times, we can perform a loop unfolding of 4: 

for X : = INITVAL 

do if P(X} then R(X) 

else iter X := S(S(S(S(X)))) enditer 

endif 

endfor 
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We can similar!) perform a final unfolding. These transformations depended on some knowledge of how 

many cycles would take place. in that they neglected to evaluate P( X) in certain places and just assumed 

P( X) was false. This is equivalent to the assumptions made previously about N when the loop was controlled 

by a counter. If we can't make assumptions about when P( X) will be true, then we have to put in extra code, 

just as in the ll>Ops controlled by a counter. For example, a completely safe initial unfolding would look like 

if P(INITVAL) then R(INITVAL) 

elseif P(S(INITVAL)) then R(S(INITVAL)) 

elseif P(S(S(INITVAL))) then R(S(S(INITVAL))) 

else 

for X := S(S(S(INITVAL))) 

do if P(X) then R(X) 

else iter X := S(X) enditer 

endif 

endfor 

end if 

3.6 Rescaling the Index Variable 

When loop unfolding is performed on a loop controlled by an index variable, it is often useful (i.e. it 

saves excess arithmetic operations) to rescale the index variable, usually by dividing it by the amount of the 

unfolding. 

Ifwe have: 

Z := for X, I := INITVAL, 0 

do if I=N then X 

else iter X, I := f(X), 1+1 enditer 

endif 

endfor 



and we pc1form loop unfolding of 4: 

Z := for X, I := INITVAL, 0 

do if I=N then X 
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else iter X, I := f(f(f(f(X)))), 1+4 enditer 

endif 

endfor 

we can introduce a new variable J = I/ 4 and rewrite this as 

Z := for X, J := INITVAL, 0 

do if J=N/4 then X 

else iter X, J := f(f(f{f(X)))), J+l enditer 

endif 

endfor 

This is particularly useful when interlaced arrays are involved. 

Rescaling can also involve adding or subtracting a fixed offset For example 

Z := for X, I := INITVAL, 1 

·do if 1=97 then X 

else iter X, I := f{X), 1+1 enditer 

endif 

endfor 

could expand to 

Z := for X, I := INITVAL, 1 
do if I=97 than X 

else iter X, I := f(f{f(f(X)})), I+4 enditer 

endif 

endfor 

which could be rescaled by I = 4J+1, obtaining 

Z := for X, J := INITVAL, 0 

do if J=24 then X 

else iter X, J := f(f(f(f(X)}}), J+1 enditer 

endif 

endfor 



- 42 -

3.7 Interlace 

Perhaps the mosl importanl Lransfonnation one can perfonn to improve the performance of numerical 

compulalions involving arrays is to spatially separate array operations that need to take place at nearly the 

same time. By having the array operations take place in different hardware unite;, the bottleneck is removed. 

and those hardware units can do their tasks in parallel. This is the basis for the memory interlace used in 

vector and pipeline computers, and the physically distinct processing units of array computers. 

Arrays can be interlaced directly in the data flow graph. 'lbe amount of interlace for each array can be 

chosen independently for optimum performance. By interlacing arrays directly in the graph, the issues 

relating to interlace can be separated from issues of the computer hardware, though the optimum amount of 

interlace for a given program requires knowing how the machine behaves. 

Interlace consists of dividing the array into a slices, where the slice to which an element belongs is 

determined by its index modulo a. a is the interlace factor (or the interlace). For- simplicity it is always a 

power of 2. 

If an array A is given an interlace factor of 4 (or a "4 way interlace") there are 4 slices, called A0, A1, A2, 

and A3• Those elements that were originally A(-8], A[-4], A[O], A(4] etc. are stored in A0• Those 

elements that were A[-3 ], A[ 1 ], A[ 5] etc. are stored in A1, and so on. 

The mapping function for interlace factor a is 

A[al+J] = AJI] 
(in the original array) (in the interlaced array) 

where O < J < a 

or equivalently, 

A[I] is stored in A1 mod 0 ( LI/aJ] 
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Z := for X, I := INITVAL, 0 

do if I=N then X 

else iter X, I 

end if 

f(X), I+l enditer 

endfor 
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Fig. 3.1 



- 44 -

with 4-way unfolding, assuming we know that N is a multiple of 4: 
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Fig. 3.2 

Of course, in a typical loop that arises in practice, the part that gets replicated is· more than just the 

single node "f". It is a complex subgraph which, when replicated, overwhelms the rest of the loop. 

Furthermore, the replicated copies are often intertwined with each other quite intricately, as subsequent 

chapters will show. 

When unfolding is performed on a loop making references to arrays, and the arrays are interlaced, the 

compiler can use its information about the array index in each unfolded instance to optimize the array 

references. Certain references in certain loop instances wilt, by virtue of the known array index modulo the 

interlace factor, refer only to certain array slices. The resulting graph typically looks something like this: 

B := forall I in [O, N-1] construct A(I]•3 endall 
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with interlace of 4 on both incoming and result arrays, and rescaling: 
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The potential for parallelism when unfolding and interlace are used can be readily seen. 

Fig. 3.3 

Fig. 3.4 
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J.9 Nested Loops 

When loops arc nested one can choose the unfolding independently at each level. 

Consider the following nested loop: 

%% assume Mand N are multiples of 4 

for I, X := 0, INITVAL 

do if I= N then X 

else 

let NEWX := for J, Y := 0, X 

do if J = M then g(Y, I) 

else iter J, Y := J+l, f(X, Y, I, J) enditer 

endif 

endfor 

in iter I, X := 1+1, NEWX enditer 

endlet 

endif 

endfor 

The functions f and g symbolize the inner workings of the loops. Their dependence on the values of the 

counter variables is shown explicitly, which will demonstrate that loop unfolding requires a lot of careful 

bookkeeping. 

If we perfonn a loop unfolding of 4 on the inner loop, we get the following, where some extra 

assignments have been made to keep the complexity manageable. 



I I L11 is i s t 11 e i 11 n e ,, loop o 11 l y 

f o r ,J , Y : = 0 , X 

do if J = M then g(Y, I) 

else 

let NEWY 1 - f(X, 

NEWY2 - f(X, 

NEWY3 - f(X, 

NEWY4 - f(X, 

Y, I , 

NE WY 1 , 

NE\.JY2, 

NEWY3, 
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J) 

I , J+ 1) 

I , J+2) 

I , J+3) 

in iter J, y - J+4, NEWY4 enditer 

endif 

endfor 
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We can also perform a loop unfolding of 2 on the outer loop, obtaining 

%% assume Mand N are multiples of 4 

for I, X := 0, INITVAL 

do if I= N then X 

else 

let NEWXl := for J, Y := 0, X 

do if J = M then g(Y, I) 

else 

let NEWYl := 

NEWY2 := 

NEWY3 := 

NEWY4 := 

f(X, 

f(X, 

f(X, 

f(X, 

Y, I' 
NEWYl, 
NEW.Y2, 

NEWY3, 

J) ; 

I' J+l) 

I' J+2) 

I' J+3) 

in iter J, Y : = J+4, NEWY 4 eftdH&f' 

endif 

endfor ; 

NEWX2 := for J, Y := 0, NEWX1 

do if J = M then g(Y, 1+1) 

else 

let NEWYl := f(NEWXl, Y, 1+1, J) ; 

NEWY2 := f(NEWXl, NEWYl, 1+1, J+l) 

NEWY3 := f(NEWXt, NEWY2, 1+1, J+2) 

NfWY4 := f(NEWX1, NEWY3, 1+1, J+3) 

in iter J, Y := J+4, NEWY4 enditer 

endif 

endfor 

in iter I, X := 1+2, NEWX2 enditer 

endlet 
endif 

endfor 

This nested loop has "2•4'' unfolding. (We could use different amounts of unfolding in the different 

instantiations of the inner loop arising from the outer unfolding, but there is rarely any reason to do so.) The 

total number of instantiations of the innermost loop body is the product of all of the unfoldings. 8 in this case. 

This product could be considered the "total" unfolding, since it is a measure of the total amount of space in 

the computer that the nested and unfolded loops will consume. 
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One might ask why we don't use all of the unfolding we have-space for on the innermost loop, and none 

on the outer ones. On conventional computers, one typically optimizes the innermost loop most carefully. 

For example, variables manipulated by inner loops arc given highest priority for using high-speed registers. 

We do not envision a data flow computer having high-speed registers that various parts of the computation 

compete for, sb this consideration docs not apply. When there arc data dependencies from one iteration cycle 

to the next, preferentially unfolding the innermost loop provides a slight advantage in terms of overhead in 

loop control operators. However, when the loop cycles can be executed simultaneously, the loop cycles are 

correlated with clements of an array, and there arc references to neighboring array clements in each 

unfolding, it is advantageous to unfold loops at all levels. The shape of the unfolding of nested loops refers to 

the relative amounts of unfolding at the various levels. It is the shape of the rectangular grid of unfolded loop 

cycles. This will be illustrated by various "2-dimensional" algorithms shown in Chapters 6 and 7. 

3.10 Coalescing Control Structures 

When there are nested loops, and unfolding is used, it very frequently occurs that the multiple 

instantiations of the inner loop can be executed simultaneously. 
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Now it may happen that. when the inner workings of the "f" subgraphs are worked out, there will in fact be 

no data dependency going from the first unfolding to the second. The graph might look like 
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and the control structures are congruent, that is, the index variables and end tests are handled similarly, as is 

highly likely if the inner loops are just different instantiations of the same code arising from unfolding in the 

outer loop, they can be combined: 

I 
I 
I 
I 
l 
\ 

Fig. 3.8 

I 
I 

Toe benefit of this is not the fact that a few nodes have been saved, but that the subgraphs for g0 and gt' 

lying in the same loop, can share common subexpressions with each other. Toe significance of this will be 

discussed in Chapter 6. 

One might think it unlikely that, when the outer loop is unfolded, the unfoldings would have no data 

dependencies among themselves, but in fact it occurs frequently. Almost all of the nested loops that will be 

examined in this thesis will have the control structures of the inner loops coalesced. 
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This coalescing of control structures is somewhat similar- to the transformation known as "loop 

jamming" in conventional compilers [8, 14]. The transformation in conventional systems is perfonned in 

terms of "code motion" from one loop to another, principally for the purpose of economizing on loop control 

instructions. In the applicative case we have little concern for economy in the control comput;1tion. since it 

can be pcrforined in parallel with the rest of the program. Instead. the objective is to prevent dara values 

from having to be communicated among different loops, and thereby to allow common subexpressions to be 

combined. 

The fact that loop control structures are coalesced does not mean that they operate in lock-step. The 

recycling of loop variables from the "iterating arm" of an ITERIF back to the LV nodes should be able to 

occur at different times. The coalesced inner loop might look, in part, like 

Fig. 3.9 

/ 

Within each cycle, 90 may have to be somewhat ahead of 91• It should be possible for 90's loop variable fJ to 

recycle and start the next cycle of 90 while 91 is still busy. The timing might look sort of like this, showing 

when each loop variable gets recycled (except 6, which is just passed from g0 to g1). 
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Fig. 3.10 
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This "decoupling" phenomenon will show up in the "wavefront transfonnation" in Section 10.1. 

3.11 Interlace of Multidimensional Arrays 

The model of multidimensional arrays we use is the "vector of vectors" model. Every genuine array in 

the language is actually a one-dimensional structure, whose element types can be anything. If we choose 

arrays of reals as the element type, we get an array of arrays of reals, which is equivalent to a two-dimensional 

array. If X is such an array, X [ I] [ J] selects an element from it. X [ I] selects the I th one of the "second 

level" arrays, and { X [ I ] ) [ J ] selects the final element This is the model used by some languages, such as 

VAL; CLU, and C, and one of the models available (indirectly) in most languages with a general type system, 

such as PASCAL. 

The model used by some other la~guages, notably FORTRAN and PUI, is the "flat" model. The 

lowest level rows are concatenated end-to-end to make one-dimensional arrays. If there are more levels, these 

results are then concatenated, and so on. The result is a one-dimensional array with a mapping function for 

references. For example, a [l·lO)x[l·lOO]x[l·20) array (as might be declared in FORTRAN by 

"DIMENSION A( 10, 100, 20) ") is actually implemented as a single array running from I to 20000, and a 

referencetoA(I, J, K) istreatedasA(2000•I + 20•J + K-2020). 

From an implementation standpoint, flattening is a good idea It makes all array selections possible 

with one memory reference (and array memory references may be expensive in data flow computers). It also 

means that only scalar data are actually stored in the array memory •• not array descriptors. This is extremely 

important in an applicative data flow system, because there is large overhead associated with reference 
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accounting as array descriptors arc manipulated [2, 3]. We want to cut down on manipulation of array 

descriptors, as will be made clear in Chapter 15. so we refrain from storing them in other arrays. 

However, premature flattening of arrays will preclude the use of interlace to the same advantage in the 

multidimensional case as in the one-dimensional case. Therefore. we will use the "vector of vectors" model. 

When considering interlace and various program optimizations, arrays will be treated as trne hierarchical 

objects. They will not be flattened. Interlacing will be performed on each dimension independently, yielding 

a multidimensional collection of slices. After loop unfolding and array interlace are performed, each slice will 

be flattened. The result will be far superior in general to what would be obtained by initially flattening the 

array and then interlacing the result 

This multidimensional interleaving and flattening of individual slices, with each array considered 

separately, constitutes a radical restructuring of the arrays as descrit?ed in the source program. When a 

complicated program is running on a data flow computer, the array elements will be scattered throughout the 

machine in a manner that is far from obvious. It is the applicative nature of the programming system that 

makes it feasible for a compiler to do this, because the compiler knows where every element of every array 

comes from. 

Incidentally, the flattening of arrays in FORTRAN is mandated by the semantics. If A is a lOxlO array, 

it is legal to send its first row to a procedure F with the call F ( A ( 1 ) ) , assuming F expects a one-dimensional, 

ten element argument. The second row may be sent with the call F(A(ll)), and the Kth with 

F ( A( 1 O•K+l) ). This works because the flattening mechanism is a fixed part of the language. It is therefore 

extremely difficult to write a FORTRAN compiler that uses some other array organization. This is a case of 

overspecification of the semantics of a programming language, an all too common occurrence. Note that, 

with the "vector of vectors" model. it is equally easy to send the Kth row of a two-dimensional array to some 

procedure. A data flow computer using the "vector of vectors" model has the freedom to interlace, flatten, or 
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otherwise manipulate Lhc array in many ways while remaining Lot.ally faithful Lt> 1.hc language sem,mLics. 

3.12 Geometrical Representation of Unfolding 

If we consider each cycle of a single loop to be a point, and perfonn N-way unfolding on that loop, then 

each unfolded cycle will process a group of N adjacent points. The groups will be processed in sequence. 

Fig. 3.11 

1st 2nd 3rd 4th 

unfolded cycles 

If we consider a double nested loop to be a plane array of points, the programmer's intention is that the 

points be processed sequentially in a "raster scan" order. Individual points in each row will be processed 

from left to right, and the rows will be processed from top to bottom. If we perform an M•N unfolding and 

coalesce the control structures of the inner loops, we will still have a double nested loop. Each cycle of that 

loop will process an M • N rectangle of points. The order of the cycles of the unfolded loop is such that the 

rectangles will be processed once again in a raster scan order, but on a coarser scale. 

Fig. 3.12 
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4. MATCI IING INTEULAC'E AND UNFOLDING 

This chapter will examine the relationship among the loop unfolding factor. the array interlace factor, 

and the parameters of the program for loops that deal with arrays. As will be seen, a careful match among 

these quantities is cmcial to efficient translation. One of the major tasks of an optimizing compiler is to 

examine the parameters of the loops and choose the appropriate amounts of interlace for the arrays and 

unfolding for the loops. When this is done correctly, the resultant code stmctures will permit extremely rapid, 

bottleneck-free distributed computation. 

The discussion will be primarily aimed at select's. Append's will also be considered, but in a 

simple-minded way, as though append were a slight variation of select. This assumption will suffice for the 

purposes of the present chapter, though there are other aspects of append that will be discussed in Chapter 8. 

The situation that can be exploited well, in terms of parallel or overlapped accesses to interlaced arrays, 

is an iteration (or equivalent forall) whose array accesses are affine. The following·example shows such an 

iteration. Any iteration in which all array accesses are affine is of this basic form. 
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for T, U := init_arrayT, init_arrayU 

<other initializations> 

J := init_index 

do if J=exit_index then T. U, <other values> 

else 

let Vl := 

V2 := 

expression 

expression 

A[J•factorA+offsetA) 

B[J•factorB+offsetB] 

new_Tvalue := 

new_Uvalue := 

in iter 

expression 

expression 

T := T[J•factorT+offsetT: new_Tvalue] 

U := U[J•factorU+offsetU: new_Uvalue] 

<other reassignments> 

J := J+increment 

enditer 

endlet 

endif 

endfor 

Assume for now that all of the relevant parameters ("init_index", "factorA", "offsetA", 

"increment", etc.) are known to the compiler. If any are not known at compile time, it may still be possible 

to achieve extremely high performance, but it may require more complex code and more work on the part of 

the compiler. This will be discussed below. 

The interesting activities in this loop are the array reads (of A and B) and writes (to T and U). These 

occur at regular intervals across the respective arrays. By examining the "factor" and "offset" of each array 

reference, and the initial index and increment. we can determine at just what index the array references occur. 

The reference interval is the distance along the array of the references in consecutive loop cycles. For each 

array it is just the "factor" for that array reference multiplied by the "increment" for the loop index variable. 

For example, the first reference to array A occurs at (factorA•init_index+offsetA), and the 

reference interval is (facto rA• increment). It is possible for the same array to be referred to in more than 
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one place in the same loop with different reference intervals. 

Assume for simplicity that all reference intervals (as well as all unfolding factors and interlace factors) 

arc powers of2. 

4.1 Random Array Access and the "PERMUTE" Operator 

If a completely random access needs to be made to an interlaced array, that is, we have no information 

in advance about the index, the select or append node must be able to operate on any of the slices. If the array 

has an N·way interlace, the following is needed: 

to get 

A[J] 

use 

l mod N 

J/N,,, 

where the division operator is assumed to truncate toward minus infinity. 

Fig. 4.1 

To get the slice "A J mod N ". a pennute operator will be used. There is a permute operator for every value 

of N that is a power of 2. It pennutes N incoming tokens by "rotating" them right the amount of its index 

value. 
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Fig. 4.2 
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The permute - l operator rotates left. We assume that the hardware has the necessary instruction types to do 

this efficiently, and that there will not be reference counting overhead if array tokens are permuted. (The 

reference counting problem for array tokens will be discussed in. Chapter 15.) Permute operators are 

expensive, however. The large number of arguments indicates that, on any reasonable computer, a permute 

would have to be made out of a large number of actual instructions. One way to build it would be to use a 

network of2•2 exchange instructions, built into a network such as an N-cube [43). ~ch exchange instruction 

would be controUed by one bit of the binary representation of the index. 

The permute operators will be assumed to use their index value modulo N. To get A( J ], use 

J 

J/N 

PERMUTE- 1 
N 

Fig. 4.3 
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i\n ~•1>1>rnd requires LhaL Lhe rl·sult be put hack into Lhc correct array- slice. so it requires 

J 

J 

PERMun- 1 
N 

______ ,_data 

PERMUTEN 

4.2 Affine Array Operations with Reference Interval Equal to One 

Fig. 4.4 

It is clearly desirable to avoid the full "random" access, with its pennute operator, presented in the 

previous section. In Chapter 3 it was shown that, if the desired index is the loop counter variable, the initial 

value the the counter variable is zero, and the interlace is equal to the unfolding, the situation is very nice. 

Each select or append operation in the expanded loop is known to refer to a specific slice, so no permute 

operations are ever needed. The index value going into the select or append is just the scaled counter variable. 

The first array reference does not necessarily take place at index zero, but at 

"factor• in it_ i ndex+of f set". The effect of this is to change the "phase" of the N array slices going 

into the N select or append operators. If this value is known at compilation time (or is known modulo N), a 

simple rearrangement of the incoming and outgoing array slices will take care of things. If the value is not 

known, some permute operators are needed to effect the rearrangement These operators have to do their 

work only once, when the array slices enter the loop (and, in case of append, once again when they leave), so 

this is not too great a hardship. Handling the initial value of the loop counter variable and the array reference 

offset is therefore a relatively minor matter. 
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The importanl Lhings lo deal with arc lhe reference interval, interlace, and unfolding. For now, let the 

reference interval be fixed at one. 

If the unfolding is greater than the interlace, say twice as great, then two instantiations will have to share 

the same slice. One will use the slice at index equal to the scaled loop variable times two, and the other at that 

plus one. 

For unfolding= 4 and interlace= 2, we have 

Fig. 4.5 

instance O instance 1 
instance 2 instance 3 

Each slice goes into 2 select or append n"ooes ( or more generally. into Y n {01 ~in g of them). In the case of rn er ace 

append nodes, the slice goes into them in series. as in 

. Fig. 4.6 

data 0 data 1 

data 2 data 3 

The general rule for u n f o 1 di n g > i n t er 1 ace is that no permute operators are ever used. and that 

each array slice goes to ~~i:~~~~: operators.1 This situation isn't too bad, though the use of several select 

unfolding. 
1. interlace 1s. of course, a power of 2. 



or append operalors on the same array slice may lend to create a bonlcneck. 

Now if the interlace is greater than the unfolding, say twice as great, then each instantiation will have to 

use two slices alternately, depending on whether the scaled variable is even or odd. The array index that it 

will present to the slice will be the scaled variable dividcq by two (perhaps with some offset added). 

For unfolding= 2 and interlace= 4, we have 

scaled 
variable 

instance 0 

Fig. 4.7 

PERMUTE- 1 

instance 1 

Each pair of slices (or more generally, group of inie~~~ce of them) goes through an inverse permuter into 
un o mg 

one select or append node. In the case of append nodes, the result has to be permuted back. All the slices that 

do not go through the append node are passed directly from the permute- 1 to the pel'll}ute. 

scaled 
variable 

PERMun- 1 

PERMUTE 

PERMUTE- 1 

PERMUTE 

Fig. 4.8 

The general rule for u n f o 1 d i n g < i n t er 1 ace is that each select or append operator in an 

instantiation needs a permute- 1 of size ~~i~~~~~: to find the correct slice. The use of PERMUTE operators 

looks like something to be avoided, though it might be possible to build a computer in which they arc not too 

expensive. 
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4.3 Reference Interval Not Equal to One 

Suppose that the reference interval is not equal to one, but is some other number (a power of 2, of 

course) known at compilation time. The important criterion detcnnining what wil} happen is the comparison 

of the following two values: 

reference interval • unfolding interlace 

If the reference interval times the unfolding is smaller than the interlace, pcnnute operators will be 

d d "th interlace . If 1 h 1- ·11 nee e , w1 f . t 1 f 1 d . · mputs. arger, eac array s 1cc w1 go to, re erence 1n erva •un o 1ng 
. reference interval•unfolding . . 

approximately, . t 
1 

select or append nodes. (A correct version of this 
,n er ace 

number will be given later.) Note that the previous results for reference interval equal to one agrees with this. 

To analyze these cases, consider first the effect of a reference interval less than the interlace. Suppose 

the array A uses an interlace of 8, so that it is divided into slices A0, A
1 

... Ar If an iteration refers to it with a 

reference interval of two, say only even indices. then only A0, Az, A4, and A6 are actually used. Inside the 

loop, the array appears to have only four slices, that is, only a 4-way interlace. Note further that every element 

of each slice is referred to, instead of every other element The array appears inside the loop to have a 

reference interval of one, not two. In general, the array appears to have an "effective interlace" equal to 

re~~~:n
1;;~~l:~~a 1. Since the loop appears to have a reference interval of one, the preceding section 

applies. 

4.4 Reference Interval *Unfolding < Interlace ··· Permute 

In this case, the reference interval is clearly less than the interlace. The loop behaves as though the 

"effective interlace" were interl_ace . This is greater than the unfolding, so there are pennute 
reference interval 

operators with interlace inputs 
reference interval •unfolding · 
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I :xampk: reference in ten al= 2, un liilding = 2, interlace= 8 

scaled 
variable 

PERMUTE- 1 

instance 0 instance 1 

4.5 Reference Interval * Unfolding > Interlace ··· Multiple Operators 

Fig. 4.9 

In this case, we must compare the reference interval and the interlace. Suppose the reference interval is 

smaller. Then the loop behaves as though the reference interval were one and the "effective interlace" were 

interlace s· th 1 t·t . 1 th th c.1di· h r th t· d reference ; nte rva 1. mce e atter quan 1 y 1s ess an e un10 ng, eac arrays 1cc a 1s use goes 

reference interval•unfolding I d 
to interlace secctorappen operators. 

Example: reference interval=2, unfolding=4, interlace=4 

Fig. 4.10 

variable 

l l 
instance O instance 1 

instance 2 instance 3 

Now suppose the reference interval is greater than the interlace. Then only one slice is actually used, 

and the "effective reference interval" for the index values going into the array operators is 

refe~~~~erl;:;:rval. Since there is only one slice, there are no permute operations. That slice goes to 

every select or append operator ·• one per instantiation, so each slice that is used is used in a number of 

operators equal to the- unfolding. 



Example: reference intena1=4, unfolding=2. intcrlacc=2 

Fig. 4.11 

instance 0 
instance 1 

To summarize: 

{ reference interval • unfolding < interlace : I 
interlace . . • reference interval sl1ces are used, there ,s a 

f interlace · permuter O reference interval•unfolding inputs. 

reference interval • unfoldin 
i nte rl ace 

reference interval slices are used; 

each one that is used goes to unfoldin 
interlace 

reference interval 
places. 

Toe general rule of thumb is that the reference interval times the unfolding should be equal to the 

interlace, so that there are neither permutes nor array slices passing through many array operators. This rule 

may not always be exactly right in practice. Various factors involving the machine speed and the nature of the 

computation may dictate a ratio other than unity. However, the best ratio will not be grossly different from 

unity, and will stay reasonably constant as the machine size scales upward (that is, it will not go asymptotically 

to zero or infinity). If a unit ratio is not obtainable, it is better to have the reference interval times the 

unfolding be greater than the interlace, to avoid the necessity for permuters. 
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What happt'ns if the reference interval is not known to the compiler? AH is not lost. It simply becomes 

more difficult to take advantage of the interlace. At worst. all references become "random accesses". Of 

course, we want to avoid brute-force random accesses if at all possible. There arc several useful cases in which 

they can be avoided. If the reference interval is known to lie within a small bound (typically it is either zero or 

one. depending on run-time circumstances). a small amount of messy object code can run quite efficiently. 

This is discussed in Chapter 9. Another case of interest is the one in which the reference interval, while 

unknown, is known to be a multiple of the interlace factor. In this case the interlace docs not cause any 

inconvenience at all. An example of this is the inner loop of the "cyclic reduction algorithm", discussed at 

length later in this chapter. More generally, whenever the reference interval and the interlace factor have a 

known common divisor greater than one, we can do better than brute-force access. 

4.6 When Things Are Not Powers of Two 

The preceding treatment depended on the fact that if X and Y are both powers of the same prime, either 

X divides Y or Y divides X, depending on which number is smaller. This made it possible to say that perhaps 

permuters would be needed, or perhaps array slices would be used in multiple loop instances, but not both. If 

the interlace, unfolding, or reference interval are not powers of two (or some other prime) we might have the 

worst of both worlds -- slices used in multiple loop instances and permuters required in each instance. In 

particular, it is not possible to remove the need for permuters simply by increasing the unfolding, unless the 

factorization of the unfolding number is taken into consideration. 

The "effective interlace", that is, the number of array slices that are actually used, is given by 

USE = interlace 
GCD{interlace, reference interval) 

This is in all cases consistent with the formulas given previously, because of the equation 

X - rx7 GCD{X, Y) - Y if X and Y are both powers of the same prime 
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unfolding Each slice goes to ----------- loop instances GCD(unfolding, USE) 

1: h I . . f USE . ,-..1c oopmstanccrcqu1resapennutero GCD(USE, unfolding) mputs 

It was shown previously that, given the interlace and the reference interval, one could remove the need for 

pcrinuters simply by making the unfolding large enough -- it had to be at least ref 
8 
:;;~; ~ ~t.: rva 1 • lf 

the numbers arc not all powers of two, things are slightly more difficult. We need to make 

USE = GCD(USE, unfolding), which requires that the unfolding be an integral multiple of USE, that is. 

unfolding = a multiple of i nte rl ace 
GCD(interlace, reference interval} 

4. 7 Loops with Many Arrays 

Loops may well have several arrays coming in or going out, and many aspects of the program interact 

wheri we choose the interlace for each array and the unfolding for each loop. In making these choices, a few 

obvious truths should be noted. 

1. The unfolding in any loop must be one value, not different values in different parts of the 

loop. If a loop's use of one array suggests that an unfolding of four is optimal and its U9e of 

another array suggests eight, a consistent decision must be made. Typically the larger value 

will be used, since that will avoid the use of permute operators. 

2. The interlace of any one array must be one value that is consistent for the array's producer 

and all of its consumers. When matching the interlace of an array to the various loops in 

which it is used, it is generally best to choose the smallest of the "optimal" values that the 

loops suggest, once again to avoid permute operators. (Actually, one could run an array 

through an "interlace converter" if a mismatch threatened to be serious.) 

3. The reference interval for any array reference in a loop is a property of the program and not 

under the _optimizer's control. The same array could be used in multiple places in the same 

loop with different reference intervals, that is, the reference interval is a property of each 

reference, not each array. 
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4.8 Choosing the Interlace and llnfolding 

The method for making tJ,c various choices of array interlace and loop unfolding might he roughly as 

follows. It is proposed that, until really sophisticated techniques become available, a computer program to 

perform these transformations use human-generated "advice", either by querying the user when running or 

by reading a file. 

We first determine, for each loop, what amount of loop unfolding to use. This depends on a 

compromise between the amount of space available in the machine for instruction cells (large unfolding in 

large loops consumes an enormous amount of space) and the benefit to be derived from the unfolding. Many 

factors interact in the unfolding decisions for the various loops in the program. We will discuss some of the 

issues later, but a truly "scientific" analysis of the problem has not been developed. 

Having determined unfolding, we determine the interlace for each array roughly as follows. For each 

loop that creates or consumes an array, we know the reference interval, and the·"ideal" interlace is the 

product of the reference interval and the unfolding. In many cases. these "ideal" interlaces won't all be the 

same. If this happens. we generally use the smallest figure. This avoids pennute nodes but means that we 

may have array slices going to more than one select or append node. 

The interaction between the loop unfolding and the array interlace does not go in one direction only: 

We may choose the unfolding of a loop to match the interlace of an array, instead of the other way around. 

This will happen when two or more loops are linked to each other through an array, and the speed of one of 

the loops makes it pointless to use as much unfolding in the other as we would like. 
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An optimi1.er that automatically chooses interlace and unfolding without human advice will h,1ve to be 

able to handle all of the "local" factors considered here. and "global" factors as well. When an array is 

created in one loop and used in one or more other loops, the ideal amounts of unfolding in the various loops 

interact through the array interlace. The individual choices must therefore be made in the presence of many 

constraints. some of which arc likely to be inconsistent. The job of the optimizer is to make these- choices, 

making compromises where necessary, in a way that is compatible with the overall size of the computer and 

will yield the best performance. 

4.9 The Periodic Cyclic Reduction Algorithm ·· Reduction Part, Inner Loop 

The following program illustrates the considerations that go into choosing unfolding and interlace. It is 

the inner loop of the "reduction" part of the "periodic cyclic reduction algorithm" (also known as "even·odd 

reduction") for solving certain second order differential equations in one dimension with periodic boundary 

conditions. The equation is 

II 

X + AX = Q 

That is, given the array Q and the scalar A, it finds the array X that solves the difference equation 

X[J+l] + X[J-1] + (A-2)•X[J] ~ Q[J] 2 < J < SIZE+l 

subjecttotheboundaryconditionsX[l] = X(SIZE+l] andX[2] = X[SIZE+2]. 
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%1%11l1%11%1Z%l%%11/%J11/f%%%%1%1%1111%%%%%J%%%%1%%%%%%%%%%% 
n. 
n Periodic Cyclic Reduction 
"f'X 

Tl Prnduces array X[2 .. SIZE+l] such that, for i=3 .. SIZE, 
'/4% 
1% X[i+l] + X[i-1] - 2•X[i] 

%"/ 
%% 

+A• X[i] = - Q[i] 

%% That is, del-squared(X) + A•X = -Q in one dimension. 
%% 
%% Boundary conditions "wrap around": The above equation is true 
%% for i=2, but with X[SIZE+l] in place of X[l], and is true for 
%% i=SIZE+l, but with X[2] in place of X[SIZE+2]. 
%% 
%% A must not be zero. 
%% 
%% SIZE must be a power of 2, and at least 4. 
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function PERil{Q: areal; HX, C: real; SIZE: integer returns areal) 
type areal=array[real] ; 

let 
%% Scale incoming array for mesh size. 
FAC := HX•HX ; 
QA: areal := forall i in [2, SIZE+l] construct Q[i]•FAC endall 

%%%%%%%%%%%%%%% 
%% REDUCTION %% 
%%%%%%%%%%%%%%% 

LOGSIZE, FINA, FINQ: areal, FINB: areal := 
for IH := 1 ; % IH runs from 1 through SIZE/2 

do 

COUNT := 1 ; 
B: areal := array_empty[real] : 
A := 2.0-C•FAC 
Q: areal := QA % QA is the scaled incoming array 

let 

in 

%% Produce an array T with 
%% T[K] = Q[K-IH] + A•Q[K] + Q[mod(K, SIZE)+IH] 
%% for all K = 1 + a multiple of 2•IH 

NEWQ := 
for K := 2•IH+l ; 

T := Q ; 
% IH is a power of 2 
% Q, T bounds are 2 to SIZE+1 inclusive 

QK := Q[IH+l] 
do if K > SIZE+1 

• 
then T 

else 
let NQK := Q[mod(K, SIZE)+IH] 
in iter K, T, QK := % happens SIZE/(2•IH) times 

K+2•IH, 
T[K: QK + A•Q[K] + NQK], 
NQK 

enditer 
endlet 

endif 
endfor : 

NEWB: areal := array_addh(B, A) 

if IH = SIZE/2 then 
COUNT, A•A-4.0, NEWQ, NEWS 
%% the A•A-4.0 makes the wrap-around work, 
%% it will lose if C=O 

else 
iter IH, COUNT, B, A, 0 := 

IH•2, COUNT+l, NEWB, A•A-2. 0, NEWQ enditar 
endif 

endlet 
endfor ; 

%% Repair last element with scale factor magically computed above. 



in 

-n-

QB: areal.- FINQ[SIZE+l: FINQ[SIZE+l]/FINA] 

%%%%%%%%%%%%%%%%%% 
%% SUBSTITUTION%% 
%%%%%%%%%%%%%%%%%% 

for IH := SIZE/2 ; % IH runs from SIZE/2 to 1 
LOG! := LOGSIZE 
Q: areal := QB ; 

do let A := FINB[LOGI] 
NEWQ := 
for K : = IH+ 1 ; 

QK := Q[SIZE+l] 
T : = Q ; 

do if K > SIZE+l then T 
else 

let NQK := Q[K+IH] 
in 

iter K. T, QK := 
K+2•IH, 
T[K: (QK + Q(K] + NQK)/A], 
NQK 

enditer 
endlet 

endif 
endfor 

in if IH = 1 then NEWQ 
else iter IH, LOGI, Q := IH/2, LOGl-1, NEWQ enditer 
endif 

endlet 
endfor 

endlet 
endfun 

For now, we will just look at the inner loop of the reduction part (the first half of the algorithm). 

Because there are two nested loops, there are, in effect, several nearly identical inner loops, that differ in the 

value of IH, which is a loop variable of the outer loop. IH is always a power of two, varying from 1 up to 

SIZE/2. SIZE (also a power of2) is the size of the matrix being solved, and is very large (perhaps thousands 

of elements). Since the reference interval of the inner loop is IH•2, the analysis varies from one cycle of the 

outer loop to the next Hence we consider each value of IH as defining a different inner loop. The· array 

comes in as Q. The result is built as the loop variable r, and is yielded as the final result of the inner loop. 

The result of one inner loop goes into the next one as Q. so the interlace of Q and the result should be 

compatible from one inner loop to the next Since the reference interval for the select references to Q and for 
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the a11pcnd references lo the result arc hoth the same, the "ideal" interlaces arc the same, so we might as well 

use the same interlace for everything. The bounds of Q and T arc [ 2 , SIZE+ 1] inclusive. 

The inner loops arc as follows: 

for K : = 2•IH+l 

T := Q : 
QK := Q[IH+l] 

do if K > SIZE+l then T 

else 

% IH is a power of 2 

% Q, T bounds are 2 to SIZE+1 inclusive 

let NQK := Q[mod(K, SIZE)+IH] 

in i te r K, T, QK : = 

K+2•IH, 

% happens SIZE/(2•IH) times 

T[K: QK + A•Q[K] + NQK], 

NQK 

enditer 

endlet 

endif 

endfor 

The above code is not the way it really ought to be written. The loop variable QK was manually introduced to 

reduce the number of array references. This should be done by an optimizer, which will be discussed in 

Section 7.4. 

There are two select references to Q within the loop, and one append reference to T. They all have 

reference interval 2•IH,1 which is a variable with respect to the outer loop, but is, fortunately, a constant 

within any one of the inner loops. The number of inner loops is log2 ( SIZE). 

1. One of the references has a mod operator in its index. The reference interval is still 2• IH, but an 
optimizer will have to work hard to deduce that. We propose that optimizers in fact be able to do so. The 
computation could be expressed with an if /then/else instead of mod, which would also require that an 
optimizer work hard. 



u11lillJi11g 11 ill 1;111 rrn,11 011c luup l\l .11Hlthcr hec.1tN' ufthe cll;rnging reference intenaL as lidluw-.: 

IH reference "ide.11" number or number or 
intenal unltllding 1 i nu al C'.1 clcs cxranded cycles 

1 2 8 'SIZE/2 SIZE/16 
2 4 4 SIZE/4 SIZE/16 
4 8 2 SIZE/8 SIZE/16 
8 16 1 SIZE/16 SIZE/16 
16 32 1 SIZE/32 SIZE/32 
32 64 1 SIZE/64 SIZE/64 

IH 2* IH 1 SIZE/(2*IH) SIZE/(2*IH) 

SIZE/2 SIZE 1 1 1 

For the first 4 loops. the criterion reference interval*unfolding = interlace is met 

exactly. No permute operators are needed in any of the loops. 
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This is the basic graph: 

Fig. 4.12 
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Those loops for which IH is 8 or more have the reference interval a multiple of the interlace factor. As 

noted previously, this means that the fact that we don't know the reference interval is no problem. Because of 

this, along with the fact that these loops have the same unfolding, they can all be treated as one loop with 

different parameters. The cases IH=l, 2, and 4 must be removed and treated as special cases. This is not 

surprising -- since they have different unfoldings they will have very different structures and will have to be 

compiled separately. The case IH=8 should also be treated differently if pennute's are to be avoided. The 

select required in "Q [ mod ( K • SIZE ) + I H ]" has reference interval a multiple of16 whenever I H > 8, but 

the offset (the "I H") is only 8 when IH is 8, which would require a pennute. The initial value for QK, which is 

Q[ IH+l ], has a similar problem. 

So, to avoid any permutes, only the cases with IH ~ 16 will be made into a common loop. The arrays Q 

and T are interlaced 16 ways. 
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The counter variable K is rescaled by 

To properly compile this. the identity 

mod(16•K+1, SIZE) = 16•mod(K, 5i~E)+1 

is used. (Yes. optimizing compilers will need a fair amount of virtuosity in dealing with modular arithmetic.) 

The resulting graph, for IH> 16, is 

Fig. 4.13 
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In the remaining graphs we also use a few arithmetical tricks. 
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The graph for 1H = I (unfolding= 8) is 
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To summarize the transformation of the inner loop of the cyclic reduction algorithm: 

1. We assumed an optimizer that is quite skillful at performing transformations on integer 

computations, for such things as loop reparameterii.ation, calculation of termination 

conditions, and removal of mod operators where the known range of the arguments makes 

them trivial. 

2. We made heavy use of the fact that we kn~w the value of the parameter IH, at least for the 

values less than 16. For the other values, we used the fact that it was a multiple of 16 so that 

array references could be generated without knowing its exact value. How we use the fact 

that IH is a power of two, and how we must deduce that from the algorithm's outer loop, 

further illustrate the need for a good integer optimizer. 

3. We made use of the fact that SIZE is a power of two and at least 16, though nothing more 

need be known about it 
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4.10 The J>rriodic Cyclic Reduction Algorithm·· Reduction Part. Outer Loop 

We now examine the outer loop, and sec how the loops interact. 

The simplified outer loop is: 

for IH := 1 ; % IH runs from 1 through SIZE/2 
A := 2.0-C•FAC 
Q := QA ; % QA is the actual incoming array 

do 1 et NEWQ : = (inner loop, depends on Q, A, and IH> ; 
in if IH=SIZE/2 then NEWQ 

else iter IH, A, Q := IH•2, A•A-2.0, NEWQ enditer 
endif 

endlet 
endfor 

The usual translation of a loop would consist of one copy of the body, with appropriate control 

operators to cause the body to be used repeatedly. In this case, the inner loops for IH = 1, 2, 4, and 8 must be 

different code. This can be handled by performing an initial expansion of 4 on the outer loop. Whenever an 

inner loop has different structure on certain cycles of the outer loop, and those cycles occur at the beginning 

or end, those loops can be pulled out of the outer loop by making and initial or final expansion. 
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In this case. till' cxpam.kd outer loop would look like 

I 
I 

I 
I 

QA (16 way interlace) AA 

, 
/ 

inner loop, IH=2 

inner loop, IH =4 

inner loop, I H = 8 
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'----------~F,,,.,,...,R,,_ ____ ; 

I 

I 

4.11 The Periodic Cyclic Reduction Algorithm .... Substitution Part 

Fig. 4.18 

The "substitution" part of the cyclic reduction algorithm is very similar to the "reduction" part. The 

principal difference is that the inner loop is called with the values of IH in reverse order, from SIZE/2 down 

to 1. The inner loop is very similar to the corresponding loop for the "reduction" part, and is analyzed in the 
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same w.iy. It requires one loop for HI~ 16. and separate loops for IH equal to 8, 4, 2, and 1. 

The simplified outer loop is 

% IH runs from SIZE/2 to 1 for IH : = SIZE/2 

Q := QB ; % QB is the result of the reduction 

do l e-t NEWQ : = <inner loop, using Q and IH> ; 

in if IH=l then NEWQ 

else iter IH, Q := IH/2, NEWQ enditer 

endif 

endlet 

endfor 

Because the special values of I H -- 8. 4. 2, and 1, occur at the end of the outer loop, a final expansion is 

used. The resultant graph is 
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Fig. 4.19 
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rnnditHm ( which ):'.,11c rise to the mod oper:1tnr) sh()ws dn interesting exdmplc of the t'i pes ul' \lptimi1dtion that 

n1ust he performed on inll'ger expressions. 
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5. UNFOLDING AND INTERLACE IN MULTIPLE DIMENSIONS 

In this chapter the results of the previous chapter will be generalized to the cases of nested iteration 

loops and multidimensional arrays. 

Multidimensional arrays can be interlaced at each level. If a two-dimensional array X has "2•4 

interlace", it has a 2-way interlace at the top level, and each clement of each top level slice is a 

one-dimensional array with a 4-way interlace. The total array thus has 8 slices, denoted X ij with O :5; i< 2 

and O < j< 4, such that 

X[2P+i][4Q+j] = where P and Q are arbitrary expressions 

(in the source program) (in the implementation) 

Multidimensional arrays and nested loops work very well together in the simple cases. As one might 

· expect, the nicest case is the one in which the loop nesting and array indexing match each other, the interlace 

is equal to the unfolding at each level, and the reference interval is equal to one at each level. 

Here is the graph for references to X [ I ] [ J] in a nested loop with I as the outer loop index, J as the inner 

loop index, and 2•4 unfolding and interlace: 

outer 
scaled 
index 

inner 
scaled 
index 

o.o 0,1 0,2 

Fig. 5.1 

0.3 1.0 1.1 1.2 1,3 

loop instances 
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5.1 Relationship Among llnfolding, Reference Interval, and Interlace 

If, at some level. the unfolding and interlace arc not equal, or the reference interval is not equal to one, 

the same thing happens at that level as in the one-dimensional case. 

reference interval • unfolding < interlace: 

Pcnnutc operators will be needed, with 
i nterl as;e · t 

reference interval•unfolding ln~u s. 

reference interval • unfolding > interlace: 

Each array slice that is used goes to 
unfolding . 
. 

1 
array operation nodes. r 1nter ace 7 

reference interval 

Both situations are nonoptimal; the first one is more serious. 

These effects can be illustrated through the preceding example of a nested loop with 2•4 unfolding, by 

setting the interlace to something other than 2•4. 

Suppose the array A has 2•2 interlace. Then the select's from it look like 

outer 
scaled 
variable 

inner 
scaled --
variable 

unfolding > interlace, inner level 

0,0 
0,1 

0,2 1,0 
0,3 1, 1 

instances 

1,2 
1,3 

Fig. 5.2 
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Suppose the array A has 1*4 interlace. Then the sclcct's from it look like 

inner 
scaled -----
varfable 

inner 
scaled 
variable 

unfolding > interlace. outer level 

0,0 0,2 
0,1 0,3 

instances 

1, 0 1, 2 
1,1 1,3 

Suppose the array A has 2•8 interlace. Then the select's from it look like 

unfolding < interlace, inner level 

A A A A A A A A A A A A A A A 3A 7 
inner 
scaled 
variable 
outer 
scaled ---l....-...:ix.:sJ-~R~J~-91.~J--{){~i>----i~~>---M.s>---Pl~>---;;,,lsJ 
variable 

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 
instances 

Fig. 5.3 

Fig. 5.4 



- 90 -

Suppose the array A has 4*4 interlace. Then the sdcct's from it look like 

outer 
seated 
variable 

inner 

unfolding < interlace. outer lcvel 

scaled -----;,,\;Jr--1,I\J,.---......,..'lr--1Jl..J,.----..,r--= 1---1A;:11-----t.l\.'l1 

variable 

0,0 0,1 0,2 0,3 1,0 
instances 

1,1 1,2 1, 3 

Fig. 5.5 

The preceding data flow graphs are just models of the program organization at a certain conceptual 

level. When prepared for execution, further transformations must be made: The pennute operators are 

moved downstream so that they handle only scalar data; consecutive select operators are combined as 

multidimensional array slices are flattened, etc. 

5.2 Unfolding and Interlace That do Not Nest Similarly 

In the preceding, we have considered only cases in which the depth of loop nesting was the same as the 

dimensionality of the array, and furthermore that the array indices were in exact correspondence with the 

loop indices. That is, the outermost array reference depended only on the outermost loop index, and so on. 

In fact, we can have much less regular arrangements. such as reversal of the order of indices: 

for I :• 

for J : = 

A(J](I] 

endfor 

endfor 
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or an array reference depending on two loop indices: 

or none at all: 

A(7] 

or any combin"ation: 

These variations have no significant effect on the actual array select operations because. once the array 

slices arc flattened, the select operation involves an array index which is some affine function of the loop 

indices. It is fairly straightforward to detennine what that affine function is. 

The important task is to examine the relationship among reference intervaL interlace, unfolding, and the 

resultant code for every dependence of an array operation on a loop index. In the previous examples, we 

assumed a strict correspondence between loop levels and array levels, with reference interval of one in each 

case. This could be represented graphically by a nesting diagram as follows: 

Fig. 5.6 
LOOP LEVELS ARRAY LEVELS 

outer outer 

[I] ref int=l CJ 
[J] ref int=l 

inner inner 

An arrow is drawn whenever there is a dependence, and each arrow has a reference interval associated with it. 
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The examples illustrated earlier would have the following nesting diagrams: 

Fig. 5.7 
LOOP LEVELS ARRAY LEVELS 

[I] 

A[J][I] 

[J] 

LOOP LEVELS ARRAY LEVELS 

[I] 

[J] 

LOOP LEVELS ARRAY LEVELS 

[I] C) 
CJ A(7) 

C) [J) 

LOOP LEVELS ARRAY LEVELS 

[I] 

[J] 

The loop unfolding at each level, and the array interlace at each level, are properties of the loops and 

arrays themselves. not of the references. so they can be written inside the circles. For the example of 2•4 

unfolding, 2*2 interlace, and strict nesting, the diagram is 
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Fig. 5.8 
LOOP LEVELS ARRAY LEVELS 

[I] ~ ref int=l E?D 
[J] unfold=4 ref int=l lace=2 

We know that the property of a reference that dctcnnines what kind of array operators arc required to 

implement it is the comparison between the interlace and the product of the unfolding and the reference 

interval. In the general case. this comparison is made for each arrow -- the interlace at the right end of the 

arrow is compared with the product of the arrow's reference interval and the unfolding at its left end. In this 

example. there is a mismatch in the lower arrow ·• the interlace is too small ·• so array slices are used in 

multiple places but permute operators are not required. 

If the nesting diagram is complicated, there may be no choice ofunfoldings and interlaces that leads to a 

good match everywhere. 

If an array node in the nesting diagram has no arrows going into it, that reference has a constant index 

(at least one that does not depend on any of the loop variables), so the situation is trivial. If it has exactly one 

arrow going into it, the method developed so far can deal with it, even if the arrows cross each other. 

An example of crossed but otherwise simple arrows arises in the 2-dimensional cyclic reduction 

algorithm. Part of the code is 

forall Jin[ .•.• ] 

forall Kin[ .... ] 

Q(K](J] 

endall 

endall 
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The graph fragment is 

Q 

I ' I. J 
' \ 

I 
\ ' 

\ ' I 

' I I 

' I 
I 

I 
I r 

/ 

"' / - - - - - -
If the array Q has 2*4 interlace, we could choose 4*2 interlace: 

LOOP LEVELS 

[J) 

[K] 

ARRAY LEVELS 

int=~ 

lace=2 

Both arrows match perfectly. The array operations in the unfolded loops are: 

I 

I 

I 
\ 

\ 

' 
' 

\ 

' 
' 

' 

' ' ' ' ' ' ' 
.... 

' 
... 

0,0 0,2 1,0 1,2 
0,1 0,3 1,1 1,3 

instances 
-- - - - - - - -
.--- ~- ---

,, 
,.., 

.._ 

' 

I , , , ,, 
I ,, 

5.3 Array References Depending on More Than One Variable 

' 

I 

Fig. 5.9 

Fig. 5.10 

Fig. 5.11 

' 

I 

I 

I 

If two or more arrows point to the same array node in the nesting diagram, the array reference depends 

on two or more loop variables. 
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I ur L'X,1111pk 

gi \ cs rise to 

Fig. 5.12 

[ I J 

[ J J 

The graph resulting from loop expansion and ,irray interlace exp,msion is generally similar to the cases 

discussed previously: In each loop in\tancc. some array ~lice (perhaps selected by a pennuter controlled by 

the scaled loop variables) goes to an array operator whose index argument is a function of tJ1e scaled loop 

variables. 

Example of reference "A[ I +J J" with 4*4 unfolding and 4 way interlace 

Fig. 5.13 
LOOP LEVELS ARRAY LEVELS 

[J] ~ f'cf' ;nt=l 
~~•~v•u-~ ---~~ 

--____-?~~c_:_y 
[KJ ~f int=l 
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There arc 16 loop expansions. TlK' sclcl'l opcralions look like 

scaled 
variables 

1,0 

2,0 

3,0 

1,1 1,2 1,3 

2,1 2,2 2,3 

3,1 3,2 3,3 

Fig. 5.14 

In the one-dimensional case, there was a rule that, if the reference interval time~ the unfolding is greater 

than the interlace, each array slice goes to several array operation nodes. That rule does not apply when the 

reference depends on more than one loop variable. Each slice typically goes to many operations, regardless of 

the unfolding and interlace, because there are typicaliy many values of the variables I and J that have the 

same sum. Of course a code generator will optimize out redundant references to the same array slice. 
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In the ex,1mpk above, the optimized array selections might look like: 

scaled 

variables 
0,0 

1,0 

3,0 

0, 1 

1, 1 

3,1 

0,2 0,3 

1,2 1,3 

3,2 3,3 

Fig. 5.15 

To find out whether pennute operators are required, note that we have many 

(reference interval • unfolding) products. Thesmal/estofthemistheimportantparameter. If 

this is less than the array interlace, a pennute operator is needed, and that pennute must choose from among 

inputs. 

Example: 

interlace 
min {reference interval•unfolding} 

unfold=4 ref int=l ,,,,..._ ____ ____ 
lace=4 

Fig. 5.16 
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This needs a 2-way pcnmncr on Lhe inner index. All division operators arc assumed to truncate nonintcgral 

results downward: 

Scaled outer index = I 

I+ J. 
2 

0,0 

1,0 

2,0 

J--M 

I+ ill -~ ... ~ 2 
3,0 

Another example: 

unfold=Z 

Fig. 5.17 
Scaled inner index = J 

0,1 

1,1 

2.1 

3,1 

Fig. 5.18 

ref int=l 
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This needs a 2-way permuler on the outer index: 

Scaled outer index = I Scaled inner index = J 

I 

I+ J 
2 

0,0 

I --b)I 

I+ J 
2 

1,0 

0,1 

1, 1 

Example with unfolding< i nte rl ace on two variables: 

unfold=2 ref int=1 

This needs a 2-way permuter on a function of both indices: 

0,2 

1,2 

Scaled outer index = I Scaled inner index = J 

I+J 

I+J I+J 
2 T 

0,0 0,1 

Az Ao 

I+J 

ill 
2 ~ 

3,0 3,1 

Fig. 5.19 

0,3 

I+ f+l 

1, 3 

Fig. 5.20 

Fig. 5.21 

If all of the ( reference interval • unfolding) products are greater than the interlace, the 



structure becomes different, but permute rs arc not required. 

Fig. 5.22 

unfold=4 ref int= 1 

lace=4 

Fig. 5.23 
Scaled outer index = I Scaled inner index = J 

I+2J 

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 

I+2J 

1,0 1,1 1,2 1,3 1,4 1,6 1,6 1,7 

l+2J 

2,0 2,1 2,3 2,4 2,6 2,6 2,7 

I+2J 

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 

Here is an example in which one of the ( ref ere nee interval • unf o 1 ding) products is greater than 

the interlace and one is smaller. The smaller one creates the need for a pennuter. 

Fig. 5.24 

~ ref int=l 



Scaled outer index = I 

I 

l+2J 
2 
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Scaled inner index = J 

I+1+2J----.;.--~ r---ot~,J---'--« 
2. J 

I 

l+2J 2 
I+1+2J 

2 

0,1 

J 
1,0 1,1 1,2 

Fig. 5.25 

0,5 0,6 0,7 

1,5 1,6 1,7 
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6. COMBINING COMMON SUBEXPRESSIONS 

Finding common subexpressions within an expression or program fragment is a very well known 

optimi1.ation for conventional compilers. It is of extreme importance, particularly with regard to array 

references, in an applicative supercomputer. 

A "common subexpression" is something like "X-Y" in "(X-Y)•(X-Y)". Transforming it to 

"1 et T : = X -Y in T • T" saves a subtraction and perhaps a few memory cycles on a conventional 

computer. 

This optimization actually has limited usefulness in conventional situations, because common 

subexpressions of significant size are extremely rare. A human programmer is likely to change 

to 

Y := (2.45•X••2 + 3.0) / (2.45•X••2 + 3.0 + X) 

T := 2.45•X••2 + 3.0 

Y := T/(T+X) 

before a compiler ever sees it, if only to save typing. 

In a data flow system with loop unfolding, however, optimization of common subexpressions·becomes 

important because expressions in different loop expansions can be identical even though they looked different 

in the source program. That is, inter-cycle optimizations can be performed. A simple example of this is 

forall I in [LO, HI] 

A[I-1] + A[I] + A[I+l] 
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Assuming unfolding and interlace of 4, with rescaling. the four expansions arc · 

Fig. 6.1 

I-1 I+l 

These can clearly be combined: 

Fig. 6.2 

I-1 I+l 

This is approaching the minimum possible number of array fetches. Except for the "boundary conditions" 

(which will be disposed ofin the next chapter) each array element is fetched only once. Note that the "nearest 

neighbor" nature of the computation becomes graphically apparent in the above figure. We are heading in 

the direction of an "ideal" representation of the algorithm. 

The same benefits can be realized in higher dimensions. An example in two dimensions is useful. The 

algorithm is the same "sum of self and adjacent points" problem as above. 

forall I in [ILO, IHI] 

forall J in [JLO, JHI] 

... A[I, J] + A[I+l, J] + A[I-1,J] + A[I, J-1] + A[I, J+l] 
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After a 2*2 unfolding and inlcrlacc, we have 

outer 
unfolding 

l 

inner unfolding -+ -
Fig. 6.3 

With removal of common subexpressions (which can take place before or after the interlace, and is 

independent of whether the interlace matches the unfolding well or badly) we have 



outer 
unfolding I J - 1 

! 

- HIS -

inner unfolding -+ 

I-1 

J 
r--------
1 Aoo 
I 

I I 

I 

- - - ., 
1 

Ao1 1 

I I 
I 

I 1 
I I 

I A10 . !'11 I 

L_ - - - - - - - -- - - - - - - - - - - - - - .J 
(S)(J--- J --,n..:u 

Fig. 6.4 

J+l I 

The part outside of the dotted line is the "boundary condition" computation. It gets proportionately smaller 

as the unfolding increases. The part inside the dotted line looks like what one would expect the data flow 

graph of the "sum of self and adjacent points" function to look like. 

If.there is an M•N unfolding, there are M·N array fetches1 inside the dotted line and 2·M+2·N 

outside. 

1. Remember from Section 3.11 that this 
are flattened. 

will be turned into a single fetch after the array slices 
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Fig. 6.5 

0 0 0 0 0 0 0 0 
i--------- ----------, 

0 0 0 0 0 0 0 0 0'0 I 

0 0 0 0 0 0 0 0 o'o I 

0 0 0 0 0 0 0 0 0 1 0 
I 

.0 0 0 0 0 0 0 0 O'O 
I 

0 0 0 0 0 0 0 0 0 1 0 
I 

M 

0 0 0 0 0 0 0 0 010 1 I 

0 0 0 0 0 0 0 0 o,o 
I 

0 0 0 0 0 0 0 0 0 1 0 
----- - --- - ----...I 
0 0 0 0 0 0 0 0 

~ N ~ 

We can now draw some conclusions about the optimal "shape" of nested loop unfoldings. (Shape was 

defined in Section 3.9.) If there is no communication among the loop unfoldings (no data dependencies) and 

they have no common subexpressions, there is hardly any reason to choose one shape over another. There 

will probably be a small difference in the number of operations required to control the loops, but this is a 

minor criterion and, in any case. needs to be evaluated in the context of many machine-dependent factors. 

If there is communication among the cycles in an unfolding, say, common subexpressions as in the 

above example, then the shape should be more or less "square" (or cubical, or whatever). A well-known 

problem of elementary calculus is to find the shape that minimizes the perimeter for a given area. The 

solution is a square. In the above example, if we have space for 64 total unfoldings, an 8•8 shape would be 

best 

If the communication among the cycles in an unfolding is not isotropic, the result is different. If each 

grid point requires data from its neighbors two points away in the I direction and just one point away in the J 

direction: 
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A[I, J] + A[I+l, J] + A[I+2, J] + A[l-1, J] + A[l-2, J] 

+ A[I, J+l] + A[I, J-1] 

calculus once again provides the answer. The ideal shape is twice as long in the I direction as in the J 

direction. If there is no communication in the J direction, we may want to have all loop unfolding occur in 

the I direction. 

The best shape for nested loop unfolding will also be strongly affected by the shape of the interlace of 

the arrays that arc being used. lbe preceding discussion of optimal shape did not take into account the fact 

that array references are more expensive if the unfolding does not match the interlace. The interlace generally 

has to be chosen as a compromise to match as closely as possible the unfoldings of all of the loops that refer to 

the array. In practice, choosing all interlaces and unfoldings depends on a great many interacting influences. 
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7. AlJXILIAUY LOOP VARIABLES 

In the preceding chapter we saw that common subexpressions can be combined among different source 

iteration cycles if those cycles arc parts of the same unfolded cycle. W c can also combine subexpressions from 

adjacent unfolded iteration cycles by saving the value in one cycle for use in the next. This is done by 

introducing extra iteration variables to carry the value. 

Referring back to figure 6.2, in each unfolded iteration cycle the following six values were needed 

Four of them are inevitable, and two were required for "boundary conditions". 

Note that, on each cycle, the references A
3 

[ I -1] and A
0 

[ I] are in common with two references from 

the previous cycle. On the previous cycle we calculated A3 [ I ' ] and A
0 
[I '+ 1 ], where I ' was the index 

value on that cycle. Since I ' = I+ 1, these are the values needed for the present cycle. Introduce variables 

X and Y, having the property that, during any cycle, 

X = A3[I-1] 
y = Ao[I] 

Then the essential part of the program graph is 

y 

X 

Fig. 7.1 

1+1 

------ next Y -------====; next X 

The initial values of X and Y must be set up appropriately, outside of the loop, so that the above equations will 

be true during the first cycle. 

If the source program was 



I 

I 

I 

I 

B := forall I in [O, N-1] 

construct A[I] + A[I-1] + A[I+l] 

endall 
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then. after 4-way unfolding and interlace. and introduction of auxiliary variables. we would have 

0 

/Jp---- --
/ J 

\ 

, J=N/4 
' 

7.1 Boundary Conditions 

Al A2 A3 AO 

- - --

' \ 

J+l' 

I 

I 

Of course, the program might have been written with explicit boundary conditions: 

B := forall I in [O, N-1] 

construct 

A[I] + 

if I=O then V else A[I-1] andif + 

if I=N-1 then W else A[I+l] endif 

endall 

fig. 7.2 
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which could he translated as follows: 

Al A2 A3 AO W 

' J=N/4 
' 

- - -

7.2 Combining Subexpressions Over Long Distances 

\ 

J+l ' 
I 

I 

I 

I 

I 

Fig. 7.3 

We can combine common subexpressions across different iteration cycles even if the distance between 

them is quite large •• say, larger than the unfolding. Suppose we need to compute the sum of each element of 

an array and the element 6 positions to the left. If the unfolding and interlace are 4, we have 

Fig. 7.4 

CS) I-2 {S) {S) I-1 (S) CS) 

0 0 0 0 



Q = A2[I-2] 
R = A3[I-2] 
s = A

0
[I-1] 

T A1 [I-1] 

I he:, nl'rnurse need the correct initial conditiuns for the first c:,cle. After that. their "new" \aluc~ for the next 

cycle need to be 

Q' = A2[I-1] 
R' = A3[I-1] 
S' A0 [ I] 
T' = A1[IJ 

A0 [I] and A1 [I] arc already available. For the other two. we introduce two more variables: 

W = A2[I-1] 
X = A3[I-1] 

that will proYide the right \'alues for Q' and R'. They also need to be initialized for the first cycle, and their 

"new" values need to be 

W' = A2 [I] 
X' = A3 [I] 

which arc available. 
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So the body oflhc loop becomes 

___ ...,.. X' 

X ~ ------= ----~> w I 
W - --- -------------- - > T' 
T - ----- -------- S' 
S --- ------ -------- ----- R' 
R---. ------ ------ ----- Q' Q 

Fig. 7.5 

Clearly there is a point at which it is not economically feasible to introduce new loop variables, and it is better 

to recompute the desired data. 

7.3 Nested Loops 

We can use saved variables to avoid recomputing common subexpressions in any loop, however that 

loop might be nested. However, in the common case of near neighbor dependencies in all directions in 

multidimensional arrays, it turns out that only the innermost loop can benefit. Referring back to figure 6.4, 

we can handle the left and right boundaries only. Introduce variables W, X, Y, and Z with 

W = A10[ I, J] 
X = Aoo[I' J] 
Y = A11[I, J-1] 
Z = A01[I, J-1] 

Then, remembering that J is the inner loop variable, so the next value of J will be J + 1 while I will be 

unchanged, we need 

W' = A10[I, J+l] 
X' = Aoo[I, J+l] 
Y' = A11[I, J] 
Z' = A01 [ I , J] 
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So the appropriate graph is 

Fig. 7.6 

inner unfolding _. 

r--------.._ __ _ 

X 

z 

outer 
unfolding 

l 

y 

w 

I 
I 

l.. - - -

Aoo 

J+l I 

1,..--------"--------4Y' 

~----.---> W' I 

I 

- - __J 

As before, there are 4 array fetches inside the dotted line (though not the same 4). Extra fetches for the 

boundaries are required only for the dependencies along the outer loop index. The impossibility of 

combining fetches in this direction is not a serious problem, since the outer loops cycle more slowly -- the 

time that would be saved by keeping common subexpressions from one cycle to the next, instead of 

recomputing them, would be insignificant 

The technique of using auxiliary variables to save values changes the analysis of the optimal unfolding 

shape. Compare figure 6.5 with the new version, using auxiliary variables 
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Fig. 7.7 

0 0 0 0 0 0 0 0 
r---------------~ 
I 0 0 0 0 0 0 0 1 0 

I 
0 0 0 0 0 0 010 

I 
0 0 0 0 0 0 o,o 
0 0 0 0 0 0 

I o,o 
0 0 0 0 0 0 o:o .M 

0 0 0 0 0 0 0 10 l I 

I 0 0 0 0 0 0 0 1 0 I 

' 0 0 0 0 0 0 0 1 0 
I- - - - - - - - - - - - - - - _j 

0 0 0 0 0 0 0 0 

I -<---N 

The two leftmost columns of fetches are removed. The total number of fetches is now (M + 2)· N. For 

fixed product M·N, this is least when N = 1, implying that all unfolding should be in the outer loop, with none 

in the inner loop. This is somewhat deceptive, however. The total number of array fetches and manipulations 

of saved variables is, as before, M·N+2·M+2·N, which is least when M=N= ~- There is a nonzero 

cost associated with manipulating these variables, so the best shape is some compromise based on the relative 

costs of array fetches and manipulation of saved variables. 

7.4 Periodic Cyclic Reduction Revisited 

We can now exhibit the inner loop of the cyclic reduction algorithm the way it should be written. The 

version shown in Section 4.9 had an auxiliary variable added by hand 



11 ~lwuld lw 

for K , l : = 2 * Ilf+ 1 , Q 

do if K>SIZE+l then T 

else 

iter K, T := 

K+2*IH, T[K: Q[K-IH] + A*Q[K] + Q[mod(K, SIZE)+IH]J 

enditer 

end if 

endfor 

It is easier to understand and ,eril~ the program in this form. 
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8. ARl{A Y CREATION OPERATORS 

Up to this point we have used SE! .ECT as the standard array operator for our consideration of interlace 

and unfolding. Some array creation operators (applicative. of course) arc clearly required. 

For the cases we arc presently interested in (uniform, repetitive operations), the operator that will do 

what we want is one that adds one more clement to an array. This is applied repeatedly to a loop variable that 

is initially set to an empty array. The addh operator of VAL docs this conveniently. The size of an array is 

part of its data in VAL, so such an operator is possible, without the need to tell it the index at which the new 

element will be stored. However, a language might not require such an operation, or the computer might not 

provide it. At a slight sacrifice of source program simplicity, we could use an operator that is specifically told 

at what index to store the element, such as the append operator of VAL. Now the semantics of VAL arrays 

and the append operator state that, if if an element is written out of the existing bounds of the array, the 

bounds are stretched to accommodate the new element This makes it possible to start with an empty array, 

whose bounds are set to be right next to where the first element will be written, and write the elements at 

consecutive addresses. 

It would not be wise to assume that we have the exact semantics of the VAL array operators, either in 

the source language that we wish to support or in the hardware. Several of the details of the VAL operators 

are not relevant to the present work. For example, the hardware might require that the array bounds be 

specified at the start of the loop, and perhaps that the array be initially filled with suitable dummy values. It 

might be useful to "flatten" multidimensional arrays in such a way that the elements will not be written 

consecutively, even though we know that all positions will eventually be filled. 
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Therefore, we will assume Lhc minimum possihlc <let.ti! in tJ1c array operations. and use tJ1cm in me 

most "standard" way possihlc. For me types of array-creating loops mat we arc trying to get high 

performance out of, we will assume mat tJ1c array bounds arc known at me start of me loop. 1 me index of 

each clement is known as it is added to me array. and consecutive additions arc most efficient. If mcse 

requirements are not met. we assume mat me hardware. will be less efficient in executing me resultant code. 

So, for our purposes. me append operator will be quite suitable, and we will ignore fine points of its semantics 

and assume mat an actual compiler for a real machine will fill in me details. We will also use "A" as me 

all-purpose empty array mat always does me right ming when used as the starting point for a series of 

append's. 

Of course, the exact choice of operations to be made available to the programmer, and the exact 

instructions that the hardware is capable of executing, will have a strong influence on the efficiency of the 

system and on code generation techniques when random array operati~ns are used. If array A is produced by 

a regular structure, and a random append operation is invoked, as by the VAL assignment 

B := A[13: 3.1416] ; 

then we need to know a lot about the semantics of the operation and the behavior of the hardware before we 

can begin to design a code generator. But, for regular, repetitive sequences of operations, which we are 

interested in, we do not need to be concerned with details. In the examples to follow, we will generally use 

the append operator in order to make the index explicit When addb or addl appears in the source program, 

we assume the compiler does the appropriate thing. 

1. If the machine is going to suppon true dynamic arrays, there will be cases in which the final array size is 
not known when the loop starts. However, it might be reasonable to allow the creation of arrays to be less 
efficient in such cases, so we will provide the bounds and refrain, where possible, from using· whatever 
features the hardware might have for the suppon of dynamic arrays. 
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8.1 Structure of Loops that Create Arrays 

The canonical way to create a one-dimensional array with a single loop is something like this: 

%%% set A[I] = f(I) 

for A, I := A, 0 

do if I=N then A 

else iter A, I := A[I: f(I)], I+l enditer 

end if 

endfor 

Of course a VAL/oral/ could be used, which is roughly equivalent to the above. 

Since we use the "vector of vectors" model of arrays, the canonical way to create a two-dimensional 

array with a double loop is simply to nest the above loop, something like this: 

%%% 

for 

do 

set A[I, J) = f(I, J) 

A, I : = A, 0 

if I=N then A 

else 

let NEWROW := 

for e. J : .. A, 0 

do if J=M then B 
else iter B, J := B[J: f(I, J)), J+l enditer 

end1f 

endfor 

in iter A, I := A[I: NEWROW), 1+1 enditer 

endlet 
endif 

endfor 

and analogously for higher dimensions. Nested VALfora/ts are roughly equivalent to the above. 

Now this looks ugly and cumbersome. It appears difficult to write source programs this way, and it 

appears that the underlying machine instructions will be inefficient, since they require packing array 

descriptors into other arrays. 
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As for the first objection, one can imagine linguistic constructions that would look better. Where there 

is no sequential data dependency, the ji,ra/1 is a good construction. If nested sequential loops arc actually 

required, some way of assembling the array without explicitly building rows would be useful. Since the V Al, 

language has no such convenient feature, we will use the present notation and leave- clean notations to the 

imagination.1 

As for the second objection, remember that the vector-of-vectors model is used only when dealing with 

loop unfolding and array interlace. Once the array slices arc chosen, they will be "flattened", so the actual 

machine instructions that perfonn array operations will "see" only one-dimensional arrays. 

As things now stand, the array dimension structure must match the loop nesting structure. That is, the 

innennost loop must assemble the one-dimensional vectors, which the next outer loop assembles into 

2-diipensional structures, and so on. The loop-array correspondence graph must look like this: 

Fig. 8.1 
LOOP LEVELS ARRAY LEVELS 

outer ref intzl outer 

ref fot•l 

inner ref int•l inner 

There can be no crossing of the arrows. 

I. VAL does allow nested array appends, as in A[ I , J : f ( I , J) ]. but it doesn't actually do the correct 
thing with them as presently defined. and so this feature is not used. It only cleans up a small part of the mess 
in any case. 
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What happens if we spcl'ilkally want to cross the arrows, that is. to create an array that is the transpose 

of what the canonical nested loop produces? There is really no reasonable notation in VAL to specify such a 

thing directly. Hence we wiJI ignore the possibility. We will not deal with it because 

1. If a notation were created to allow convenient construction of such loops, we know that we 

will be able to produce efficient machine code. When the slices arc flattened, the mapping 

function that determines where each item is to be written in the slice will simply be 

different. 

2. In the absence of a good notation, we can concoct a bad notation to get the desired effect by 

creating the array in the normal way and then explicitly transposing it. We would transpose 

it with something like 

B := forall I in [O, M], Jin [O, N] construct A[J, I] endall 

which we can translate efficiently. 

One final observation about the structure of array-creating loops: the reference interval is always 1 (or . 
-1). That is, consecutive items are written, one per loop cycle. If the index at which array elements were being 

written advanced less often than every cycle, some of the elements wou1d later be overwritten, and the loop 

could presumably be transformed to remove the superfluous cycles. On the other hand, if the index increased 

by more than one per cycle, "holes" would be left in the array. We could presumably rescale the index (and 

rescale everything that reads the array) to squeeze out the holes. Whether a compiler ought to do these things 

is a question that we will not address. 

Incidentally, it is the fact that the reference interval is 1 or • 1 that makes the VAL addh and add! 

operators so useful. 
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8.2 I low to Use the Append Operator 

The property of the ~1ppend (and addhl add!) operator that makes it trickier than select is that it emit-; a 

modified array as an output, and so the order in which an array or array slice passes through a series of 

appcnd's may he significant. Fortunately, the properties of this operator, when the order in which a series of 

them is applied is reversed. is fairly simple if we know the array indices. The same array index information 

that makes it possible for a compiler to perform interlacing and other optimizations allows it to optimize 

append operations. 

First, note that a straightforward loop unfolding preserves the order in which append operators are 

applied. (This is because loop unfolding is faithful -- it preserves the application order of all operations.) If 

we have a doubly nested loop, and we wish to perform a 2•2 loop unfolding on it. we just do so, letting the 

operations go where they have to go. All of the previous analysis for select operations, involving unfolding, 

interlace, and reference interval, apply to append operators. When dealing with interlace, we must make the 

following construction for append operators. If the index is known to refer to a particular slice, the operator is 

put in that slice, and the other slices are sent through untouched. 

X 

N way interlace 
-+-+-+ 

J 

(a is a constant, O ~ a < N} 

Fig. 8.2 

If the index does not behave so well, all slices to which the index could refer must go through a permuter. 

How to do this was described in Section 4.1 for select's. For append we need another permuter to get the 

array slices back into the correct order from the operator outputs. 
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Fig. 8.3 
if a select requires an .ip1>cnd requires 

l l l l l l l 
K PERMUTE- 1 K 

J J 

PERMUTE 

l l l l 

If the loop nesting structure matches the array structure (that is, the arrays arc created in the canonical 

way as described in Section 3.11 ), re-ordering of operations should not be required. If not, the program may 

have an apparent data dependency that must be removed. Consider first the canonical double loop: 

%% create A[I][J] = f(I, J) 

%% assume Mand N are multiples of 2 

for I, A := 0, A 

do if I= N then A 

else 

let NEWR0W := for J, B := 0, A 

do if J = M then B 

else iter J, B := J+l, B[J: f(I, J)] enditer 

endif 
endfor 

in iter I, A:= I+l, A(I: NEWROW] enditer 
endlet 

endif 

endfor 

If we perform a 2•2 unfolding, whether we interlace or not. the inner control structures can be coalesced, so 

the resultant graph appears to have just two loops, one inside the other. If 2•2 interlace is used, the result 

looks very simple. (Note that the inner loops' control structures can be coalesced, as commonly occurs for 

nested loops of this type.) 
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The presence or absence of interlace does not affect the ability to perfonn 2•2 unfolding efficiently. 

Now if we try to construct an array that does not match the loop structure, there is trouble. 

Fig. 8.4 
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create A[64•I+J] ::: f (I. J) 

assume M and N are multiples of 4 

I• A 

if I 

else 

: = o. A 

= 64 then A 

let NEWA := for J, B := 0, A 

do if J = 64 then B 

else iter J, B := J+l, B[64•I+J: f(I, J)] enditer 

endif 

endfor 

in iter I, A := I+l, NEWA enditer 

endlet 

endif 

endfor 

The outer loop concatenates all the results of the inner loop into one long array. This is similar to the 

"flattening" that will be discussed in Chapter 11, but not as benign. 

The problem is that the transmission of the single array from one inner loop to the next appears to 

create a data dependency among the inner loops. If we perform a 2•2 loop unfolding, we can't coalesce the 

inner loop bodies. 
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Fig. 8.5 
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No interlace less than 128 will make this dependency go away (and an interlace of 128 would create the need 

for huge pennute operations}. 
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A simple re-ordering will ~olvc things nicely. Since the 4096 appcnd's all lake place al different indices. 

they can he rearranged in any order. The following is a useful order: 

Fig. 8.6 
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Whenever multiple loop unfoldings are being performed and the inner loops are being checked for 

dependency to see if they can be coalesced. we must look for arrays being append'ed to. If an apparent 

dependency involves an array, we check whether all of the indices involved in the loop unfoldings are disjoint 

In the example just given, the question is whether, for each I in [ 0 , 31] and J 1 and J 2 in [ O , 31] with 

( {1281+2J 1} U {128I+2J 1+1} U {1281+2J 1+64} U {1281+2J 1+65}) n 
( { 128I+2J2} U {128l+2J2+1} U {128I+2J2+64} U {1281+2J2+65}) = flJ 

If this is so, the dependency is removed and the loops are coalesced. with the append's all strung together 
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inside the coalesced loop. 

8.3 Common Subexpressions Using SELECT and APPEND 

The fact that ( A[ I: X) )[I) = X means that these two expres..c;ions can have "common 

subexpression·cornbination" performed on them as though they were identical expressions. If a fragment of a 

graph looks like 

Fig. 8.7 
A X 

I 

we can combine all of the select's with the append, and have them just return the data value (X) that went into 

the append. This optimization is treated just like the common subexpression combination of Chapters 6 and 

7. As in those chapters, this will be most useful in iterations when the common subexpressions come from 

different cycles of the unfolded loop. If those different cycles occur in the same unfolding of an unfolded 

loop, the combination is straightforward. If in different unfoldings, then, as in Chapter 7, we compute the 

common value in the earliest unfolded cycle and feed it forward to the later cycles. In a situation in which an 

append is one of the things being combined, the append will always be in the earliest cycle, so that it will be 

the source of the data, and the select's will all be consumers. This follows from causality -- one can't read a 

value out of an array before it has been written. 

Combining append and select usually occurs in algorithms that solve a "recurrence relation" -

computing elements of an array sequentially using, for each element to be computed, the value stored in the 

previous one or more elements of the same array. For example, if we want to set 

B[I] = B[I-1] + A[I] for 1 S I S 64 
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This must be computed by a sequential \oop1 

for I, B := 1, [O: BO] 

do if 1=65 then B 

% need initial element 

else iter I, B := I+l, B[I: B[I-1] + A[I]] enditer 

end if 

endfor 

Digression 

The optimization we are about to exhibit has been discussed in the literature [31] in the ongoing debate 

over the suitability of applicative languages. The optimization basically consists of introducing a new loop 

variable whose value is B [ I -1] on each cycle. If the source program were so transformed, we might have 

for I, B, LASTB := 1, [O: BO], BO 

do if 1=65 then B 

else 

let NEWB := LASTB + A[I] 

in iter I, B, LASTB := 1+1, B[I: NEWB), NEWB enditer 

endlet 

endif 

endfor 

This sort of transformation can of course be made whether the program is written in FORTRAN, VAL, or 

nearly any language. Experienced programmers frequently do make such a transformation if they know that 

it will improve performance on the target computer that they will be using. On many conventional machines 

there will be little, if any, improvement, because array references aren't particularly expensive (that is, if the 

, compiler keeps the index variable in an index register). On some array and pipeline machines it is an 

important transformation to make, because the last item written into B may be somewhere inside the pipeline, 

rather than in the memory, when it is needed, and it cannot be obtained without destroying the pipelining. 

1. This particular computation could be rewritten so that it does not require a sequential loop, but we are 
interested in general recurrences of this kind. for which no shortcut is possible. 
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We first perform a 4-way unfolding and scale the loop variable 
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Fig. 8.9 

Now common subexpressions are removed in the same unfolded cycle, using the knowledge that we have 

about append operators. 
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Now a common subexpressions -- B [ 4 I] -- is optimized across cycles. using an auxiliary variable. 
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Fig. 8.11 

As a final step we might interlace the arrays. We could have interlaced before performing the common 

subexpression removal and introducing the loop variable -- in previous examples we did so. The order in 

which the transformations are made does not matter. 
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9. ARRA\' REFERENCES WITI I UNKNOWN REFERENCE INTERVAL 

This chapter considers the case in which the reference interval is not known prior to execution because 

it depends. from one loop cycle to the next. on the ongoing calculation. The techniques to be shown work 

we11 only if the reference interval, while unknown, is known to have a sma11 upper bound that can be 

detennined at compilation time. If the upper bound is large, many array references will be wasted and the 

code to manipulate arrays will overwhelm the rest of the computation. 

Loops for which the reference interval has a small upper bound are important in practice. In fact, the 

most important case is that in which the upper bound is one, that is, the array index increases either by zero or 

by one on any given loop cycle. This case includes the programs in which some "pointer" is scanning across 

an array and, on any given cycle, either moves on to the next element or stays unchanged. 

The most common example of this is the "merge" part of the "mergeson" algorithm: 

%% A, B = incoming sorted arrays 

%% ASIZE, BSIZE = their sizes 

%% AI, BI = pointers for scanning them 

%% OUT= array being constructed 

%% 01 = pointer for constructing it 
for AI, BI, 01, OUT= 1, 1, 1, A 

do if AI> ASIZE & BI> BSIZE then OUT 

elseif BI> BSIZE I (AI< ASIZE & A[AI] < B[BI]) then 
iter AI, OI, OUT := AI+l, 01+1, OUT[OI: A[AI]] enditer 

else iter BI, OI, OUT := 81+1, 01+1, OUT[OI: B[BI]] enditer 
endif 

endfor 
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Another rather interesting such problem is the "Exercise attributed to R. W. Hamming" in [27] 

for A, I, P2, P3, P5 . - [ 1: 1], 2, 1, 1, 1 

do if I> N then A 

else 

let X2 := 2•A[P2] 

X3 := 3•A[P3] 

X5 := 5•A[P5] 

NEW := min(X2, X3, X5) 

in iter A, I. P2, P3, P5 

A[ I: 

I+l, 

if X2 

if X3 

if X5 

enditer 

endlet 

endif 

·endfor 

NEW], 

<= NEW then 

<= NEW then 

<= NEW then 

:= 

P2+1 else 

P3+1 else 

P5+1 else 

P2 endif, 

P3 endif, 

P5 endif 

We will assume that the uncertain. reference interval is expressed as a conditional that chooses one of 

several constants as the amount by which the index variable is to be incremented, such as 

iter 

J := if PO then J+l 

elseif Pl then J+2 

elseif P2 then J+3 

else J 

endif 

enditer 

%increment= 0 

There are, of course, other ways to formulate it, but they differ from this only in some transformations a 

compiler would make to determine the upper bound on the amount of the increment. By making the amount 

of the increment a choice of manifest constants, the problem of determining the bound is obviated. 
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The general case we will rnnsidcr is that in which the possible values of the increment arc unknown but 

bounded multiples of a known constant. The latter constant will. of course. be a power of two for 

convenience. It is the reference multiplier. and is somewhat analogous to the reference interval of previous 

chapters. The upper bound on the unknown number by which it is multiplied is the reference bound. 

For example. if the increment is known to be 0, 4, or 12. the reference multiplier is 4 and the reference 

bound is 3. One could, of course, declare the reference multiplier to be 1 and the bound to be 12, but it would 

result in very inefficient optimized graphs. 

The general technique for handling an unknown reference interval in the presence of loop unfolding is 

as follows: The multiple loop instantiations need values from the array for several loop cycles at a time. 

When the reference interval was known, we were able to predict exactly which elements would be needed and 

to obtain those elements in advance. In the present situation, we can pnly predict that the needed elements 

will come from a certain set, and obtain all of the elements in that set Then, using the actual values of the 

reference interval that become available as the loop cycles progress. we can route the correct elements to the 

place where they are needed and throw the others away. 

Because of the unknown "phase" of the array indices with respect to the loop instantiations, we are 

much more likely to require permuters than in the case of a known reference interval: Permuters are needed 

whenever the interlace is greater the the reference multiplier. (fhey were formerly needed only when the 

interlace was greater than the product of the reference interval and the unfolding.) 

We begin by using the techniques of Chapter 4 as though the loop unfolding were only one and the 

"reference interval" of Chapter 4 were equal to the present reference multiplier. That is, we generate the data 

flow graph for accessing the element needed by the first instantiation only. This witl require a permuter if the 

interlace is greater than the reference multiplier. 



Example: 

interlace= 8 
reference multiplier= 1 
reference bound= 2 
unfo 1 ding = 4, but the initial graph will be made as though it were 1 

To get A [ J] k)r the first instantiation. we have 

J 

J. 
8 

PERMUTE81 

datum = A[J] 

Fig. 9.1 

Now, since the unfolding is 4, we need the data for the next 3 cycles. Normally, the datum for the next cycle 

would be produced by the same graph as above, but with index J increased by 1. 

We might do it this way: 

Ao Al A7 
Fig. 9.2 

J PERMUTE- 1 
8 

J+l 
8 

A[J+t] 

and the graph for the datum after that would be 

Fig. 9.3 
Ao A1 A7 

J PERMUTE- 1 
8 

J+2 
8 

A[J+2] 

Because the reference bound is 2, the datum that we want for the second instantiation could be any of A[ J ], 

A[ J+l ], or A( J+2]. Since the unfolding is 4, 3 instantiations are needed after the initial one, which could 

require any of A[ J] through A[ J+6 ]. To avoid long chains of data dependencies, they can all be computed 
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in parallel, using jusl one permute opcralor. 

J PERMUTE-I 
8 

J J+2 J+4 
8 8 8 

J+t J+3 J+5 
8 8 8 

A[J] A[J+2] A[J+4] 
A[J+t] A[J+3] 

J+6 
8 

A[J+6] 
A[J+6] 

Fig. 9.4 
A7 

This construction, to simultaneously access many consecutive (relative to the reference multiplier) items will 

be called a multi-select. 

Incidentally, it is reasonable to suppose that the operation of computing things like ( J+5) /8 and using 

the result as a select index will be supported by very efficient hardware mechanisms. 

Since we may need A[ J] through A[ J+6 ], this construction matches our needs well. The reason is 

that, for this case, we have 

reference multiplier• reference bound• unfolding= interlac9 

This is the optimum situation. If the product on the left were greater than the interlace, each slice would have 

to go to multiple array operations, just as in Chapter 4. Unlike Chapter 4, however, we still need a permuter. 

We always need a permuter when the interlace is greater than the reference multiplier. That permuter must 

permute interlace items 
reference multiplier · 

For example, if 

interlace"' 8 
reference multiplier"' 1 
reference bound= 4 
unfolding= 4 



then this 
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J+7 
8 

Fig. 9.5 

will get A[J] through A[J+7]. But we need data up through A[J+12]. so most slices must go to two select 

operators. 

J 

A(J] 
A[J+8] 

PERMUTE- 1 
8 

A[J+1] 
A[J+9] 

9.1 Reference Multiplier Not Equal to One 

Fig. 9.6 

If the reference multiplier is not equal to one, it affects things the same way a reference interval not 

equal to one affected things in Chapter 4: The "effective interlace" . becomes 

r refe re~c~e~uai;eip 1 ier 7. This is the number of array slices required by the computation. 

Example: 

interlace= 32 
reference multiplier= 4 
reference bound= 2 
unfolding= 4 

We can rescale the loop index, dividing it by the reference multiplier. Let V be the scaled index, so V = JI 4. 

Then the situation, in tenns of V and array slices A0, A4, ... A28, looks just like the earlier case with 

interlace= 8 and reference multiplier= 1. 



The "multi-select" looks like: 
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9.2 Using Multi-selects to Provide the Data 
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Recall that the program fragment controlling the index variable look generally like this: 

iter J := 

if Pl then J 

elseif P2 then J+l 

else J+2 

endif 

enditer 

Fig. 9.7 

There is some conditional (or huge tree of conditionals) computing the new value of the index by selecting 

fixed increments to add to it Those increments lie between zero and the reference bound, ~urning that the 

index has been rescaled if the reference multiplier is not 1. 

Graphically, this looks something like this: 

Fig. 9.8 

J 

p 

JI 
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These arc cascaded as many times as the unfolding requires: 

(to 1st J 
instance) 

J 

value for next unfolded cycle 

Fig. 9.9 

Now the first instance requires A[ J ]. That comes out of the multi-select easily. The next instance requires 

A(J' ], which is A[J], A[J+l], or A[J+2], depending on a computation that uses P. To obtain A[J' ], we 

duplicate the same conditional, controlled by P, but with A[J], A[J+l], and A[J+2] entering it instead of 

J, J+l, and J+2. 

The result is: 

Fig. 9.10 

A J 



- 141 -

The graph for the entire loop with unfolding of 4 is: 

Fig. 9.11 
A J 

A[J'' '] ----

value for next unfolded cycle 

Unfortunately, this consumes an amount of space that is quadratic in the amount of unfolding. 

9.3 Array Appends with Unknown Reference Interval 

When a loop needs to "write" to an array, that is, send the array through append operations, and the 

reference interval is unknown, a similar sort of construction is used. For each unfolded loop body there is a 

range of array indices into which append's might take place. Within that range it is not known in advance 

which indices will be written to and which will be left unchanged, so a "multi-select" is used to read the 

original contents of all elements in that range. Those values are then sent through a network of conditionals 

to substitute the new values where needed, and the results go to a "multi-append" to write them back into the 

array. The design of the "multi-append" is similar to that of the "multi-select". The network of conditionals 

that inserts the new values is somewhat similar to the network that performs selcct's with unknown reference 

interval. It, too, has a complexity that is quadratic in the amount of unfolding. It will not be shown here. 
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It happens that a general .ippcnd with unknown reference foterval is probably not a useful thing in 

practice. This is because such a loop. if the reference bound is two or more. must occasionally leave "holes" 

in the array. A much more common situation is the special case of reference multiplier and reference bound 

both equal to one. with the append taking place only on those cycles in which the loop index actua11y 

increases. That is, in any cycle one of two things happens: Either an clement is added at the index -given by 

the index variable and the variable is increased by one. or the array and index variables are both left 

unchanged. The typical iteration control thus looks something like this: 

i te r A, J, <other variables> : = 

if P then A[J: X] else A endif, 

if P then J+l else J endif, 

<other values> 

enditer 

The graph with no unfolding or interlace looks like: 

A J 

J 

p 

next A next J 

Fig. 9.12 

Assuming a unfolding and interlace of 4, we have, in the unfolded loop body, four boolean values P 

through P ' ' ' and four data values X through X ' ' ' . (For each P value that is false the corresponding X value 

will not be used.) 
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1 0 

mod 4 mod 4 mod 4 mod 4 

next A0 next A1 next A2 next A3 
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10. DISTRIBUTION AND DECOUPLING OF CONTROL STRUCTUl{ES 

lt was suggested in Section 3.10 that, when inner loop control structures arising from unfolding on an 

outer loop arc coalesced, they should not force the loops to operate in lock-step, but should, in some cases at 

least, allow them to "decouple". This chapter will show why such decoupling is important, and will suggest 

how it might be achieved. 

l0.1 Multidimensional Data Dependencies and the "Wavefront" Transformation 

Consider an algorithm which is a double nested loop creating a two-dimensional array. fach element of 

the result depends, in part, on the values of the result array in the adjacent positions above and to the left. 

This implies some sort of upper-left-to-lower-right computation order, which must be expressed in the source 

program. Toe usual way to express it is by explicitly specifying a top-to-bottom and left-to-right "raster scan" 

order. It is reasonable to express it the same way in a data flow program, as follows: 

for I, Q := 1, (0: TOP_BOUNDARY_ARRAY] 

do if I=N then Q 

else 
let ROW:= for J, R := 1, (0: LEFT_BOUNDARY_SCALAR] 

do if J=M then R 
else 

iter J, R := 

J+l, R[J: A(I](J]+Q[I-l][J]+R[J-1]] 

enditer 
endif 

endfor 

in iter I, Q := I+l, Q[I: ROW] enditer 

endlet 

endif 

endfor 

Of course, a data flow or other parallel computer need not enforce a strict raster scan order, as long as the data 

dependencies are satisfied. 
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As was indicated in Chapters '1 and 7, the unfolded and coalesced loop i11slanccs make a 2-dimcnsional 

matrix. When common subexpressions arc combined, data flows through that matrix from upper left to lower 

right. 

Fig. 10.1 

from loop to new values 

variables of loop variables 

Because of the data dependencies, one would expect the activity in the graph to proceed, approximately, 

along a "wavefront" ·• a diagonal line that sweeps from upper left to lower right. An instantaneous picture of 

the graph might look like this. 

Fig. 10.2 

0 0 0 0 
0 0 0 0 0 

these 0 0 0 0 0 0 
instantiations 0 0 0 0 0 0 
have finished 0 0 0 0 0 0 

0 0 0 0 0 0 

these have not 

If the unfolded loops all operate in lock•step so that none may begin a cycle until all have completed the 

previous cycle, the next group of instances may not begin until the current wavefront reaches the lower right 

comer. Looking at many blocks of the array (refer to Section 3.12) the boundary between processed and 

unprocessed parts must look like this 
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Fig. IOJ 
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Block p cannot begin until block a has completed. 

If, on the other hand, the loops are decoupled, loop instances near the top of a block will be able to start 

while instances near the bottom of the previous block are still busy. This is because loop variables near the 

top are recycled before those near the bottom, and a loop cycle can begin as soon as its loop variables become 

available. The boundary between processed and unprocessed parts now looks like this: 

Fig. 10.4 

r T T T .1 

f--- + + 

+ + 

L ..J... _j_ -' 

The diagonal part of the boundary slides smoothly to the right, as. one would expect in a "natural" 

computation. The entire array is processed in horizontal strips, the topmost strip being processed first 
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Depending on the dist.ince over which data dependencies occur among the loop cycles, and on the 

amount of unfolding at each level, the overlap among the groups could be much higher than the example here 

shows. The execution of the decoupled loops could therefore be separated by several entire cycles. 

On most vector, pipeline, or parallel processors, th~ "raster scan" order is not efficient. This is because 

those machines cannot handle sequential data dependencies among loop cycles (sometimes referred to in the 

literature as "recurrence relations") well. Optimizers therefore sometimes re-order the computation so that it 

wilt proceed along a different raster scan, in this case one rotated 45 degrees from the originally specified 

order. In this example, a program that originally was, in FORTRAN 

DO 99 I= 1, N 

DO 99 J = 1, M 

becomes, in effect: 

DO 99 AA= 1, M+N-1 

DO 99 I= MAX(l, AA+l-M}, MIN(AA, N) 
J = AA-1+1 

The "coordinates" I and J of the computation space are reparameterized in terms of new coordinates I and 

AA. The inner loop proceeds along a diagonal line with no sequential data dependencies, which a vector or 

pipeline machine can handle well. The outer loop moves this line (the "wavefront") downward and to the 

right 

This "wavefront transformation" plays an important role in optimizers, such as PARAFRASE (38), for 

conventional supercomputers. It is not needed in a data flow system. By allowing loop bodies to decouple, the 

wavefront will form naturally. 
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10.2 Achieving the Decoupling 

To decouple the multiple inner loops, we must allow the operators that control the recycling of loop 

variables to function at different times. These operators arc controlled by boolean control values that come 

from the test operators that sense when the loop is to terminate. When the loops were coalesced, all of the 

loop variable recycling operators were put under the control of a single test operator. An example of such an 

arrangement is the following: 

, loop variables 
I 

next values 
I 

for loop variables ___________ J,., __________ ......, 

ru J' 
control instance O I instance 1 instance 2 

I I 

Fig. 10.5 

The MERGE and F gates controlling the loop variables are locked into step with each other by the static 

firing rules: The =N operator cannot emit a boolean token until all of the operators to which it send tokens 

have absorbed the previous token. On the Dennis-Misunas data flow design [26} this is accomplished by 

having operators send acknowledgment tokens to indicate that they have absorbed their inputs. Because of 

this, the MERGE and the various f gates cannot fire at significantly different times. 

To allow these gates to fire at different times, and hence allow the loop variables to recycle at different 

times, we can place short FIFO ("firsHn first-out") buffers in the lines carrying the control infonnation. 
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0 init 

FIFO J 

control instance O 

init 

FIFO 

FIFO J 

instance 1 

etc. 
etc. 

Fig. 10.6 

The control logic at the left can now run several cycles ahead of the instances, filling the FIFO buffers. The 

instances can consume tokens from the buffers at different times, with some instances perhaps running several 

cycles (limited by the FIFO capacity) ahead of others. 

FIFO buffers can be implemented as chains of identity operators: 

For any but the shortest chains this is a very wasteful way of doing it. There are many ways to implement 

these buffers in a space-efficient manner. See (25) for a design for efficient huge FIFO buffers, in the context 

of a machine that uses such buffers for direct storage of arrays. 

There is another way to solve the problem of lock-step operation -- replicate and distribute the control 

structures. 
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If a separate copy of the control structure 

Fig. 10.7 

0 

index 
-----~ iteration control 

is used for each instance, the instances will be able to run with the appropriate timing differences. 

Distributing the control structures has another potentially important advantage. It reduces the amount of 

communication among geographically separated parts of the program. To achieve high speed and avoid 

bottlenecks, it is important for the instances to be executed in different parts of the computer. The 

transmission of the index and iteration control tokens (on each cycle) among the parts can create a heavy load 

on the communication system, and may lead to bottlenecks. Distributing the control structure can prevent 

this. 

Loop control subgraphs such as the one above will probably be very commonplace in compiled data 

flow programs, and hence it will be useful if such graphs can be implemented efficiently in tenns of speed, 

processor loading, and instruction space. An instruction set design by Burkowski [131 features some 

instruction types designed for efficient implementation of various loop control schemes such as this one. 
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11. FLATTENING OF ARRA \'S 

ll has been assumed all along that multidimensional arrays arc interlaced independently at each level. ft 

was further assumed that the slm were themselves to be treated as multidimensional arrays. For example, if 

an array X is 4-dimensional and has AX BX CX D interlace, then for each a in [ 0 , A-1], p in [ 0 , B- 1], 

yin [ 0, C-1 ], and 6 in [ 0, D-1] there is a slice Xapy6 which is itself a 4-dimensional array. 

The bounds of each slice can be calculated from the bounds of the original array. If the array X 

described above has bounds 

then a simple calculation shows that slice X a{JyB has bounds 

[r ¥1. L ~ Jl x [1 ¥1. L ¥ Jl 
x [1 ~1. L ~ Jl x [r \!1. L ~ Jl 

If the bounds for the given array X are known at compilation time, the bounds for each slice can be computed 

at compilation time. If the bounds for X are defined in terms of quantities that are known only at execution 

time, the bounds for each slice can be computed in terms of the same quantities. Furthermore, if the bounds 

are known at compilation time modulo the interlace, the computation is much less formidable than the 

formula above would indicate. For example, if PA is known to be A•J + 3, where J will not be known until 

execution, then Ip A;a 7 = J if a> 3, or J+l if a<l (The value of a, the slice number, is always known at 

compilation time for each slice.) 

11.1 Order of Indices in Flattening 

Knowing the bounds, either numerically at compilation time or in terms of computed values, we can 

flatten the array. This is done by choosing an index and taking the one-dimensional strips of the array that are 

formed when that index varies but all other indices are held constant. There is one such strip for each value 
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of the other indices. Choose a second index and lay end-to-end those strips that arise from letting that second 

index vary. There is now a collection of longer strips, one for each value of the remaining indices. Each strip 

has the data from an entire plane of the array. Choose another index and lay the strips end-to-end again, and 

so on. The result is one strip containing the entire array. 

We can choose any order of the indices in doing this. For example, if array slice S has bounds 

[UA, VA] X [Ue, Ve] X [Uc, VcJ X [Uo, Vo] 

it could be flattened into the one-dimensional slice T with 

T[(Vo-Uo+l)((Vc-Uc+l)((Ve-Ue+l)(I)+J)+K)+L] = S[I, J, K, L] 

This order is sometimes called "last index varying most rapidly" and is the order we will generally use. One 

could flatten in the opposite order, obtaining R with 

R[(VA-UA+l)((Ve-Ue+l)((Vc-Uc+l)(L)+K)+J)+I] = S[I, J, K, L] 

sometimes called "first index varying _most rapidly" (the way arrays are required to be organized in 

FORTRAN), or in any other order. 

We could leave holes in the flattened array by replacing the multipliers (the expressions like 

"V c -Uc+ 1 ") with any higher number. This could be useful if the bounds of different slices were different, 

and we wanted to use the same multipliers for all slices. 

Knowledge of the bounds on the original slices, whether they be computable at compilation time or 

defined in terms of execution time values, can be turned into knowledge of the bounds of the flattened slices. 
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11.2 Using Flattened Slices in SELECTs 

t-~1ch K-dimensional array slice will presumably be used in select operations, in which the slice will go 

through K individual select operators to yield a scalar. When the slice is flattened, it becomes a I-dimensional 

array. which therefore needs to go through just one select. The index value for that select can be found from 

the correspondence between the original slice and the flattened one. This correspondence is a simple linear 

combination, such as 

S[I, J, K, L] = T[E·I + F·J + G·K + H·L] 

where S is the original slice and T is the flattened one. E, F, G, and H are the coefficients, which will, in many 

cases, be constants known at compilation time. Then 

Fig. 11.1 
s T 

E F-

I 

is transformed into 

K 

G H 

11.3 Getting Permuters and Conditionals Out of the Way 

A few things may cause the original array slice not to go through a series of select operators in the 

simple way shown above. Foremost of these is a permuter. The situation is corrected by moving all permute 

operators "downstream" past all select operators. This will cause all multidimensional array slices to go 

through only selects until a scalar result is obtained before going into a permuter. It has the added effect of 

making permuters handle only scalar data. This may be useful in two regards: It avoids reference accounting 

problems that could arise from manipulation of array values, and it avoids the possibility of sending array 

values from one part of the computer to another in an unpredictable manner. These points will be discussed 

in Chapter 15. 
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When a permute operator is nioved downstream past a row of select operators, the index values for the 

selects need to be pennuted lo compensate. Specifically, 

Fig. 11.2 

J must become J PERMUTE 

J PERMUTE- 1 

• V1 

This is not always an inconvenience. In many cases the index values going into the selects (the Q 1 values) are 

all the same, so no permutation is needed. In other cases the Q 1 values are related to each other in a simple 

way whose interaction with the permuter can be predicted. For example, this: 

Fig. 11.3 

j ~ ~ ~ 

J4; ~ PERMUTE&': ~ I 
is equivalent to 

Fig. 11.4 

12 ~ i1 j 
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So lhe standard mu hi-select offlgure 9.4 becomes 

Fig. 11.5 

Ao A7 
J+7 J 
8 8 

J PERMUTE-I 
8 

A[J] . . A[J+7] 

Another thing that needs to be moved downstream past any select operator is the conditional. 

Whenever we have 

we turn it into 

How easy it is in practice to do this in reasonably general cases remains to be seen. 

If these things are done, and no other pathological program structures conspire to make life difficult, 

K-dimensional array slices should go only to K consecutive select operators. When this is so, the slices can be 

flattened. 
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11.4 Creating Flattened Slices 

Multidimensional arrays of the sort we arc interested in arc created by nested loops in which each loop 

level creates one dimension of the array. Using the nesting diagrams of Chapter 5, we require strict 

correspondence with no crossing of arrows. 

Fig. 11.6 
LOOP LEVELS ARRAY LEVELS 

outer outer 

~-----
inner inner 

At each loop level, the elements are assembled, one per cycle, into a linear array. Those elements are either 

scalars or lower level arrays produced by inner loops. We will assume that reference interval for creation is 

always one. If it were greater, the array would be created with holes in it If less, elements would be 

overwritten. A compiler could, in principle, tum these cases into the equivalent case's with reference interval 

equal to one. 

Now the fact that there is a strict correspondence between loop levels and array levels may be just a 

shortcoming of the language we are using. It is certainly possible, in FORTRAN, to write 

DO 99 I = 1, 10 

DO 99 J = 1, 10 

DO 99 K = 1, 10 

DO 99 L = 1, 10 

. . . . 
A{K, L, J, I) = expression 

That is, a FORTRAN or other statement-oriented language can fill a multidimensional array with any loop 

level/array level correspondence. To do the same in VAL is unnatural because of the applicative nature of 

the language and the fact that it uses the "vector of vectors" model for multidimensional arrays. One may 
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well be able to design a language that can easily define arrays with any index order. It is not necessary, 

however. One could just reorder t11c indices to match ilic loop nesting structure and ilien use t11e 

straightforward VAL notation. Hence we will assume ilic array indices correspond with the loop levels 

exactly. 

The loop at each level looks something like iliis: 

for I, A := 0, A 

do if I=N then A 

else 

let X : = . ; eiilier a scalar or the array 

produced by a loop similar to this 

in iter I, A := l+l, A(I: X] enditer 
endlet 

endif 

endfor 

The graph to produce this is 

I 

I 

, 
I 

0 

- - - --

These graphs are of course nested 

A 

' scalar (?r graph \ 
similar to this 

/ 

Fig. 11.7 
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Even if loops arc unfolded by arbitrary amounts at arbitrary levels, each instantiation looks like this, as 

long as the index variable is rescaled and the amount of unfolding is equal to the array interlace at each Jcvel. 

We will ignore for now the possibility that the interlace might not equal the unfolding. Each slice is produced 

by a graph such as the one above. 

Now it happens that. if the multidimensional array slice is flattened with the last index varying most 

rapidly, the order in which the scalar values arc produced by the innermost loop is the order in which they arc 

placed in the flattened slice. Instead of having the innermost loop create separate rows which the outer loops 

assemble into the final array slice, only one linear array is used. The innermost loop simply adds its clements 

to that array value. The outer loops pass the result of one inner loop into the next inner loop. Graphically, we 

could flatten a two dimensional array slice produced by this loop 

I 
I 

I 
I 

' \ 

0 

' 

A 

0 

-- - -

two-dimensional slice 

A 

,,, 

' \ 

I 
I 

Fig. 11.8 

\ 
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by having it produced instead by this 

Fig. 11.9 
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--- - - -
flattened slice 

Now the array slice is one-dimensional. Elements are appended at only one level. By passing the slice from 

one inner loop to the next, the "rows" that the inner loop would normally produce are concatenated end to 

end, as the flattening operation requires. This construction can be used for any number of dimensions. 

11.5 Flattening the Control Structure 

The part of the above graph that produces the sequence of scalar values can be separated from the part 

that assembles them into the flattened array slice. The latter part can easily be seen to function by simply 

appending the scalars into the slice in linear order. It clearly doesn't need to be a nested loop •• it can be 

"flattened" into a simple loop. 
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We now have 

Fig. 11.10 
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The graph on the right is an "array packer". It is a structure that the hardware should be able to handle very 

efficiently. We will return to this structure in Chapter 15. 

A special graph structure can also be used for select operators, if the loop nesting matches the array 

structure and the reference interval is one at each level. A nested loop that refers to A[ I] [ J ], where I is the 

outer loop index variable and J the inner one, might look like this after array flattening: 
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Fig. 11.12 
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The graph on the right is an "array unpacker". It is also a structure that the hardware ought to be able to 

handle efficiently. 
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Array packers and unpackers have an interesting property that make them potentially able to save 

enormous amounts of memory space. In certain cases, packer/unpacker pairs can be removed, and an array 

can be passed from one loop to another as a stream of scalar values. This will be discussed in Chapter 14. 

11.6 Interlace Not Equal to Unfolding ·· Alternators 

If the interlace is smaller than the amount of loop unfolding, we know that each slice must go to 

multiple select or append operators. each in a different loop instance. 

We either have 

Fig. 11.13 
slice slice 

or 

Using an array unpacker, we have to send the unpacked elements ~ the separate instances in interleaved 

order: 

Fig. 11.14 

to loop instances 

This subgraph can be considered a one-input two-output "alternator". The alternating true and false boolean 

tokens can be obtained in a variety of other ways, such as using the low order bit of the index in the unpacker. 

In any case, careful attention needs to be paid to boundary conditions to make sure that this starts up in the 

correct state. 
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Using an array packer. we need a two-input one-output alternator, like this: 

Fig. 11.15 
from loop instances 

packer 

When the ratio of the loop unfolding to array interlace is greater than two. more complex alternators arc 

required. 

If the interlace is larger than the amount ofloop unfolding, we have multiple array packers or unpackers 

connected to the same loop· instance. This problem is also solved with appropriately connected alternators. 

These alternators perform a function equivalent to that of the permuters that were used to solve the same 

problem in Chapter 4. 

In multiple dimensions, when the interlace at the various levels does not match the unfolding at the 

corresponding level, the data must go through several layers of alternators, each one designed to correct the 

mismatch at that level. The actual structure of such networks can be quite complex. 
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12. BOUNDARY CONDITIONS 

The loops considered so far have all been completely unifonn in their use of arrays. That is. the 

correspondence between loop cycle number and array index has been "affine": 

array index= a· cycle number+ p 

where a and fJ may or may not be known prior to execution. but arc known not to change once the loop 

begins. 

The results can easily be extended to loops that refer to arrays in a "piecewise-affine" way. A 

piecewise-affine correspondence is one that looks like this: 

«1 cycle number + P1, for 'Y1 s cycle number < 'Y2 
array index = «2 cycle number + fl2 • for 'Y2 < cycle number < 'Y3 

ak cycle number + Pk• for 'Yk s cycle number < 'Yk+l 

It is important that the number of pieces (kin the formula above) be fairly small. This is because the size of 

the program itself may increase in proportion to k. Recall from Section 1.4 that we are dealing with arrays 

much larger than the program size that we could tolerate. It follows that the number of pieces must be very 

small in comparison to the number of elements in the array. 

The solution is fairly straightforward in principle (though, like so many things in this report, tedious in 

its details): Analyze the array accesses separately for each piece, and generate the appropriate code. Use 

conditionals to select the correct code in each piece. For example, something like 

%% I= the loop index variable 
J := if I< 50 then 2•1+47 else 4•1 endif 

A(J] 



gets translated to 

Al := A[2•1+47] 
A2 := A[4•I] 
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if I< 50 then Al else A2 endif 

Now, since I is the loop index variable, the appropriate code for A[2•1+47] and A[ 4•1] may be easily 

generated. 

Of course, if some of the pieces cover only one loop cycle, as is often the case with boundary conditions, 

the compiler should recognize that the index variable is a "constant" in the array access for that piece, and 

make the appropriate simplification. 

The extension of this to nested loops is straightforward. 

12.1 Dividing Loops 

Another technique that is useful in some cases is to divide the loop into a series of loops. one for each 

piece, which are then concatenated to fomi the original one. Each loop in the series processes only the cycles 

of the original loop that correspond to its piece, and passes its final loop variables to the next loop. Within 

each loop, array references are purely affine. 

This technique is useful when the computations involving the various pieces differ significantly, since 

the amount of code that is shared among the pieces is small. Boundary conditions provide a typical example 

of this. If we have a loop such as 



foral 1 I in [LO, HI] 

construct 

if J;;;;LO then P 

elseif J;;;;HI then Q 

else f(I} 

end if 

endall 

It would be appropriate to translate it as 

A 

p 

loop for 
[LO+l. HI-1] 

Q 
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Fig. 12.1 

Of course, the programmer could have specified this decomposition in the source program, writing something 

like 

let X := forall I in [LO+l, HI-1] construct f(I) endall 

in X[LO: P][HI: Q] 
endlet 

but the representation as a single forall with a conditional inside seems to be the preferred programming style 

in VAL (largely because the explicit decomposition is hard to express with nested forall's}. For this reason. 

automatic division ofloops is a useful optimization technique. 

12.2 Dividing Nested Loops with Multiple Array References 

When several array references (to the same or different arrays) are involved, each of which is in several 

affine pieces, it is neces.wy to divide the loop wherever any of the array references requires it. If one array 

reference requires division like this 



I a 

and another requires division like this 

a l 
the _loop must actually be divided like this 
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Fig. 12.2 

Fig. 12.3 

Fig. 12.4 

If we have nested loops, and various regions must be divided up so that all references will be affine in each 

piece, we must choose a fine enough mesh in each direction. For example, if we have a double loop with 

these pieces 

outer 
loop ! a 

inner loop 
--+ 

'Y 

Fig. 12.5 

p 

I 
8 

The outer loop must be divided into four· pieces, and then the inner loops independently divided like this on 

those pieces: 

Fig. 12.6 

a p 

a 'Y p 

a 'Y I 8 

a l 8 
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13. LARGE SCALE PROGRAM STRUCTURE 

This chapter will examine the applicability of the techniques of array interlace and loop unfolding to 

programs in general. 

Any program whose array references arc all piecewise affine can be treated by the methods of the 

preceding chapters. This needs to be taken in perspective: It docs not mean that arbitrarily large amounts of 

parallelism can be found, for there may be genuine bottlenecks in the algorithm. It does mean that 

bottlenecks arising from array references can be removed. That is, we can remove the apparent bottleneck 

that arises from the fact that repetitive array operations seem to pass a single array token from one operation 

to another in sequence. To the extent that there is parallelism in the algorithm, the array operations can be 

restructured so that they will not prevent that parallelism from being exploited. 

Programs consist of operators, conditionals. and iteratiori loops, put together in an acyclic data flow 

graph. (Forall loops are considered to be a special case of iterations.) In the case of conditionals and 

iterations, there is a hierarchical structure -- the subgraphs of conditionals and iterations are themselves 

acyclic data flow graphs composed of operators, conditionals, and iterations. (The inner mechanism of an 

iteration involves cyclic flow of tokens, but, in an abstract structural sense, programs are built out of a 

hierarchy of acyclic graphs of operators, conditionals, and iterations.) 

Every array reference is inside some (possibly empty) nested collection of loops. The index expression 

for the reference (or, if the array is multidimensional, each index expression) may depend on one or more of 

the loop index variables. Now there are several ways in which an index expression in an array reference might 

be badly behaved. 
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It might not depend solely on loop index variables ·- -there might be contributions from 

other calculations that arc unpredictable or "random". 

2 The dependence might not be affine. 

3 The loop variables might not have a uniform increment from one loop cycle to the next. 

Collectively, these conditions mean that the reference interval is not well defined. 

Now a failure in one or more of these conditions might not be fatal. If the failure occurs just at the 

boundaries or, in any case, at a very small number of points, we can take those points out of the loop, as 

discussed in Chapter 12. The important point is that the vast majority of references depend solely on loop 

indices with known reference interval. A few occasional references that don't satisfy these criteria won't 

matter. 

Another failure that is not fatal is a dependence on something that is not a loop index variable with 

known reference interval, but is nevertheless known to be a multiple of the interlace. This situation arose in 

the periodic cyclic reduction algorithm of Chapter 4. It is why a~ initial expansion was performed on the 

outer loop. 

The important point is this: If the index expression of an array reference depends solely on loop 

variables with known reference interval, and appropriate amounts of array interlace and loop unfolding are 

used, that array reference will not limit the parallelism of those loops. That is. no sequential data dependency 

will exist in those loops as a consequence of that array reference. This does not mean that the loops can really 

be successfully unfolded·· there might be other sequential data dependencies. 

Not all parts of a program can necessarily benefit from this. Some parts are not in loops (or, because 

they are boundary conditions, must be taken out of their loops), or are in loops that do not unfold well. 
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Not all parts of a program need to benefit from this. The overall performance of a program is usually 

determined by one critical part -- usually an innermost loop. The performance of a program on a large 

applicative computer will depend on whether loop unfolding and array interlace can be performed on the 

critical parts. If one is very successful at this. some of the parts that had not previously been critical might 

become critical. In the limit of extreme loop unfolding, bottlenecks might arise in unexpected places. 

13.1 Example ·· the Cyclic Reduction Algorithm 

The complete cyclic reduction algorithm fol1ows (36, 44]. This solves linear systems of equations in 

which the nonzero elements in the coefficient matrix are pennitted only along the main diagonal or the 

diagonals immediately above and below it. 

The traditional algorithm for solving this problem, sometimes called "LU decomposition", has 

sequential data dependencies whose length is of order N, the number of equations in the system. This makes 

it unsuitable for vector or array machines. The cyclic reduction algorithm overcomes this problem. It has 

roughly the same number of arithmetic operations as LU decomposition, but much larger numbers of them 

can be executed in parallel. The longest chain of sequential data dependency is of order log ( N). This 

propeny of having the theoretical absolute minimum computation time much shonerthan the execution time 

on a sequential machine makes cyclic reduction suitable for data flow computation as well. 

The algorithm presented here is very similar to the "periodic cyclic reduction" algorithm presented in 

Section 4.9. The earlier algorithm was a specialization of this one for solving Poisson's equation, with some 

extra computation (the manipulation of the scalar "A") to satisfy periodic boundary conditions. The earlier 

algorithm manipulated one array: Q. This one manipulates four arrays: A, 8, C, and D. It also does more 

arithmetic-· the computation of MU, LAM, and RHO. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% 
%%% Solve a tridiagonal system of equations. 
%%% 
%%% N is required to be a power of 2. The incoming vectors 
%%% are: 
%%% M[l .. N-1] - the diagonal elements of the matrix. 
%%% U[l .. N-2] - the above-diagonal elements 
%%% L[2 .. N-1] - the below-diagonal elements 
%%% R[l .. N-1] - the right-hand side. 
%%% 
%%% This returns the vector [1 .. N-1], call it X, such that 
%%% 
%%% 
%%% 
%%% 
%%% 
%%% 
%%% 
%%% 

M[l] U[l] 0 0 0 
L[2] M[2] U[2] 0 0 
0 L[3] M[3] U[3] 0 

0 
0 
0 

0 
0 

0 
0 

0 .. L[N-2] M[N-2] U[N-2] 
0 .. 0 L[N-1) M[N-1) 

X[l] 
X[2] 

• X[3] 

X[N-2] 
X[N-1] 

%%% This uses the "cyclic reduction" algorithm. 

= 

R[l] 
R[2] 
R[3] 

R[N-2] 
R[N-1] 

%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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function solve(M, U, L, R: areal ; N: integer returns areal) 
type areal=array[real] 

%%% REDUCTION 

let 
AZ, BZ, CZ, DZ := 
for IH, AA, BB, CC, DD := 1, M, U, L, R 
do . 

if IH=N/2 then AA, BB, CC, DD 
else 

let 

in 

ID := IH•2 ; 
NEWAA, NEWBB, NEWCC, NEWRR := 
for J, A, B, C, D := IO, AA, BB, CC, DD 
do 

if J=N then A, B, C, D 
else 

let 

in 

MU := AA[J-IH]•AA[J+IH] 
LAM := CC[J]•AA[J+IH] 
RHO := BB[J]•AA[J-IH] 

iter J, A, B, C, D := 
J+ID, 
A[J: LAM•BB[J-IH]+RHO•CC[J+IH]-MU•AA[J]], 
B[J: RHO•BB[J+IH]], 
C[J: LAM•CC[J-IH]]. 
D[J: LAM•DD[J-IH]+RHO•DD(J+IH]-MU•DD(J]] 

enditer 
endlet 

endif 
endfor; 

iter IH, AA, BB, CC, DD :• 
ID, NEWAA, NEWBB, NEWCC, NEWRR 

enditer 
endlet 

endif 
endfor; 
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%%% SUBSTITUTION 

in 
for 
do 

ID, X : = N, DZ 

if ID=l then X 
else 

let 

in 

IH : = ID/2 
NX := 
for J, NNX : = IH, X 
do 

if J=N+IH then NNX 
else 

let 
ALPHA := if J=IH then 0.0 else CZ[J]•X[J-IH] endif ; 
BETA := if J = N-IH then 0.0 else BZ[J]•X[J+IH] endif 

in 
iter J, NNX := 

J+IO, NNX[J: (X[J]-ALPHA-BETA)/AZ(J]] 
enditer 

endlet 
endif 

endfor: 

iter ID, X := IH, NX enditer 
endlet 

endif 
endfor 

endlet 
endfun 

The same analysis that was perfonn_ed in Section 4.9 applies here. The manipulations of arrays A, B, C, 

and D are virtually identical to the manipulation of Q in Section 4.9. As in Section 4.9, if we use a 16 way 

interlace on A, B, C, and D, it is appropriate to perfonn an initial unfolding of 4 on the outer reduction loop 

(for values of IH = 1, 2, 4, and 8) and to use various amounts of unfolding on the inner loops. In the 

substitution part, it is appropriate to perform a final unfolding of 4 on the outer loop, and to use various 

amounts of unfolding on the inner substitution loops. 



Ll2 The Fast Fourier Transform 

The full(rning progr,un i~ the rnrnplcx discrete l·ourier transform mer N points. computed b) the 

Coolcy- lukey ("t;i~t h>urier tr.msform") algorithm [15]. COST AB is the t;1ble of sines and cosines. The 

compiler is expected tu rc1ml\e the apparent record structure of data of "complex" type. All arrays of 

complex type (e.g. A or AL) ;ire ;1ctuall:- two arr;iys. one c11Tying the real parts and one the imaginary parts. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% 
%%% Complex Discrete Fourier Transform over N points. 
%%% N must be a power of 2, and at least 4. 
%%% The argument and result are defined on [0 .. N-1]. 
%%% INVERT tells whether to invert the transform. 
%%% The result is not normalized: it should be divided by SQRT(N) 
%%% to get the true transform. 

%%% If INVERT is false, this returns RESULT such that 
%%% n-1 
%%% RESULT[K] = SUM exp(2•pi•i•j•k/N) ARG[j] for Kin [0, N-1] 
%%% j=0 
%%% If INVERT is true, the argument to exp is negated. 

%% This requires 3 quadrants of cosines in COSTAS, defined over 
%% [ -N/4+1, N/2-1], with COSTAB[j] = COS(2•pi•j/N). 

function DFT(ARG: array[complex] ; COSTAB: array[real] ; N: integer 
INVERT: boolean returns array[comp1ex]) 

type complex= record[re, im: real] : 

for Z, A:= 1, ARG 
do 

if Z = N then A 
else 

let 
NEWZ := Z•2 
AL, AH := 
forall Lin [O, N/NEWZ-1], Jin [O, Z-1] 

P := A[Z•L+J] ; 
Q := A[Z•L+J+N/2] ; 
SO := COSTAB(N/4-J•N/NEWZ] ; 
S := if INVERT then -SO else SO endif 
C := COSTAB[J•N/NEWZ] 
QWre := Q.re•C-Q.im•S 
QWim := Q.re•S+Q.im•C 

construct 
record[re: P.re+QWre : im: P.im+QWim], 
record[re: P.re-QWre : im: P.im-QWim] 

endall ; 
NEWA := fora11 Kin [O, N-1) 
construct 

if mod{K, NEWZ) < Z then AL(K/NEWZ][mod{K, Z)] 
else AH[K/NEWZ](mod{K, Z)] 
endif 

endall ; 
in 

iter A, z := NEWA, NEWZ enditer 
endlet 

endif 
endfor 
endfun 
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If we assume that the input and output arrays have 8 way interlace, it is useful to pcrfom1 an initial 

unfolding of 3 on the outer loop, since the optimal structure of the inner loops is different for 

Z = 1, 2, and 4. The interlace and unfolding of the forall loops are as fol1ows: 

First outer cycle, Z = 1: 

A interlace = 8, size of each slice = I 
AL, AR interlace = 4 * 1, size of each slice = f * 1 

Since size of slice in second index is one, it is not rcal1y an array, and the slices can be considered 

to be one-dimensional. 

Unfolding of forall creating AL, AR is 8 * 1 

Since the inner loop has only one cycle after expansion, it is removed. 

Unfolding of forall creating NEWA is 8 

Second outer cycle, Z = 2: 

A interlace = 8, size of each slice = f 
AL, AR interlace = 2 • 2, size of each slice = f • 1 

Since size of slice in second index is one, it is not really an array, and the slices can be considered 

to be one-dimensional. 
Unfolding of forall creating AL, AR is 4 • 2 

Since the inner loop has only-one cycle after expansion, it is removed. 

Unfolding of forall creating NEWA is 8 

Third outer cycle, Z = 4: 

A interlace = 8, size of each slice = · f 
AL, AR interlace = 1 • 4, size of each slice = f • 1 

Since size of slice in second index is one, it is not really an array, and the slices can be considered 
to be one-dimensional. 

Unfolding of forall creating AL, AR is 2 • 4 

Since the inner loop has only one cycle after expansion, it is removed. 

Unfolding of forall creating NEWA is 8 

Later outer cycles, Z > 8: 

A interlace = 8, size of each slice = f 
AL, AR interlace = 1 • 8, size of each slice = fi, • i 
Unfolding of forall creating AL, AR is 1 • 8 

Unfolding of forall creating NEWA is 8 

AL and AR slices, being two-dimensional, are flattened. 
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()per;iti()n occu h \\ hen Z is 1. 2. ur 4: I 11 the fora II that cre;ites AL ,md AR. th use it!Td'.1 slices go th rough two 

I he rem;iining d!Til\ reference that needs to be considered is the select reference to COST AB. If ... , . . 

COST AB has an interlace of 8. nu permuters will he needed. but. except for the last fC\\ cycles of the outer 

loop. only slice 1°.:ro will he used. Since the forall that m;ikes reference to COST AB is unfolded 8 ways. slice 

1cro needs to go to 8 select oper;itors. The bottleneck implied by this can be removed by using 8 copies of'the 

slice. one for each unfolded loop instance. Since COST AB is a constant array. it is easy to provide multiple 

copies. 
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14. PIPELINING AND ARRA\' REMOVAL 

It is very common in an iteration loop to have the computation of the termination condition not depend 

on the outcome of the bulk of the computation. and the data paths from any value of any loop variable to its 

next value be very short in comparison to the bulk of the computation. When this happens, a very useful 

fonn of "decoupling" may be possible. 

The first criterion is satisfied by, among other things, any loop that is controlled by a counter, such as 

for I , X , Y : = 0 , <other initial values> 

do if I=N then <values to return> 

else iter I, X, Y := l+l, <other new values> enditer 

end if 

endfor 

Any forall loop is clearly of this fonn, for example. 

The graph for this is 

0 

' LV - _ - - --- -Jr::: -_1£--,' 
' •' other - , , 

I • \ 
1 computation > , 

~ I \ 

I 
/ 

I 
I 

Fig. 14.1 

The significance of this situation is that the flow of tokens through the control operators can proceed far 

ahead of the rest of the computation. The control computation for the entire loop could complete before the 

bulk of the graph completed its first cycle. The control part of the loop can "decouple" from the rest of the 

loop, in the same manner as was discussed in Chapter 10. As in that chapter, FIFO buffers are required to 

hold the boolean tokens that have been created by the control part but not yet consumed by the bulk of the 

computation. 
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The other criterion is that. although some computation paths may be long. the cyclic paths through 

which loop variables must pass arc each relatively short. That is, the dependence of a "next" value of a loop 

variable on the "present" value of that same variable is simple, although its dependence on the present values 

of other loop variables might involve a lengthy computation. 

The prototypical examples of such loop variables arc the array unpacker: 

from 
control 
section 

iteration 
control 

and the array packer: 

from 
control 
section 

iterat fon 
control 

index 

incoming array 

data 

data 

final result array 

Fig. 14.2 

Fig. 14.3 

If these two (or any other subgraphs with short cycle paths) are connected so that data from the 

unpacker goes through a lengthy computation and then to the packer, it may be possible for the unpacker to 

run many cycles ahead of the packer. The control section must be independent and able to run at least ahead 

of the unpacker, and there must at least be a FIFO buffer to store the control tokens that the packer has not 

yet consumed. The results of the extra unpacks can then be pipelined through the main body of the 
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computation. That is, several "waves" of tokens can be in transit through the graph simultaneously. ·111e 

acknowledge rules of the static data flow computer will maintain an orderly flow. This pipelining can 

improve the throughput/instruction space ratio of the system tremendously. 

The capability of the graph to allow this pipelining_ is heavily dependent on many aspects of the graph's 

stmcture. Programs that support this pipelining arc referred to as "pipe structured" and are examined in [25). 

The ability to support pipelining can often be enhanced by inserting null operations in strategic places. an act 

known as "balancing". This is examined in (32]. 

To support pipelining, the graph must have the property that no operator or subgraph may have a long 

latency (time that elapses from the instant a token enters it until the corresponding result emerges) unless that 

operator or subgraph itself supports pipelining. Individual operators· have short latency, but subgraphs that 

are iterations typically do not, and iteration loops, viewed from the ou~ide, do not support pipelining. That 

is, a loop of one hundred cycles cannot accept a second wave of input tokens to start its second hundred cycles 

until it has at least started the hundredth cycle from the first wave. Any loop nested inside the outer loop in 

question would therefore appear to render pipelining of the outer loop impossible. 

This problem can be overcome by interleaving the entire inner loop. Suppose the inner loop has a 

latency of80 microseconds, but we want a new cycle of the outer loop to start every 10 microseconds. A token 

must pass each point of the outer body every 10 microseconds, but a token can enter a copy of the inner loop 

only every 80 microseconds. We can use 8 copies of the inner loop (expensive, but we get the performance 

that we pay for) whose inputs and outputs are connected through alternators. Alternators were described in 

Chapter 11. The alternators can be visualized as 8 position rotary switches: 
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Fig. 14.4 

Every incoming token goes through the upper switch into one of the inner loops, and that switch 

advances to its next position. When the lower switch receives a token along its selected line, it passes that 

token along and advances to its next position. 

Of course we want all instances of the inner loop to be as efficient as possible, which may require 

pipelining them, as well as the usual unfolding. 

A nice property of the pipelining that can occur in a data flow computer is that it doesn't need to be 

worked out precisely in advance the way it does in "systolic" systems [39). If FIFO buffers of approximately 

correct size are put into the correct places, pipelining will happen naturally. Minor mismatches in the running 

speeds of the various parts will not cause serious problems. If some transient irregularity occurs (an 

arithmetic exception may occur somewhere and need to be corrected) the natural load balancing ability of a 

computer with many independent processors will smooth the computation out 
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14.1 Array Removal 

It may happen that array packer/unpacker pairs can "cancel" each other. If one is diligent and 

fortunate in putting all array references in the form of pack and unpack modules, then arrays will only be 

created by packers, and they will only be consumed by unpackers. The two modules will ·be found only in 

pairs, with a:n array token passing from each packer to its unpacker. The pairs will look like this: 

Fig. 14.S 

scalars 

scalars 

The packer came from the upper iteration, and its control section was extracted from that of the 

iteration. Likewise, the unpacker came from the lower iteration. Now, if the unpacker expects an array of the 

same size as the one that was created, the packer/unpacker pair are just a conduit for scalar tokens. That 

conduit has memory (obviously!)-- it is able to absorb all of the incoming tokens from the upper loop before 

the lower loop is ready to accept any tokens. 

Under what circumstances is this memory unnecessary? If there is some other data dependency from 

the final result of the upper loop to the start of the lower loop, then the entire array must be stored before the 

first element is unpacked. In this case the memory is clearly necemry. However, if there is no such 

dependence, the two loops can cycle simultaneously, and the pack/unpack pair can be eliminated. The 

control structures of the two loops might even be coalesced into one. The question of when two loops can be 

made to run in step with each other is the same question that arose in Section 8.2, 
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One might ask: What kind of program would have two loops that could have been coalesced but run 

sequentially instead? Why would anyone write 

when 

Y := forall I in [LO, HI] construct A[I]+B[I] endall 

Z := forall I in [LO, HI] construct Y[I]/Q endall ; 

Z := forall I in [LO, HI] construct (A[I]+B[I])/Q endall ; 

would do just as well? The answer lies in the realm of software engineering. It may be that using two loops. 

creating an "obviously unnecessary" intennediate array and then immediately consuming it, can make 

programs easier to understand in some cases. Programmers presently know from experience that such 

intermediate arrays are wasteful. and they carefully avoid such waste. 

The excess arrays are only wasteful in conventional systems that cannot remove them by optimization. 

When systems are used for which there js no efficiency penalty for different ways of expressing an algorithm. 

perhaps algorithms will be expressed in ways that are easier to understand. 
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15. CONSIDERATIONS OF MACI IINE OF.SIGN 

This chapter will discuss a few points relating to the design of an efficient instruction set for a data flow 

computer. The design issues in a data flow computer arc of course complex and diverse. Most of them arc far 

beyond the scope of this thesis. The present discussion will be restricted to just those issues that relate to 

efficient processing of arrays. and a brief point about pipelines for boolean values. 

In the following, "array" means array slice. That is, we are discussing arrays as seen by the hardware 

itself. as opposed to the arrays that appeared in the original source program. 

A generality/ efficiency trade-off is pervasive in the handling of arrays. In the most general case, arrays 

are dynamic, that is, their size can increase unpredictably during the computation. The array "tokens" can be 

duplicated or destroyed unpredictably, so their reference counts (see below) can take on arbitrary values. 

Append operations can be performed when the reference count is more than one, which requires that the 

underlying mechanism copy the entire array. (The necessity for this will be discussed below.) Finally, array 

tokens can be sent through permuters and other control operators to arbitrarily distant parts of the machine. 

When such a token then enters a select or append operator, the place where the operation must be performed 

may be far removed from the place where the array is stored, which leads to a great deal of communication 

through routing networks. 

The type of computer that can handle this is complex indeed. Rough designs for such machines have 

been formulated (1, 3), but they are not efficient enough for numerical supercomputation with existing 

technology. We will assume here that such uncontrolled situations do not arise in the computations of 

interest, and will examine the type of machine that can take full advantage of that facL 
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15.1 Array Localization and Management 

In an applicative system, local processing of many small arrays throughout the system is the ideal way to 

proceed. A major objective of the preceding chapters was to develop data flow graphs in which arrays arc 

processed in small subgraphs. Ideally, each array token spends its entire lifetime in such a subgraph. This 

lifetime usually consists of the allocation of a block of memory somewhere, the filling of that block in a fairly 

standard type of loop containing append operators, the reading of that array, usually in another standard loop 

containing select operators, and finally the release of the array's storage when its token disappears inside some 

control gate. There are many variations of this, but the general goal is to restrict each array token to a 

localized subgraph during its entire lifetime. The reason for doing this is to allow all select and append 

operations to be executed in hardware units that are physically and logically close to the memory unit in 

which the array is stored. 

This local processing of arrays can and should be reflected in the hardware. The subsystems of the 

machine that handle arrays are replicated many times over. Ideally, each array token spends its lifetime in just 

one such subsystem. That subsystem contains the memory devices (e.g. RAM's) in which the array is stored. 

The mapping, perfonned by the compiler; from the data flow graph onto the machine includes an assignment 

of each array-handling subgraph onto an arrarhandling subsystem. It is desirable that array tokens not be 

allowed to travel very far. In particular, they should not move from one array-handling subsystem to 

another -- otherwise there will be an enmmous amount of traffic in the communication network as data items 

are fetched in one subsystem for use in another. This is the reason that, in Chapter 11, we attempted to 

minimize the passage of array tokens through such things as permuters and conditionals. 

It is reasonable to assume that the memory blocks to which array tokens correspond are allocated 

dynamically. That is,_ each array subsystem has a dynamic memory management mechanism. When a token 

is created (by the operation that we have denoted in graphs by the symbol A) a suitably sized block is taken 
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from a "free storage pool". When that token is no longer needed its block is returned to the pool. 

Completely st.ttic allocation, in which each array token in the data flow graph is assigned a specific location in 

the memory of its array subsystem prior to execution, could also be used for a restricted class of programs. 

This docs not seem worthwhile, since the overhead incurred in dynamic allocation should be quite small. 

15.2 Reference Counts 

There arc two common methods for handling memory management: In the garbage collector method, 

unused blocks of memory arc located through a specific procedure, called garbage collection, when the free 

storage pool becomes empty. lbis is done by tracing all blocks of memory that are in use. This method can 

be quite complicated, especially in a machine in which array tokens can pass through routing networks. It is 

generally used only when memory references can be circular and the simpler reference counting scheme will 

not work. 

In the reference count method, the system knows at all times which blocks are in use, and returns each 

block to the free storage pool as soon as it ceases to be in use. This information is generally stored in the form 

of a reference count, which is the number of references to that block. There is a reference count associated 

with each block. The reference count must be carefully manipulated whenever any operation is performed 

that changes the number of references. The reference counting method is simpler than garbage collection, 

but does not work if circular lists can be made. This is because a circular list could be isolated, that is, have no 

references into it from the rest of the computation, but still have nonzero reference counts because of the 

mutual references within the list Such lists cannot be created in an applicative system, so reference counting 

is the method of choice. 

In a data flow graph, each token containing an array value counts as a reference to that array. If arrays 

can be stored in arrays, each storage of an array in another array also counts as a reference. Since we assume 

that arrays are flattened, this docs not occur, so we need not consider it further. It is not a serious problem in 
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any case. 

Every time an array token is duplicated in any operation. such as sending a result from one operator to 

several destinations. the count must be increased. Every time an array token is destroyed, the count must be 

decreased. If it goes to zero, its space must be reclaimed. The principal operations that destroy tokens are the 

"true" and "false" gates used in conditionals and iterations. In fact, it is the gate in an iteration that causes a 

token to disappear after the last cycle, if that array is not being passed on to some other part of the graph. The 

other possible operation that destroys an array token is the select operator. Since an array token enters but 

only a scalar leaves, it effectively destroys its reference. As will be seen later, it is useful to redefine this 

operator so that it preserves its array token. 

The reference count plays another very important role in an applicative system. Throughout this thesis 

we have treated the append operator as though it were a simple thing -- no more complex to perform than the 

"subscripted left-hand-side" array writing operation of conventional systems. This is not really true. In an 

applicative system, no value, array or otherwise, is ever allowed to "change". Instead, new values are created. 

The append operator must, in general, copy its entire a"ay argument and modify only the copy. In an efficient 

computer this is, of course, atrocious. 

The trick that saves the day is that, if the incoming array has reference count equal to one, that array 

would be discarded and its space reclaimed right after the copy is made. That being so, the new array might 

as well use the same space. So, if the reference count is one, the append operator can write the new data in 

situ, making it as simple as we have been assuming. An applicative operation can be made out of 

non·app licative actions. 
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15.3 Pscudo·rcfcrcnce Counts 

A straightforward implementation of the reference count scheme would have the count for each array 

stored in the actual memory along with the array's data. When an array is created (that is, an array token 

proceeds forth from a A node) its count is set to one. All operations through which it can ·pass increase the 

count if they send the token to multiple destinations. (In a static data flow graph the number of destinations 

is an unchanging property of each node.) A "T" or "F" gate decreases the count if it destroys the token, 

which depends on the value of the boolean control token. A select operator always decreases the count. Any 

time the count is decreased, the result is checked. If it is zero, the array's storage is reclaimed. 

All of these reference count manipulations are expensive. The number of memory references to change 

the count could exceed the number of references to the data. They are also unnecessary, in most cases. With 

a little extra care. the graph can be constructed so that the reference count of a token at any point in the graph 

is known to the compiler, before execution begins. In fact, it can be known to be equal to one, which will 

permit in situ append operations. By having the compiler compute "pseudo-reference counts", the program 

doesn't need to compute actual counts during execution. Operations to reclaim arrays can be inserted into the 

graph at the points that the compiler determines that the count would have gone to zero. 

In the simple cases, the reference count is known to be one throughout a loop that creates an array. The 

standard such loop is: 
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Fig. 15.1 

condition 

The "array packer" is of this type, as are many array-filling loops. 

This loop can easily be seen to leave the reference count equal to one at all times, and yield as its result 

an array with reference count equal to one. Consequently, no run~time manipulation of reference counts 

needs to be perfonned, and an in situ array write can be perfonned for the append. If the initial array came in 

from some other computation with reference count equal to one, the situation would be the same. 

If the array must pass through more than one append, as it must if the interlace is less than the product 

of the loop unfolding and the reference interval, the reference count is still preserved as the array passes 

through the append's in sequence. 

Now consider a loop that reads from an array with select operators: 

Fig. 15.2 

condition 

data 
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This obeys Lhe reference count rnlc in spirit but not in fact The token is duplicated just before the 

select operator. The select operator then reads from the array and destroys the array token. reducing the 

count back to one. A little thought will show that this is quite typical of array reading operations: When an 

array token goes into a select, it typically will be used again, so it must have been duplicated. 

The excess reference count manipulations that arc implied by this style of select can be avoided if the 

operator is redefined to have a second output arc. That arc emits the same array token that entered. Instead 

of duplicating the token and sending one copy to the select and keeping the other copy for later use, the 

correct procedure is to send the single token into the select and use the copy that it emits for later operations. 

Now instead of this 

array 

scalar 
array 

Fig. 15.3 
we have this 

array 

Lindex 
seal~ 

array 

If the array must go to more than one select, as it must if the interlace is less than the product of the loop 

unfolding and the reference interval, it should go through these modified select's in sequence, thereby 

preserving the reference count. 

15.4 The "Create" and "Reclaim" Operators 

An array is destroyed, and its memory space reclaimed, when its reference count goes to zero. 

Assuming that the reference count is known to be one during the array's lifetime, this typically occurs at the 

end of a loop when the control value directs a gate to dispose of the token. Instead of having the gate take 

care of reclaiming the space, we can have a special operator do the job. 
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Fig. 15.4 
instead of we have 

condition condition 

rec a 1m 

data 
data 

• This operator discards its token 
when the control value is true, so it 
must reclaim the array, which 
requires interaction with the 
memory system. 

To create an array, some sort of create operator is appropriate, which could take a numeric argument 

telling how big a block of memory to allocate. Of course a well-rounded computer should be able to handle 

dynamic arrays and allow the allocation of an already existing array to increase beyond any predicted size, but 

in most cases the size can be predicted. · Array creation with a predicted size is certainty a situation that the 

system should be able to handle efficiently. The prediction might be a constant, or might be the result of a 

previous computation. 

15.5 Fully Static Allocation 

In many cases, an outer loop repeatedly causes an array to be created, used in an inner loop, and 

reclaimed. If the compiler can determine that the array is of the same size each time and that the next create 

operator does not need to act until after the previous reclaim, the reclaim/create pairs can be combined, and 

the same array token used repeatedly. Such transformations point the way toward fully static array allocation, 

a technique that is certainly efficient but not very general. 
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15.6 The "Pack" and "Unpack" Modules 

The array "packer" and "unpacker" arc the prototypical modules for manipulating arrays. A "packer" 

for N items (where N is either constant or computed during execution) is. in full detail: 

Fig. 15.5 

0 N create 

t t 

data 
( N tokens) 

An "unpacker" is 

Fig. 15.6 

t t 

data 
(N tokens) 

The complexity of these subgraphs makes the point of this chapter: The "packer" and "unpacker" are 

probably the most common modules that manipulate arrays, but, if built out of the standard data flow 

operators. are far too unwieldy. A good machine design should support these operations with great efficiency 

in both time and space. Ideally, each of these subgraphs could be compressed into a single operator. 

Burkowski's instruction set [13) can compress the control parts of these graphs into efficient operators. but 

does not take the array operations themselves into consideration. 
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15.7 Boolean Pipelines 

As discussed in Chapters IO and 14. there arc many places where it is useful to allow different parts of a 

loop to "decouple", letting the loop control section run several cycles ahead of some part,; of the loop. This 

requires FIFO buffers in the lines between the control section and the rest of the loop body. 'Those lines go to 

"T", "F". and "MERGE" operators. It follows that a compiled program will have many such operators with 

FIFO buffers. Since the data in the buffers is of boolean type. the buffers really don't need much space. A 

good instruction set might arrange to have these operators, without taking up too much extra space. function 

as though they had built-in FIFO buffers of modest length. 
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16. CONCLUSION 

We have seen how a number of program optimizations may be perfonncd that, for many programs. 

should lead to extremely efficient execution on a suitably designed and sufficiently large computer. Many of 

the optimizations are "parameterized" -- they depend on choices of the degree of loop unfolding and array 

interlace. How might an optimizer make these choices. and how can we predict how well they will work? 

An adequate theory of how well programs will perform under transformations of this type does not 

exist. The perfonnance of a program on a parallel computer of the type we are considering may depend very 

strongly on seemingly minor points of data dependency. Programmers are not yet fully accustomed to 

thinking in terms of these points, so perhaps a detailed theory that would apply to a large class of programs is 

inappropriate at this time. The class of programs for which such a theory would be profitable has not been 

characterized in a useful way. 

A great many programs have been· analyzed, of course. However, the class of programs expressible in 

most languages is so rich that the problem seems intractable, at least at present The best execution-time 

organization of a program, and the optimum values of the unfolding and lookahead, are somewhat "random" 

functions of the structure of the program. 

We propose the following approach for an operational compiler: Very approximate values will be 

chosen for the parameters (unfolding and interlace} based on the need to match unfolding to interlace and on 

the constraint of total machine size. These values will then be refined, that is, the parameter space will be 

searched for nearby points that might yield better performance. The estimated performance at each point will 

be calculated from such things as the lengths of critical instruction chains and the number of cycles executed 

in various loops. The size of the unfolded program must also be estimated, to be sure it will fit in the . . . 
computer. If these estimates can be made more accurate by using detailed knowledge about the computer's 
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structure (relative speeds of floating point and fixed point instructions, behavior of the scheduler, behavior of 

interconnection networks. etc.) so much the better. Such detail is probably unnecessary, however. It could 

lead to the expenditure of more computation to optimize the program than to run it. Also. since the 

parameters arc adjusted by factors of two. changes in pcrfonnancc should be quite noticeable and not require 

accurate measurements for their detection. 

Using a very simple measure of efficiency, an optimizer should be able to find a point in the parameter 

space that will lead to reasonably nearly optimum perfonnancc. Exactly optimum program organization is 

unattainable without fully simulating the program. This is because events that depend on the data at 

execution time, such as arithmetic exceptions, can detennine when certain parts of the program will be 

executed. Detennination of the amount of the computer's resources to dedicate to these parts depends on the 

frequency with which these events will occur. 

Given that the optimizer uses this "experimental" approach, the efficiency of an optimized program 

may depend, in perhaps unforeseen ways, on subtle· details of the algorithm. A small change in the data 

dependencies specified in the program might not greatly affect the total efficiency, but it might greatly alter 

the parameters required to obtain the best efficiency. This is certainly a less than ideal situation, but it is not 

unlike the situation that presently exists in conventional systems. There is considerable "folklore" about the 

best ways to code various algorithms in various languages on various computer systems. A similar folklore 

might arise in the world of applicative numerical programming. There is some cause for optimism that this 

folklore will be more fundamental and less machine dependent than the corresponding knowledge about 

conventional systems. It is also likely that this knowledge will be able to be incorporated in a systematic way 

into future optimizing compilers. 
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