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C h a p t e r 1

Introduction

1.1 Circuit Networks

The problem of virtual circuit admission control and routing can arise whenever there is a

request to send a large amount of data from one node in a network to another node. The

admission control aspect of the problem is to decide whether or not the network can or should

accommodate the request, and the routing aspect of the problem is to decide how to route the

data if the request is to be accommodated. The data is routed by establishing a path, called

a virtual circuit, through the network that connects the two nodes that wish to communicate.

The data packets are then sent along the established virtual circuit. We will focus on networks

where virtual circuits are characterized by a bandwidth requirement and the bandwidth re-

quired for the virtual circuit is reserved explicitly. This thesis provides several virtual circuit

admission control and routing algorithms. Furthermore, it provides several lower bounds on

the performance of any virtual circuit admission control and routing algorithm. The admission

control and routing problem arises in many contexts. We survey a few of these.

Future Broadband Integrated Services Digital Networks (B-ISDN) will carry a wide spec-

trum of new consumer services, such as video-on-demand, video teleconferencing [Sha94], etc.

A key characteristic of these services is that they require quality-of-service (QoS) guarantees.

Assuring QoS requires reservation of resources. As a result, B-ISDN will likely allocate re-

sources in terms of virtual circuits. Examples of broadband networking technology that uses
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a virtual circuit based approach are ATM (Asynchronous Transfer Mode) [deP91, Bou92] and

PARIS/PlaNET [CG88, CGG91].

The Internet also seems to be moving in the direction of using virtual circuits. Traditionally,

nodes communicating on the Internet may use a di�erent path for each data packet. As a result,

there are no performance guarantees and no resource reservations. However, new routing archi-

tectures currently being developed for the Internet, e.g., NIMROD [CCS94], include facilities

for virtual circuit routing. Furthermore, protocols are being developed for resource reservation

and for signalling admission control decisions, e.g., RSVP [ZDE+93].

Parallel supercomputers are another important area where admission control and routing

problems arise. Applications on parallel supercomputers often need fast access to potentially

large amounts of data that is stored remotely. Hence, there needs to be a communications

network embedded in the supercomputer that is capable of supporting such requests for data.

In some supercomputers this data is routed using some form of virtual circuit routing. (In the

past, many supercomputers have used packet routing where each packet uses its own path and

no bandwidth reservations can be made. While this approach works for cooperative scienti�c

applications, it may not be e�ective in commercial applications where the various tasks may

not be cooperating. By reserving a certain amount of bandwidth on a virtual circuit, a partic-

ular task can be assured good performance.) We note that the supercomputer community has

recently shown interest in constructing systems by interconnecting workstation-like nodes via

high speed LANs [Lei93]. IBM's SP-2 is an example of such a supercomputer system. In view

of the emergence of the ATM standard, which is based on virtual circuits, as a preferred archi-

tecture for high speed data networks, virtual circuit admission control and routing algorithms

may become increasingly important for future supercomputers.

A large-scale video server can be constructed by using a supercomputer network to connect

a large disk farm to a set of telecommunications lines. The network of the supercomputer

is then used to route video (e.g., movies) to subscribers in real time. Oracle's Media Server,

which currently runs on the NCube supercomputer, is an example of such a system [Buc94].

Each customer has a virtual circuit through the NCube that connects the disk containing the

customer's movie to the customer's telecommunications port.

The admission control and routing problem encompasses many service models. We focus
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on the following models. We characterize a virtual circuit by its participating nodes and a

bandwidth. Unicast communication refers to circuits that have two participating nodes (tra-

ditionally called a source and a destination). Multicast communication refers to circuits that

have more than two participating nodes. This thesis considers both types of circuits. Multicast

communication can be further subdivided into on-line multicast groups and o�-line multicast

groups. For on-line multicast groups all participants arrive and leave at the same time (e.g., a

teleconference call). For o�-line multicast groups participants arrive and leave independently

(e.g., ESPN). We develop admission control and routing algorithms for both types of multicast

groups.

When virtual circuit requests (unicast or multicast) arrive to the network we immediately

make the admission control and routing decision. Once made, that decision is not changed.

Thus, we do not consider rerouting or preemption. (Preemption removes an existing virtual

circuit from the network in favor of new, potentially more valuable, virtual circuits.)

In characterizing a virtual circuit by its participating nodes and a bandwidth, we have

simpli�ed several issues. For example, we are ignoring the stochastic properties of bursty

connections. In particular, many data sources, such as video, will have bandwidth requirements

that can vary dramatically over short time frames. Furthermore, some virtual circuits may

want to reserves other resources in addition to bandwidth. For example, bu�er space might

be important for a circuit that wishes to have low data loss. A favorable position in a priority

system may be important for a circuit that needs low delay. Many of these complications can be

abstracted away using the concept of e�ective bandwidth [AG90, GAN90, EM93, EM95] (Some

of the literature, e.g., [AG90, GAN90] uses the term equivalent bandwidth). E�ective bandwidth

essentially determines how much bandwidth a circuit should reserve based on the stochastic

properties of the circuit and the QoS requirements (e.g., packet loss, delay) of the circuit. We

assume that circuit requests specify their e�ective bandwidth.

Our model for multicast communication is also simpli�ed. In particular, we construct a

single multicast tree for the entire multicast group. If the multicast group has multiple sources,

it will have to use its own mechanism to manage the coordination of the transmission on its tree.

A multiple source multicast group could establish a separate multicast group for each source.

However, our model does not provide for any coordination of admission control decisions across

13



multicast groups.

1.2 Goals

Admission control and routing algorithms can have a variety of goals. We focus on the following

two goals: maximize the number of accepted virtual circuit requests and maximize the total

amount of accepted bandwidth. The total amount of accepted bandwidth is the sum of the

requested bandwidth of the accepted virtual circuits. We note that these optimization goals

ignore certain fairness issues. For example, node pairs that are only connected by long paths may

experience a higher rate of rejection than node pairs that are connected by short paths. Other

optimization goals, such as minimizing the total delay in the network [BG92] or maximizing

the total accepted \value", when each virtual circuit is characterized by a \value" [AAP93],

have also been discussed in the literature.

The tra�c patterns for the networks and the applications described in Section 1.1 will not

be known in advance since the usage patterns for these applications and networks are currently

not well understood. Furthermore, the tra�c patterns can vary dramatically over short periods

of time. Hence, advance knowledge of the tra�c pattern may be di�cult to obtain. Therefore,

an important goal for our algorithms is to not require advance knowledge of the tra�c pattern.

This design goal motivates both our use of concepts from competitive analysis and the manner

in which we make use of stochastic properties. Our approach stands in contrast to existing

algorithms for general topology networks, which all require advance knowledge about the tra�c

patterns.

As a secondary goal, we wish to minimize use of dynamic state information. The use of

detailed dynamic state information such as current link utilizations can signi�cantly complicate

the implementation of the algorithm in a distributed setting. We seek to minimize the use of

that information by using static state information, e.g., number of links, to decide among the

paths that meet the admission control criteria.
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1.3 Approach

Non-greedy admission control and routing. The simplest approach to admission control

and routing is to make the decisions in a greedy manner. In other words, always route a

circuit if there is a path with su�cient bandwidth; always use the minimum-hop path among

the paths with su�cient bandwidth. Unfortunately, the greedy approach can lead to poor

performance. For example, it will accept a virtual circuit request even if that request can

only be accommodated along an excessively long path that might be more e�ciently used

by some future virtual circuits. The alternative is to use non-greedy admission control and

routing. Non-greedy admission control and routing may choose to reject a circuit request even

if there exists a path with su�cient bandwidth. Furthermore, it may not use the shortest

path with su�cient bandwidth. Non-greedy admission control can be used to improve the

number of virtual circuits that the network accepts. This observation was �rst made in the

context of symmetric loss networks by Krupp [Kru82]. More recently, this observation has been

extended to general topology networks [OK85, Kel88, SD94, GKR95]. The admission control

and routing algorithms that we develop all use a non-greedy approach. Our simulations and

our lower bound results lend further support to the notion that non-greedy approaches provide

superior performance.

Competitive analysis. Admission control and routing decisions need to be made in an on-

line fashion. In particular, each decision must be made without knowledge of future requests.

Competitive analysis is an important theoretical framework in which the performance of on-

line algorithms is analyzed [ST85, KMRS88]. The performance measure used in competitive

analysis is the competitive ratio. The competitive ratio of an on-line virtual circuit routing

and admission control algorithm is the maximum over all request sequences of the ratio of

the number of requests accepted by the optimal algorithm for that sequence to the number of

requests accepted by the on-line algorithm for the same sequence. An algorithm with a low

competitive ratio is one that performs close to the optimal algorithm on all request sequences.

Informally, the competitive ratio measures how much the performance of the on-line algorithm

su�ers in comparison to the optimal algorithm due to the fact that the on-line algorithm cannot

predict future requests, since, for example, it does not know the tra�c pattern.
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Competitive analysis can be extended to randomized algorithms [BLS87], i.e., algorithms

that use randomization in their decision process. Let E[A(�)] be the expected performance

of randomized algorithm A on request sequence �. Then the competitive ratio for A is the

maximum over all request sequences � of O(�)=E[A(�)], where O(�) is the performance of the

optimal o�-line algorithm on request sequence �. This competitive ratio is called oblivious since

the request sequence is chosen independently of the random choices made by A.

An important motivation for using competitive analysis is the fact that it does not make

assumptions about the circuit requests, such as assumptions about the tra�c pattern. (Recall

the goals from Section 1.2.) Since it does not make any assumptions, competitive analysis

provides a robust worst-case performance measure. However, an algorithm that leads to the

best worst-case performance clearly may not lead to the best performance in practice. The

ultimate goal of the thesis is to provide practical admission control and routing algorithms.

Thus, in an e�ort to construct practical algorithms, we will modify some of the algorithms

that have a good competitive ratio using heuristics that work well in practice. We make these

modi�cations in spite of the fact that the heuristics compromise the theoretical performance,

i.e., competitive ratio, of the algorithm. The theory in this thesis should be viewed as providing

general algorithmic principles rather than speci�c algorithms.

Stochastic analysis. Stochastic analysis is used to motivate some of the heuristics that

we use in our algorithms. In particular, we use some techniques developed in the context of

symmetric loss networks to estimate the expected e�ect of routing a particular virtual circuit

on the likelihood that future virtual circuits must be rejected due to capacity constraints.

1.4 Related Work

We divide our discussion of previous work into three areas: competitive analysis, statistical

approaches, and multicast communication.

Competitive analysis. Virtual circuit admission control and routing has been considered

extensively in the context of competitive analysis. Garay and Gopal [GG92] and Garay, Gopal,

Kutten, Mansour, and Yung [GIK+92] developed competitive algorithms for admission control
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and routing in a scenario where preemption is allowed and the network is constrained to be a

straight line. When preemption is allowed, the network may decide to terminate any virtual

circuit at any time. Preemption is undesirable in most of the applications (such as video-servers)

that we mention in Section 1.1.

Awerbuch, Azar and Plotkin [AAP93] develop competitive algorithms for general networks,

but with the restriction that every virtual circuit request at most 1= logn of the capacity of the

lowest capacity link. They provide an O(logn) competitive algorithm, where n is the number

of nodes in the network.

Aspnes, Azar, Fiat, Plotkin and Waarts [AAF+93] consider a slightly di�erent model. Here

there is no admission control problem since all requests are accepted. [AAF+93] presents a

competitive algorithm that on any link requires at most O(logn) more capacity than is required

by the optimal o�-line algorithm, where n is the number of nodes in the network. The virtual

circuits in [AAF+93] all have in�nite duration. The result is extended to virtual circuit with

�nite duration in [AKP+93]. Both [AAF+93] and [AAP93] use minimum cost routing where

the cost metric is an exponential function of the link utilization [SM90].

In [ABFR94] Awerbuch, Bartal, Fiat and Rosen consider the admission control and virtual

circuit routing problem on trees. Their basic algorithm focuses on virtual circuits that request

the entire bandwidth of a link and have in�nite duration. The algorithm is randomized and

has an O(logn) competitive ratio. For the line, they show a matching lower bound of 
(logn).

By combining their basic algorithm with the algorithm in [AAP93], the authors provide an

O(log2 n) competitive algorithm for virtual circuits of arbitrary bandwidth. Blum, Fiat, Karlo�,

and Rabani report a deterministic O(n) algorithm for the n � n mesh, a deterministic 
(
p
n)

lower bound on the n � n mesh, and an O(logn) deterministic algorithm with preemption for

n node trees [BFKR93].

Statistical approaches. Non-greedy admission control was �rst considered in the context

of symmetric loss networks. Symmetric loss networks have a complete graph topology and

equal capacity on each link. Furthermore, each source/destination pair has the same rate of

virtual circuit arrivals. The virtual circuits have a Poisson arrival process and an exponential

departure process. Virtual circuits always use the direct link if it is available, otherwise they
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try to �nd an available path consisting of two links; paths consisting of more than two links

are not considered. Admission control on direct paths is greedy. However, a two-link path is

used only if both links have su�ciently low utilization. The importance of using non-greedy

admission control for the two-link paths in symmetric loss networks was �rst discussed by Krupp

[Kru82] and has since received extensive attention [Aki84, MS91, MG92, MGH93]. An example

of an admission control scheme based on the ideas developed in the context of symmetric loss

networks is the Real Time Network Routing algorithm (RTNR) Ash et. al. [ACF+92] used in

the AT&T long distance network.

A key advantage of symmetric loss networks is that they permit a detailed analytic analysis.

In particular, symmetric less networks tend to be modeled by �xed point equations that are

easily solved numerically [Kat67, Aki84, MGH93]. Using the numerical solutions to the �xed

point equations one can determine the utilization levels at which two-link paths should no

longer be used. Mitra and Gibbens [MG92] provide analytic results (i.e. non-numeric) for

certain asymptotic regions. Some initial work on extending the �xed point techniques to general

topology networks has been done by Greenberg and Srikant [GS95].

Statistical approaches to routing and admission control for general topology networks have

also received attention. A cost based routing algorithm for general topology networks was

developed by Ott and Krishnan [OK85]. Roughly speaking, their algorithm is based on the

concept of costs that reect the expected e�ect of routing and admission control decisions on

the system performance. The expected e�ect is determined by making statistical assumptions

about the virtual circuit arrival processes as well as using advance knowledge about the tra�c

patterns. Their algorithm requires complete current state information for its path selection.

An alternative approach was recently proposed by Sibal and DeSimone [SD94]. Their approach

does not use cost functions. Rather, it is an extension of the ideas from symmetric loss networks

to general topology networks. Speci�cally, like algorithms from symmetric loss networks they

determine threshold utilization values above which only \direct" tra�c is permitted to use

a link. In their algorithm, the path selection is based on static criteria, with dynamic state

information relevant only to the actual admission control decision. However, their admission

control criteria still require advance knowledge of the tra�c pattern. In particular, the tra�c

pattern is used to calculate the threshold values of the utilization.
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Multicast. There has been much work on multicast communication that has focused on

membership protocols and multicast tree maintenance in the face of dynamic membership.

However, we are not aware of any work that directly addresses the issue of admission control

for multicast communication. However, we point to some related work. The RSVP protocol

[ZDE+93] is a signalling mechanism for admission control. The RSVP protocol assumes the

existence of a separate mechanism that makes the actual admission control decisions. Other

related work by Herzog, Shenker, and Estrin [HSE95] provides a mechanism for distributing

the cost associated with a multicast tree among the members of the multicast group. Such a

mechanism might be useful as a component of a cost based admission control algorithm.

An inuential set of distributed multicast protocols was developed by Deering et. al.

[WDP88, DC90, Dee91, Moy92]. The focus of these protocols is the maintenance of the mul-

ticast tree in the presence of dynamically changing multicast membership. In particular, for

each multicast group the protocols periodically check each region of the network to determine

if nodes in that region wish to be members of the multicast group. If some do, the packets

for that multicast group are send to the new members. The protocols were developed for the

Internet environment. (They are currently being used for the MBONE [Cas94].) As a result,

no resources are reserved when a new node joins a multicast group. Furthermore, the protocols

have no admission control feature. For routing, the protocols make use of the underlying uni-

cast routing mechanism. In particular, the tree established by the protocols is a shortest path

tree, where the shortest path is determined by the unicast routing mechanisms.

For the purpose of admission control and routing for multicast communication, the Core

Based Tree (CBT) approach of Ballardie, Tsuchiya and Crowcroft [BTC92] is essentially the

same as the Deering approach. However the CBT mechanism for maintaining the multicast

tree in the presence of dynamically changing multicast membership is more e�cient when only

a small percentage of the nodes are members of the multicast group. The Deering approach in

[WDP88, DC90, Dee91, Moy92] and the Core Based Tree approach are combined in Protocol

Independent Multicast (PIM) [DEF+94].

More sophisticated approaches to routing of multicast groups are described by Noronha

and Tobagi [NT94]. Their paper describes various routing algorithms for multicast groups that

attempt to optimize both cost and delay considerations. Furthermore, they take link capacity
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considerations into account. In particular, each multicast group has a bandwidth associated

with it. That bandwidth is reserved along the tree picked for the multicast group. Their ad-

mission control procedure is greedy. The algorithms in [NT94] are evaluated using simulations.

The work by Verma and Gopal [VG93] considers the additional issue of multicast groups that

have di�erent bandwidth requirements for tra�c to and from the source. They develop various

heuristic approaches and evaluate them with simulations. A summary of additional work on

multicast routing strategies can be found in [NT94].

1.5 Lower Bounds

This thesis provides several lower bounds in the context of competitive analysis of on-line

algorithms. In particular, we provide some lower bounds on the competitive ratio that any

admission control and routing algorithm can achieve. In other words, no admission control and

routing algorithm can achieve a competitive ratio that is better (lower) than the competitive

ratio given by the lower bound. These lower bounds measure the total number of virtual circuits

that are accepted. We provide an 
(logd) lower bound on the oblivious competitive ratio for

lines of length d and trees of diameter d. For n � n meshes we provide an 
(logn) lower

bound on the oblivious competitive ratio. For the logn dimensional hypercube we prove an


(log logn) lower bound on the oblivious competitive ratio. Finally, we prove an 
(log logn)

lower bound on the oblivious competitive ratio for n2-leaf trees of meshes and n2-leaf fat-trees.

In each case, the lower bound for a greedy admission control and routing algorithm is higher

than the oblivious lower bound that we provide on all algorithms. Furthermore, for trees and

meshes, the lower bound on the deterministic competitive ratio higher than the oblivious lower

bound. This suggests that non-greedy approaches can lead to better performance.

We also de�ne a network type called a hierarchical backbone network. Informally, a hier-

archical backbone network is a network that can be decomposed into a set of access networks

and a backbone network that connects the access networks. We show that a competitive ratio

lower bound that applies to the backbone network or any of the access networks implies the

same competitive ratio lower bound for the entire hierarchical backbone network.

Finally, we provide an 
(n) lower bound on greedy admission control and routing algorithms

for n node general topology networks.
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1.6 Algorithms

The thesis provides several algorithms for admission control and routing. These algorithms all

use non-greedy approaches. The �rst set of algorithms complements the lower bounds listed in

Section 1.5. These algorithms are primarily of theoretical interest since they focus on the case

where all requests have the same bandwidth and each virtual circuit has in�nite duration.

For trees with radius d, we provide a randomized admission control and routing algorithm

with a competitive ratio of O(log d). This matches the 
(logd) lower bound. Furthermore, the

algorithm overcomes the trivial 
(d) lower bound on the competitive ratio for deterministic and

greedy algorithms on trees. The n2-leaf fat-tree can be seen as a special case of a hierarchical

backbone network. We present a general technique for constructing admission control and

routing algorithms for hierarchical backbone networks. Using this technique, we develop an

algorithm that achieves an O(log logn) competitive ratio for n2-leaf fat-trees. This matches our


(log logn) lower bound.

This thesis also presents a very practical algorithm for admission control and routing on

general topology networks. We call this algorithm exp. The exp algorithm is based on the

general topology algorithm in [AAP93]. The algorithm in [AAP93] addresses two of our goals

(cf. Section 1.2). It does not require advance knowledge of the tra�c pattern, and it uses

non-greedy admission control to maximize the number of accepted requests. Unfortunately,

the algorithm in [AAP93] has several disadvantages that prevent it from being practical. First,

the algorithm deals only with admission control and does not address routing. Second, it

requires that each circuit request specify its duration. Third, each link must maintain and

distribute large amounts of state information. Finally, the algorithm is optimized for the worst-

case situation and does not work well in common situations. The exp algorithm substantially

modi�es the algorithm in [AAP93] to address its shortcomings.

Finally, we provide non-greedy admission control and routing algorithms for multicast com-

munication. We provide three algorithms. Each of the algorithms seeks to maximize the total

amount of accepted bandwidth. The �rst algorithm, which achieves a competitive ratio of

O(log2 n), only considers batched multicast groups. The second algorithm, which has a com-

petitive ratio of O(log6 n), allows both batched and a restricted form of on-line multicast groups.

Speci�cally, the on-line requests from di�erent multicast groups may not be interleaved. In other
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words, all requests to join a speci�c multicast group occur without any intervening requests to

join another multicast group. Our third algorithm removes this restriction for on-line multicast

groups. That algorithm also achieves a competitive ratio of O(log6 n). While our algorithms

for multicast communication achieve a good competitive ratio, they will not perform well in

practice if used in their present form. However, we believe that the algorithms will serve as

the basis for a practical algorithm in much the same way that the algorithm in [AAP93] does.

In fact, we believe that many of the techniques developed for the exp algorithm will also be

useful for multicast communications. We discuss some of the issues that arise in constructing

practical multicast admission control and routing algorithms.

1.7 Simulations

This thesis provides an extensive set of simulations to evaluate the performance of our exp

algorithm over a wide range of situations. The simulations are based on an existing commercial

data network and some arti�cially generated networks. Among other things, we explore the

e�ect of circuit bandwidths, circuit durations, and the degree to which the network load matches

the network topology. The simulations also illuminate some important characteristics of our

algorithm. For example, we characterize the e�ect of the implicit routing e�ects of the admission

control part of our algorithm.

1.8 Organization

The thesis is organized as follows. Our model for on-line algorithms and their complexity

measure, the competitive ratio, are presented in Chapter 2. Chapter 3 presents our lower bounds

on the competitive ratio of admission control and routing algorithms for various topologies.

Some admission control and routing algorithms that have optimal or near optimal competitive

ratio are the focus of Chapter 4. Chapter 5 describes our practical admission control and routing

algorithm for general topology networks. The algorithm is evaluated using the simulations

presented in Chapter 6. Our competitive algorithms for multicast communication are presented

in Chapter 7. Finally, Chapter 8 o�ers some concluding remarks as well as suggestions for future

research.

22



1.9 Authorship

This thesis is based on several papers, each of which is co-authored with several people. Chap-

ters 3 and 4 are based on [AGLR94]. The work in that paper was done by Yuval Rabani and

myself with consultation from Tom Leighton and Baruch Awerbuch. Chapters 5 and 6 are based

on [GKPR95b]. I am the primary contributor to the algorithm of Chapter 5. The simulations

of Chapter 6 are joint work of Anil Kamath and myself. Serge Plotkin and K.G. Ramakrishman

provided consultation to the project. The work in Chapter 7 is based on [AAG94]. This paper

is join work involving Baruch Awerbuch, Yossi Azar, and myself.
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C h a p t e r 2

The Model

This chapter introduces the formal framework for on-line algorithms. Speci�cally, we de�ne

on-line algorithms and the competitive ratio, a performance measure for on-line algorithms.

The chapter also provides a formal de�nition of the admission control and routing problem in

the framework of on-line algorithms.

Section 2.1 de�nes deterministic on-line algorithms. This de�nition is extended to random-

ized on-line algorithms in Section 2.2. Section 2.3 de�nes the admission control and routing

problem. The competitive ratio of an on-line algorithm is de�ned in Section 2.4. Section 2.5

extends the notion of a competitive ratio to randomized on-line algorithms. Finally, Section 2.6

introduces some techniques for proving lower bounds for randomized competitive ratios.

2.1 Deterministic On-line Algorithms

An on-line algorithm provides responses to inputs (requests) as they arrive. In determining the

response, the algorithm cannot take future requests into account1.

De�nition 2.1.1 (on-line algorithm) Let Q be a set of requests and R be a �nite set of

responses. An on-line algorithm A for Q and R is a sequence of functions2 An from Qn to R

1The de�nitions in this section borrow heavily from the approach used in [BDBK+90].
2We note that functions can \solve" Turing undecidable problems. However, the problems we consider are all

Turing decidable, though, in general, NP-complete. The on-line algorithms that we propose all have polynomial
Turing time complexity.
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for n 2 N, where N is the natural numbers.

A request sequence � = �0�1 : : : �j�j�1 is a �nite sequence of elements from Q. Let A(�) be

the sequence of responses produced by on-line algorithm A on request sequence �. Formally,

A(�) = � = �0�1 : : : �j�j�1 where Ai(�0�1 : : : �i�1) = �i�1 for all i � 1. We call � a response

sequence. The fact that �i�1 is based only on the pre�x �0�1 : : : �i�1 formalizes the fact that

the on-line algorithm does not know anything about future requests.

De�nition 2.1.2 (o�-line algorithm) Let Q be a set of requests and R be a �nite set of

responses. An o�-line algorithm A for Q and R is a sequence of functions An from Qn to Rn

for n 2 N.

For a request sequence � = �0�1 : : : �j�j�1 and o�-line algorithm A de�ne A(�) = Aj�j(�).

Next we de�ne the notion of a problem. A problem characterizes both the types of requests

that will be generated as well as the allowable responses to those requests.

De�nition 2.1.3 (problem) A problem P is a triple (Q;R; S) consisting of a request set Q,

a response set R, and a set S of request sequence, response sequence pairs (�; �) such that

j�j = j�j. Denote by dom(P) the set f� j 9� such that (�; �) 2 Sg.

For some types of problems it will be useful to add some probabilistic restrictions on the

request sequences. Our probabilistic restrictions require that the request sequences be chosen

based on some set of allowable distributions over request sequences. We de�ne the notion of a

probabilistic problem.

De�nition 2.1.4 (probabilistic problem) A probabilistic problem P 0 is a tuple (P ;D) con-
sisting of a problem P and a set of distributions D over dom(P). De�ne dom(P 0) = dom(P).

Next we de�ne what it means for an on-line (o�-line) algorithm to solve a problem.

De�nition 2.1.5 (solves) Consider problem P = (Q;R; S). An on-line (o�-line) algorithm

A for Q and R solves problem P if for all � 2 dom(P), (�;A(�)) 2 S.

We denote A solves P by A v P.
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If P 0 = (P ;D) is a probabilistic problem then on-line (o�-line) algorithm A solves P 0 if A

solves P . For probabilistic problems we also de�ne a weaker version of the solution relationship.

De�nition 2.1.6 (solves with probability at least q) Let P 0 = (P ;D) be a probabilistic

problem. Let P = (Q;R; S). An on-line (o�-line) algorithm A for Q and R solves problem P 0

with probability at least q if for all D 2 D,

PrD [f� j (�;A(�)) 2 Sg] � q:

We denote A solves P 0 with probability at least q by A vp P 0.

Finally, we consider the performance of an on-line (o�-line) algorithm. The performance of

an on-line (o�-line) algorithm is given by a function P from request and response sequences to

<>0, the positive real numbers.

De�nition 2.1.7 (performance function) Let P = (Q;R; S) be a problem. A performance

function for problem P is a function from [n2N(Qn �Rn) to <>0.

The performance of on-line (o�-line) algorithm A on request sequence � as measured by P

is P (�;A(�)). In this thesis, the goal is to achieve the highest possible value for P (�;A(�)).

(Some literature on on-line algorithms measures the \cost" of a response sequence. In that

case, the goal is to �nd on-line algorithms that yield the lowest cost response sequences.)

2.2 Randomized On-line Algorithms

Randomization is a powerful algorithmic tool. For many problems randomized algorithms can

provide much more e�cient solutions than are possible with deterministic algorithms [Rab63,

Rab76]. Randomization can be useful in the context of on-line algorithms [RS89, BDBK+90].

In particular, randomization can often be used to improve the achievable performance for

certain problems instead of using the probabilistic restrictions on request sequences given for

probabilistic problems [Yao77]. A randomized on-line algorithm Ar is simply a distribution D

over deterministic algorithms.

De�nition 2.2.1 (randomized on-line algorithm) Let Q be a set of requests and R be a

�nite set of responses. A randomized on-line algorithm Ar = (A; D) for Q and R is a pair

consisting of a set A of on-line algorithms, each for Q and R, and a distribution D over A.
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A randomized on-line algorithm Ar = (A; D) solves a problem P if all on-line algorithms in A
solve P :

De�nition 2.2.2 (solves) Consider problem P = (Q;R; S). A randomized on-line algorithm

Ar = (A; D) for Q and R solves problem P if for all A 2 A, A v P.
We denote Ar solves P by Ar v P.

Finally, we consider the performance of a randomized on-line algorithm. The performance

measure for randomized on-line algorithms is the same as the performance measure for de-

terministic on-line algorithms, except that we take the expectation. Consider a performance

function P . The performance of randomized on-line algorithm Ar = (A; D) on request sequence

� is ED[P (�;A(�))], where ED is the expectation over the distribution D.

2.3 Admission Control and Routing Problems

An admission control and routing problem requires an on-line algorithm. In particular, an

algorithm for admission control and routing must decide whether to accept or reject a virtual

circuit request without knowledge of future requests. In this thesis, we consider a variety of

admission control and routing problems. In particular, we consider unicast communication and

multicast communication. Furthermore, we explore the problem on various special topologies.

Consider the following formal de�nition of the unicast admission control and routing problem

for a set of graphs G.

De�nition 2.3.1 (admission control and routing for a set of graphs G) Let G be a set

of graphs ranging over a node alphabet V. If G 2 G, we describe G = (V;E) by a set V of nodes

and a set E of undirected links between the nodes. Now de�ne

Q1 = f(s; d; r) j s; d 2 V ; r 2 <>0g;

Q2 = f((V;E); b) j (V;E)2 G and b : E ! <�0g:

If �i 2 Q1 and �i = (si; di; ri) then s(�i) = si, d(�i) = di and r(�i) = ri. Let (�; �) be a request

sequence, response sequence pair such that �i 2 Q1 for all i 2 [1; j�j]. Then, for all j 2 [1; j�j],
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uj(e) is de�ned to be 1
b(e)

P
1�i<j j�i 6=?;e2�i r(�i). Now de�ne

Q = Q1 [ Q2;

R = fq j q is a simple path over Vg [ f?g;
S = f(�; �) j 1: �0 2 Q2; and �0 = ?;

2: �i 2 Q1 for all i 2 [1; j�j);
3: if �0 = ((V;E); b) then s(�i); d(�i) 2 V for all i 2 [1; j�j);
4: if �0 = (G; b) then for all i 2 [1; j�j); if �i 6= ? then �i is a path

in G with endpoints s(�i); d(�i);

5: if �0 = ((V;E); b) then for all e 2 E; uj�j(e) � 1g:

In De�nition 2.3.1 the tuple (s; d; r) is a virtual circuit request where s represents the source,

d represents the destination, and r the bandwidth. The tuple (G; b) tells the algorithm about

the network topology, given by G, and the capacity associated with each link, given by b. The

symbol ? represents the response to the request (G; b) and also the response to a virtual circuit

request that is rejected. By returning a path, the algorithm accepts the request. There are �ve

conditions listed for S. The �rst condition states that the �rst request consists of the network

topology and the capacity information for the network and gets the response ?. The second

condition states that each subsequent request is a virtual circuit request. The third condition

ensures that the endpoints of the requested virtual circuits are actually nodes in the network.

The fourth condition ensure that the responses use valid paths. The �nal condition enforces

the capacity constraint. In particular, ui(e) represents the percent of the capacity of link e that

has been used by the requests up to but not including request �i. We call ui(e) the utilization

of link e just before request �i is handled.

De�nition 2.3.2 (greedy admission control and routing for a set of graphs G) Let G
be a set of undirected graphs. The greedy admission control and routing problem for G is the

same as admission control and routing problem for G with the following additional condition

for S. If (�; �) 2 S, then, if �0 = (G; b) and �i = ?, there exists no path p from s(�i) to d(�i)

in G such that ui�1(e) + r(�i)=b(e) � 1 for all links e on path p.

The additional condition for the greedy admission control and routing problem ensures that a

request will always be accepted if there exists a path with su�cient capacity.
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The thesis considers several cases of De�nition 2.3.1 and De�nition 2.3.2. For the (greedy)

admission control and routing problem for general topology networks, the set of graphs G in

De�nition 2.3.1 (De�nition 2.3.2) is the set of all graphs ranging over the node alphabet V .
We also consider restrictions to speci�c topologies. For the admission control and routing

problem for trees the set of graphs G in De�nition 2.3.1 is the set of all trees ranging over the

node alphabet V . We also consider bandwidth restrictions. The admission control and routing

problem for unit capacity trees is the same as the admission control and routing problem for trees

except that the capacity of each link (given by the function b) must be 1, and the bandwidth

associated with each request (the third term in a request tuple) must be 1. The de�nition for

the multicast admission control and routing problem is also similar to De�nition 2.3.1. Roughly,

the di�erence is that the requests now consist of a set of nodes that wish to be members of the

multicast group, and the response is now a tree that spans the members. Rather than listing

all the speci�c problem de�nitions here, we give the speci�c problem de�nitions in the chapters

that present the algorithms or lower bounds for the problems. The de�nitions will, in general,

just mention how they di�er from De�nition 2.3.1.

De�nition 2.3.3 (admission control and routing algorithm) An admission control and

routing algorithm is an on-line algorithm that solves the admission control and routing problem.

We consider two types of admission control and routing algorithms: greedy and non-greedy.

De�nition 2.3.4 (greedy admission control and routing algorithm) An algorithm A is

a greedy admission control and routing algorithm if it is an on-line algorithm that solves the

admission control and routing problem and has the following property. Consider any request

sequence � and response sequence A(�) = �. Then, for all i 2 [1; j�j), if �0 = (G; b) and �i = ?,
then there exists no path p from s(�i) to d(�i) in G such that ui�1(e) + r(�i)=b(e) � 1 for all

links e on path p.

Lemma 2.3.5 An admission control and routing algorithm A solves the greedy admission con-

trol and routing problem i� A is greedy.

Proof. The lemma follows immediately from De�nition 2.3.2 and De�nition 2.3.4.
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De�nition 2.3.6 (non-greedy admission control and routing algorithm) A non-greedy

admission control and routing algorithm is an admission control and routing algorithm that is

not greedy.

This thesis focuses on two performance functions. One performance function determines

the number of accepted requests in the response sequence. The other performance function

measures the total amount of accepted bandwidth.

De�nition 2.3.7 (number of accepted requests) Let P = (Q;R; S) be the admission con-

trol and routing problem for general topology networks. Consider (�; �) 2 [n(Qn � Rn) for

n 2 N. Then the number of accepted requests in �, Pr(�; �), is given by

Pr(�; �) =

8><
>:
jf�i j �i 6= ?; i 2 [0; j�j)gj if (�; �) 2 S and jf�i j �i 6= ?; i 2 [0; j�j)gj 6= 0

� otherwise

for some 0 < � < 1.

De�nition 2.3.8 (amount of accepted bandwidth) Let P = (Q;R; S) be the admission

control and routing problem for general topology networks. Consider (�; �) 2 [n(Qn � Rn) for

n 2 N. Then the amount of accepted bandwidth in �, Pb(�; �), is given by

Pb(�; �) =

8><
>:
P

1�i<j�j j�i 6=?
r(�i) if (�; �) 2 S and

P
1�i<j�j j�i 6=?

r(�i) 6= 0

� otherwise

for some 0 < � < 1.

The � ensures that the performance function returns a positive value even if no requests are

accepted.

2.4 Deterministic Competitive Ratio

Competitive analysis [ST85] provides a way of analyzing the performance of on-line algorithms.

Rather than using the traditional absolute measure of performance (e.g., how many requests

does the on-line algorithm accept) it uses a relative measure of performance (e.g., how many

requests does the on-line algorithm accept relative to the maximum number that could have

been accepted). The relative performance measure is called the competitive ratio. Informally,
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the competitive ratio of an on-line algorithm A is the maximum over all request sequences of

the ratio of the maximum possible performance for that request sequence to the performance

of A for the same request sequence. Thus, competitive analysis provides a worst-case relative

performance measure. An on-line algorithm with a low competitive ratio is one that exhibits

close to the maximum possible performance on all request sequences.

Consider a problem P = (Q;R; S), a performance function P , and a request sequence

� 2 dom(P). De�ne the optimal performance, Po(�), for request sequence � as follows: Po(�) =

sup(�;�)2SfP (�; �)g.

De�nition 2.4.1 (competitive ratio) Let P be a problem, P a performance function, and

A an on-line algorithm that solves P.
The competitive ratio CP;P (A) of algorithm A with respect to problem P and performance

function P is

CP;P (A) = sup�2dom(P)

�
Po(�)

P (�;A(�))

�
:

The competitive analysis literature generally refers to an optimal o�-line algorithm that

achieves the maximum possible performance, Po(�), for every request sequence �. An optimal

o�-line algorithm for problem P and performance measure P is an o�-line algorithm A that

solves P and for which P (�;A(�)) = Po(�) for all � 2 dom(P). Such an algorithm exists:

Lemma 2.4.2 Consider a problem P = (Q;R; S) and a performance function P . Then there

exists an o�-line algorithm A that solves P and for which P (�;A(�)) = Po(�) for all � 2
dom(P).

Proof. The o�-line algorithm A is a sequence of functions An : Qn ! Rn for n 2 N, such
that, if An(�) = �, then P (�; �) = sup(�;�0)2SfP (�; �0)g. This function exists since the result

alphabet, R, is �nite and the result sequences are �nite.

For each request sequence the competitive ratio compares the on-line algorithm to the optimal

performance for that sequence. Thus, one way to view the optimal o�-line algorithm is as an

algorithm that sees the request sequence in advance and then behaves optimally for that request

sequence.

Section 2.1 mentions that, for some problems, it will be useful to add probabilistic restric-

tions. A probabilistic problem requires that the request sequences be chosen based on some set
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of allowable distributions over request sequences. We now de�ne the following weaker form of

competitive ratio for probabilistic problems. This new competitive ratio is determined by the

worst case distribution over request sequences, rather than the worst case request sequence.

De�nition 2.4.3 (competitive ratio with probability q) Let P 0 = (P ;D) be a probabilis-

tic problem, P a performance function, and A an on-line algorithm that solves P 0.

Algorithm A achieves competitive ratio C with probability q on probabilistic problem P 0 and

performance function P if for all D 2 D

PrD

��
�j Po(�)

P (�;A(�))
� C

��
� q:

Generally, we will be interested in q = 1 � O(1=m), where m is a measure of the size of

the problem. Achieving such a high q may require length restrictions on the request sequence.

Roughly, the reason is that bad requests, i.e., ones that might cause Po(�)
P (�;A(�))

� C no longer to

be true, will eventually happen if enough requests arrive.

A property of the competitive ratio is the fact that lower bounds on the competitive ratio

are preserved by relaxing the problem restrictions. In particular, the fact that the competitive

ratio is based on the worst case request sequence, implies the following lemma.

Lemma 2.4.4 Let P 0 = (Q0; R0; S0) be a problem and P be a performance function for P 0. Let

P = (Q;R; S) be a problem such that Q � Q0, R � R0, and S � S0.

If CP;P (A) � K for all deterministic on-line algorithms A that solve P, then CP0;P (A
0) � K

for all deterministic on-line algorithms A0 that solve P 0.

Proof. For request sequence � 2 dom(P), let P 0
o(�) and Po(�) denote the performance

of the optimal o�-line algorithm for problems P 0 and P respectively. Speci�cally, P 0
o(�) =

sup(�;�)2S0fP (�; �)g and Po(�) = sup(�;�)2SfP (�; �)g. Since S � S0, we conclude that P 0
o(�) �

Po(�) for all � 2 dom(P).
By way of contradiction, assume that there exists an algorithm A0 that solves P 0 and has

CP0;P (A
0) < K. As a consequence,

P 0
o(�)

P (�;A0(�))
< K for all � 2 dom(P 0):(2.1)
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Let A be an algorithm that solves P and \behaves" like A0. Speci�cally, A is the algorithm

such that A(�) = A0(�) for all � 2 dom(P). By construction, P (�;A(�)) = P (�;A0(�)) for

all � 2 dom(P). Combining this with Equation 2.1 and the fact that P 0
o(�) � Po(�) for all

� 2 dom(P) we have

Po(�)

P (�;A(�))
� P 0

o(�)

P (�;A(�))

=
P 0
o(�)

P (�;A0(�))

< K for all � 2 dom(P).

Thus, Po(�)=P (�;A(�)) < K for all � 2 dom(P). However, this contradicts the fact that

CP;P (A) � K for all deterministic on-line algorithms that solve P . Thus, it must be the case
that CP;P (A0) � K for all deterministic on-line algorithms A0 that solve P 0.

2.5 Randomized Competitive Ratio

The degree to which randomization can improve the achievable competitive ratio for a particular

problem depends on the de�nition of the competitive ratio for a randomized on-line algorithm.

This section considers two de�nitions. The �rst de�nition does allow randomization to improve

the achievable competitive ratio. The second de�nition does not.

The �rst competitive ratio de�nition for randomized on-line algorithms is called the oblivious

randomized competitive ratio. The intuition behind this de�nition is that the worst case request

sequence does not take the random choices of the on-line algorithm into account. In other words,

the worst case sequence is picked before the on-line algorithm makes its random choices.

De�nition 2.5.1 (oblivious competitive ratio) Let P be a problem, P a performance func-

tion, and Ar = (A; D) a randomized on-line algorithm that solves P.
The competitive ratio CbP;P (Ar) of randomized on-line algorithm Ar with respect to problem

P and performance function P is

CbP;P (Ar)) = sup�2dom(P)

�
Po(�)

ED[P (�;A(�))]

�
:

In Lemma 2.4.4 we show that lower bounds on the competitive ratio are preserved by relaxing

the problem restrictions. The same result also holds for the oblivious competitive ratio.
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Lemma 2.5.2 Let P 0 = (Q0; R0; S0) be a problem and P be a performance function for P 0. Let

P = (Q;R; S) be a problem such that Q � Q0, R � R0, and S � S0.

If CbP;P (Ar) � K for all randomized on-line algorithms Ar that solve P, then CbP0;P (A
0
r) � K

for all randomized on-line algorithms A0
r that solve P 0.

Proof. The proof of this lemma is similar to the proof of Lemma 2.4.4. The only di�erence is

in the construction of the algorithm A from A0. This construction needs to be generalized to

randomized algorithms in the obvious way.

A common objection to the oblivious randomized competitive ratio is that the outside world

(i.e., the person/machine generating the requests) is not able to react to the randomized choices

made by the on-line algorithm. In many situation the ability to react to the randomized choices

would provide a more realistic performance model. For example, the likelihood that a particular

customer makes a virtual circuit request in a few seconds will depend on whether the customer's

current request was accepted. A performance measure called the adaptive competitive ratio

attempts to address this criticism. Randomization provides no extra power in the context of

the adaptive competitive ratio. Therefore, we will focus on the oblivious competitive ratio in

this thesis. For completeness, we present the formal de�nition of the adaptive competitive ratio.

Informally, the adaptive competitive ratio determines the worst case request sequence after

the randomized on-line algorithm makes its random choices (by choosing a speci�c deterministic

on-line algorithm). Thus, it is possible to adjust the request sequence based on the randomized

choices of the on-line algorithm.

De�nition 2.5.3 (adaptive competitive ratio) Let P be a problem, P a performance func-

tion, and Ar = (A; D) a randomized on-line algorithm that solves P.
The competitive ratio CaP;P (Ar) of randomized on-line algorithm Ar with respect to problem

P and performance function P is

CaP;P (Ar) = ED[CP;P (A)]:

It is easy to prove the following theorem. (The proof of this theorem can be found in

[BDBK+90].)
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Theorem 2.5.4 If there exists a randomized on-line algorithm Ar = (A; D) with adaptive

competitive ratio K for some problem P and performance function P , then there exists a de-

terministic on-line algorithm for problem P and performance function P with competitive ratio

of at most K.

Proof sketch. By way of contradiction assume that no such deterministic on-line algo-

rithm exists. Then, CP;P (A) > K for all deterministic on-line algorithms A. As a result,

CaP;P (Ar) =
P

A PrD(A)CP;P (A) > K. Thus, we have a contradiction to the fact that there

exists a randomized on-line algorithm with adaptive competitive ratio K.

2.6 Randomized Lower Bounds

A result by Yao [Yao77] considerably simpli�es the construction of lower bound proofs for

randomized on-line algorithms. In particular, Yao notes that the complexity of randomized

algorithms is connected to the complexity of deterministic algorithms on randomized inputs.

Borodin et al. [BLS92] extend Yao's theorem to competitive analysis with a theorem, which

states that the lower bound on the oblivious competitive ratio for a given problem is greater

than the lower bound on the competitive ratio of deterministic on-line algorithms, when the

request sequences for the problem are restricted to a distribution.

Theorem 2.6.1 Consider some problem P = (Q;R; S) and performance function P . Further-

more, consider any distribution D� over dom(P) and any randomized on-line algorithm Ar that

solves P. Then there exists a deterministic on-line algorithm A0 that solves P and for which

CbP;P (Ar) � ED�
[Po(�)]

ED�
[P (�;A0(�))]

:

Proof. By de�nition, Po(�)=ED[P (�;A(�))]� CbP;P (Ar) for all request sequences � 2 dom(P).
Hence, Po(�) � CbP;P (Ar)ED[P (�;A(�))]. Taking the expectation overD� we get: ED�

[Po(�)] �
CbP;P (Ar)ED�

[ED[P (�;A(�))]]. Thus, CbP;P (Ar) � ED�
[Po(�)]=ED�

[ED[P (�;A(�))]]. Reversing

the order of the expectations in the denominator, CbP;P (Ar) � ED�
[Po(�)]=ED[ED�

[P (�;A(�))]].

Thus, there exists some algorithm A0 such that CbP;P (Ar) � ED�
[Po(�)]=ED�

[P (�;A0(�))].

This theorem can only be used for lower bounds on the oblivious competitive ratio, not the

adaptive competitive ratio.
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2.7 General Lemmas for Admission Control and Routing

This section presents some general lemmas for admission control and routing problems.

The �rst lemma states that lower bounds are preserved by expanding the set of graphs to

which the admission control and routing problem applies.

Lemma 2.7.1 Let P 0 and P be the admission control and routing problems for the set of graphs

G and G0 respectively. Let G � G0. Furthermore, let P be a performance function for P 0.

If CP;P (A) � K for all deterministic on-line algorithms A that solve P, then CP0;P (A
0) � K

for all deterministic on-line algorithms A0 that solve P 0. Similarly, if CbP;P (Ar) � K for all

randomized on-line algorithms Ar that solve P, then CbP0;P (A
0
r) � K for all randomized on-line

algorithms A0
r that solve P 0.

Proof. The lemma follows immediately from Lemmas 2.4.4 and 2.5.2.

Lower bounds that apply to a particular graph G extend to certain related graphs. Let P(fGg)
be the admission control and routing problem where the set of graphs G is fGg.

Lemma 2.7.2 Consider the graphs G and G0 such that G is a subgraph of G0 and there exist no

simple path (v0 : : : vn) in G
0 such that v0 and vn are in G, but vi is not in G for some 0 < i < n.

Let P be the performance function of De�nition 2.3.7.

If CP(fGg);P (A) � K for all deterministic on-line algorithms A that solve P(fGg), then
CP(fG0g);P (A

0) � K for all deterministic on-line algorithms A0 that solve P(fG0g). Simi-

larly, if CbP(fGg);P (Ar) � K for all randomized on-line algorithms Ar that solve P(fGg), then
CbP(fG0g);P (A

0
r) � K for all randomized on-line algorithms A0

r that solve P(fG0g).
Both statements also apply to the performance function in De�nition 2.3.8.

Proof. For any request sequence � 2 dom(P(fGg)), let �0 2 dom(P(fG0g)) be the request

sequence that is the same as � but speci�es G0 as the graph in the �rst request. Speci�cally,

�0i = �i for 0 < i < j�j, and, if �0 = (G; b), then �00 = (G0; b). Let M = f�0j� 2 dom(P(fGg))g.
Clearly, M � dom(P(fG0g)). Let P be the performance function in De�nition 2.3.7.

Let P(fGg) = (Q;R; S) and let P(fG0g) = (Q0; R0; S0). If (�; �) 2 S, then (�0; �) 2 S0. By

De�nition 2.3.7, P (�; �) = P (�0; �) for all (�; �) 2 S. As a consequence,

Po(�) � Po(�
0) for all � 2 dom(P(fGg)):(2.2)
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By way of contradiction, assume that there exists an algorithm A0 that solves P(fG0g) and
has CP(fG0g);P (A

0) < K. As a consequence,

Po(�
0)

P (�0; A0(�0))
< K for all �0 2M:(2.3)

Since P(fG0g) is an admission control and routing problem, any result sequence produced by

an algorithm that solves P(fG0g) must include only simple paths. Thus, A0(�0) includes only

simple paths for all �0 2 dom(P(fGg0)). Now, the de�nition of G and G0 implies that the

response sequence A0(�0) for any �0 2 M includes only paths that are in G. As a result,

there exists an algorithm A that solves P(fGg) and \behaves" like A0. Speci�cally, A is the

algorithm such that A(�) = A0(�0) for all � 2 dom(P(fGg)). By construction of A and the fact

that P (�; �) = P (�0; �) for all (�; �) 2 S.

P (�;A(�)) = P (�0; A0(�0)) for all � 2 dom(P(fGg)):(2.4)

Nowwe combine Equations 2.3, 2.4 and 2.2 and the fact that �0 2M when � 2 dom(P(fGg))
to conclude for all � 2 dom(P(fGg)) that

Po(�)

P (�;A(�))
� Po(�

0)

P (�;A(�))

=
Po(�

0)

P (�0; A0(�0))

< K:

Thus, Po(�)=P (�;A(�))< K for all � 2 dom(P(fGg)). However, this contradicts the fact that
CP(fGg);P (A) � K for all deterministic on-line algorithms that solve P(fGg). Thus, it must be
the case that CP(fG0g);P (A0) � K for all deterministic on-line algorithms A0 that solve P(fG0g).

The proof showing the lemma for the oblivious competitive ratio is similar. The only

di�erence is in the construction of the algorithm A from A0. This construction needs to be

generalized to randomized algorithms in the obvious way.

The proof for the performance function in De�nition 2.3.8 is exactly the same.
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C h a p t e r 3

Lower Bounds

3.1 Introduction

This chapter provides lower bounds on the competitive ratio of admission control and routing

algorithms for various topologies. The lower bounds in this chapter suggest that non-greedy

admission control and routing algorithms can have better competitive ratios than greedy ad-

mission control and routing algorithms.

Consider the admission control and routing problem on a topology described by graph G.

Section 3.2 proves a theorem which provides su�cient conditions for a lower bound on the

oblivious competitive ratio of any greedy randomized algorithm for the admission control and

routing problem on G and a lower bound on the oblivious competitive ratio of any randomized

algorithm for the admission control and routing problem on G. The two lower bounds implied by

the theorem have an exponential separation. In particular, if the theorem implies an 
(Z) lower

bound on the oblivious competitive ratio of any randomized algorithm, then it implies an 
(2Z)

the lower bound on the oblivious competitive ratio of any greedy randomized algorithm. Thus,

for graphs that meet the conditions of the theorem, non-greedy admission control strategies can

potentially lead to signi�cant performance improvements. In this chapter, we use the theorem

of Section 3.2 to prove lower bounds for lines, trees, meshes, trees of meshes, fat-trees, and

hypercubes. For each of these topologies, there is an exponential separation between the lower

bound we present for the oblivious competitive ratio of any randomized algorithm and the lower
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bound we present for the oblivious competitive ratio of any greedy randomized algorithm. The

advantages of non-greedy admission control are further demonstrated by the fact that, for

several of the topologies, the non-greedy algorithms presented in Chapter 4 beat the greedy

lower bounds of this chapter and meet the lower bounds on any algorithm presented in this

chapter.

Section 3.3 gives an 
(logd) lower bound on the oblivious competitive ratio of any algorithm

for lines of length d and trees of diameter d. For greedy algorithms we provide an 
(d) lower

bound on the oblivious competitive ratio. Furthermore, we show an 
(d) the lower bound

on the deterministic competitive ratio. Section 3.4 considers meshes. We prove an 
(logn)

lower bound on the oblivious competitive ratio of any algorithm for n� n meshes. For greedy

algorithms we provide an 
(n) lower bound on the oblivious competitive ratio. In Section 3.5

we give an 
(log logn) lower bound on the oblivious competitive ratio of any algorithm for

n2-leaf trees of meshes and n2-leaf fat-trees. For greedy algorithms we provide an 
(logn)

lower bound on the oblivious competitive ratio. Based on the O(log logn) competitive ratio

of our non-greedy deterministic algorithm for fat-trees (cf. Chapter 4) we can conclude that

the lower bound on the deterministic competitive ratio for the n2-leaf fat-tree is 
(log logn).

For the logn dimensional hypercube, Section 3.6 gives an 
(log logn) lower bound on the

oblivious competitive ratio for any algorithm. For greedy algorithms we provide an 
(logn)

lower bound on the oblivious competitive ratio. The table in Figure 3-1 summarizes the lower

bounds presented in this chapter. (The lower bound shown in Figure 3-1 on the competitive

ratio of any deterministic algorithm for the n � n mesh is presented in [BFKR93].)

greedy randomized any deterministic any randomized

length d line 
(d) 
(d) 
(log d)

diameter d tree 
(d) 
(d) 
(log d)

n � n mesh 
(n) 
(
p
n) 
(logn)

n2-leaf tree of meshes 
(logn) 
(log logn)

n2-leaf fat-tree 
(logn) 
(log logn) 
(log logn)

n dimensional hypercube 
(logn) 
(log logn)

Figure 3-1: Summary of known competitive ratio lower bounds for greedy randomized, any
deterministic, and any randomized admission control and routing algorithms on various topolo-
gies.

Section 3.7 considers hierarchical backbone networks (cf. De�nition 3.7.1). A hierarchical
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backbone network can be decomposed into many low diameter regions (access networks) and an

arbitrary region (backbone network) that connects the access networks. Hierarchical backbone

networks can be used to model several important networks including the telephone network,

the Internet, and fat-trees. Section 3.7 shows that a lower bound on the competitive ratio for

the backbone network or for any of the access networks implies the same lower bound on the

competitive ratio for the entire hierarchical backbone network.

Section 3.8 presents further evidence for the importance of non-greedy admission control

in the context of competitive analysis. The section provides an 
(n) lower bound on the

competitive ratio of any deterministic greedy admission control and routing algorithm for a n

node general topology network. Such a lower bound is trivial if the optimal o�-line algorithm

may use non-greedy admission control. However, Section 3.8 shows that the linear lower bound

still holds when the optimal o�-line algorithm must use greedy admission control. This lower

bound, together with the O(logn) competitive non-greedy algorithm for general topologies

(see Chapter 4), underscores the importance of using non-greedy admission control for general

topology networks.

3.2 A Theorem for Greedy and Randomized Lower Bounds

This section provides tools for proving oblivious randomized lower bounds on all algorithms

and on greedy algorithms. Given a topology and a set of sequences of virtual circuit requests

for that topology that meet certain conditions (cf. Theorem 3.2.4) this section provides a

theorem that implies a lower bound on the oblivious competitive ratio of any algorithm and

a lower bound on the oblivious competitive ratio of any greedy algorithm. The lower bound

provided for the oblivious competitive ratio of any greedy algorithm is exponentially greater

than the lower bound provided for the oblivious competitive ratio of any algorithm. Thus, our

theorem helps identify topologies where non-greedy admission control and routing algorithms

may outperform greedy admission control and routing algorithms. The lower bound on any

algorithm is proven in Lemma 3.2.1. The lower bound on any greedy algorithm is proven in

Lemma 3.2.3. Theorem 3.2.4 combines the results of Lemma 3.2.1 and Lemma 3.2.3.

The proof for the oblivious randomized lower bound on any algorithm constructs a prob-

ability distribution D� over request sequences using the provided sequences of virtual circuit
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requests. Using the probability distribution, we provide a lower bound for ED�
[Po(�)], the

expected number of circuits accepted by an optimal o�-line algorithm and an upper bound for

ED�
[P (�;A(�))], the expected number of requests any deterministic on-line algorithm A can

accept. These bounds, combined with Theorem 2.6.1, imply the desired lower bound on the

oblivious competitive ratio.

Lemma 3.2.1 Let P = (Q;R; S) be the admission control and routing problem for a unit

capacity graph G = (V;E). Let P be the performance function that determines the number of

accepted virtual circuit requests. For each i 2 [0; Z], let �i be a sequence of requests with the

following properties:

� j�ij = 2j�i�1j if i 6= 0.

� there exists a response sequence � such that (�0�i; �) 2 S and P (�0�i; �) = j�ij

� there is a set of 2Zj�0j critical links in E such that, for any request (s; d; 1) in �i, any

path from s to d uses at least 2Z�i critical links.

Then, any randomized on-line algorithm, Ar, for problem P has an oblivious competitive ratio,

CbP;P (Ar), in 
(Z).

Proof. The proof proceeds as follows. We use the sequences �i to construct a probability

distribution D� over the request sequences in dom(P). Then, we provide a lower bound for

ED�
[Po(�)], the expected number of requests accepted by an optimal o�-line algorithm and an

upper bound for ED�
[P (�;A(�))], the expected number of requests any deterministic on-line

algorithm A can accept. These bounds, combined with Theorem 2.6.1, imply the desired lower

bound on the oblivious competitive ratio.

First, we de�ne the probability distribution D� over request sequences. By de�nition of P ,
the �rst request, �0, of every request sequence is (G; b) where b : E ! f1g. With probability

2�Z, � = �0, i.e., there are no circuit requests. All other request sequences with non-zero

probability are of the form � = �0�0 : : :�i, where PrD�
[� = �0�0] = 1=2 and PrD�

[� =

�0�0 : : : �i] =
1
2PrD�

[� = �0�0 : : : �i�1], for every i 2 [1; Z]. Thus, for i 2 [0; Z], the probability

of the sequence �0�0 : : :�i is 2�i�1.
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Next, we provide a lower bound for ED�
[Po(�)]. Consider an o�-line strategy that accepts

all the requests in �i given that the request sequence is �0�0 : : : �i. The number of requests

in �i is 2
ij�0j. Furthermore, �0�0 : : : �i is the actual request sequence with probability 2�i�1.

Thus, the expected number of requests accepted by this strategy is given by

ZX
i=0

PrD�
[� = �0�0 : : :�i]2

ij�0j =
ZX
i=0

2�i�12ij�0j � Z

2
j�0j:(3.1)

Thus, ED�
[Po(�)] � Z

2
j�0j.

Next, we provide an upper bound on ED�
[P (�;A(�))] for all deterministic on-line algorithms

A. Any request accepted from sequence �i consumes at least 2
Z�i critical links. Therefore, if k

critical links remain unused by requests accepted from �0 : : : �i�1, and requests from �i arrive,

we can hope to accept at most k=2Z�i of those requests. Conditioning upon the fact that the

actual request sequence � includes �i, denote by B(i; k) the maximum expected number of

requests accepted from �i�i+1 : : : , where the maximization is taken over all possible ways to

accept requests from �0 : : :�i�1 so that at most k critical links are free. We can bound B(i; k)

with the following recurrence relation, where the �rst term in the maximum, `, represents the

number of requests accepted from �i and the second term, 1
2B(i+ 1; k� `2Z�i), represents the

maximum expected number of requests accepted from �i+1�i+2 : : : , given that k � `2Z�i free

critical links remain:

B(i; k) � max
`�k=2Z�i

�
`+

1

2
B(i+ 1; k� `2Z�i)

�
;

with the initial condition

B(Z; k) � k:

The factor of 1=2 in front of the term B(i+1; k�`2Z�i) results from the fact that the probability

that � includes the sequence �i+1, given that � already includes �i, is 1=2.

Since there are 2Zj�0j critical links, B(0; 2Zj�0j) is an upper bound on ED�
[P (�;A(�))], the

expected number of requests that any deterministic on-line algorithm A accepts. We prove in

Claim 3.2.2 that B(i; k) � k=2Z�i for all 0 � i � Z and all k. Thus, B(0; 2Zj�0j) � j�0j. As a
consequence, ED�

[P (�;A(�))]� j�0j for any deterministic on-line algorithm A.
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Since ED�
[Po(�)] � Z

2 j�0j and ED�
[P (�;A(�))] � j�0j for any deterministic on-line algo-

rithm A, Theorem 2.6.1 implies that CbP;P (Ar) � 
(Z) for all randomized on-line algorithms

Ar.

The basic idea of using sequences of requests where the number of requests using some

number of resources is twice the number of requests using twice the resources was used in the

lower bound proofs in [AAP93]. The lower bound proofs in [AAP93] consider line networks.

Claim 3.2.2 If, for all k,

B(i; k) �
8><
>:

max`�k=2Z�i
�
`+ 1

2B(i+ 1; k � `2Z�i)
	

for i 2 [0; Z)

k for i = Z
;

then B(i; k) � k=2Z�i for all i 2 [0; Z] and all k.

Proof. The proof is by induction on j = Z�i. The base case (j = 0; i = Z) follows immediately

from the initial condition on B. Now, assume that for all k, B(i + 1; k) � k=2Z�i�1. We have

that

B(i; k) � max
`�k=2Z�i

�
`+

1

2
B(i + 1; k� `2Z�i)

�

� max
`�k=2Z�i

(
` +

k � `2Z�i

2(2Z�i�1)

)

� k

2Z�i
:

Having considered the oblivious competitive ratio of any randomized admission control and

routing algorithm, we now provide the conditions needed for a lower bound on the oblivious

competitive ratio of any greedy randomized admission control and routing algorithm.

Lemma 3.2.3 Let P = (Q;R; S) be the admission control and routing problem for a unit

capacity graph G = (V;E). Let P be the performance function that determines the number of

accepted virtual circuit requests. Let � and �0 be two sequences of requests with the following

properties:

� j�0j = 2Zj�j.
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� there exists a response sequence � such that (�0�; �) 2 S and P (�0�; �) = j�j

� there exists a response sequence � such that (�0�
0; �) 2 S and P (�0�

0; �) = j�0j

� for every response sequence � such that (�0��
0; �) 2 S and �i 6= ? for all �i 2 �, it is the

case that �i = ? for all �i 2 �0.

Then, any greedy randomized on-line algorithm, Ar, for problem P has an oblivious competitive

ratio, CbP;P (Ar), in 
(Z).

Proof. By de�nition of P , the �rst request, �0, of every request sequence is (G; b) where

b : E ! f1g. Consider any greedy algorithm Ar and request sequence � = �0��
0. Since Ar is

greedy, it must accept the requests in �, and thus cannot accept any request in �0. Now consider

an optimal o�-line algorithm that rejects the requests in � but accepts the 2Zj�j requests in �0.
Thus, Po(�)=E[P (A(�))]� 2Zj�j

j�j
= 2Z .

Finally, we combine the results of Lemma 3.2.1 and Lemma 3.2.3.

Theorem 3.2.4 Let P = (Q;R; S) be the admission control and routing problem for a unit

capacity graph G = (V;E). Let P be the performance function that determines the number of

accepted virtual circuit requests. For each i 2 [0; Z], let �i be a sequence of requests with the

following properties:

� j�ij = 2j�i�1j if i 6= 0.

� there exists a response sequence � such that (�0�i; �) 2 S and P (�0�i; �) = j�ij

� there is a set of 2Zj�0j critical links in E such that, for any request (s; d; 1) in �i, any

path from s to d uses at least 2Z�i critical links.

Then, any randomized on-line algorithm, Ar, for problem P has an oblivious competitive ratio,

CbP;P (Ar), in 
(Z). Furthermore, any greedy randomized on-line algorithm, Ar, for problem P
has an oblivious competitive ratio, CbP;P (Ar), in 
(2Z).

Proof. The lower bound on any randomized algorithm follows immediately from Lemma 3.2.1.

The lower bound on any greedy randomized algorithm follows from Lemma 3.2.3 where � = �0

and �0 = �Z .
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3.3 Lines and Trees

This section proves an 
(log d) lower bound on the oblivious competitive ratio of any admis-

sion control and routing algorithm for lines of length d and trees of diameter d with respect

to the performance function that determines the number of accepted virtual circuit requests.

The section also proves an 
(d) lower bound on the oblivious competitive ratio of any greedy

admission control and routing algorithm.

We use the following proof strategy. We �rst consider the admission control and routing

problem for unit capacity lines of length d. (Recall that the unit capacity admission control

and routing problem restricts each link to have a capacity (given by the function b) of 1 and

restricts the bandwidth associated with each request (the third term in a request tuple) to be

1.) We prove 
(log d) and 
(d) lower bounds for the admission control and routing problem

for unit capacity lines of length d. By Lemma 2.7.2 this will imply the same lower bounds on

the admission control and routing problem for any particular unit capacity tree of diameter d.

Then, Lemma 2.5.2 extends the lower bounds to the admission control and routing problem for

diameter d trees without the bandwidth and capacity restriction.

We note that [ABFR94] already prove an 
(log d) lower bound for the unit capacity line of

length d. We present our proof since it illustrates on a simple example the proof technique that

we use for our lower bound results on meshes, trees of meshes fat-trees, and hypercubes.

To prove our lower bounds for the unit capacity line of length d, we construct a set of

sequences, �0; �1; : : : ; �logd, which will allow us to make use of Theorem 3.2.4. Consider a line

of length d where d is a power of two. Let (v0; v1 : : : vd) be the path of length d in the line.

Sequence �0 consists of a single circuit request of bandwidth 1 between v0 and vd. To construct

�i, divide the path between v0 and vd into 2i equal length paths and request a bandwidth 1
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virtual circuit between the endpoints of each of the 2i paths. Formally:

�0 = (v0; vd; 1)

�1 = (v0; vd=2; 1)(vd=2; vd; 1)

...

�i = (v0; vd=2i; 1)(vd=2i; v2d=2i; 1)(v2d=2i; v3d=2i; 1) : : :(v(2i�1)d=2i ; vd; 1)

...

�log d = (v0; v1; 1)(v1; v2; 1) : : :(vd�1; vd; 1):

We can now prove our lower bounds on the unit capacity line of length d using Theorem 3.2.4

and the sequences constructed for the line of length d.

Lemma 3.3.1 Let d be a power of two. Any randomized on-line algorithm, Ar, that solves

the admission control and routing problem, P, on the unit capacity line of length d has an

oblivious competitive ratio, CbP;P (Ar), in 
(log d). Furthermore, any greedy randomized on-line

algorithm, Ar, that solves P has an oblivious competitive ratio, CbP;P (Ar), in 
(d).

Proof. The sequences �i for 0 � i � log d constructed for the line of length d satisfy the

conditions of Theorem 3.2.4 for Z = log d. In particular, for all 0 � i � log d, j�ij = 2j�i�1j
if i 6= 0, all request in j�ij can be accepted when no other requests are accepted from other

sequences, and the are d = 2logd critical links (all of the links of the line) such that a request

from �i requires d=2
i = 2(logd)�i critical links.

We extend of our lower bounds to lines with a length that is not a power of two.

Theorem 3.3.2 Any randomized on-line algorithm, Ar, that solves the admission control and

routing problem, P, on the unit capacity line of length d has an oblivious competitive ratio,

CbP;P (Ar), in 
(log d). Furthermore, any greedy randomized on-line algorithm, Ar, that solves

P has an oblivious competitive ratio, CbP;P (Ar), in 
(d).

Proof. Let d0 be the largest power of two that is less than or equal to d. Clearly, 2d0 > d.

Consider a length d0 line embedded in the length d line. Now, the lemma follows immediately

from Lemma 2.7.2 and Lemma 3.3.1.

Now consider any unit capacity diameter d tree.
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Lemma 3.3.3 Any randomized on-line algorithm, Ar, that solves the admission control and

routing problem, P, on any unit capacity diameter d tree has an oblivious competitive ratio,

CbP;P (Ar), in 
(log d). Furthermore, any greedy randomized on-line algorithm, Ar, that solves

P has an oblivious competitive ratio, CbP;P (Ar), in 
(d).

Proof. Let G be the line of length d. Let G0 be any tree of diameter d. G is a subgraph of

G0. Furthermore, there exists no simple path (v0 : : :vn) in G0 such that v0 and vn are in G,

but vi is not in G for some 0 < i < n. Now the lemma follows directly from Lemma 2.7.2 and

Theorem 3.3.2.

Finally, we consider diameter d trees without the bandwidth and capacity restriction.

Theorem 3.3.4 Any randomized on-line algorithm, Ar, that solves the admission control and

routing problem, P, on diameter d trees has an oblivious competitive ratio, CbP;P (Ar), in 
(log d).

Furthermore, any greedy randomized on-line algorithm, Ar, that solves P has an oblivious com-

petitive ratio, CbP;P (Ar), in 
(d).

Proof. The theorem follows immediately from Lemma 2.5.2 and Lemma 3.3.3.

We mention that the trivial lower bound for deterministic on-line admission control and

routing algorithms for lines of length d and trees of diameter d is 
(d).

Proposition 3.3.5 Any deterministic on-line algorithm, A, that solves the admission control

and routing problem, P, on the unit capacity line of length d has a competitive ratio, CP;P (A),
in 
(d).

Proof. Consider any deterministic algorithm A and request sequence � = �0�0. If A does not

accept the request in �0 then consider an optimal o�-line algorithm that does accept the request

in �0. In this case, Po(�)=P (A(�)) � 1=� > d. (Recall from De�nition 2.3.7 that P (�) � � for

all request sequences �.) On the other hand, if A does accept the request in �0 then consider

a request sequence � = �0�0�logd and an optimal o�-line algorithm that rejects the request in

�0 but accepts the d requests in �logd. In this case, we also have Po(�)=P (A(�))� d=1 = d.)

We extend this proposition to any unit capacity diameter d tree.

Proposition 3.3.6 Any deterministic on-line algorithm, A, that solves the admission control

and routing problem, P, on any unit capacity diameter d tree has a competitive ratio, CP;P (A),
in 
(d).
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Proof. The proposition follows directly from Lemma 2.7.2 and Proposition 3.3.5.

Finally, we consider diameter d trees without the bandwidth and capacity restriction.

Proposition 3.3.7 Any deterministic on-line algorithm, A, that solves the admission control

and routing problem, P, on diameter d trees has a competitive ratio, CP;P (A), in 
(d).

Proof. The proposition follows directly from Lemma 2.7.1 and Proposition 3.3.6.

The separation between the deterministic and greedy lower bounds (
(d)) and the oblivious

randomized lower bound (
(log d)) on trees underscores the importance of non-greedy random-

ized admission control strategies. In Chapter 4 we provide a randomized algorithm that has

an oblivious competitive ratio of O(log d). Thus, the algorithm shows our lower bounds to be

tight.

3.4 Meshes

The two dimensional m� n mesh has the set of nodes f(r; c) j 0 � r � m� 1; 0 � c � n� 1g.
Two nodes are connected by a link if their Hamming distance is one. This section proves an


(logn) lower bound on the oblivious competitive ratio of any admission control and routing

algorithm for (n+1)�(n+1) meshes with respect to the performance function that determines

the number of accepted virtual circuit requests. The section also proves an 
(n) lower bound

on the oblivious competitive ratio of any greedy admission control and routing algorithm.

We use the following proof strategy. We �rst consider the admission control and routing

problem for the unit capacity (n + 1) � (n + 1) mesh. Then, Lemma 2.5.2 extends the lower

bounds to the admission control and routing problem for (n+1)�(n+1) meshes with arbitrary

link capacities and bandwidth requirements.

To prove our lower bounds for the unit capacity (n + 1) � (n + 1) mesh, we proceed as

we did with the unit capacity line of length d. In particular, we construct a set of sequences,

�0; �1; : : : ; �logn, which will allow us to make use of Theorem 3.2.4. Consider the (n+1)�(n+1)
mesh where n is a power of 2. To construct �i, we divide the mesh into 4i submeshes of size

( n
2i
+ 1) � ( n

2i
+ 1) for every 0 � i � log n. (See Figure 3-2.) Note that bordering submeshes

share nodes. The top left hand submesh after the division into 4i submeshes consists of the
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n; 0 n; n

0; 0 0; n

submesh(j; k)

jn=2i; kn=2i

(j + 1)n=2i; (k + 1)n=2i

jn=2i; (k + 1)n=2i

(j + 1)n=2i; kn=2i

Figure 3-2: Submesh j; k, for 0 � j < 2i and 0 � k < 2i, from the division of (n+ 1)� (n+ 1)
mesh into 4i submeshes of size ( n

2i
+ 1)� ( n

2i
+ 1).

nodes:

(0; 0) : : : ( n
2i
; 0)

...
...

(0; n
2i
) : : : ( n

2i
; n
2i
)

In general, the submesh j; k, for 0 � j < 2i and 0 � k < 2i, consists of the nodes:

(j n
2i
; k n

2i
) : : : ((j + 1) n

2i
; 1)

...
...

(j n
2i
; (k+ 1) n

2i
) : : : ((j + 1) n

2i
; (k+ 1) n

2i
)

Denote by �i the following requests. For each of the 4i squares of size (n=2i + 1)� (n=2i + 1)

request circuits from all top nodes to all bottom nodes, e.g.,

((j n
2i
; k n

2i
); (j n

2i
; (k+ 1) n

2i
); 1)((j n

2i
+ 1; k n

2i
); (j n

2i
+ 1; (k+ 1) n

2i
); 1) : : :

(((j + 1) n
2i
; k n

2i
); ((j + 1) n

2i
; (k + 1) n

2i
); 1)

for submesh j; k, and circuits from all left hand nodes to all right hand nodes, e.g.,

((j n
2i
; k n

2i
); ((j+ 1) n

2i
; k n

2i
); 1)((j n

2i
; k n

2i
+ 1); ((j+ 1) n

2i
; k n

2i
+ 1); 1) : : :

(j n
2i ; (k+ 1) n2i ); ((j+ 1) n2i ; (k+ 1) n2i ); 1)

for submesh j; k. Now we can prove the following lemma.
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Lemma 3.4.1 Let n be a power of two. Any randomized on-line algorithm, Ar, that solves the

admission control and routing problem, P, for the unit capacity (n+ 1)� (n+ 1) mesh has an

oblivious competitive ratio, CbP;P (Ar), in 
(logn). Furthermore, any greedy randomized on-line

algorithm, Ar, that solves P has an oblivious competitive ratio, CbP;P (Ar), in 
(n).

Proof. The sequences �i for 0 � i � logn constructed for the (n + 1)� (n + 1) mesh satisfy

the conditions of Theorem 3.2.4 for Z = logn. In particular, for all 0 � i � logn, j�ij = 2j�i�1j
if i 6= 0, all request in j�ij can be accepted when no other requests are accepted from other

sequences, and the are 2(n+1)n = 2(n+1)2logn critical links (all of the links of the mesh) such

that a request from �i requires n=2
i = 2(logn)�i critical links.

Now consider the case where n is not a power of two.

Lemma 3.4.2 Any randomized on-line algorithm, Ar, that solves the admission control and

routing problem, P, for the unit capacity (n + 1)� (n + 1) mesh has an oblivious competitive

ratio, CbP;P (Ar), in 
(logn). Furthermore, any greedy randomized on-line algorithm, Ar, that

solves P has an oblivious competitive ratio, CbP;P (Ar), in 
(n).

Proof. When n is not a power of 2, the proof is essentially the same as the proof for

Lemma 3.4.1, except that it is more complicated notationally. When dividing the mesh into

4i submeshes, the appropriate oor and ceiling operators need to be used. Furthermore, the

sequences �i may only be de�ned for 0 � i � (logn) � 1 rather than 0 � i � log n since the

division of the mesh into 4blognc submeshes may already have submeshes of size 1� 1.

We extend our lower bounds to the admission control and routing problem for (n+1)� (n+1)

meshes without the bandwidth and capacity restriction.

Theorem 3.4.3 Any randomized on-line algorithm, Ar, that solves the admission control and

routing problem, P, for (n+ 1)� (n + 1) meshes has an oblivious competitive ratio, CbP;P (Ar),

in 
(logn). Furthermore, any greedy randomized on-line algorithm, Ar, that solves P has an

oblivious competitive ratio, CbP;P (Ar), in 
(n).

Proof. The theorem follows immediately from Lemma 2.5.2 and Lemma 3.4.2.

We mention that the deterministic lower bound on the competitive ratio for (n+1)�(n+1)

meshes is 
(
p
n) [BFKR93].
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Lemma 3.4.4 Any deterministic on-line algorithm, A, that solves the admission control and

routing problem, P, on a (n + 1)� (n+ 1) mesh has a competitive ratio, CP;P (A), in 
(
p
n).

The separation of the deterministic and greedy lower bounds (
(
p
n) and 
(n) respectively)

from the oblivious randomized lower bound (
(logn)) for (n+1)� (n+ 1) meshes underscores

the importance of non-greedy randomized admission control strategies.

3.5 Tree of Meshes and Fat-Tree

For n a power of 2, the n � n tree of meshes has the following structure. The network has a

total of 2n2 log n nodes. These are arranged in 2 logn levels, each containing n2 nodes. The

levels are numbered 0 through 2 logn� 1. Links connect nodes in the same level or in adjacent

levels. Level i is a collection of disjoint mi � ni meshes, where mi =
n

2di=2e
and ni =

n
2bi=2c

.

Notice that for even i mi = ni = mi�1, and for odd i 2mi = ni = ni�1. Each level i mesh is

connected to a unique pair of level i+ 1 meshes. For even i, nodes (1; 1), (1; 2), : : : , (1; ni) of

the level i mesh are connected to nodes (1; 1), (1; 2), : : : , (1; ni+1), respectively, of one of the

level i+ 1 meshes, and nodes (mi; 1), (mi; 2), : : : , (mi; ni) of the level i mesh are connected to

nodes (mi+1; 1), (mi+1; 2), : : : , (mi+1; ni+1), respectively, of the other level i+1 mesh. For odd

i, nodes (1; 1), (2; 1), : : : , (mi; 1) of the level i mesh are connected to nodes (1; 1), (2; 1), : : : ,

(mi+1; 1), respectively, of one of the level i+1 meshes, and nodes (1; ni), (2; ni), : : : , (mi; ni) of

the level i mesh are connected to nodes (1; ni+1), (2; ni+1), : : : , (mi+1; ni+1), respectively, of the

other level i+ 1 mesh. The top three levels of a n � n tree of meshes are shown in Figure 3-3.

A size n fat-tree is essentially the same as a n � n tree of meshes except that each mesh

is replaced by a single node. The bandwidth between meshes is preserved. Thus, a size n

fat-tree is complete binary tree of height 2 logn (the tree has n2 leaves). The root (level 0

node) is connected to each of its children by a link with capacity n. In general, level i nodes are

connected to each of their children by a link of capacity n
2bi=2c

. In practice, fat-trees are used

rather than trees of meshes [LAD+92].

This section proves an 
(log logn) lower bound on the oblivious competitive ratio of any

admission control and routing algorithm for n � n trees of meshes and size n fat-trees with

respect to the performance function that determines the number of accepted virtual circuit
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requests. The section also proves an 
(logn) lower bound on the oblivious competitive ratio of

any greedy admission control and routing algorithm.

We use the same proof strategy as for the lower bounds on the mesh. In particular, we �rst

prove the lower bounds on the admission control and routing problem for the unit capacity

n � n tree of meshes and size n fat-tree. To prove these lower bounds, we construct a set of

sequences, �0; �1; : : : ; �log logn, which will allow us to make use of Theorem 3.2.4. The same set

of sequences can be used for both the n � n tree of meshes and the size n fat-tree.

We construct the sequences on the n� n tree of meshes. Consider the n� n tree of meshes

where logn is a power of two. To de�ne �i on the tree of meshes, we need some additional

notation. A n � n tree of meshes can be constructed from four n=2� n=2 trees of meshes. See

Figure 3-3. In particular, the root mesh is a n� n mesh, the left and right children of the root

are n � n=2 meshes and the grandchildren of the root are four n=2� n=2 trees of meshes. We

denote a n� n tree of meshes by T d where d = log n. Furthermore, we introduce the following

notation to refer to each of the components of T d. Node (i; j) in the top mesh is denoted by

(T d; t; (i; j)); node (i; j) in the left child mesh is denoted by (T d; l; (i; j)); node (i; j) in the right

child mesh is denoted by (T d; r; (i; j)). The n=2�n=2 trees of meshes that are the grandchildren
of T d are numbered from 1 to 4 starting with 1 for the left most n=2 � n=2 trees of meshes.

Thus, the left most n=2�n=2 tree of meshes is denoted by T d�1
1 , and the right most n=2�n=2

tree of meshes is denoted by T d�1
4 .

For two nodes in the same mesh, for example, the nodes (T; t; (i; j)) and (T; t; (i0; j0)),

let p((T; t; (i; j)); (T; t; (i0; j 0))) be the row-column path from (T; t; (i; j)) to (T; t; (i0; j0)). (A

row-column path reaches (T; t; (i0; j0)) by �rst moving in row i to column j0 and then moving

in column j0 to node (T; t; (i0; j 0)).) For connected nodes at di�erent levels, e.g., (T; l; (1; 1))

and (T; t; (1; 1)) let p((T; l; (1; 1)); (T; t; (1; 1))) be the single link path between the nodes. See

Figure 3-3.

Next, we de�ne sets of paths in T d. In particular, pl(T d) de�nes an order set of n = 2d

paths, where the ith path, pli(T
d), starts at a leaf node and terminates in node (T d; t; (i; 1)), the

�rst node in the ith row of the root n � n mesh of T d. The leaf node of the path is picked so

that the set of paths pl(T d) has the following property: whenever possible go to the left child

mesh. In Figure 3-4 the set of links that are used as a result of this property are indicated by
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i; j

i0; j0
1; n1; 1

n; 1 n; n

1; 1

n=2; 1

1; 1

n=2; 1 n=2; n=2

1; n=2

n=2; n

1; n

p((T d; t; (i; j)); T d; t; (i0; j0)))

p((T d; l; (1; 1)); (T d; t; (1; 1)))

n� n mesh

n=2� n=2 mesh
root of T d�1 tree

n� n=2 mesh

Figure 3-3: Structure and notation for n� n tree of meshes.

dark shaded circles for the top three levels of an n � n tree of meshes. This property has the

following consequence. Level i = 2 log(n=k) of a n � n tree of meshes consists of n2=k2 k � k

meshes, each of which is the root of a k � k tree of meshes. As a result of picking left child

mesh whenever possible, we use all k of the links that connect the k � k mesh to its parent

mesh for n=k of the k� k meshes. We denote this set of links as the pl(T d)-k-critical links. We

denote the k � k trees of meshes for which all k of the links to the parent mesh are used by

T logk
1 : : :T log k

n=k , where the indices are assigned from left to right. Now de�ne the pl(T d)-critical

links to be the union over all pl(T d)-k-critical links for all k such that log k is odd. Clearly,

there are nd=2 pl(T d)-critical links. The set pr(T d) is de�ned analogously. In particular, pr(T d)

is an order set of n = 2d paths, where the ith path, pri (T
d), starts at a leaf node and terminates

in node (T d; t; (i; n)), the last node in the ith row of the root n�n mesh of T d. The leaf node of

the path is picked so that the set of paths pr(T d) has the following property: whenever possible

go to the right child mesh. See Figure 3-4.

We now provide a formal de�nition for pl(T d) and pr(T d). The sets can be constructed

inductively as follows. First consider the base case. T 0 consists of a root node (T 0; t; (1; 1)) and
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pl(T d) pr(T d)

Figure 3-4: Paths used by pli(T
d) and pri (T

d).

the leave nodes (T 0; l; (1; 1)) and (T 0; r; (1; 1)). Thus, pl1(T
0) = p((T 0; l; (1; 1)); (T 0; t; (1; 1)))

and pr1(T
0) = p((T 0; r; (1; 1)); (T0; t; (1; 1))). Both pl(T 0) and pr(T 0) are singleton sets. We now

construct pl(T d) and pr(T d) from pl(T d�1) and pr(T d�1). (See Figure 3-5.)

pl1(T
d) = pl1(T

d�1
1 )p((T d�1

1 ; t; (1; 1)); (T d; l; (1; 1)))p((Td; l; (1; 1)); (T d; t; (1; 1))):

In general, for 1 � i � n=2,

pli(T
d) = pli(T

d�1
1 )p((T d�1

1 ; t; (i; 1)); (T d�1
1 ; t; (1; i)))p((T d�1

1 ; t; (1; i)); (T d; l; (i; 1)))

p((T d; l; (i; 1)); (T d; l; (1; i)))p((Td; l; (1; i)); (T d; t; (i; 1))):

Furthermore, for n=2 < i � n,

pli(T
d) = pli(T

d�1
2 )p((T d�1

2 ; t; (i� n=2; 1)); (Td�1
2 ; t; (1; i� n=2)))

p((T d�1
2 ; t; (1; i� n=2)); (T d; l; (n+ 1� i; n)))

p((T d; l; (n+ 1� i; n)); (T d; l; (1; i)))p((T d; l; (1; i)); (T d; t; (i; 1))):
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Similarly consider 1 � i � n=2 for pri (T
d),

pri (T
d) = pri (T

d�1
3 )p((T d�1

3 ; t; (n=2+ 1� i; n=2)); (T d�1
3 ; t; (1; i)))

p((T d�1
3 ; t; (1; i)); (T d; r; (i; 1)))p((Td; r; (i; 1)); (Td; r; (1; i)))

p((T d; r; (1; i)); (T d; t; (n+ 1� i; n))):

Finally consider n=2 < i � n for pri (T
d),

pri (T
d) = pri�n=2(T

n=2
4 )p((T

n=2
4 ; t; (n+ 1� i; n=2)); (T

n=2
4 ; t; (1; i� n=2)))

p((Tn=2
4 ; t; (1; i� n=2)); (Tn; r; (n+ 1� i; n)))

p((Tn; r; (n+ 1� i; n)); (Tn; r; (1; i)))p((Tn; r; (1; i)); (Tn; t; (n+ 1� i; n))):

p((T d�1
1 ; t; (1; 1)); (T d; l; (1; 1)))

p((T d; l; (1; 1)); (T d; t; (1; 1)))

p((T d; l; (1; i)); (T d; t; (i; 1)))

p((T d; l; (i; 1)); (T d; l; (1; i)))

p((T d�1
1 ; t; (1; i)); (T d; l; (i; 1)))

p((T d�1
1 ; t; (i; 1)); (T d�1

1 ; t; (1; i)))

pli(T
d�1
1 )

pl1(T
d�1
1 )

Figure 3-5: Construction of pli(T
d).

We de�ne another ordered set of paths, p(T d), based on pl(T d) and pr(T d). In particular the

set p(T d) consists of n leaf node to leaf node paths that each pass through the root n�n mesh.

The ith path is constructed by concatenating the ith path from pl(T d) with the (n + 1 � i)th

path from pr(T d). Formally, for 1 � i � n,

pi(T
n) = pli(T

n)p((Tn; t; (i; 1)); (Tn; t; (i; n)))prn+1�i(T
n):

To de�ne �i we need to de�ne one more ordered set of paths. Consider T logk
i for some

1 � i � n=k. Recall that T logk
i is the ith (counting from the left) k � k tree of meshes whose
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links to the parent mesh are among the pl(T d)-k-critical links. Now de�ne p(T logk
i ; T logk0), where

1 � k0 < k � n, to be the set of paths constructed by modifying the paths in p(T logk
i ) to go to

the right child mesh once they reach the k0� k0 tree of meshes. See Figure 3-6. The important

property of p(T logk
i ; T logk0) is that the paths in p(T logk

i ; T logk0) no longer intersect with the paths

in p(T logk00

j ) for log k00 < log k0. To provide the formal de�nition of p(T logk
i ; T logk0), we require

once piece of additional notation. Consider T log k0

j for some 1 � j � n=k0. Since each T log k
i

contains k=k0 T logk0

j , the T log k0

j contained in T log k
i have index j between (i� 1)k=k0 and ik=k0.

Thus, the jth path in p(T logk
i ) goes through the root of T logk0

(i�1) k
k0

+b j

k0
c
. De�ne pj(T

logk
i ) j k0 to be

the jth path of p(T logk
i ) where the segment from the left leaf to the top node of T log k0

(i�1) k
k0
+b j

k0
c
,

(T logk0

(i�1) k
k0

+b j

k0
c
; t; (1; i)), is removed. See Figure 3-6. Now de�ne pi(T

logk
i ; T k0) as follows. For

1 � j � k,

pj(T
logk
i ; T logk0) =

pr
j�k0b j

k0
c
(T logk0

(i�1) k
k0
+b j

k0
c
)

p((T logk0

(i�1) k
k0
+b j

k0
c
; t; (k0+ 1� j � k0b j

k0
c; k)); (T logk0

(i�1) k
k0
+b j

k0
c
; t; (1; j� k0b j

k0
c))

pj(T
logk
i ) j k0:

2 logk=k0 levels

T logk0

(i�1) k
k0
+b j

k0
c
root

T log k0

(i�1) k
k0

root

pl1(T
log k
i ) p1(T

log k
i ; T logk0)

plj(T
logk
i )

pj(T
logk
i ; T logk0)

p1(T
log k
i )jk0

pj(T
logk
i )jk0

T log k
i root

Figure 3-6: Construction of p(T logk
i ; T logk0).

We now de�ne � by de�ning the sequences �i. The sequence �0 consists of requests generated
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from the paths in p(T d). De�ne s(pi(T
d)) to be the left leaf of path pi(T

d) and d(pi(T
d)) to be

the right leaf of pi(T
d). Then �0 is de�ned as follows:

�0 = (s(p1(T
d)); d(p1(T

d)); 1) : : :(s(pn(T
d)); d(pn(T

d)); 1):

In general, �i consists of the requests constructed from the paths in

p(T
d=2i

1 ); : : : ; p(T
d=2i

n=(2d=2i)
);

p(T
2d=2i

1 ; T d=2i+1); : : : ; p(T
2d=2i

n=(22d=2i)
; T d=2i+1);

: : : ;

p(T
(j+1)d=2i

1 ; T jd=2i+1); : : : ; p(T
(j+1)d=2i

2(j+1)d=2i
; T jd=2i+1);

: : : ;

p(T d
1 ; T

(2i�1)d=2i+1):

Now we can prove the lower bounds for the unit capacity n � n tree of meshes using Theo-

rem 3.2.4.

Lemma 3.5.1 Let d = logn and let d be a power of 2. Any randomized on-line algorithm, Ar,

that solves the admission control and routing problem, P, on the unit capacity n � n tree of

meshes has an oblivious competitive ratio, CbP;P (Ar), in 
(log logn). Furthermore, any greedy

randomized on-line algorithm, Ar, that solves P has an oblivious competitive ratio, CbP;P (Ar),

in 
(logn).

Proof. The sequences �i for 0 � i � (log d)� 1 constructed for the n�n tree of meshes satisfy

the conditions of Theorem 3.2.4 for Z = (log d)� 1.

Each p(T logk
i ; T logk0) contains k paths. Thus, the union over p(T logk

i ) for 1 � i � n=k

contains n paths. As a consequence, �i contains n2i requests. Thus, j�ij = 2j�i�1j if i 6= 0.

Furthermore, it is possible to accept all requests in �i when no other requests are accepted from

other sequences. Finally, there are nd=2 = n2(logd)�1 pl(T d)-critical links. Any request from

sequence �i consumes d=2i+1 = 2(logd)�1�i pl(T d)-critical links.

Now consider the case where logn is not a power of two.

Lemma 3.5.2 Let d = log n. Any randomized on-line algorithm, Ar, that solves the admission

control and routing problem, P, on the unit capacity n�n tree of meshes has an oblivious com-

petitive ratio, CbP;P (Ar), in 
(log log n). Furthermore, any greedy randomized on-line algorithm,

Ar, that solves P has an oblivious competitive ratio, CbP;P (Ar), in 
(logn).

58

■ 



Proof. When d is not a power of 2, the proof is essentially the same as the proof for

Lemma 3.5.1, except that it is more complicated notationally. In particular, when construct-

ing the sequences �i the appropriate oor and ceiling operators need to be used to divide the

number space between 1 and d into 2i nearly equal sized intervals. (If the boundaries of one

such interval are x,y, where x < y, the sequence �i would include, among others, the requests

constructed from the paths in p(T y
j ; T

x).) Furthermore, the sequences �i may only be de�ned

for 0 � i � (log d) � 2 rather than 0 � i � (log d) � 1 since the division of the number space

between 1 and d into 2blog dc�1 intervals may already have several intervals where jx� yj = 1.

We extend our lower bounds to the admission control and routing problem for n � n trees of

meshes without the bandwidth and capacity restriction.

Theorem 3.5.3 Any randomized on-line algorithm, Ar, that solves the admission control and

routing problem, P, on n � n trees of meshes has an oblivious competitive ratio, CbP;P (Ar), in


(log logn). Furthermore, any greedy randomized on-line algorithm, Ar, that solves P has an

oblivious competitive ratio, CbP;P (Ar), in 
(logn).

Proof. The theorem follows immediately from Lemma 2.5.2 and Lemma 3.5.2.

The separation of the greedy lower bound (
(logn)) from the oblivious randomized lower bound

(
(log log n)) for n � n trees of meshes underscores the importance of non-greedy admission

control strategies.

Next, we consider fat-trees. Let the admission control and routing problem for the unit

bandwidth size n fat-tree be the admission control and routing problem for the size n fat-tree

with the restriction that all requests have a bandwidth requirement of 1.

Lemma 3.5.4 Let d = log n. Any randomized on-line algorithm, Ar, that solves the admission

control and routing problem, P, for the unit bandwidth size n fat-tree has an oblivious competitive

ratio, CbP;P (Ar), in 
(log logn). Furthermore, any greedy randomized on-line algorithm, Ar, that

solves P has an oblivious competitive ratio, CbP;P (Ar), in 
(logn).

Proof. The same set of sequences that is used in Lemma 3.5.2 can be used. The argument

that Theorem 3.2.4 is applicable to the set of sequences is unchanged.

We extend our lower bounds to the admission control and routing problem for size n fat-trees

without any bandwidth restriction.
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Theorem 3.5.5 Any randomized on-line algorithm, Ar, that solves the admission control and

routing problem, P, on size n fat-trees has an oblivious competitive ratio, CbP;P (Ar), that is in


(log logn). Furthermore, any greedy randomized on-line algorithm, Ar, that solves P has an

oblivious competitive ratio, CbP;P (Ar), in 
(logn).

Proof. The theorem follows immediately from Lemma 2.5.2 and Lemma 3.5.4.

The separation of the greedy lower bound (
(logn)) from the oblivious randomized lower bound

(
(log log n)) for size n fat-trees underscores the importance of non-greedy admission control

strategies. In Chapter 4 we provide a non-greedy algorithm that has a competitive ratio of

O(log logn). Thus, the algorithm shows our lower bounds to be tight.

3.6 Hypercube

The logn dimensional hypercube is a graph consisting the set of nodes f0; 1glogn and edges

connecting every pair of nodes with Hamming distance 1. This section proves an 
(log logn)

lower bound on the oblivious competitive ratio of the admission control and routing problem for

the logn dimensional hypercube with respect to the performance function that determines the

number of accepted virtual circuit requests. The section also proves an 
(logn) lower bound

on the oblivious competitive ratio of any greedy admission control and routing algorithm.

We use the same proof strategy as for the lower bounds on the mesh. In particular, we �rst

prove the lower bounds on the admission control and routing problem for the unit capacity

logn dimensional hypercube. To prove these lower bounds, we construct a set of sequences,

�0; �1; : : : ; �log logn, which will allow us to make use of Theorem 3.2.4.

Consider the logn dimensional hypercube where logn is a power of two. Let d = logn.

Consider two nodes that di�er in k bits. The shortest path between the nodes has length k.

The sequence �i will consist of n2
i requests between nodes that di�er in logn

2i
bits. Consider

sequence �0. For one potential approach, �0 consists of requests whose endpoints are bitwise

complements of each other. The resulting paths have length log n. However, if the required

bandwidth of each request is one, routing the requests in this sequence would require twice the

available capacity. Thus, �0 should consists of half of all of the requests that can be constructed

by using all n nodes and their bitwise complement as endpoints.
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De�ne S1 = (1; 0) and S0
1 = (0; 1). S1 and S0

1 trivially satisfy Properties 1 { 4. Now de�ne

Si+1 and S0
i+1 from Si and S0

i.

Si+1 = (0s1; 1d1) : : :(0s2i ; 1d2i)(1s
0
1; 0d

0
1) : : :(1s

0
2i ; 0d

0
2i):

Similarly,

S0
i+1 = (1s1; 0d1) : : :(1s2i ; 0d2i)(0s

0
1; 1d

0
1) : : :(0s

0
2i ; 1d

0
2i):

Lemma 3.6.1 If Si and S0
i satisfy Properties 1 { 4, then Si+1 and S0

i+1 satisfy Properties 1 {

4

Proof. Property 1 is satis�ed since jSi+1j = jS0
i+1j = jSij+ jS0

ij.
Consider Property 2. For each node v in H2i , the hypercube H2i+1 contains two nodes 0v

and 1v. By property 2 for Si and S0
i, v appears exactly once as a source in Si [ S0

i. Without

loss of generality, assume that v appears as a source in Si, such that v = sj . By inspection of

the de�nition of Si+1 and S0
i+1 we see that 0sj and 1sj each appear exactly once in Si+1 [ S0

i+1.

Speci�cally, 0sj appears as a source in Si+1 and 1sj appears as a source in S0
i+1. The same

argument shows that 0v and 1v each appear exactly once as a destination in Si+1 [ S0
i+1.

Consider Property 3. The new links added to H2i+i are between 0v and 1v for each v 2 H2i.

Since we are routing by complementing bits from left to right, Property 3 requires that either

0v or 1v appear exactly once in Si+1 and exactly once in S0
i+1. This follows directly from the

construction of Si+1 and S0
i+1 and Property 2 for Si and S0

i.

Consider Property 4. This property is trivially satis�ed by the construction of Si+1 and

S0
i+1 and Property 4 for Si and S0

i.

Now we can constructs the sequence �i. In particular, �0 consists of all of the requests

generated by requesting a bandwidth one circuit between each source and destination pair in

Sd. To construct �i we construct 2i requests for each request in �0. Consider any request

(v0; vd; 1) in �0. Let P be the path from v0 to vd that complements bits from left to right. We

label the nodes along the path P from v0 to vd by v0; v1 : : :vd. (Recall our assumption that d is

a power of 2.) To construct 2i requests for �i, divide the path between v0 and vd into 2i equal

length paths and request a bandwidth one virtual circuit between the endpoints of each of the
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2i paths. Let the duration of all the requests be in�nite. Formally:

�1 =
[

(v0;vd;1)2�0

f(v0; vd=2; 1)(vd=2; vd; 1)g

...

�i =
[

(v0;vd;1)2�0

f(v0; vd=2i; 1)(vd=2i; v2d=2i; 1)

(v2d=2i; v3d=2i; 1) : : :(v(2i�1)d=2i ; vd; 1)g
...

�log d =
[

(v0;vd;1)2�0

f(v0; v1; 1)(v1; v2; 1) : : :(vd�1; vd; 1)g

Lemma 3.6.2 Let d = logn and let d be a power of 2. Any randomized on-line algorithm, Ar,

that solves the admission control and routing problem, P, on the unit capacity logn dimensional

hypercube has an oblivious competitive ratio, CbP;P (Ar), in 
(log logn). Furthermore, any greedy

randomized on-line algorithm, Ar, that solves P has an oblivious competitive ratio, CbP;P (Ar),

in 
(logn).

Proof. The sequences �i for 0 � i � log d constructed for the logn dimensional hypercube

satisfy the conditions of Theorem 3.2.4 for Z = log d.

First, j�ij = 2j�i�1j if i 6= 0. Furthermore, by construction of �i and Property 3, all requests

in �i can be accepted when no other requests are accepted from other sequences. There are

dn=2 = n
2
2logd critical links (all of the links of the hypercube). By construction of �i and

Property 4 any request from sequence �i consumes d=2
i = 2(logd)�i critical links.

Now consider the case where logn is not a power of two.

Lemma 3.6.3 Let d = log n. Any randomized on-line algorithm, Ar, that solves the admission

control and routing problem, P, on the unit capacity logn dimensional hypercube has an obliv-

ious competitive ratio, CbP;P (Ar), in 
(log logn). Furthermore, any greedy randomized on-line

algorithm, Ar, that solves P has an oblivious competitive ratio, CbP;P (Ar), in 
(logn).

Proof. When d is not a power of 2, the proof is essentially the same as the proof for

Lemma 3.6.2, except that it is more complicated notationally. In particular, when construct-

ing the sequences �i the appropriate oor and ceiling operators need to be used to divide the

63

■ 



number space between d and 0 into 2i nearly equal sized intervals. Furthermore, the sequences

�i may only be de�ned for 0 � i � (log d)� 1 rather than 0 � i � (log d) since the division of

the d length path into 2blog dc intervals may already have several paths of length 1.

We extend our lower bound to the admission control and routing problem for logn dimensional

hypercubes without the bandwidth and capacity restriction.

Theorem 3.6.4 Any randomized on-line algorithm, Ar, that solves the admission control and

routing problem, P, on log n dimensional hypercubes has an oblivious competitive ratio, CbP;P (Ar),

in 
(log logn). Furthermore, any greedy randomized on-line algorithm, Ar, that solves P has

an oblivious competitive ratio, CbP;P (Ar), in 
(logn).

Proof. The theorem follows immediately from Lemma 2.5.2 and Lemma 3.6.3.

The separation of the greedy lower bound (
(logn)) from the oblivious randomized lower

bound (
(log log n)) for log n dimensional hypercubes underscores the importance of non-greedy

admission control strategies.

3.7 Hierarchical Backbone Networks

A hierarchical backbone network can be decomposed into many low diameter regions (access

networks) and an arbitrary region (backbone network) that connects the access networks. A

hierarchical backbone network is de�ned formally as follows.

De�nition 3.7.1 (hierarchical backbone network) A connected network G is a hierarchi-

cal backbone network if it can be decomposed into a connected backbone network Gb and a

set of access networks Ga
i such that all access networks Ga

i and Ga
j for j 6= i are disjoint (i.e.

they have no nodes or links in common) and all access networks Ga
i have exactly one node in

common with the backbone network Gb.

The de�nition ensures that di�erent access networks can only communicate with paths that

use the backbone network. Furthermore, no simple path between two di�erent nodes in the

backbone network passes through any link in any access network.
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Lemma 3.7.2 Let G be a hierarchical backbone network consisting of the backbone network Gb

and access networks Ga
i . Then there exists no simple path between two di�erent nodes in Gb

that passes through any link in any access network Ga
i .

Proof. The lemma follows from the facts that access networks are disjoint and each have

exactly one node in common with the backbone network. Thus, any path that originates and

terminates in the backbone network Gb, but uses a link in the access network Ga
i must pass

through the common node for Ga
i and Gb twice. Hence, the path is not simple.

backbone network

access networks

Figure 3-8: An example of a hierarchical backbone network.

We show that a lower bound on the competitive ratio for the backbone network or for any

of the access networks implies the same lower bound on the competitive ratio for the entire

hierarchical backbone network. Let P(fGg) be the admission control and routing problem for

G.

Theorem 3.7.3 Let Gn be a hierarchical backbone network consisting of the backbone network

Gb and access networks Ga
i for i 2 [0; I ]. Let P be the performance function of De�nition 2.3.7.

If CP(fGbg);P (A) � Kb for all deterministic on-line algorithms A that solve P(fGbg) and, for
all i 2 [0; I ], CP(fGa

i g);P
(A) � Ka

i for all deterministic on-line algorithms A that solve P(fGa
i g),

then CP(fGng);P (A
0) � maxffKbg [i2[0;I] fKa

i gg for all deterministic on-line algorithms A0 that

solve P(fGng).
Further, if CbP(fGbg);P (Ar) � Kb for all randomized on-line algorithms Ar that solve P(fGbg)

and, for all i 2 [0; I ], CbP(fGa
i g);P

(Ar) � Ka
i for all randomized on-line algorithms Ar that solve

P(fGa
i g), then CbP(fGng);P (A

0
r) � maxffKbg[i2[0;I] fKa

i gg for all randomized on-line algorithms
A0
r that solve P(fGng).
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Both statements also apply to the performance function in De�nition 2.3.8.

Proof. We consider deterministic algorithms with the performance function of De�nition 2.3.7.

The arguments for randomized algorithms and the performance function in De�nition 2.3.8 are

the same.

Consider any graph, say Ga
i , from the set ffGbg [i2[0;I] fGa

i gg. Let G = Ga
i and G0 =

Gn. Now, by Lemma 3.7.2, G and G0 meet the conditions of Lemma 2.7.2. As a result,

CP(fGng);P (A
0) � Ka

i for all deterministic on-line algorithms A
0 that solve P(fGng). The lemma

follows since CP(fGng);P (A
0) � K for all deterministic on-line algorithms A0 that solve P(fGng)

if CP(fGg);P (A) � K for all deterministic on-line algorithms A that solve P(fGg) and graph G

is in the set ffGbg [i2[0;I] fGa
i gg.

3.8 General Topology Networks

The results in this section further support the importance of using non-greedy admission con-

trol in general topology networks. In this section, we consider the performance function that

determines the number of accepted virtual circuit requests. The admission control and routing

problem for general topology networks is the admission control and routing problem where the

set of graphs, G, ranges over all graphs. It is trivial to prove an 
(n) lower bound for the com-

petitive ratio of any greedy on-line admission control and routing algorithm for n node general

topology networks. (Just consider the n node line and Theorem 3.3.2.) The lower bound for all

(including non-greedy) admission control and routing algorithms on general topology networks

is 
(logn) [AAP93], suggesting that either a randomized or non-greedy approach is needed.

In fact, the non-greedy algorithm of [AAP93], presented in Section 4.2, achieves an O(logn)

competitive ratio.

This section strengthens the support for non-greedy admission control by proving an 
(n)

lower bound for the greedy admission control and routing problem for general topology networks

(cf. De�nition 2.3.2). The key di�erence between the competitive ratio of a greedy on-line

algorithm for admission control and routing and the competitive ratio of a greedy on-line

algorithm for greedy admission control and routing is that the optimal o�-line algorithm is also

forced to use a greedy admission control strategy when determining the competitive ratio for
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greedy admission control and routing. Thus, this section shows that the 
(n) lower bound for

greedy on-line algorithms when the optimal o�-line algorithm can use non-greedy admission

control still holds even when the optimal o�-line algorithm must use greedy admission control.

Our approach is to prove the lower bound for a speci�c network. Then, by Lemma 2.5.2,

the lower bound extends to general topology networks. Consider the network G = (V;E) in

Figure 3-9 consisting of 2n+ 2 nodes. Let b be a function from E to f1g. Thus all links have
capacity 1. De�ne �0 = (G; b). Call the links between nodes vi and vi+1 for 3 � i � n� 1 the

v-links and the links between nodes ui and ui+1 for 3 � i � n� 1 the u-links.

We use the following proof strategy. Consider any routing algorithm A. We construct a

request sequence, �, such that P (�;A(�)) � O(1), i.e., A accepts O(1) requests, while Po(�) =


(n), i.e., an optimal o�-line strategy can accept O(n) requests. The request sequence � consists

of �0 and the concatenation of four subsequences �0, �1, �2, and �3. Each request in � has

bandwidth 1=r for some even integer r. The construction of � depends on A.

De�ne �0 = �1 : : :�r such that �i = (s; d; 1=r). In other words, �0 consists of r requests

from s to d with bandwidth requirement 1=r each. Since A is greedy, it will accept all requests

in �0. Consider the state of G after A routes the requests in �0. Each request in �0 must use

either the v-links or the u-links once. Thus, either the v-links or the u-links are used by at

least r=2 of the requests in �0. Without loss of generality assume that A routes such that the

v-links are used by at least r=2 of the requests in �0.

Now construct �1, �2, and �3. Subsequence �1 consists 2r requests from u2 to u0 with

bandwidth requirement 1=r each. Speci�cally, �1 = �r+1 : : :�3r such that �i = (u2; u0; 1=r).

Subsequence �2 consists of r=2 requests from s to d with bandwidth requirement 1=r each.

Thus, �2 = �3r+1 : : :�7=2r such that �i = (s; d; 1=r). Finally, subsequence �3 consists of (n�3)r

requests such that there are r requests between vi and vi+1 for each 3 � i � n� 1. Speci�cally,

�3 = �3;0 : : : �3;n�4 consists of n�3 subsequences, where each subsequence consists of r requests.
De�ne �3;i as follows: �3;i = �1+(7+2i)=2r : : :�(9+2i)=2r, where �i = (vi+3; vi+4; 1=r).

Lemma 3.8.1 P (�;A(�))� O(1).

Proof. Consider subsequence �0�0�1�2. In the best case, all virtual circuit requests are

accepted, so P (�0�0�1�2); A(�0�0�1�2)) � 4r.
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Figure 3-9: Network G with capacity 1 on each link.

Now consider �3. The v-links can each carry r requests of bandwidth 1=r. By construction,

A routes the requests in �0 such that each v-link carries at least r=2 requests after the requests

in �0 are routed. Furthermore, the 2r requests from u2 to u0 in �1 ensure that links (u1; u2)

and (u1; u0) carry r requests after A routes �1. Thus, the u-links are not available for the

requests from s to d in subsequence �2. So the r=2 requests from s to d in subsequence �2

must make use of the v-link . Since the v-links each already carry at least r=2 requests after the

requests in �0, the requests in �2 ensure that the v-links carry the full r requests after A routes

the requests in �2. As a consequence, A is unable to route any of the requests in �3. Thus,

P (�0�0�1�2�3; A(�0�0�1�2�3)) � 4r.

Lemma 3.8.2 Po(�) � 
(n).

Proof. Consider the following o�-line routing strategy. Route all r requests in subsequence

�0 using the u-links. As a consequence, none of the requests from u2 to u0 in �1 can be

accepted. Thus, Po(�0�1) = r and, after routing the requests in �0�1, the v-links are completely

unused. Next route the r=2 requests from s to d in subsequence �2 using the v-links. Thus,

Po(�0�0�1�2) = 3=2r and, after routing the requests in �0�1�2, the v-links can each still

accommodate r=2 requests. Now the optimal o�-line algorithm is able to accept half of the

requests (n� 3)r in �3, bringing Po(�0�0�1�2�3) to r((n� 3)=2 + 3=2) = n
2
r.

We can now prove the lower bound result for G.

Lemma 3.8.3 Any deterministic on-line algorithm, A, for the greedy admission control and

routing problem, P, on network G has a competitive ratio, CP;P (A), in 
(n).

Proof. The lemma follows directly from Lemma 3.8.1 and Lemma 3.8.1.

68

■ 

■ 

■ 



We now extend the result to general topology networks.

Theorem 3.8.4 Any deterministic on-line algorithm, A, for the greedy admission control and

routing problem, P, on n node general topology networks has a competitive ratio, CP;P (A), in

(n).

Proof. The theorem follows from Lemma 2.7.1 and Lemma 3.8.3.
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C h a p t e r 4

Competitive Admission Control and

Routing Algorithms

4.1 Introduction

This chapter presents several algorithms for admission control and routing. The algorithms il-

lustrate the importance of using non-greedy admission control and randomization. This chapter

is organized by topology. Section 4.2 considers general topologies, Section 4.3 considers hierar-

chical backbone networks (cf. De�nition 3.7.1), Section 4.4 considers fat-trees, and Section 4.5

considers trees.

The problems considered in Sections 4.3, 4.4, and 4.5 are not special cases of the problem

considered in Section 4.2. In particular, the O(log d) competitive algorithm for general topology

networks of [AAP93], presented in Section 4.2, has the restriction that the bandwidth of every

request must be less than 1= logd of the capacity of the lowest capacity link, where d is the length

of the longest simple path in the network. Lower bounds in [AAP93] show that this restriction

cannot be removed without increasing the competitive ratio of the algorithm. Sections 4.3, 4.4,

and 4.5 address the situation where each request may require up to the entire link capacity for

some links.

For general topology networks we give a brief presentation of the admission control and

routing algorithm of [AAP93]. We do not include any of the complexity or correctness proofs.

The algorithm serves as the basis for the practical general topology admission control and
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routing algorithm presented in Chapter 5. The algorithm is also used as a subroutine by our

algorithm for the fat-tree.

We provide a general mechanism for constructing admission control and routing algorithms

for hierarchical backbone networks. Consider a speci�c hierarchical backbone network where

the longest simple path in any access network consists of at most d links and there exists an

algorithm Ab that achieves a competitive ratio of K on the backbone network. We show how

to construct an algorithm that achieves a competitive ratio of O(d + K) for the hierarchical

backbone network. This construction can be used to extend the admission control and routing

algorithm of [AAP93] to networks where some regions of the network do not meet the bandwidth

restrictions imposed by [AAP93]. Hierarchical backbone networks can be used to model several

important networks including the telephone network, the Internet, and fat-trees. In fact, we

use the techniques developed for hierarchical backbone networks to construct an algorithm that

achieves an O(log logn) competitive ratio for the size n fat-tree. This matches the 
(log logn)

lower bound of Lemma 3.5.4. Furthermore, the algorithm overcomes the 
(logn) lower bound

on the competitive ratio for any greedy admission control algorithm (cf. Lemma 3.5.4).

For trees with diameter d, we provide a randomized admission control and routing algorithm

with an oblivious competitive ratio of O(log d). This matches the 
(log d) lower bound of

Lemma 3.3.3. Furthermore, the algorithm overcomes the 
(d) lower bound on the competitive

ratio for deterministic and greedy algorithms on trees (cf. Proposition 3.3.6 and Lemma 3.3.3).

4.2 General Topology Networks

This section presents an algorithm for a slightly modi�ed version of the admission control

and routing problem for general topology networks. In particular, we introduce a bandwidth

restriction. The algorithm we present is a simpli�ed1 version of an algorithm that was originally

presented in [AAP93]. We call the algorithm iaap. The performance function used in this

section measures the number of accepted virtual circuit requests .

The bandwidth restricted admission control and routing problem is the same as the admission

control and routing problem in De�nition 2.3.1 except that the maximum bandwidth of any

1The actual algorithm presented in [AAP93], called aap, can handle virtual circuits that have a �nite duration.
We introduce the aap algorithm in Chapter 5.
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circuit request is restricted. A lower bound in [AAP93] shows that this restriction on the

maximum bandwidth cannot be relaxed.

De�nition 4.2.1 (bandwidth restricted admission control and routing for G) Let G
be a set of undirected graphs. The bandwidth restricted admission control and routing problem

for G is the same as admission control and routing problem for G with the following addi-

tional condition for S. Let rmin; rmax 2 <>0 such that rmin � rmax. If (�; �) 2 S, then

the following condition must hold. If �0 = ((V;E); b), then r(�i) � mine2Efb(e)= log�g and

r(�i) 2 [rmin; rmax] for all 1 � i < j�j, where � = 2drmax=rmin+ 1 and d is the number of links

used by the longest simple path in (V;E).

The code for the iaap algorithm is presented in Figure 4-1. The code for iaap (and all other

algorithms in this thesis) is presented using pseudocode. It is straightforward to transform the

pseudocode into a sequence of functions An fromQn toR for n 2 N. (Recall that De�nition 2.1.1
formally de�nes an on-line algorithm A as a sequence of functions An from Qn to R for n 2 N.)
The pseudocode can be seen as a function f from a state space, S, and the set of requests Q

to the state space S and the set of responses R.

In the case of the iaap algorithm, the state after request �i is encoded in the utilization

function ui+1(e). Using the function f we can construct the sequence of functions used in

De�nition 2.1.1. Denote by %i the state just before request �i is handled. Let f(%i; �i) =

(%i+1; �i) and f(%0; �0) = (%1; �1) for some initial state %0. Now, if f(%i; �i) = (%i+1; �i), then

Ai+1(�0 : : :�i) = �i. Essentially, the state %i encodes the information needed from all of the

prior requests �0 : : :�i�1.

Our pseudocode uses several notational conventions. Assignment is denoted by `=' while

logical comparison is denoted by `=='. (This convention is consistent with the C programming

language.) Consider any state variable x. In this case xi denotes the value of state variable

x just before the ith circuit request, �i, is handled. We use this naming convention for state

variables throughout the thesis. Finally, we use the following formatting conventions. Sections

of the thesis that present algorithms will contain a paragraph marked by Description:. This

paragraph describes the code of algorithm. Some sections also contain a paragraph marked

by Restrictions:. This paragraph will summarize any special restrictions that apply to the

algorithm presented in that section.
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iaap(si; di; ri):
for all �; e 2 E : c(e) = ri(�

u(e) � 1);
if there exists a path p in G from si to di such thatX

e2p

c(e) � % and u(e) + ri=b(e) < 1 for all e 2 p

then route the requested virtual circuit on p, and set:
for all e 2 E;
u(e) = u(e) + ri

b(e)
if e 2 p;

else reject the requested virtual circuit.

Figure 4-1: The iaap admission control algorithm.

Description: We now explain the code in Figure 4-1. The admission control and routing

decision is based on the utilization of the network links. The utilization of link e as seen by the

algorithm when routing the jth circuit is de�ned as follows (cf. De�nition 2.3.1):

uj(e) =
1

b(e)

X
1�i<j j

�i 6=?;e2�i

ri:

Based on the utilization, the algorithm computes the exponential cost of the links. The expo-

nential cost of a link is a cost function that is exponential in the utilization of the links. In

particular, the cost of link e as seen by the algorithm when routing the ith circuit is de�ned by

ci(e) = ri(�
ui(e) � 1);

where � is a constant. (The constant � used here is the same as the constant � used in

De�nition 4.2.1. In the de�nition, � is used to restrict the size of ri. This restriction on ri is

needed by the proofs in [AAP93, Plo95].) If there exists a path p in the network such that the

cost of the path,
P

e2p ci(e) is no greater than %, where % is a parameter, then the request is

accepted along path p. The �nal step of the algorithm is to update the state.

Let d be the number of links in the longest simple path. In [Plo95] they show that

choosing � = 2drmax=rmin + 1 and % = drmax guarantees a competitive ratio of O(log�) =

O(log(2drmax=rmin + 1)) when ri is restricted such that ri � minefb(e)= log�g and ri 2
[rmin; rmax]. We summarize this result in the following theorem.

Theorem 4.2.2 Let P be the restricted bandwidth admission control and routing problem for
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general topology networks. Let P measure the number of accepted requests. Then, the iaap

algorithm has a competitive ratio, CP;P (iaap), of O(log�).

4.3 Hierarchical Backbone Networks

Consider a hierarchical backbone network. Assume that d is the number of links of the longest

simple path in any access network and that there exists an algorithm Ab that achieves a com-

petitive ratio of K on the backbone network when all requests have the same bandwidth. This

sections shows that an algorithm that uses greedy admission control on the access networks

and algorithm Ab on the backbone network has a competitive ratio of O(d+K). In Section 4.4

we use this result to achieve an O(log logn) competitive ratio for the size n fat-tree. In Chap-

ter 8, we argue that the basic approach of this section can be used for many important modern

networks like the Internet and the telephone system. The performance function used in this

section measures the number of accepted virtual circuit requests

4.3.1 Algorithm

Restrictions: We consider the admission control and routing problem on a hierarchical back-

bone network G with the additional restriction that all circuit requests have the same band-

width.

Let the �rst request, �0, be (G; b) where G is a hierarchical backbone network consisting of

a backbone network Gb and access networks Ga
i . Let d be the number of links in the longest

simple path of any access network. To describe our algorithm, AG, we require some notation.

Consider a node v such that v is in access network Ga
i . Then access(v) is the node that Ga

i

has in common with Gb. Furthermore, let AGb be an algorithm that has a competitive ratio

of K for the admission control and routing problem on network Gb where every request has

the same bandwidth. The AG algorithm uses the AGb algorithm as a subroutine. We classify

requests as access requests and backbone requests. An access request is one where the source

and destination are both in the same access network. All other requests are backbone requests.

We denote by greedyG an arbitrary randomized greedy on-line admission control and routing

algorithm for network G. Let p1 and p2 be two paths such that the last node of p1 is the same
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as the �rst node of p2. Then p1jp2 is the concatenation of p1 and p2.

Claim 4.3.1 Let G be a hierarchical backbone network consisting of a backbone network Gb

and access networks Ga
i . Then:

1. for any access request (sj; dj; rj), any simple path between sj and dj uses only links in Ga
i

for some i.

2. for any backbone request (sj; dj; rj), any path between sj and dj uses at least one link in

Gb.

3. for any backbone request (sj ; dj; rj), where si; di 2 Gb, any simple path between sj and dj

uses only links in Gb.

Proof. 1 and 3 follow from the fact that all requests must use simple paths and the fact that no

simple path between two di�erent nodes in Gb passes through any node in any access network

Ga
i (cf. Lemma 3.7.2). 2 follows from the fact that Ga

i and Ga
j are disjoint when j 6= i.

Description: Consider a backbone request (si; di). (We omit the bandwidth ri since all

requests are assumed to request the same bandwidth.) If both si and di are in the backbone

network, we let the AGb algorithm make the admission control and routing decision. If si is

in an access network, we use a greedy admission control strategy to connect si to access(si).

Similarly, if di is in an access network, we use a greedy admission control strategy to connect

di to the backbone network. Then, we use the AGb algorithm to make the admission control

and routing decision within the backbone network. Finally, for access requests, we use greedy

admission control. The code is given in Figure 4-2. We say that a backbone request is o�ered

to the AGb algorithm, if the request is not rejected by the greedy algorithms used for any parts

of the path that are in access networks.

4.3.2 Analysis

Consider any request sequence � for the hierarchical backbone network G. Let � be any cor-

responding result sequence. (There can be many such result sequences since the greedyGa
i

algorithm used in the access networks may be randomized.) For the analysis we de�ne the
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AG(si; di):
p = ?;
case si; di 2 Gb:
p = AGb(si; di);

case si 2 Ga
j , di 62 Ga

j and di 2 Gb:
p1 = greedyGa

j
(si;access(si));

if p1 6= ? then p2 = AGb(access(si); di);
if p2 6= ? then p = p1jp2;

case si 2 Gb, si 62 Ga
j and di 2 Ga

j :
p1 = greedyGa

j
(access(di); di);

if p1 6= ? then p2 = AGb(si;access(di));
if p2 6= ? then p = p1jp2;

case si 2 Ga
j and di 2 Ga

k with j 6= i:
p1 = greedyGa

j
(si;access(si));

if p1 6= ? then p2 = greedyGa
k
(access(di); di);

if p2 6= ? then p3 = AGb(access(si);access(di));
if p3 6= ? then p = p1jp3jp2;

case si; di 2 Ga
j :

p = greedyGa
j
(si; di);

endcase
if p 6= ? then route the requested virtual circuit on path p.
else reject the requested virtual circuit.

Figure 4-2: The admission control algorithm for a hierarchical backbone network.

following quantities with respect to � and �. Let �f be the subsequence of � that consists of

�0 and all of the backbone requests that are o�ered to the AGb algorithm by the AG algorithm.

A backbone request might not be o�ered to the AGb algorithm due to capacity constraints in

the access networks. (See code in Figure 4-2.) Let �:f be the subsequence of � that consists

of �0 and all requests not included in �f . Let �f;G
b

be the sequence that consists of all re-

quests in �f , such that source si is replaced by access(si) if si 62 Gb and destination di is

replaced by access(di) if di 62 Gb. Furthermore, let �f;G
b

0 = (Gb; b). Let copt f be the num-

ber of requests from �f accepted by the optimal o�-line algorithm. Similarly, let copt:f be

the number of requests from �:f accepted by the optimal o�-line algorithm. By de�nition,

Po(�) = copt f + copt:f . Let calg be the number of requests accepted by our AG algorithm. By

de�nition, P (�; �) = calg.

77



Lemma 4.3.2

calg � copt:f
2d+ 1

:

Proof. Since all requests have the same bandwidth requirement, we can de�ne for each link

e a number ke which represents the maximum number of requests that can use link e without

violating the capacity constraints. (ke = br=b(e)c, where r is the bandwidth requirement of

each request.)

Let E0 be the set of access links on which AG routes ke requests for request sequence � and

result sequence �. Since each request uses at most 2d access links, calg � 1
2d

P
e2E0 ke. Let

R be the set of requests in �:f that are rejected by AG and accepted by the optimal o�-line

algorithm. Consider a request in R. Since the AG algorithm uses greedy admission control

for the access networks there must exists some access network link e on the path used by the

optimal o�-line algorithm such that AG routes ke requests on link e. Thus, every request in R

must use a link in E0. Since the optimal o�-line algorithm must meet the capacity constraints,

it must be the case that jRj � P
e2E0 ke. Using the fact that calg � 1

2d

P
e2E0 ke, we conclude

that 2d(calg) � jRj.
By de�nition jRj+ calg � copt:f . Therefore, (2d+ 1)calg � copt:f . The lemma follows.

Lemma 4.3.3

calg � Po(�f;G
b

)

K

Proof. The request sequence �f;G
b

is a request sequence for the admission control and routing

problem for graph Gb, where the bandwidth of each request is the same. The lemma now follows

directly from the facts that the request sequence �f;G
b

is o�ered to the AGb algorithm, that the

AGb algorithm has a competitive ratio of K; and that calg includes all of the backbone requests

accepted by AG.

Lemma 4.3.4

copt f � Po(�
f;Gb

):

Proof. Consider the routing decisions made by the optimal o�-line algorithm for the requests

in �f . Since Gb is connected and there is no simple path between two di�erent nodes in Gb

that uses the access networks, the admission control and routing decisions made for �f can be

used for �f;G
b

.
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Lemma 4.3.5
Po(�)

P (�; �)
� O(log logn):

Proof.

Po(�) = copt:f + copt f

� (2d+ 1)(calg) + Po(�
f;Gb

) (by Lemmas 4.3.2 and 4.3.4)

� (2d+ 1)(calg) +K(calg) (by Lemma 4.3.3)

= O(d+K)P (�; �):

We summarize the results of this section in the following Theorem.

Theorem 4.3.6 Consider the admission control and routing problem P on a hierarchical back-

bone network G where the bandwidth requirement of each request is the same. Decompose G

into backbone network Gb and access networks Ga
i such that the number of links in the longest

simple path in any access network is at most d. Let AGb achieve a competitive ratio of K for the

admission control and routing problem on Gb when the bandwidth requirement of each request

is the same. Then, AG achieves a competitive ratio, CP;P (AG), of O(d+ k).

Proof. The theorem follows directly from Lemma 4.3.5.

4.3.3 Applications and Extensions

The O(d + K) competitive ratio of Theorem 4.3.6 applies to hierarchical backbone networks

where the number of links in the longest simple path in any access network is at most d. Theo-

rem 4.3.6 can be generalized as follows. Consider the admission control and routing problem for

any hierarchical backbone network. Now restrict the problem so that any request may not use

any path that includes a total of more than d links in any given access network. Then, the AG

algorithm also achieves a O(d+K) competitive ratio. The proof proceeds exactly as the proof

for Theorem 4.3.6. This generalization means that the topological restrictions in Theorem 4.3.6

can be replaced by path length restrictions in the actual admission control and routing problem.

The AG algorithm can be used to extend the admission control and routing algorithm of

[AAP93] to networks where some regions of the network do not meet the bandwidth restrictions

imposed by [AAP93]. In particular, consider some hierarchical backbone network G that can
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be decomposed into a backbone network Gb that meets the bandwidth restrictions of [AAP93]

and several access networks Ga
i that may not meet the bandwidth restrictions of [AAP93]. Let

n be the number of links in the longest simple path in Gb and let d be the number of links in

the longest simple path in any Ga
i . (Alternatively, we could restrict the problem so that any

request may not use any path that includes a total of more than d links in any given access

network.) Then Theorem 4.2.2 and Theorem 4.3.6 imply that AG can achieve a competitive

ratio of O(d+logn) for the admission control and routing problem on G. We use this approach

for the fat-tree algorithm in Section 4.4.

4.4 Fat-Trees

This section presents our algorithm for admission control and routing on the unit bandwidth

size n fat-tree. The structure of the size n fat-tree is explained in Section 3.5. Our non-greedy

algorithm achieves a competitive ratio of O(log logn). Thus, our algorithm matches the lower

bound in Lemma 3.5.4. Since the lower bound for any greedy admission control algorithm is


(logn) (cf. Lemma 3.5.4), we conclude that non-greedy admission control leads to better

performance for fat-trees. The performance function used in this section measures the number

of accepted virtual circuit requests

4.4.1 Algorithm

Restrictions: Since we consider the unit bandwidth size n fat-tree, the bandwidth of each

request is restricted to be 1.

Our algorithm is based on our approach to hierarchical backbone networks. In particular, a

fat-tree can be seen as a hierarchical backbone network. Let T be the size n fat-tree. De�ne the

access networks to be the 22 logn�8 log log logn subtrees rooted at the nodes of height 8 log log logn.

De�ne the backbone network to be the network consisting of the nodes with height 8 log log log n

and above.

Description: We consider two cases: n < 16 and n � 16. When n < 16 we use greedy

admission control. For n � 16, we use the algorithm in Figure 4-2, where the iaap algorithm

takes the place of the AGb algorithm. We call our algorithm fattree.
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4.4.2 Analysis

We �rst consider the case where n � 16.

Lemma 4.4.1 Let n < 16. For the admission control and routing problem P on a unit

bandwidth size n fat-tree, the fattree algorithm has a competitive ratio, CP;P (fattree), of
O(log logn).

Proof. When n < 16 a greedy admission control algorithm trivially leads to a constant

competitive ratio. In particular, any request accepted by the greedy algorithm can block at

most 16 of the requests accepted by the optimal o�-line algorithm.

Now consider the general case. The analysis of the general case relies primarily on Theo-

rem 4.3.6.

Theorem 4.4.2 For the admission control and routing problem P on a unit bandwidth size n

fat-tree, the fattree algorithm has a competitive ratio, CP;P (fattree), of O(log log n).

Proof. We consider two case: n < 16 and n � 16. Lemma 4.4.1 proves the theorem for n < 16.

Next consider n � 16.

Since we are using the unit bandwidth version of the admission control and routing problem,

each request has a bandwidth requirement of 1. Furthermore, fattree divides the size n fat-

tree into backbone network Gb and access networks Ga
i such that the number of links in the

longest simple path of any access network is at most 16 log log log n.

The capacity of the lowest capacity link in Gb is (log logn)4. Furthermore, the length of

the longest simple path in Gb is less than 2 log log n and the capacity of each request is 1. Now

(log logn)4

log(2 logn+1)
� 1 when n � 16. Now, Theorem 4.2.2 implies that the iaap algorithm achieves

a competitive ratio of O(log logn) for the admission control and routing problem on Gb, when

the bandwidth of each request is restricted to be 1.

Now, by Theorem 4.3.6, we see that the fattree algorithm has a competitive ratio of

O(log logn+log log logn) for the admission control and routing problem P on a unit bandwidth

size n fat-tree. The theorem follows.
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4.5 Trees

This section presents our algorithm for the unit capacity admission control and routing prob-

lem on trees. Our randomized non-greedy algorithm achieves an oblivious competitive ratio

of O(log d) for any tree of diameter d. Thus, our algorithm matches the lower bound in

Lemma 3.3.3. We note, from Proposition 3.3.6 and Lemma 3.3.3, that the lower bound for

any greedy or deterministic admission control algorithm on diameter d unit capacity trees is


(d).

4.5.1 Preliminaries

Consider a tree T consisting of more than one link. We distinguish an arbitrary non-leaf node

r of T and call it the root of T . This induces, for every vertex v 6= r a unique parent, which

we denote by par(v). Consider a pair u; v of leaf nodes. Denote their least common ancestor

in the rooted tree by lca(u; v). Denote by p(u; v) the unique simple path connecting u and v.

Consider a node pair u; v such that node u is to the \left" of node v in a pictorial representation

of the tree. In this case, we refer to u as the left node and v as the right node. Denote by

tl(u; v) the top left link of p(u; v), i.e., the �rst link on the path p(lca(u; v); u). Similarly,

denote by tr(u; v) the top right link of p(u; v), i.e., the �rst link on the path p(lca(u; v); v).

Let p and p0 be two paths in T . We say that p and p0 intersect if they share a link.

For simplicity we describe the randomized on-line algorithm of this section as making ran-

dom choices on a per request basis rather than choosing initially from among a set of determin-

istic algorithms. It is straightforward to translate the description of the algorithms used in this

section to the formal model in Chapter 2. In particular, we can imagine the algorithm making

all its random choices just before the �rst request arrives. By making all its random choices,

the algorithm is e�ectively choosing a deterministic algorithm. Then, whenever the algorithm

needs to make a random decision, it uses one of the previously made \random" choices to deter-

mine that decision. For example, consider an algorithm that must ip a random coin for each

request. One can think of the algorithm as ipping many random coins before the �rst request

and storing the results of those ips. Whenever it needs to ip a random coin for a request,

it simply uses one of the stored results that it has not used before. Note that the strategy for

choosing one of the unused stored results must be deterministic.
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4.5.2 Algorithm

Restrictions: We describe our algorithm, called tree, and prove the competitive ratio of our

algorithm for a restricted version of the unit capacity admission control and routing problem

on trees. In particular, we assume that the sources and destinations for all requests are leaf

nodes. In Section 4.5.4 we will show how to extend our algorithm and the competitive analysis

to the general case where the sources and destinations need not be leaf nodes.

Consider any request sequence �. Let �0 = (T; b) be the �rst request. If T consists of a

single link, then our algorithm accepts the �rst request.

Lemma 4.5.1 When T consists of a single link, the tree algorithm has a competitive ratio of

1.

Proof. The tree algorithm accepts the �rst request. The optimal o�-line algorithm accepts

at most one request. As a result, we achieve a competitive ratio of 1.

For the remaining discussion we assume that T contains more than one link.

Let �i = (si; di; 1) be a request for i > 0. Each such request is associated with a unique

path, p(�i) in T . To simplify the discussion, assume that for any request �i = (si; di; 1) node

si is to the \left" of node di in a pictorial representation of the tree. (The assumption can be

made without loss of generality since the tree is undirected.) Let S be a set of requests from

�. Then <S; p(�i)> is the set of requests �j 2 S such that p(�j) intersects p(�i). Since we are

considering the unit capacity version of the admission control and routing problem, the third

term of any request is 1. Thus, in this section, we will denote a request simply by �i = (si; di).

To describe the tree algorithm, we introduce the concepts of a roadblock and a special

roadblock. In response to a request, our algorithm may place roadblocks and special roadblocks

on links of the tree. The existence of a roadblock or a special roadblock on a link blocks future

requests whose paths use that link, and causes them to be rejected. The current state of the

network is described by the ui(e) function, which describes the state of the links just before the

ith request is handled. A link can be in one of four states. If ui(e) = full the link is being used

by a previously accepted request. If ui(e) = bk the link has a roadblock. If ui(e) = sbk the link

has a special roadblock. Finally, if ui(e) = avail the link is available.
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tree(si; di):
if u(e) = avail for all e 2 p(si; di) then

C = C � <C; p(si; di)>�S�j2Si
tok�1(�j; seg(�j; �i));

if rand(0; 1) == 0 then route the requested virtual circuit on p(si; di), and set:
for all e 2 p(si; di), u(e) = full ;

else reject the requested virtual circuit.
`i = rand(1; logd);
number links in p(si; di) from 1 to jp(si; di)j starting with (si; par(si));
for all j 2 (0; d=2`i); u(ej2`i) = bk ;
u(e) = sbk if e 2 tl(�i) [ tr(�i);
C = C [ f�j j tok(�j) = (�i; z) for some zg;
C = C � sp(�i);

else reject the requested virtual circuit.

Figure 4-3: The admission control algorithm for diameter d trees.

Description: Consider a particular virtual circuit request �i = (si; di). If all links e in the

path p(si; di) are available, i.e., ui(e) = avail , then �i is considered a candidate. Otherwise, �i is

rejected. If the request becomes a candidate, accept it with probability 1=2. Otherwise, reject it

and place roadblocks as follows. Pick a random integer `i uniformly in [1; logd], where d is the

diameter of tree T . Consider the path p(si; di). Number the links along the path from si to di

with 1, 2, : : : . Place a roadblock on links numbered j2`i for all 0 < j < d=2`i . The roadblocks

partition p(si; di) into segments of equal length (except, perhaps, for the last segment). Also,

place special roadblocks on the links tl(�i) and tr(�i). The code for our algorithm is given in

Figure 4-3. The code enclosed in boxes is accounting code. It does not inuence the admission

control decisions of the algorithm. Rather, it is used for the competitive analysis. We will

explain the notation used for the accounting code in Section 4.5.3. The function rand(x; y)

picks a random number uniformly in [x; y].

The design of the tree algorithm is based on the following considerations. Consider a greedy

admission control strategy on a diameter d tree. Let the �rst virtual circuit request, �1, to such

a strategy be a request, such that the path p(�1) has length d. A greedy admission control

strategy would accept this request. If this initial request is followed by d requests between all of

the neighboring nodes along the path p(�1), the greedy algorithm exhibits a competitive ratio

of 
(d). To avoid this problem non-greedy admission control is needed. However, if the request
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�1 is rejected with certainty by a non-greedy admission control algorithm, the competitive

ratio is again poor. In fact it is 1=�. Just consider the request sequence consisting of only

the request �1. Thus, the initial request �1 must be accepted probabilistically. (The tree

algorithm accepts it with probability 1=2.) However, a non-greedy algorithm that accepts each

long request, such as �1, independently with some probability q will still not exhibit a good

competitive ratio. Consider a request sequence � that repeats the request �1 so often that the

algorithm that accepts each long request with probability q will accept one of the long requests

in � with high probability. Now extend � with d requests between all of the neighboring nodes

along the path p(�1). Thus, we again have a competitive ratio of 
(d). The roadblocks avoid

this problem. Once the �rst long request is rejected, the roadblocks ensure that no request that

shares su�ciently many of its links with the rejected request will ever be accepted.

This discussion explains the reason for using roadblocks, but does not provide a justi�cation

for the special roadblocks. The justi�cation for the special roadblocks is tied closely to the

analysis. Hence we give this justi�cation in Section 4.5.3.

4.5.3 Analysis

Before presenting the details of the analysis, we give an overview. The analysis is anchored

around a bookkeeping device called a token. We de�ne a token formally later in this section. For

now, just think of a token as an arbitrary object that one request can assign to another request.

The assignment of tokens does not a�ect the admission control decisions of the algorithm. Let

C0 be the requests accepted by the optimal o�-line algorithm for request sequence �. (C0 is the

initial value of the accounting variable C.) Throughout an execution of the tree algorithm,

tokens are assigned to requests in C0. For any request sequence �, our analysis will show two

things.

1. The expected number of requests in C0 that receive a token is at least 1
2(logd)

times the

expected number of requests in C0 that are not candidates.

2. The number of candidate requests is at least 1=7 times the number of requests in C0 that

receive tokens.
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Thus, the expected number of candidates is at least 1
O(log d) times the number of requests in

C0. We will use this fact, combined with the fact that each candidate request is accepted with

probability 1=2, to show that the expected number of accepted requests is at least 1
O(log d)

times

the number of requests in C0. The O(log d) oblivious competitive ratio will then follow.

To describe why the expected number of requests in C0 that receive a token is at least
1

2(logd)

times the expected number of requests in C0 that are not candidates we given an informal

description of how tokens are assigned. (The formal description is presented with the actual

proof.) Let �j be a request in C0 that is not a candidate. Then there must exist a candidate

request that is handled before �j and whose path overlaps the path of �j. Let �i be the �rst

such request to be handled. Then �i might assign a token to �j. If �i is rejected and `i is the

random number picked by �i to space its roadblocks, �i places roadblocks on every 2`i links of

its path. The roadblocks break the path of �i into segments. If the path of �j intersects the

middle link of some segment, but does not intersect any link on which �i places a roadblock,

�j receives a token from �i.

For any candidate request, there are log d possible spacings for the roadblocks. The densest

spacing places a roadblock on every second link. The next spacing places a roadblock on every

fourth link, etc. Finally, the least dense spacing places no roadblocks. Therefore, for any pair

of requests �j and �i whose paths intersect, there can only be one spacing of roadblocks on the

path of request �i such that the path of �j intersects the middle link of some segment, but does

not intersect any link on which �i places a roadblock. Since each possible spacing is selected

with probability 1= logd, a request �j in C0 that is not a candidate receives a token from �i with

probability 1= logd if request �i is rejected, �i is the �rst of the candidates that are handled

before �j , and the path of �i intersects the path of �j . Now the fact that the candidate �i is

rejected with probability 1=2 leads to the conclusion that the expected number of requests in

C0 that receive a token is at least 1
2(logd)

times the expected number of requests in C0 that are

not candidates.

The most di�cult step in the proof is showing that the number of candidate requests is at

least 1=7 times the number of requests in C0 that receive tokens. A straightforward approach

to this step would be to prove that, for each execution of the tree algorithm, the path of every

candidate intersects the path of at most 7 requests in C0 that receive tokens. Unfortunately,
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this is not true in general. However, if the path of a candidate intersects the paths of more

than 7 requests in C0 that receive tokens, then the paths of other candidates also intersect the

paths of the requests with tokens. This suggests an amortized argument.

Our amortized argument is structured around subsets of C0. In particular, the set Ci is a

subset of C0 that consists of requests that are still feasible just before request �i is handled. In

other words, the requests in Ci are all handled after �i�1 and their paths have not been blocked

by previous requests, roadblocks, or special roadblocks. (Ci is the value of the accounting

variable C just before request �i is handled. We give a formal de�nition of Ci when we present

the actual proof.) Initially, all requests in C0 are feasible so, C1 = C0. In constructing Ci+1

from Ci, candidate request �i removes from Ci all requests whose paths intersect the path of �i.

Furthermore, �i returns to Ci the requests from C0 to which it assigns tokens. (Every request

in C0 can receive a token from only one candidate request.) Finally, requests whose paths are

blocked by special roadblocks are removed from Ci. Our amortized argument now proceeds by

showing the following for each execution of the tree algorithm. We show that each candidate

removes at most 7 requests with tokens from Ci while constructing Ci+1. Furthermore, we show

that every request that receives a token, say from �i, is added to Ci in the construction of Ci+1.

Finally, if �k�1 is the last request in the request sequence, we show that Ck = ;. Therefore,

since for every execution of the tree algorithm, every request that receives a token is added

to Ci for some i, every candidate request �i removes at most 7 requests with tokens from Ci

while constructing Ci+1, and Ck = ; when �k�1 is the last request in the request sequence, we

will be able to conclude that in every execution, the number of candidate requests is at least

1=7 the number of requests in C0 that receive tokens.

Now we can explain the need for the special roadblocks. In particular, the special roadblocks

are needed to show the fact that each candidate �i removes at most 7 requests with tokens from

Ci while constructing Ci+1. Without the special roadblocks, there can be situations where �i

removes more than 7 requests with tokens from Ci while constructing Ci+1. For example,

consider Figure 4-4. Assume for the moment that the tree algorithm does not use special

roadblocks. Figure 4-4 shows the paths for the requests from the sequence �1 : : : �2n+1. Let

C0 consist of the n requests �n+2 : : : �2n+1. Assume that each request �i for i 2 [1; n] assigns

a token to �i+n+1. Thus, Cn+1 consists of the n requests �i+n+1 for i 2 [1; n] that have been
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assigned tokens. Assume further that �n+1 is a candidate. In other words, the requests �1 : : :�n

do not place any roadblocks on the path of �n+1. When constructing Cn+2 from Cn+1, request

�n+1 must remove from Cn+1 the requests whose paths intersect its path. Thus, if n > 7,

request �n+1 is a candidate that removes more than 7 requests with tokens from Cn+1 while

constructing Cn+2. However, recall that we want to prove that each candidate �i removes at

most 7 requests with tokens from Ci while constructing Ci+1. Towards this end, the special

roadblocks are used to avoid the situation described in Figure 4-4. In particular, the special

roadblocks that are placed by the requests �1 : : : �n�1 ensure that the request �n+1 cannot be

a candidate. In fact, the special roadblocks ensure that for every candidate �i the requests in

Ci that have tokens and that are removed by �i must have received the tokens from a request

whose path overlaps the top left hand link or top right hand link of the path of �i. (The request

�n in Figure 4-4 is an example of such a request.) With this fact, we will be able to show that

each candidate �i removes at most 7 requests with tokens from Ci while constructing Ci+1.

sn+1

sn+2

sn+3

dn+3

s2n+1

d2n+1

dn+2

dn+1

dn

sn

d2

s2
d1

s1

Figure 4-4: A situation where the special roadblocks are needed to ensure that each candidate
�i removes at most 7 requests with tokens from Ci while constructing Ci+1.

Consider any execution of the tree algorithm for request sequence � = �0�1 : : :�j�j�1. Let

� be the result sequence. We now start the formal proof with several de�nitions.

C0: The set of requests accepted by the optimal o�-line algorithm. We call these requests the

optimal requests. (Note that Po(�) = jC0j). C0 is the initial value of the accounting variable C.
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Cc: The set of requests that are candidates in the execution of tree.

Cf : The set of requests that are free in the execution of tree. A request �i is free if �i 2 C0

and if there exists no candidate request �j 2 Cc such that j < i and p(�j) intersects p(�i). The

�rst condition states that the request is an optimal request. The second condition ensures that

the request is a candidate before any request with an intersecting path is a candidate.

C:f : The set of requests that are non-free in the execution of tree. A request �i is non-free

if �i 2 C0 and �i 62 Cf

Based on the de�nitions of Cf and C:f it is easy to see that Cf [C:f = C0. Furthermore,

Cf and C:f are disjoint.

Fact 4.5.2 C0 = Cf [ C:f .

Next, we describe how tokens are distributed in the execution of tree. The description requires

some additional notation.

level(�j ; �i): Consider two requests �j and �i such that p(�j) and p(�i) intersect. Number the

links in p(�j) from 1 to jp(�j)j starting with (sj; par(sj)). Let L` be the set of links numbered

k2` for all k 2 (0; d=2`), where d is the diameter of the tree. The request �i has level ` with

respect to request �j, i.e., level(�j; �i) = `, if p(�i) includes no link in L` but does include a

link in L`�1. Informally, the request �i is not blocked by roadblocks spaced every 2` links on

the path of �j , but is blocked by roadblocks spaced every 2`�1 links. (See code in Figure 4-3.)

seg(�j ; �i): Consider requests �j; �i such that �j 2 Cc, j < i, �j = ? and p(�j) intersects

p(�i). Let `j be the random number picked by �j to determine the spacing of the roadblocks

on p(�j). Then, assume that level(�j; �i) � `j . In other words, �j is a candidate, �j is handled

before request �i, request �j is rejected, the paths for the requests intersect, and �j does not

place any roadblock on the path p(�i). Number the segments created by the roadblocks on

p(�j) starting with the segment that includes sj as segment number 1. Now seg(�j ; �i) is the

number of the segment in which p(�i) and p(�j) intersect. This segment number is uniquely

de�ned because �i does not include any of the links on which �j places roadblocks.

�rst(�j): Let �j 2 C:f . Then the set H = f�i j i < j; �i 2 Cc, p(�i) intersects p(�j)g is

non-empty. In other words, H contains all candidate requests that are handled before �j and

whose paths intersects the path of �j. Let �rst(�j) = �i if �i 2 H and i � k for all �k 2 H . In
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other words, �rst(�j) is the �rst candidate request that is handled before �j and whose path

intersects the path of �j.

Tokens are distributed by candidate requests to optimal requests. In particular, let �i be

a candidate request that is rejected. I.e., �i 2 Cc and �i = ?. In this case, �i may distribute

tokens to some of the optimal requests �j for which �rst(�j) = �i. Thus, any optimal request

can receive a token from at most one candidate request. Whether or not an optimal request

receives a token is indicated by the function tok .

tok(�j): Let �j be an optimal request such that �j 2 C:f . Let �i be a candidate request such

that �i = �rst(�j) and such that �i = ?. Let `i be the random number picked by �i to space

its roadblocks. The optimal request �j receives a token from request �i in segment number z i�

level(�i; �j) = `i, and seg(�i; �j) = z. We denote the fact that �j receives a token from request

�i in segment number z by setting tok(�j) = (�i; z). Conversely, we denote the fact that �j

does not receive a token in the execution of tree by tok(�j) = ?.
We now show that, for any request �i and segment number z, there exists at most one

optimal request �j such that tok (�j) = (�i; z). Consider segment z = seg(�i; �j). Since

level(�i; �j) = `i, where `i is the random number picked by �i to determine the spacing of the

roadblocks, the path p(�j) does not include the links with roadblocks that form the boundary

of segment z. However, the fact that level(�i; �j) = `i implies that p(�j) would intersect a link

with a roadblock if �i had spaced the roadblocks half as many links apart. Thus, p(�j) must

include the middle link of segment z. The capacity constraint implies that there can be at most

one optimal request that intersects any particular link. As a result, there can be at most one

optimal request whose path includes the middle link of segment z.

Finally, we note that the optimal request �j can be in one of two states after request �i

is handled. Either it is still feasible, i.e., ui+1(e) = avail for all links e on path p(�j), or it is

blocked by a special roadblock, i.e., there exists a link e on path p(�j) such that ui+1(e) = sbk .

We prove this fact in the following lemma.

Lemma 4.5.3 If tok(�j) = (�i; z) then for all links e in p(�j), ui+1(e) = avail or ui+1(e) = sbk.

Proof. Since �i = �rst(�j), �i is the �rst candidate request such that the path p(�i) intersects

the path p(�j). Thus, ui(e) = avail for all links e in p(�j). If tok(�j) = (�i; z), then �i = ?.
Thus, the only way for ui+1(e) 6= avail and ui+1(e) 6= sbk for some link e in p(�j) is by a
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roadblock placed by �i. However, since tok(�j) = (�i; z), it is the case that level(�i; �j) = `i.

Therefore, �i places no roadblock on the path p(�j).

tok�1(�i; z): Let tok(�j) = (�i; z). Then tok�1(�i; z) = f�jg. If there exists no request

�j such that tok(�j) = (�i; z) then tok�1(�i; z) = ;. The function tok�1 provides a way to

determine to which optimal request, if any, a request �i gave a token in segment number z.

From our discussion of the function tok we conclude that jtok�1(�i; z)j � 1 for all �i and z.

Ct: The set of requests �j for which tok(�j) 6= ?. In other words, the set of optimal requests

that receive tokens.

Let S be any subset of C0. Then, tok(S) = f�i j �i 2 S; tok(�i) 6= ?g. To describe the

accounting code in Figure 4-3 that modi�es C we need to de�ne two more sets (Si and sp(�i)).

Si: Let �i 2 Cc. Then, Si = f�j j j < i; �j 2 Cc; �i = ?; p(�j) intersects p(�i)g: In other

words, for any request �i that is a candidate, Si is the set of all previously rejected candidate

requests whose paths intersect the path of �i.

sp(�i): The set of optimal requests whose paths include the links tl(�i) and tr(�i). The

capacity constraint implies that the set sp(�i) has cardinality of at most two.

Ci: A subset of C0. Each request �j 2 Ci is feasible just before request �i is handled in the

sense that j � i and, for all the links e in the path of �j , ui(e) = avail . (See Lemma 4.5.4.)

Ci is de�ned by the accounting code of Figure 4-3. We now explain that code. Since the �rst

request just gives the topology, C1 = C0. So, consider Ci for i > 1. If the request �i is a not

a candidate, then Ci+1 = Ci. If �i is a candidate, then we remove from Ci all of the requests

in Ci whose paths intersect the path p(�i). Furthermore, for any previously rejected candidate

�j for which p(�i) and p(�j) intersect, consider the segment of p(�j) in which the intersection

occurs. This segment is given by seg(�j; �i). If there is an optimal request in Ci that has a token

(�j; seg(�j ; �i)) associated with it, i.e., it received the token from �j in segment seg(�j; �i), we

remove the optimal request from Ci. Such a request is denoted by tok�1(�j; seg(�j; �i)). We

provide an example of such a request in Figure 4-5. Finally, we make some additional changes to

Ci+1. In particular, we add the requests that received tokens from �i and remove any requests

that are blocked by special roadblocks placed by �i.

Lemma 4.5.4 Consider request sequence �0 : : : �k�1. Then, Ck = ;.

Proof. The proof proceeds by showing that all requests in Ci are feasible.
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special roadblocks

si

di

sk
dk

dj

sj
seg(�j; �i)

roadblocks

Figure 4-5: A set of requests �i, �j , and �k such that �k = tok�1(�j ; seg(�j; �i)). The segment
seg(�j; �i) is demarcated by the two roadblocks shown in the �gure.

We proceed by induction. First consider the base case. All requests in C0 = C1 are feasible

since C0 consists of the optimal requests. For the inductive step assume that all requests in Ci

are feasible for i � 1. We remove all optimal requests from Ci whose paths intersect the path

p(�i). (Note, we also remove �i if it is an element of Ci.) Furthermore, we only return to Ci

optimal requests �j for which tok(�j) = (�i; z) for some z. By Lemma 4.5.3, for all optimal

requests �j for which tok (�j) = (�i; z) for some z, ui+1(e) = avail or ui+1(e) = sbk for all links

e in p(�j). The optimal requests for which ui+1(e) = sbk for some link e are removed from Ci.

(See the code in Figure 4-3.) Thus, only the requests �j where ui+1(e) = avail for all links e in

p(�j) remain in Ci. By de�nition, these requests are still feasible.

The following lemma bounds the number of requests in Ci

T�S
�j2Si tok

�1(�j; seg(�j; �i))
�
.

(This is a subset of the requests removed from Ci by candidate request �i.)

Lemma 4.5.5 Consider any execution of the tree algorithm for request sequence �0 : : :�k�1.

Then, for all 0 < i < k such that �i 2 Cc,

������Ci

\0
@ [
�j2Si

tok�1(�j; seg(�j; �i))

1
A
������ � 2:

Proof. When Si = ;, the lemma is vacuously true. So, consider the case Si 6= ;. Let

x = lca(si; di). We divide Si into two sets, Sl
i and Sr

i . The set S
l
i includes any �j 2 Si such
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that its path intersects the left path of �i, i.e., it intersects p(si; x). Similarly, the set S
r
i includes

any �j 2 Si such that its path intersects the right path of �i, i.e., it intersects p(x; di). First

consider the case where Sl
i 6= ;.

Consider any �j 2 Sl
i. Due to the special roadblocks, it must be the case that p(�j) includes

the top left link, tl(�i), of p(�i). (See Figure 4-4.)

Let �l be the highest index request in Sl
i. Since the path of each request in Sl

i includes the

link tl(�i), it must be the case that the paths of the requests in Sl
i also intersect the path of

�l. Furthermore, they must intersect in the same segment. Speci�cally,

Sl
i � Sl [ f�lg;

seg(�j ; �i) = seg(�j; �l) for all �j 2 Sl
i � f�lg:

As a consequence,

[
�j2Sli

tok�1(�j; seg(�j ; �i)) �
[

�j2Sl

tok�1(�j ; seg(�j; �l))[ tok�1(�l; seg(�l; �i)):

The requests in
S
�j2Sl

tok�1(�j ; seg(�j; �l)) are already removed from Cl by request �l. Fur-

thermore, we show that requests in
S
�j2Sl tok

�1(�j; seg(�j ; �l)), once removed from Cl, cannot

appear in Cx for any x > l. In particular, consider request �y 2 S�j2Sl
tok�1(�j; seg(�j; �l)).

Then, by de�nition, there exists �j 2 Sl such that tok(�y) = (�j; seg(�j; �l)). In other words,

�y receives its token from �j . By inspection of the accounting code, �y can only be added to the

set C by the request �j. However, by de�nition of Sl, request �j is handled before �l, i.e., j < l.

Thus, once removed from Cl, �y cannot appear in Cx for any x > l. Now we can conclude that

Ci

\0
@ [
�j2Sl

tok�1(�j ; seg(�j; �l))

1
A = ;:

Thus, the only request that must be removed by �i is the request tok
�1(�l; seg(�l; �i)) added

by �l. Since jtok�1(�l; seg(�l; �i))j � 1,������Ci

\0
@ [
�j2Sli

tok�1(�j; seg(�j; �i))

1
A
������ � 1:

Now consider the case where Sr
i 6= ;. Exactly the same analysis as for the case where Sl

i 6= ;
shows that������Ci

\0
@ [
�j2Sri

tok�1(�j ; seg(�j; �i))

1
A
������ � 1:
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The lemma now follows from the fact that Si � Sl
i [ Sr

i .

The next lemma states that the total number of requests currently associated with tokens

that are removed by �i from Ci is at most 7.

Lemma 4.5.6 Consider any execution of the tree algorithm for request sequence �0 : : :�k�1.

Then, for all 0 < i < k such that �i 2 Cc,

������Ci

\0
@tok(<Ci; p(�i)>) [ tok(sp(�i))

[
�j2Si

tok�1(�j; seg(�j; �i))

1
A
������ � 7

.

Proof. By Lemma 4.5.5,

������Ci

\0
@ [
�j2Si

tok�1(�j; seg(�j; �i))

1
A
������ � 2:(4.1)

Furthermore, the set sp(�i) has cardinality at most two. Therefore,

jtok(sp(�i))j � 2:(4.2)

Thus, we are left to consider tok(<Ci; p(�i)>). Let x = lca(si; di). We split tok(<Ci; p(�i)>)

into two sets, Cr
i and Cl

i. The set Cl
i includes any �j 2 tok(<Ci; p(�i)>) � f�ig such that

p(�j) intersects the left path of �i, i.e., it intersects p(si; x). Similarly, the set Cr
i includes any

�j 2 tok(<Ci; p(�i)>) � f�ig such that p(�j) intersects the right path of �i, i.e., it intersects

p(x; di). First consider the case where C
l
i 6= ;.

Let �l be the request in C
l
i that, of all the requests in C

l
i, intersects p(si; x) at the link closest

to si. We consider two cases: p(�l) includes the top left link, tl(�i), of p(�i) and p(�l) does not

include tl(�i). First consider the case where p(�l) includes tl(�i). Since �l is the request that

intersects p(si; x) at the link closest to si and since �l includes tl(�i), the path of any other

request in Cl
i must intersect the path of �l. Now, since �l is a request accepted by the optimal

o�-line algorithm, the capacity constraint implies that no other request accepted by the optimal

o�-line algorithm intersects p(si; x). Hence, jCl
ij = 1. Now consider the case where p(�l) does

not include tl(�i). Let tok(�l) = (�j; z). Since �i is a candidate, �l can still be a candidate,

and �j placed special roadblocks, it must be the case that p(�j) intersects p(si; x). Thus, �j is
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included in Si. We now show that �l is already accounted for in Equation 4.1 by showing that

tok(�l) = (�j; seg(�j; �i)). Since �i is a candidate, the links in which p(�i) and p(�j) intersect

must be entirely within the segment seg(�j; �i). Since tok(�l) = (�j; z), the paths p(�l) and

p(�j) intersect. Now, since p(�l), p(�j), and p(�i) all intersect each other, the geometry of the

tree implies that there exists a link used by all three paths. Therefore, since p(�i) and p(�j)

intersect entirely within the segment seg(�j; �i), the intersection between p(�j) and p(�l) must

also use a link in segment seg(�j; �i). Now we can conclude that tok(�l) = (�j ; seg(�j; �i)).

As a result, �l is already accounted for in Equation 4.1. The same argument holds for every

request in Cl
i whose path does not include tl(�i); in other words, every request in Cl

i that does

not include tl(�i) is already accounted for by Equation 4.1. Thus, we are left with requests

whose paths include tl(�i). However, the capacity constraint implies that there can only be

one such request. Therefore, we conclude that

������Cl
i �

[
�j2Si

tok�1(�j; seg(�j ; �i))

������ � 1:(4.3)

Now consider the case where Cr
i 6= ;. Exactly the same analysis as for the case where Cl

i 6= ;
shows that������Cr

i �
[

�j2Si

tok�1(�j; seg(�j; �i))

������ � 1:(4.4)

Combining Equations 4.3 and 4.4 with the fact that tok(<Ci; p(�i)>) � Cl
i [Cr

i [ f�ig, we get������tok(<Ci; p(�i)>)�
[

�j2Si

tok�1(�j; seg(�j; �i))

������ � 3:(4.5)

The lemma now follows from Equations 4.1, 4.2 and 4.5.

To proceed with the complexity analysis of the algorithm, we introduce some random vari-

ables. Let ccand = jCcj, ctoken = jCtj, cfree = jCf j and cnfree = jC:f j.

Lemma 4.5.7 Consider request sequence �0 : : : �k�1. Then, ccand � 1
7
ctoken.

Proof. Consider any execution of the tree algorithm where for some �j, �i, and z, tok(�j) =

(�i; z). From the code in Figure 4-3 we see that �j is returned to Ci in the construction of
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Ci+1. By Lemma 4.5.4, Ck = ;. Thus, �j must be removed from Cx by some candidate request

�x. (If �j is removed due to a special roadblock then x = i.) However, by Lemma 4.5.6, each

candidate �x removes at most 7 requests with tokens from Cx.

E[P (�;tree(�))] is the expected number of requests accepted by the tree algorithm.

Lemma 4.5.8 Consider request sequence � = �0 : : :�k�1. Then,

E[P (�;tree(�))] =
1

2
E[ccand]:

Proof. We de�ne the following random variables: xi = 1 if �i is a candidate and xi = 0 if

�i is not a candidate; yi = 1 if �i 6= ? and yi = 0 if �i = ?. Furthermore X =
Pk�1

i=1 xi

and Y =
Pk�1

i=1 yi. By de�nition, ccand = X and P (�;tree(�)) = Y . Since any candidate

request is accepted with independent probability 1=2, Pr[yi = 1 j xi = 1] = 1=2. Since a

request can only be accepted if it is also a candidate, Pr[yi = 1; xi = 1] = Pr[yi = 1]. This

fact, combined with the fact that Pr[yi = 1 j xi = 1] = Pr[yi = 1; xi = 1]=Pr[xi = 1], implies

that Pr[yi = 1] = 1
2
Pr[xi = 1]. Thus, E[Y ] = 1

2
E[X ]. The lemma follows from the fact that

ccand = X and P (�;tree(�)) = Y .

Lemma 4.5.9 Consider request sequence � = �0 : : :�k�1. Then,

E[ctoken + cfree] � Po(�)

2(log d)
:

Proof. Consider the event that �j 2 C:f . Let �i = �rst(�j). With probability 1=2, �i is

rejected and assigns tokens. Let ` = level(�i; �j). With probability 1=(logd), the level `i picked

by �i for the spacing of the roadblocks is equal to `. If ` = `i, then there exists a segment number

z such that tok(�j) = (�i; z). In other words, �j gets token (�i; z). Hence, in the event that

�j 2 C:f , �j 2 Ct with probability 1
2(logd)

. In other words, Pr[�j 2 Ct j �j 2 C:f ] = 1
2(logd)

.

For every execution of the tree algorithm, Ct � C0 , Cf � C0, and Ct\Cf = ;. Therefore,
E[ctoken + cfree] =

P
�j2C0

(Pr[�j 2 Ct] + Pr[�j 2 Cf ]). Since a request must be in C:f to

receive a token, Pr[�j 2 Ct] = Pr[�j 2 Ct; �j 2 C:f ]. Furthermore, Pr[�j 2 Ct; �j 2 C:f ] =

Pr[�j 2 Ct j �j 2 C:f ]Pr[�j 2 C:f ]. Since, Pr[�j 2 Ct j �j 2 C:f ] = 1
2(log d)

, we can

conclude that E[ctoken + cfree] =
P

�j2C0
(Pr[�j2C

:f ]

2(logd)
+ Pr[�j 2 Cf ]). According to Fact 4.5.2,
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C0 = Cf [C:f . Hence, if Pr[�j 2 C:f ] = xj , then Pr[�j 2 Cf ] = 1�xj . Now we can conclude

that

E[ctoken + cfree] �
X
�j2C0

minxj2[0;1]f
xj

2(log d)
+ 1� xjg:

Let f(x) = x
2(logd)

+1� x. Since f 0(x) < 0 and f(1) = 1
2(logd)

, minxj2[0;1]f xj
2(logd)

+1� xjg =
1

2(logd) : Using the fact that jC0j = Po(�) we now conclude that,

E[ctoken + cfree] �
X
�j2C0

minxj2[0;1]f
xj

2(log d)
+ 1� xjg =

X
�j2C0

1

2(logd)
=

Po(�)

2(log d)
:

Theorem 4.5.10 The tree algorithm achieves an oblivious competitive ratio of O(log d) for

the admission control and routing problem on diameter d trees when all request are between

leaves.

Proof. Consider request sequence � = �0 : : : �k�1. By de�nition, ccand � cfree. Combining

this with Lemmas 4.5.7, 4.5.8, and 4.5.9 we get:

E[P (�;tree(�))] =
1

2
E[ccand] � 1

2
max

�
1

7
E[ctoken]; E[cfree]

�

� 1

28
E[ctoken + cfree] � Po(�)

56(logd)
:

4.5.4 General Case

In order to handle requests between interior nodes, we reduce the problem to the special case

of requests between leaves.

Lemma 4.5.11 The tree algorithm achieves an oblivious competitive ratio of O(log d) for the

admission control and routing problem on diameter d trees.

Proof. Let T be a tree of diameter d. We de�ne a new tree T 0 based on T . Initially, let

T 0 = T . We modify T 0 as follows. Let v be a non-leaf node of T . Let fe1; e2; : : : ; ekg be the

set of links adjacent to v. For every link ej in that set, add to T 0 a new leaf vj connected to v.
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Repeat this process for each non-leaf node of T . This modi�cation process does not increase

the diameter of T 0. Thus, the diameter of T is equal to the diameter of T 0. Now consider any

request sequence � for T . We construct a new request sequence �0 as follows. The new request

sequence will use T 0 and include only requests that go between leaf nodes. If �0 = (T; b) then

�00 = (T 0; b0) where b0(e) = 1 for all e 2 T 0. Now consider a request �i = (si; di) for i � 1. We

construct �0i as follows. If si is an interior node for T , and consequently also for T 0, �nd the

link ej in T 0 adjacent to si through which the path of this request must go. Then replace si

in that request by vj. If di is an interior node for T , and consequently also for T 0, replace it

in the same manner we replace si. With this construction the source and destination in �0i are

leaf nodes.

Thus, any request sequence � for T can be transformed into a request sequence �0 for T 0 such

that all requests go between leaf nodes. The lemma now follows directly from Theorem 4.5.10,

the fact that T and T 0 have the same diameter, and the fact that a path determined by tree

for request �0i in T 0 can be used by request �i in T .
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C h a p t e r 5

A Practical Admission Control and

Routing Algorithm

5.1 Introduction

This chapter introduces a new non-greedy admission control and routing algorithm for general

topology networks. We call the algorithm exp. The goal of our algorithm is to maximize the

number of virtual circuit requests that the network accepts. The algorithm is evaluated in the

simulations of Chapter 6.

Our algorithm integrates several di�erent approaches. We use the cost-bene�t framework

developed as part of the admission control algorithm in [AAP93] (cf. Section 4.2). Furthermore,

we extend the techniques developed in the context of reservation-based algorithms [OK85, SD94]

and use these techniques to incorporate the stochastic properties of the o�ered tra�c into the

de�nition of the link costs used in the cost-bene�t framework. It is important to note that the

stochastic properties used by the algorithm do not depend on the network's tra�c pattern.

5.2 Finite Durations

In the admission control and routing problems discussed so far, the virtual circuits have in�nite

duration. In many important applications (cf. Chapter 1), virtual circuits have �nite durations.

To accommodate �nite duration requests, the de�nition of the admission control and routing
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aap(si; di; ri; t
s
i ; t

f
i ):

for all �; e 2 E : c(�; e) = ri(�
u(�;e) � 1);

if there exists a path p in G from si to di such thatZ
tsi���t

f
i

X
e2p

c(�; e) � % and u(�; e) + ri=b(e) < 1 for all e 2 p and � (*)

then route the requested virtual circuit on p, and set:

for all e 2 E; tsi � � � tfi : u(�; e) = u(�; e) + ri
b(e)

if e 2 p;

else reject the requested virtual circuit.

Figure 5-1: The aap admission control algorithm.

problem changes slightly. In particular, requests for the �nite duration admission control and

routing problem provide a starting time and an ending time with each request. The di�erence

between the starting time and the ending time is the duration of the request. The condition

that enforces the capacity constraints in De�nition 2.3.1 needs to be appropriately modi�ed to

account for the �nite duration of the virtual circuits.

In [AAP93], Awerbuch et al. present an algorithm for the �nite duration admission control

and routing problem on general topology networks. We call the algorithm aap. (Section 4.2

presents a special case of the aap algorithm, called iaap.) We present the aap algorithm since

it provides the starting point for our exp algorithm.

The ith virtual circuit request to aap is a �ve-tuple (si; di; ri; tsi ; t
f
i ) consisting of the source

node si, destination node di, bandwidth requirement ri, starting time tsi , and ending time tfi .

For simplicity, we assume that the routing is done at exactly time tsi . The algorithm either

accepts the request, allocating bandwidth ri along an appropriate route, or rejects the request.

The goal of the algorithm is to maximize the total number of accepted requests1. Let ti = tfi �tsi
denote the \holding time" of the circuit. Finally, let tmax denote the maximum possible holding

time, tmain denote the minimum possible holding time, rmax denote the maximum possible

requested bandwidth, and rmin the minimum possible requested bandwidth.

The routing decision is based on current information about the current and future utilization

of the network links. The utilization of link e at time � as seen by the routing algorithm when

1It is easy to modify the algorithm to optimize a general \pro�t" measure, where each routed request brings
a prede�ned pro�t.
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routing the jth circuit is de�ned as follows:

uj(�; e) =
X

1�i<j j�i 6=?;

�2[ts(�i);t
f (�i));e2�i

ri
b(e)

:

Using the utilization, the algorithm computes the exponential cost. The cost of link e at time

� as seen by the routing algorithm when routing the jth circuit is de�ned by

cj(�; e) = rj(�
uj (�;e) � 1);

where � is a parameter. The cost of a path p for request �j is the sum of the link costs, cj(�; e),

for all links e 2 p integrated over the duration of the request. (See Figure 5.2.). If there exists a

path p in the network such that the cost of the path is no greater than %, where % is a parameter,

then the request is accepted along path p. The �nal step of the algorithm is to update the state.

The aap algorithm is shown in Figure 5.2.

Let d be the number of links in the longest simple path in the network. The main result

of [AAP93, Plo95] is that choosing � = 2drmaxtmax=rmin + 1 and % = drmaxtmax guarantees

a competitive ratio of O(log�) = O(log(drmaxtmax=rmin)) when ri is restricted such that ri �
minefb(e)= log�g.

5.3 Algorithm

There are several aspects of the aap algorithm that prevent it from being practical. First,

the aap algorithm deals only with admission control and does not address routing. Second,

it requires a priori speci�cation of the duration for each request. Third, it requires each link

to maintain and distribute large amounts of state information. Finally, the aap algorithm is

optimized for the worst-case situation and does not work well in common situations. Addressing

each of these issues lead us to the exp algorithm, shown in Figure 5-2.

aap is essentially only an admission control algorithm. The only requirement on a chosen

route is that it meets the admission control requirements given in the starred line of Figure 5.2.

Thus, aap would permit choosing the longest path from among those meeting the admission

control requirements. In contrast, exp provides an explicit way to choose a route. Speci�cally,
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exp(si; di; ri):
if there exists a minimum-hop path P in G from si to di s.t.

X
e2P

�u(e) � % and u(e) + ri=b(e) < 1 for all e 2 P

then route the requested virtual circuit on P , and set:
for all e 2 E: u(e) = u(e) + ri

b(e) if e 2 P ;

else reject the requested virtual circuit.

Figure 5-2: The exp admission control and routing algorithm.

exp chooses the minimum-hop path that meets the admission control requirements. We make

no claims about the optimality of this choice, but note the following advantages. A minimum-

hop path uses the fewest physical resources. Furthermore, a minimum-hop path is determined

by static rather than dynamic state information. This has advantages for distributed implemen-

tations of our algorithm (see Section 5.4). Section 6.7 provides simulation data that suggests

that the use of a minimum-hop path leads to good performance over a wide range of network

environments. The advantages of minimum-hop routing in the context of circuit networks are

also discussed by Ahmadi et. al. [ACG91].

In aap, the cost of a path is determined in the starred line of Figure 5.2. The cost is given

by an integral over the duration of the virtual circuit. This approach has two problems: the

duration of each circuit must be known in advance, and each link must maintain the ending time

and bandwidth of each virtual circuit. To address these problems, we simplify the cost func-

tion. In particular, instead of using
R
� ri(�

u(�;e) � 1) we use ri�
u(e), eliminating the integration

step. Eliminating the integration step can be justi�ed in the context of competitive analysis

if one makes statistical assumptions about the durations of the virtual circuits [GKPR95c].

Furthermore, for the moment, we restrict attention to the case where the bandwidth of each

virtual circuit is the same (denoted by r) and the capacity of each link is the same (denoted

by b). As a result, ri becomes a constant that gets absorbed into the constant % and hence not

used in the description of the algorithm. (We will eventually remove some of these restrictions.)

The fact that aap is optimized for the worst-case situation reects itself in its poor choice

for the constants % and �. To address this issue, we provide a new mechanism for choosing %

and �. First we set the value of % relative to �. We observe that a path consisting of a single

link provides the most e�cient use of resources possible and therefore should always accept a

102



circuit request. Since the cost of a single link path is at most �, we set % = �. This ensures

that lack of capacity is the only reason that the admission control procedure does not accept a

virtual circuit along a path consisting of a single link.

To de�ne �, we look at a speci�c situation and calculate the correct value of � for that

situation. Then, we argue why setting � correctly for that speci�c situation will lead to good

performance in general. The speci�c situation we consider is a network consisting of three nodes

(two links) in series. Now de�ne the critical utilization, u�, to be the link utilization such that

a two link path, where both links have at least utilization u�, will reject a circuit request in

favor of future single link requests. Given u�, it is easy to calculate � as follows. Recalling that

% = �, we de�ne � such that

2�u
� � �:

Using an equality and solving for � we have: � = 21=(1�u
�).

To calculate u�, we borrow from the stochastic analysis in [OK85, SD94]. Consider a single

link that can accommodate b=r simultaneous circuits. Assume that circuit request arrivals are

Poisson with rate � and that the durations are exponentially distributed with mean 1. Assume

further that there are currently j circuits using the link. Then the increase that accepting

an additional circuit on the link will cause in the expected number of future virtual circuits

rejected due to lack of capacity is given by:

B(b=r; �)

B(j; �)

where B is the standard b-erlang loss formula [OK85, SD94]. Now consider our two link

network. For simplicity we will assume that the departures on each link are independent2 . This

assumption has become standard in the literature [Mar83, GK90]. Let � be the Poisson arrival

rate of virtual circuits requiring a single link path. Assume that the two links currently both

carry j circuits. Since a two link path could potentially block two single link paths, we require

the increase that accepting an additional circuit on the link will cause in the expected number

of future virtual circuits rejected due to lack of capacity to be less than :5 for both links. In

2This is obviously an approximation since two link paths will create a dependency in the departure processes
of the links.
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other words, a two link path is rejected in favor of a one link path once B(b=r;�)
B(j;�)

> :5. Notice

that, when B(b=r;�)
B(j;�) = :5 on both links, the total increase that accepting an additional circuit

on the link will cause in the expected number of future virtual circuits rejected due to lack

of capacity is one. Thus, on an expected value basis, we are indi�erent between the current

virtual circuit request and the expected future virtual circuits that will be lost by accepting the

current virtual circuit request. The utilization, u� = jb=r, for which a two link path is rejected

in this scenario can now be calculated if � and b=r are given. (This above analysis is similar in

spirit to the analysis in [SD94].)

The value of u� depends on the values � and b=r. The value for b=r is known as part of the

network description. Determining the correct value for � is more complicated. Above we de�ne

it as the arrival rate of single-link virtual circuit requests. Unfortunately, this arrival rate is

highly dependent on the topology and tra�c matrix of the network. Recall that one of our

goals is not to require such a dependence. Consequently, we propose the following heuristic for

setting �. Discussions with engineers charged with operations for several commercial networks

suggest that 2% is the highest loss rate that a network should ever produce. We use this 2%

�gure to calibrate �. In particular, we assume that the arrival rate of single-link circuits to

any link is never more than ��, where �� is the arrival rate needed to generate a 2% loss rate

on a single link in the absence of any other tra�c. We set u� using ��. By using ��, we

are essentially calibrating our algorithm for the most aggressive admission control policy that

will realistically be required3. In Section 5.4 we discuss why this aggressive form of admission

control does not compromise the performance of the algorithm in most situations. Also, the

simulations in Section 6.8 explore the sensitivity of exp to ��.

Finally, we remove the restriction that b=r be the same for all links. In particular, we note

that the cost requirements on the path P chosen by exp (cf. Figure 5-2) can be written asP
e2P �

u(e)�1 � 1 instead of
P

e2P �
u(e) � �. Now we observe that � no longer appears outside

the summation. As a consequence, we can make � link speci�c. Thus, if b=r is known on a per

link basis, � can be calculated and used by the algorithm on a per link basis. Note, however,

that b=r must still be known for each link. The simulation results in Chapter 6 suggest that

3This is not strictly true when there is a large number of alternate short paths for a single link path. In
particular, the stochastic properties that keep �

� signi�cantly below the capacity bound become less important
in thsi case.
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removing the requirement that b=r be known for each link will be di�cult.

5.4 Discussion

In de�ning exp we have retained three key insights from the aap algorithm. First, we have

retained the cost-bene�t framework for determining whether a circuit can be accepted on a

particular path. The cost-bene�t framework has the advantage that the use of a lightly loaded

link does not penalize a circuit. As a comparison, consider the algorithm in [SD94], which

establishes admission control criteria on a link-by-link basis. In particular, it rejects a virtual

circuit request even if the admission control criteria fail on a single link of a path. Consider a

two-link (non primary) path with a highly utilized link and a lightly utilized link. The algorithm

in [SD94] will reject a circuit along this path if the admission control criteria are not met on

the highly utilized link. However, it might not be prudent to reject the circuit in this case.

The intuition for not rejecting the circuit is that the admission control algorithm should

only protect scarce resources. Since the path in this example includes only a single scarce link it

should be treated similar to a single link path using a scarce link. Recall that a single link path

should always be accepted since it provides the most e�cient use of resources possible. Our

algorithm has the correct behavior in this case. Since we use a cost function that is exponential

in the utilization, the highly utilized link will essentially be the only contributor to the cost of

the path.

The second insight from the aap algorithm that we retain is the relationship between

admission control and the path length. Consider a path of length L where each link along

the path has the same utilization. We now ask the following question: what is the maximum

utilization u for which the L-link path should satisfy the admission control criteria? To answer

this question in the context of an exponential function based algorithm we solve for u in the

equation � = L�u to get u = 1 � (logL)=(log�). Thus, the maximum utilization for which

a path satis�es the admission control criteria decreases logarithmically with the length of the

path.

Finally, we retain the observation that the admission control requirements provide essen-

tially all of the state speci�c feedback that is needed for routing. By restricting the set of paths

on which a circuit may be routed, the admission control component of exp makes some implicit
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routing decisions. Once the state dependent restrictions are made, exp can use state indepen-

dent criteria (e.g., hop count) for deciding between the paths that meet the admission control

restrictions. The ability to use state independent criteria has some advantages for distributed

implementations of our algorithm. In particular, a distributed exp algorithm can try paths

in order of hop count. Each time it tries a path it can send a \setup" packet along the path

to see it the path meets the admission control requirements. If it does, the path is chosen. If

not, the next path is tried. (In practice, only few paths need to be tried before one can reject

the circuit [GKPR95a].) This approach is also used in [SD94]. We verify the su�ciency of

using state independent criteria for deciding between the paths that meet the admission control

restrictions with the simulations in Section 6.7.

Recall that our admission control algorithm is calibrated for very aggressive admission

control since we assume that each link can reach a 2% rejection rate solely based on single

link tra�c. We provide an intuitive justi�cation for this approach by considering two types of

networks: one where the topology and the tra�c matrix4 are well matched and one where they

are not well matched. In a network where the topology and the tra�c matrix are well matched,

there are direct links between source-destination pairs with large amounts of tra�c. Thus,

the assumption that most links service primarily single link tra�c is reasonable, especially at

high loads. On the other hand, this assumption does not hold when the topology and the

tra�c matrix are not well matched. Thus, one might expect our admission control algorithm

to be too aggressive. Fortunately, this is not the case in practice. Since the network topology

and the tra�c matrix are not well matched, the load on the network links increases unevenly.

Thus, while some links are heavily utilized, other links still have low utilization. Therefore, the

primary e�ect of the admission control algorithm is to cause circuits to use the lightly loaded

links. In other words, the primary contribution of admission control is its e�ect on the routing

decisions. The simulations described in Section 6.6 con�rm this e�ect.

The constant � for our admission control currently depends on only a single parameter:

b=r, the number of circuits a link can simultaneously carry. We plot � and the reservation level

1� u� as a function of b=r in Figures 5-3 and 5-4. The reservation level corresponds closely in

4The tra�c matrix gives the percentage of the total network tra�c that goes between each source-destination
pair.
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Figure 5-3: � as a function of b=r, the number of circuits a link can simultaneously carry.

spirit to the trunk reservation level of the symmetric loss network literature.

107

~ 

• 

. . 
• 

----------· 

. 
,,.....---

_,,if 

• • 
~ 

• • 

• ~ 
~ 

/ 
/ 

/ 

/ 
/ -------------------

I' 

J 
• • • • • r --------

I 

' • • • • • • "i 
--, 

IJ 



3

4

5

6

7

8

9

10

11

12

13

100 200 300 400 500 600 700

re
se

rv
at

io
n 

le
ve

l

b/r
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ously carry.
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C h a p t e r 6

Simulation Results

6.1 Introduction

This section evaluates the performance of the exp algorithm against a greedy admission control

strategy that uses minimum-hop routing. Our simulations are based on an existing commercial

topology. The simulations provide considerable insight into behavior of our algorithm.

6.2 An Existing Commercial Topology

The existing commercial network consists of 25 nodes and 61 links. The topology is pictured

in Figure 6-1. The capacities of the links are all chosen to be 155 Mbps, which corresponds

to SONET OC-3 service. The virtual circuits all require 1 Mbps in both directions. When

we take into account the overhead from the ATM headers, each link can accommodate 140

simultaneous virtual circuits. Calculations described in the previous section imply that we

should use a reservation level of 5% and � = 9:4e5 (see Figures 5-3 and 5-4). The holding times

are exponentially distributed with a mean of 30 minutes. Virtual circuit requests arrive as a

Poisson process. The tra�c matrix corresponds to the actual current tra�c on the network.

We call this simulation scenario the base case. All simulation results have 99% con�dence that

they are within 5% of the sample mean.

In order to put the performance advantage of the exp algorithm over the greedy strategy
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Figure 6-1: Topology of an existing commercial network.

into perspective we wish to compute the performance of the optimum o�-line algorithm. Unfor-

tunately, this computation is not tractable. Instead, we compute a lower bound on the optimum

rejection rate by solving a multicommodity ow problem in which the objective function is to

satisfy the maximum demand between node pairs without violating the capacity constraints,

where the demand between node pairs is determined by the tra�c matrix. In particular, the

demand between nodes i and j is set to the average number of bits per second that are expected

to be requested with i as the source and j as the destination. It is easy to see that the solution

to this optimization problem is indeed a lower bound on the rejection rate. However, this lower

bound may be far o� from the true optimum since it does not take the stochastic properties of

the circuit arrivals and departures into account. Furthermore, the multicommodity ow bound

corresponds to the case where we are allowed to split a single virtual circuit over several paths.

Figure 6-2 compares the performance of the exp algorithm with various reservation levels to

the performance of a greedy minimum-hop algorithm and our lower bound on the performance

of the optimum algorithm. The X-axis gives the aggregate arrival rate in virtual circuits per

second and the Y-axis gives the percentage of virtual circuits that are rejected. It can be seen

that the exp algorithm has a signi�cant performance advantage over the greedy algorithm for a

wide range of arrival rates. The exp algorithm can maintain a much higher arrival rate given a

target rejection (loss) rate. For a target maximum rejection rate of 2%, the exp algorithm with

the reservation level set at 5% (� = 9:4e5) can sustain an arrival rate that is approximately 8%

higher than the arrival rate that can be sustained by the greedy algorithm. Taking our bound

on the optimum algorithm as 100%, exp achieves approximately 88% throughput, while the
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Figure 6-2: Simulation results for the commercial network.

greedy algorithm achieves only 81%. We would like to reiterate that our bound on the optimum

is quite optimistic and thus we believe that exp achieves substantially more than 88% of the

real optimum throughput.

The relative performance advantage of the exp algorithm increases with arrival rate. For

example, the improvement for a target maximum rejection rate of 10% is 20%. In this case,

exp achieves approximately 88% of the bound on the optimum performance, while the greedy

algorithm achieves only 73%.

Notice that the reservation level is a relatively forgiving parameter. In particular, Figure

6-2 also includes the results for reservation levels of 8% (� = 5:8e3) and 2% (� = 1:1e15). (The

fact that the reservation level is a forgiving parameter was previously observed in the context

of symmetric loss networks [MGH93].)

6.3 Varying Virtual Circuit Bandwidth

A key factor in determining the correct reservation level and the correct value of � is the number

of virtual circuits that can be simultaneously accommodated on a single link. Figure 5-3 shows
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this e�ect analytically. We also illustrate this e�ect using simulations. The simulations are the

same as in the base case except for the bandwidth of the virtual circuits. The graph in Figure 6-4

shows the results for 200 Kbps circuits and the graph in Figure 6-3 shows the results for 5 Mbps

circuits. The optimal reservation levels and � values for these cases are 10%, 989 and 3:3%,

1:6e9, respectively. In each graph, we plot results for both values of �. The simulations con�rm

that the reservation level should decrease as the number of simultaneous circuits that can

be accommodated increases. Furthermore, the performance advantage of the exp algorithm

over the greedy algorithm increases with the number of circuits that can be simultaneously

accommodated on a single link. In particular, in the case of 5 Mbps circuits, the exp algorithm

is 2% better than the greedy minimum-hop algorithm for a target maximum rejection rate of 2%,

while for 200 Kbps circuits exp is better by 9%. At a target maximum rejection rate of 4%, the

improvements are 5% and 12% for the 5 Mbps and 200 Kbps cases, respectively. The following

intuition helps explain why the performance advantage of the exp algorithm over the greedy

algorithm increases with the number of circuits that can be simultaneously accommodated on a

single link. When the admission control mechanism rejects a virtual circuit request along a path

that has su�cient bandwidth for the request, it does so in the expectation that multiple future

requests can be accepted along that path, thus increasing the total number of accepted circuits.

This expectation is partially based on the statistical assumptions made by the algorithm. The

law of large numbers shows that expectations arising from a random process consisting of many

events are more likely to be accurate predictions. Hence the accuracy of the predictions arising

from the statistical assumptions made by the algorithm increases with the number of circuits

that can be simultaneously accommodated on a single link.

The dependence of the correct reservation level on the number of circuits that can be simul-

taneously accommodated demonstrates the importance of incorporating stochastic properties

into our analysis. An analysis based entirely on competitive analysis would not be able to pre-

dict this dependence. The dependence also illustrates the importance of knowing the number

of circuits that can be simultaneously accommodated for each link. (Recall the discussion in

Section 5.3 where the number of circuits that can be simultaneously accommodated for each link

is denoted by b=r.) Thus, the simulations suggest that it will be di�cult to �nd a mechanism

for eliminating the need to know b=r in advance for each link.
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Figure 6-3: Simulations for virtual circuits with bandwidth of 5 Mbps.

6.4 Varying Duration

The simulation results shown in Figure 6-5 use a bimodal distribution on the durations. This

distribution tests the relative performance when there is a mix of short duration and long

duration circuits. The duration of each circuit comes either from an exponential distribution

with mean 6 minutes or from an exponential distribution with mean 30 minutes. Circuits

are split between these two mean durations to ensure that each mean duration contributes

approximately half of the currently active circuits. Figure 6-5 shows that there is no observable

change in the relative performance of our exp algorithm and greedy minimum-hop algorithm.

6.5 Dynamic Tra�c Patterns

This section investigates the robustness of our algorithm to environments with very dynamic

tra�c patterns. In particular, the simulations in Figure 6-6 randomly change the tra�c matrix

at time intervals of one mean circuit duration. Each change to the tra�c matrix alters the

tra�c between any source-destination pair to a value picked uniformly at random between 0

113

-+-
-+--
--B---



0

0.02

0.04

0.06

0.08

0.1

0.12

1.5 1.6 1.7 1.8 1.9 2 2.1

P
r
o
p
o
r
t
i
o
n
 
o
f
 
r
e
j
e
c
t
e
d
 
r
e
q
u
e
s
t
s

Aggregate offered traffic

Greedy, Minimum-Hop
EXP, Res 10%
EXP, Res 3.3

Figure 6-4: Simulations for virtual circuits with bandwidth of 200 Kbps.

and twice its value in the base simulation scenario. The results show that the EXP algorithm

maintains its performance advantage over the greedy admission control strategy.

6.6 The Routing E�ects of Admission Control

Even though our exp algorithm uses a static minimum-hop criterion to decide among paths,

the exp algorithm includes an implicit state dependent routing component. The implicit state

dependent routing results from the restrictions that the admission control component of the

algorithm places on the set of paths from which the minimum-hop routing component of our

algorithm can choose. In this section we seek to quantify the relative contributions made

by the implicit state dependent routing component of the exp algorithm and the admission

control component of the exp algorithm. Quantifying the relative contributions will also give

simulation-based support to the justi�cation in given Section 5.4 for our aggressive approach

to choosing the reservation level.

To quantify the routing e�ect of our exp algorithm we study the performance of a new

greedy admission control algorithm that makes routing decisions that are similar to those of
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admission control criteria and actual admission control in the context of the exp algorithm, we

expect to �nd similar results for other admission control algorithm proposed in the literature.

6.7 Cost Based Routing vs Minimum Hop Routing

In order to facilitate a distributed implementation, our algorithm attempts to minimize its use

of dynamic state information, such as link utilization. In particular, the algorithm uses a static

minimum-hop metric to decide among the paths that meet the admission control criteria. The

obvious alternative to using the minimum-hop metric is a metric based on the link utilization.

For example, one could choose the minimum cost path with respect to the exponential cost

metric used for admission control. This section describes simulation results that support our

claim that there are no performance penalties for using a static minimum-hop metric to decide

among the paths that meet the admission control criteria. In particular, the simulations show

that the inherent routing e�ects of the admission control provide su�cient state depended

information to the routing decision.

The simulations compare the performance of the exp algorithm to a modi�ed algorithm that

we will refer to as \exp-mc". exp-mc chooses the minimum cost path in the exponential cost

metric used for admission control. If that path satis�es the admission control criteria, i.e., the

cost of the path is su�ciently low, exp-mc accepts the circuit. Otherwise, exp-mc rejects the

circuit. The essential di�erence between exp and exp-mc is that exp uses a static minimum-

hop metric to decide between the paths that meet the admission control requirements, while

exp-mc uses a minimum cost metric that is based on link utilizations.

A key parameter in determining the relative performance of the algorithms is the degree to

which the tra�c matrix and the topology match. When the tra�c matrix and the topology

are well matched, we would expect the exp algorithm to outperform the exp-mc algorithm.

In this case, most virtual circuit paths should consist of one link and thus exp-mc's greater

tendency to use multi-link paths harms its performance relative to that of exp. On the other

hand, when the tra�c matrix and the topology are not well matched, we would expect exp-mc

to outperform exp. The simulations show that the performance di�erences between exp and

exp-mc are not great. When the tra�c matrix and the topology are perfectly matched, exp

enjoys a 2% performance advantage over exp-mc. In other words, the arrival rate at which exp
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reaches a 2% circuit rejection rate is 2% larger than the arrival rate at which exp-mc reaches

a 2% circuit rejection rate. In the base case, where the tra�c matrix and the topology are not

well matched, exp-mc enjoys a 2% performance advantage over exp.

6.8 Varying Maximum Loss Rates

Recall that the value of � depends on the maximum loss rate. In particular, we use the maximum

loss rate to set ��, which we use to set � (see Chapter 5). Based on discussions with engineers

charged with the operations of several commercial networks, we use a maximum loss rate of

2%. Since this 2% value is somewhat arbitrary, we need to considered the sensitivity of exp

to this value. To test the sensitivity, we consider some extreme values for the maximum loss

rate. In particular, consider a low value of :1% and a high value of 4%. In the base simulation,

the low value of :1% leads to a reservation level of 2:7% while the high value of 4% leads to a

reservation level of 7%. Examining Figure 6-2, we note that there are only small performance

di�erences for reservation levels determined based on maximum rejection rates that are in the

interval [:1%; 4%]. Hence, the performance our exp algorithm is not very sensitive to the choice

of maximum loss rate.
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C h a p t e r 7

Competitive Multicast Admission

Control and Routing Algorithms

7.1 Introduction

This chapter presents three admission control and routing algorithms for multicast communi-

cation. Requests to establish multicast communications come in two avors called batched and

on-line. For batched requests, all members join and terminate at the same time. (A telecon-

ference call is a good example.) In contrast, for on-line requests, the members of the multicast

group issue requests to join and leave the multicast group separately. (The viewers of CSPAN

are an example of an on-line multicast group.)

Batched and on-line multicast groups have di�erent service models. Batched multicast

groups use binary admission control. With binary admission control either all of the potential

multicast group members are accepted or none are accepted. We use binary admission control

since batched multicast groups have coordinated arrivals, thus we expect that they will require

coordinated admission control decisions. In contrast, on-line multicast groups use non-binary

admission control. Non-binary admission control accepts some subset of the potential multicast

group members. Since on-line multicast groups have independent arrivals, we expect that they

will permit independent (i.e. non-binary) admission control decisions. As a consequence of

using non-binary admission control, on-line multicast groups cannot, in general, rely on any

particular potential member being admitted by the admission control algorithm. However, we
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expect that on-line multicast groups will typically have a \source" (e.g., the source of the video

feed for CSPAN) that must be a member of the multicast group. Thus, our service model

for on-line multicast groups includes a source, which is guaranteed to be part of the multicast

group, and considers all other potential members as \destinations", whose actual membership is

optional. We provide formal de�nitions for the admission control and routing problem for each

type of multicast group in the section that presents the algorithm for that type of multicast

group.

The algorithm in Section 7.3 considers batched multicast groups. In Section 7.4 we present

an algorithm that can accommodate batched multicast groups as well as a restricted form of

on-line multicast groups. Speci�cally, the on-line requests from di�erent multicast groups may

not be interleaved. In other words, all requests to join a speci�c multicast group occur without

any intervening requests to join another multicast group. Finally, the algorithm of Section 7.5

removes the restriction that requests from di�erent multicast groups may not be interleaved.

For each of the algorithms presented in this chapter, we make a set of simplifying as-

sumptions. In particular, we assume that a node's membership in a multicast group is never

terminated. Removal of this assumption for on-line multicast groups would be di�cult without

signi�cant additional assumptions about the behavior of the potential multicast members. We

discuss this issue in more detail in Chapter 8. We also assume that the bandwidth required

by a multicast group is a small fraction of the link capacity for each link. This is similar to

the bandwidth restriction in the aap algorithm. (See De�nition 4.2.1.) The details of this

restriction di�er slightly for each algorithm. Finally, we assume that the goal of the admission

control and routing algorithm is to maximize the total accepted bene�t. The bene�t of a mul-

ticast group is de�ned as the bandwidth of the group multiplied by the maximum number of

members of the group. This performance measure is formalized in De�nition 7.3.2.

The algorithms described in this chapter will not perform well in practice if used in their

present form. To perform well in practice, the multicast algorithms of this chapter need to be

modi�ed much in the same way that the unicast algorithm of [AAP93] is modi�ed in Chap-

ter 5. Section 7.6.1 discusses the types of modi�cations that are needed to make the multicast

algorithms of this chapter perform well in practice. Section 7.6.1 also highlights the algorith-

mic principles demonstrated by the multicast algorithms in this chapter. Finally, Section 7.6.1
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provides an informal explanation for the competitive ratios of our multicast algorithms and ar-

gues why we expect our multicast algorithms to perform much closer in practice to the optimal

o�-line algorithm than is suggested by the competitive ratios.

7.2 Preliminaries

7.2.1 Notation and Naming Conventions

We introduce several naming conventions for functions on graphs. Consider a graph G = (V;E).

A cost function for G is a function from E to the non-negative reals, <�0. We typically use

cost functions to represents the cost of a link. We say that a cost function c for graph G is

polynomial if it is polynomial in jV j. A bene�t function for G is a function from V to <�0.

We typically use bene�t functions to represent the bene�t associated with accepting a node

into a multicast group. Based on our optimization goal (cf. De�nition 7.3.1), the bene�t

associated with accepting a node into a multicast group will be the bandwidth requirement of

that multicast group. We de�ne a bandwidth function to be a function from E to <�0. We

typically use bandwidth functions to specify the bandwidth that a multicast group adds to the

bandwidth already carried by a link. Finally, a capacity function is a function from E to <�0.

It represents the capacity of a link.

Consider a set of links E and any function f : E ! <�0. We denote
P

e2E f(e) by f(E).

Similarly, for any set of nodes V and function g : V ! <�0, we denote
P

v2V g(e) by g(V ).

Finally, for graph G = (V;E), let f(G) = f(E) and g(G) = g(V ).

Consider graphs G = (V;E) and G0 = (V 0; E0). We say that G � G0 i� V � V 0 and E � E0.

De�ne G�G0 as follows: (fv j v 2 V�V 0g; fe j e 2 E�E0; if e = (u; v) then u; v 2 V�V 0g). We

denote an empty graph G = (;; ;) simply by G;. Consider graph G = (V;E) and cost function c

forG. For any two nodes v; u 2 V let d(v; u) be the cost of the minimum cost path between v and

u in G. LetD(G) denote the diameter ofG, i.e.,max v;u2V fd(v; u)g. Let G1 and G2 be subgraphs

of G. Then, the distance between G1 and G2 in G is d(G1; G2) = minv12G1;v22G2fd(v1; v2)g:

7.2.2 Steiner Trees

The Steiner Tree problem [KMB81, RSC86, Ric92] is stated as follows.
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De�nition 7.2.1 (Steiner Tree) Let G = (V;E) be a graph, c a cost function for G, and

D � V a set of nodes. The Steiner Tree st(D) for D is the minimum cost tree in G spanning

the nodes in D.

When D = V , the Steiner Tree is equivalent to the standard minimum cost spanning tree.

In general, the problem of �nding the Steiner Tree is NP-complete, however polynomial time

approximate solutions exist [Wax88, NT94]. Speci�cally, there are algorithms (cf. [KMB81])

for which the spanning tree found by the algorithm has cost at most twice the cost of the

Steiner Tree. We denote the algorithm that computes an approximate Steiner Tree by mcst.

(For the purpose of this thesis it is not important which approximation algorithm is chosen.)

We summarize our discussion with the following fact.

Fact 7.2.2 (st algorithm) The mcst algorithm takes as input a graph G=(V,E), a set of

nodes D � V , and a cost function c. Its output is a tree T spanning the nodes in D such that

c(T ) � 2st(D).

7.2.3 Sparse Trees

De�nition 7.2.3 (sparsity) Consider a graph G = (V;E), a cost function c, and a bene�t

function %. Let T = (VT ; ET) be a subgraph of G, where %(VT) 6= 0. De�ne the sparsity of T

to be ratio of the cost of T to the bene�t of T , i.e., c(T )=%(T ). T is said to be d-sparse if the

sparsity is less than or equal to d.

In general, we are interested in low sparsity subgraphs. Since eliminating links from a

subgraph reduces its cost without changing its bene�t or connectivity, all of our subgraphs will

be trees.

De�nition 7.2.4 (maximality) Consider a graph G = (V;E), a cost function c, and a bene�t

function %. Let T be a subgraph of G. T is m-maximal, if for every subgraph T 0 of G, where

T � T 0, c(T 0 � T )=%(T 0� T ) > m.

Lemma 7.2.5 For any graph G, cost function c, bene�t function %, and real numbers m; d such

that 0 < m � d, there exists a d-sparse m-maximal subgraph of G.
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Proof. We proceed by construction. (The construction takes an exponential number of steps.)

Consider any subgraph T consisting of a single node. Since the sparsity of T is 0, T is d-sparse.

Now consider all subgraph T 0 such that T � T 0 and c(T 0 � T )=%(T 0 � T ) � m. If no such

subgraph exists, T is d-sparse and m-maximal. Otherwise, pick one such subgraph T 0 and set

T = T 0. Since m � d, the new T is still d-sparse. Now repeat this procedure until either T is

d-sparse and m-maximal or T = G. If T = G, T is also d-sparse and m-maximal.

Lemma 7.2.5 proves the existence of 1-sparse 1-maximal subgraphs for any graph, cost

function, and bene�t function. However, we know of no polynomial time algorithm for con-

structing 1-sparse 1-maximal subgraphs. In fact, even verifying the 1-maximality condition

seems computationally di�cult. Fortunately, [AABV95] provide a polynomial time approx-

imation algorithm. In particular, for any graph G, cost function c, and bene�t function %,

their algorithm, which we call maxsparse, can �nd a O(log2B)-sparse 1-maximal subgraph

where B = %(G)=minv2V s.t. %(v)6=0f%(v)g. The maxsparse algorithm can guarantee the inclu-

sion of one user speci�ed node in the O(log2B)-sparse 1-maximal subgraph. Furthermore, the

subgraph returned by maxsparse is a tree. We summarize the discussion with the following

fact.

Fact 7.2.6 (maxsparse algorithm) The maxsparse algorithm takes as input a graph G, a

cost function c, a bene�t function %, and a node s. Let B = %(G)=minv2V s.t. %(v)6=0f%(v)g.
Then the output of the maxsparse algorithm is a K3 log

2B-sparse 1-maximal tree containing

s, where K3 � 1 is a constant.

7.2.4 Clustering

Our algorithms for on-line multicast groups require mechanisms that group nodes into connected

subgraphs, called clusters. It is important that the size of the clusters and the overlap between

the clusters is limited. Furthermore, we wish to insure that non-overlapping clusters are well

separated.

De�nition 7.2.7 (clustering) Let G = (V;E) be a graph, c be a polynomial cost function,

and r be a real number. A clustering of G with respect to c and r is a set, C, of pairs taken
from the set f(G0; v) j G0 � G; v 2 G0g. If (C; v) 2 C then we call C a cluster and v a center

node. Let n = jV j. The set C has the following properties:
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1. For each (C; v) 2 C, r � D(C) � O(r logn). In other words, the diameter of any cluster

is at least r and at most O(r logn).

2. For each node v 2 V , 1 � j(C; u) j (C; u) 2 C; v 2 Cgj � O(logn). In other words, every

node is an element of at least 1 and at most O(logn) clusters.

3. jCj � n. In other words, there are at most n clusters.

4. The clusters in C can be colored with O(logn) colors such that for any two clusters C1; C2

with the same color, d(C1; C2) 2 
(r). In other words, any two clusters with the same

color are not connected with any paths that have distance less than 
(r).

A mechanism for constructing a clustering is described in [AP90]. Speci�cally, [AP90] presents

an algorithm, which we call cluster which constructs a clustering with the properties in

De�nition 7.2.7.

Fact 7.2.8 (cluster algorithm) The cluster algorithm takes as input a graph G = (V;E),

a polynomial cost function c, and a real number r. The cluster algorithm returns a set of

clusters, C, with the following properties.

1. For each (C; v) 2 C, r � D(C) � K1r logn, where K1 � 1 is a constant.

2. For each node v 2 V , 1 � j(C; u) j (C; u) 2 C; v 2 Cgj � K2 logn, where K2 � 1 is a

constant.

3. jCj � n.

4. The clusters in C can be colored with O(logn) colors such that for any two clusters C1; C2

with the same color, d(C1; C2) 2 
(r).

7.3 Batched Multicast Groups

This section presents an admission control and routing algorithm for batched multicast groups.

We call the algorithm bmg (Batched Multicast Groups). The algorithm uses binary admission

control. (A simpli�ed version of the algorithm in Section 7.4 can be used to provide non-binary

admission control for batched multicast groups.) Our algorithm has a competitive ratio of
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O(logn), where n is the number of nodes in the network. Since unicast communication is

a special case of multicast communication, the 
(logn) lower bound of [AAP93] proves our

algorithm to have the optimal competitive ratio (cf. Lemma 7.3.3).

7.3.1 Problem Statement

We provide a formal de�nition for the admission control and routing problem for batched

multicast groups. A discussion follows the de�nition.

De�nition 7.3.1 (batched multicast admission control and routing for G) Let G be a

set of graphs ranging over a node alphabet V If G 2 G, we describe G = (V;E) by a set of nodes

V and a set of undirected links E between the nodes. Furthermore, let � = 2jV j(2jV j+1). Now

de�ne

Q1 = f((V;E); b) j (V;E)2 G and b : E ! <�0g;
Q2 = f(%; r) j % : V ! f0; rg; r 2 <>0; jfv j %(v) 6= 0gj � 2g:

If �i 2 Q2 and �i = (%i; ri) then %(�i) = %i and r(�i) = ri.

Let (�; �) be a request sequence, response sequence pair such that �i 2 Q2 for all i 2 [1; j�j).
Then, for all j 2 [1; j�j], uj(e) = 1

b(e)

P
1�i<j j�i 6=?;e2�i r(�i). Now de�ne

Q = Q1 [ Q2;

R = fT j T is a tree over Vg [ f?g;
S = f(�; �) j 1: �0 2 Q1; and �0 = ?;

2: �i 2 Q2 for all i 2 [1; j�j);
3: if �0 = ((V;E); b) then for all i 2 [1; j�j); fv j %(�i)(v) 6= 0g � V;

4: if �0 = ((V;E); b) then for all i 2 [1; j�j); r(�i) � mine2Ef b(e)
log�

g;
5: if �0 = (G; b) then for all i 2 [1; j�j); if �i 2 Q2 and �i 6= ? then

�i is a tree in G with leaves consisting of fv j %(�i)(v) 6= 0g;
6: if �0 = ((V;E); b) then for all e 2 E; uj�j(e) � 1g:

The di�erences between the de�nitions of the batched multicast problem and the (unicast)

admission control and routing problem (De�nition 2.3.1) result primarily from the fact that

multicast requests can involve more that two nodes.
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A multicast request to bmg, �i, is a tuple, (%i; ri), consisting of a bene�t function %i and

a bandwidth requirement ri. If node v is a member of the multicast group then %i(v) = ri.

Otherwise, %i(v) = 0. We require that each multicast request includes at least 2 members. The

bandwidth of a multicast group is restricted to a 1=� fraction of the capacity of the lowest

capacity link. (See fourth condition on S.) If a request, �i is accepted, the response �i is

a tree that spans the nodes v for which %i(v) = ri. If a request, �i is rejected, the response

�i = ?. With the exception of the fourth condition, the conditions on S are generalizations

of the conditions in the de�nition of the (unicast) admission control and routing problem (cf.

De�nition 2.3.1) to the multicast setting. The �fth condition for S reects the fact that we

are using binary admission control. It states that the tree of an accepted multicast group must

span all of its members.

The goal of our algorithm is to maximize the total amount of accepted bene�t, where

the bene�t of a multicast group is de�ned to be its required bandwidth times the size of its

membership.

De�nition 7.3.2 (amount of accepted bene�t) Let P = (Q;R; S) be the batched multicast

problem for general topology networks. Consider (�; �) 2 [i(Qi � Ri) for i 2 N. Then the

amount of accepted bene�t in �, P (�; �), is given by

P (�; �) =

8><
>:
P

1�i<j�j j�i 6=? r(�i)jfv j %(�i)(v) 6= 0gj if (�; �) 2 S and jf�i j �i 6= ?gj � 1

� otherwise

for some �xed � 2 (0; 1).

We now show that lower bounds for unicast admission control and routing extend to admis-

sion control and routing for batched multicast groups. The value of � for the batched multicast

admission control and routing problem di�ers from the value of � for the on-line multicast

admission control and routing problem. In order to reuse the lower bounds presented below

throughout this chapter, we use the most restrictive value of � (cf. Section 7.5) in the lower

bound lemmas.

Lemma 7.3.3 Let P(fGg) be the batched multicast admission control and routing problem for

the set of graphs G where � = (2K1K2K3jV j2 log3 jV j+ 4)12. Let P 0(fGg) be the unicast admis-
sion control and routing problem for the set of graphs G where � = (2K1K2K3jV j2 log3 jV j+4)12.
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Let P be the performance function of De�nition 7.3.2. Let P 0 be the performance function of

De�nition 2.3.7.

If CP0(fGg);P 0(A0) � K for all deterministic on-line algorithms A0 that solve P 0(fGg), then
CP(fGg);P (A) � K for all deterministic on-line algorithms A that solve P(fGg). Similarly,

if CbP0(fGg);P 0(A0
r) � K for all randomized on-line algorithms A0

r that solve P 0(fGg), then

CbP(fGg);P (Ar) � K for all randomized on-line algorithms Ar that solve P(fGg).
Both statements also hold if P 0 is the the performance function in De�nition 2.3.8.

Proof. Notice that the batched multicast admission control and routing problem restricted so

that for each request (%; r) 2 Q2, jfv j %(v) 6= 0gj = 2 is the same as the unicast admission

control and routing problem. Now the lemma follows from Lemma 2.4.4 and Lemma 2.5.2 and

the fact that competitive ratios are invariant under constant factor changes in the performance

function.

7.3.2 Algorithm

Let the �rst request �0 be ((V;E); b). Let n = jV j. The admission control and routing decision

is based on the current utilization of the network links. ui(e) denotes the utilization of link e just

before the ith request is handled. The utilization ui(e) is formally de�ned in De�nition 7.3.1.

Using the utilization, the algorithm computes the exponential cost. The cost of link e as seen

by the algorithm when considering the ith circuit is de�ned by ci(e) = rixi(e), where xi(e) =

(�ui(e) � 1)=n and � is de�ned in De�nition 7.3.1. Using the cost function ci(e) the algorithm

now constructs an approximate Steiner tree, Ti, spanning the members of the multicast group,

i.e., the nodes v for which %i(v) = ri. If the cost of the approximate Steiner Tree, ci(Ti), is less

than twice the bene�t of the multicast group, %i(Ti) =
P

v2Ti
%i(v), then the multicast group is

accepted. Otherwise, it is rejected. Figure 7-1 shows the code for the bmg algorithm.

7.3.3 Analysis

The analysis in this section is presented in a general form so that we can leverage some of the

theorems in this section for the analysis of the algorithms in Sections 7.4 and 7.5. Our analysis

consists of two parts: correctness and complexity. We consider the complexity �rst.

The complexity analysis uses the following simple lemma.
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bmg(%i; ri):
for all e 2 E : c(e) = rix(e);
V 0 = fv 2 V j %i(v) 6= 0g;
Ti = mcst(G; V 0; c);
if c(Ti) � 2%i(Ti)
then route the requested multicast group on Ti, and set:

for all e 2 Ti : u(e) = u(e) + ri
b(e) ;

else reject the requested multicast group and set:

Figure 7-1: The bmg admission control and routing algorithm for batched multicast groups.

Lemma 7.3.4 Let x be a real number such that 0 � x � 1. Then 2x � 1 � x.

Proof. Let f(x) = 2x � x. We show that f(x) � 1 if x 2 [0; 1]. The lemma follows from the

facts that f(0) = 1, f(1) = 1, and f 00(x) = 2x

ln2 2
> 0 if x 2 [0; 1].

The following lemma provides a lower bound on the total bene�t accepted by the algorithm.

In particular, it provides a lower bound on the bene�t accepted by the algorithm in terms of

the exponential cost function x and the capacity function b. To state the lemma we introduce

the concept of an acceptance sequence.

De�nition 7.3.5 (acceptance sequence) A acceptance sequence, ! = !1!2 : : : , for graph

G is a sequence of triples, (Ti; Ri; %i), where Ti is a tree in G, Ri is a bandwidth function, and

%i is a bene�t function.

In general, each element of an acceptance sequence will represent a multicast group request,

where Ti is the subgraph along which the request allocated bandwidth, Ri gives the bandwidth

the request allocated on link e, and %i is the bene�t function of the request.

Lemma 7.3.6 Consider an acceptance sequence ! = !1 : : :!k�1 for G = (V;E), where !i =

(Ti; Ri; %i).

For each e 2 E and i 2 [1; k], let xi(e) = (�ui(e)� 1)=n, where ui(e) =
1

b(e)

P
1�j<ije2Tj

Rj(e)

and � is a constant. De�ne ci(e) = Ri(e)xi(e) to be a cost function. Assume that Ri(e) �
b(e)= log� for each i 2 [0; k) and e 2 E. Furthermore, assume that max e2EfRi(e)g � %i(Ti).

Finally, for each i 2 [1; k), let ci(Ti)=%i(Ti) � S, where S � 1. Then,

2S log �
k�1X
i=1

%i(Ti) �
X
e2E

xk(e)b(e):
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Proof. First consider the change from xi(e) to xi+1(e) when e 2 Ti.

xi+1(e)� xi(e) =
1

n
(�ui(e)+Ri(e)=b(e) � �ui(e))

=
�ui(e)

n
(�Ri(e)=b(e) � 1)

=
�ui(e)

n
(2

Ri(e)
b(e)

log � � 1)

We now make use of the fact that 2x � 1 � x when 0 � x � 1 (cf. Lemma 7.3.4) and the fact

that the exponent of 2 in the above equality is at most 1 (since Ri(e) � b(e)= log�). Therefore,

when e 2 Ti,

b(e)(xi+1(e)� xi(e)) � b(e)
�ui(e)

n
(
Ri(e)

b(e)
log�)

= log�(ci(e) +
Ri(e)

n
):

Now, summing over all links:

X
e2Ti

b(e)(xi+1(e)� xi(e)) �
X
e2Ti

(ci(e) +
Ri(e)

n
) log�

� ci(Ti) log� +
X
e2Ti

Ri(e)

n
log�

We now make use of the fact that ci(Ti)=%i(Ti) � S, the fact that max efRi(e)g � %i(Ti), and

the fact that there are at most n links in Ti.

X
e2Ti

b(e)(xi+1(e)� xi(e)) � %i(Ti)S log� + %i(Ti) log�

� %i(Ti)2S log�:
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We complete the proof with an induction over i. Since x1(e) = 0 for all e 2 E,

X
e2E

b(e)xk(e) =
X
e2E

k�1X
i=1

b(e)(xi+1(e)� xi(e))

=
k�1X
i=1

X
e2E

b(e)(xi+1(e)� xi(e))

�
k�1X
i=1

%i(Ti)2S log�:

We now apply the lemma to the bmg algorithm.

Lemma 7.3.7 Let � = �0�1 : : :�k�1 be a request sequence and let � = bmg(�) be the cor-

responding result sequence. For each �i let Ti = �i if �i 6= ? and let Ti = G; if �i = ?.
Then,

4 log�
k�1X
i=1

%i(Ti) �
X
e2E

xk(e)b(e):

Proof. First we construct an acceptance sequence ! from request sequence � and result

sequence �. Consider a speci�c request �i. If �i 6= ?, we de�ne !i = (Ti; Ri; %i) as follows.

Ti = �i, Ri(e) = r(�i) for all e 2 Ti and Ri(e) = 0 for all e 62 Ti, and %i = %(�i). If �i = ?,
Ti = G;, Ri(e) = 0 for all e 2 E, and %i = %(�i).

By inspection, the ui function, xi function, and ci function of Lemma 7.3.6 correspond to

the ui function, xi function, and ci function of bmg. Furthermore, Ri is de�ned such that

Ri(e) � b(e)= log� for all i 2 [1; k) and e 2 E and max e2EfRi(e)g � %i(Ti). Finally, bmg

insures that ci(Ti)=%i(Ti) � 2. Now we can apply Lemma 7.3.6 to conclude that

4 log�
k�1X
i=1

%i(Ti) �
X
e2E

xk(e)b(e):

Having provided a lower bound for the total bene�t of the accepted multicast groups in

terms of xk(e)b(e), we now provide an upper bound, in terms of xk(e)b(e), for the total bene�t

of the multicast groups that are accepted by the optimal o�-line algorithm, but rejected by

the bmg algorithm. Again, we start with a general lemma. To state this lemma we de�ne the

concept of a rejection sequence.
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De�nition 7.3.8 (rejection sequence) A rejection sequence,  = 12 : : : , for graph G =

(V;E) is a sequence of triples, (Mi; ri; %i), where Mi � V is a set of nodes, ri is a real number,

and %i is a bene�t function.

In general, each element of a rejection sequence will represent a multicast group where Mi is

the set of members from the multicast group that are rejected by the on-line algorithm but

accepted by the o�-line algorithm, ri gives the amount of bandwidth required by the multicast

group, and %i is the bene�t function of the multicast group.

Lemma 7.3.9 Consider a rejection sequence  = 1 : : : k�1 for G = (V;E), where i =

(Mi; ri; %i). Consider further a cost function xk and a bandwidth function b(e).

For each element i 2 [1; k) let TM
i be any tree spanning the nodes in Mi. Assume that for

all e 2 E, 1
b(e)

P
1�i<kje2TM

i
ri � 1. Assume further that for all i 2 [1; k), %i(T

M
i ) � rixk(T

M
i )S.

Then,

k�1X
i=1

%i(T
M
i ) � S

X
e2E

xk(e)b(e):

Proof. Since %i(TM
i ) � rixk(TM

i )S for each i 2 [1; k),

k�1X
i=1

%i(T
M
i ) �

k�1X
i=1

rixk(T
M
i )S

�
k�1X
i=1

X
e2TM

i

rixk(e)S

�
X
e2E

xk(e)b(e)S
1

b(e)

X
1�i<kje2TMi

ri:

Since we assume that 1
b(e)

P
i�i<kje2TMi

ri � 1 for all e, we can conclude that

k�1X
i=1

%(TM
i ) � S

X
e2E

xk(e)b(e):

We now apply the lemma to the bmg algorithm.

Lemma 7.3.10 Let � = �0�1 : : :�k�1 be a request sequence and let � = bmg(�) be the corre-

sponding result sequence.
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For each request �i such that �i = ? but �i is accepted by the optimal o�-line algorithm, let

TM
i be the spanning tree used by the optimal o�-line algorithm. For requests �i such that either

�i 6= ? or �i is rejected by the optimal o�-line algorithm, let TM
i = G;. Then,

X
e2E

xk(e)b(e) �
k�1X
i=1

%i(T
M
i ):

Proof. First we construct a rejection sequence  from request sequence � and result sequence

�. Consider a speci�c request �i. If �i = ? but �i is accepted by the optimal o�-line algorithm,

de�ne i = (Mi; ri; %i) as follows. Mi = fvj%(�i)(v) 6= 0g, ri = r(�i), and %i = %(�i). If �i 6= ?
or �i is rejected by the optimal o�-line algorithm, Mi = ;, ri = r(�i), and %i = %(�i).

Let TM
i be the spanning tree for Mi used by the o�-line algorithm. Since the trees TM

i are

accepted by the o�-line algorithm, the correctness of that algorithm implies that the capacity

constraints are not violated, i.e., for all e 2 E, 1
b(e)

P
1�i<kje2TMi

ri � 1.

Now consider any i where Mi 6= ;. Since � = ?, the approximate Steiner Tree found by

the mcst algorithm, Ti, has cost greater than twice its bene�t. Speci�cally, ci(Ti) > 2%i(Ti) =

2%i(TM
i ). (See code in Figure 7-1.) The mcst algorithm guarantees that the cost of Ti is at most

twice that of Steiner Tree spanning Mi. Thus, ci(TM
i ) � 1

2
ci(Ti) > %i(TM

i ). Since ci(e) = rixi(e)

and xi(e) is increasing in i, ci(e) � rixk(e). Therefore, the fact that ci(T
M
i ) > %i(T

M
i ) implies

that rixk(T
M
i ) > %i(T

M
i ).

By inspection, the xk function of Lemma 7.3.9 corresponds to the xk function of bmg. Since

%i(T
M
i ) < rixk(T

M
i ), we can apply Lemma 7.3.9 with S = 1 to conclude that

X
e2E

xk(e)b(e) �
k�1X
i=1

%i(T
M
i ):

Using Lemmas 7.3.7 and 7.3.10 we can now prove the competitive ratio for the bmg algo-

rithm.

Theorem 7.3.11 Let P be the batched multicast admission control and routing problem for

general topology networks. Let P measure the amount of accepted bene�t. Then, the bmg

algorithm has a competitive ratio, CP;P (bmg), of O(logn).

Proof. Let � = �0�1 : : : �k�1 be a request sequence let � = bmg(�) be the corresponding result
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sequence. For each �i let Ti = �i if �i 6= ? and let Ti = G; if �i = ?. Then, Lemma 7.3.7

implies that

4 log�
k�1X
i=1

%i(Ti) �
X
e2E

xk(e)b(e):

Thus, 1=(4 log�)
P

e2E xk(e)b(e) is a lower bound on P (�; �), the bene�t accepted by the bmg

algorithm.

Now consider the requests that are rejected by the bmg algorithm but accepted by the

optimal o�-line algorithm. Speci�cally, if �i = ? but �i is accepted by the optimal o�-line

algorithm, let TM
i be the spanning tree used by the optimal o�-line algorithm. For requests �i

such that either �i 6= ? or �i is rejected by the optimal o�-line algorithm, let TM
i = G;. Then,

Lemma 7.3.10 implies that

X
e2E

xk(e)b(e) �
k�1X
i=1

%i(T
M
i ):

Thus, the bene�t accepted by the optimal o�-line algorithm, but rejected by the bmg algorithm

is bounded from above by
P

e2E xk(e)b(e).

The total bene�t accepted by the optimal o�-line algorithm, Po(�), is thus at most P (�; �)+P
e2E xk(e)b(e). Therefore, the competitive ratio of the bmg algorithm is less than:

Po(�)

P (�; �)
� P (�; �) +

P
e2E xk(e)b(e)

P (�; �)

� P (�; �) + 4P (�; �) log�

P (�; �)
= O(log�) = O(logn);

where the last step follows from the fact that � = 2n(2n+ 1).

We now prove the correctness of the bmg algorithm. In other words, we show that bmg

solves the batched multicast problem. We �rst consider the capacity constraint.

Lemma 7.3.12 Let � = �0�1 : : :�k�1 be a request sequence and let � = bmg(�) be the corre-

sponding result sequence. Then, for each link e 2 E, uk(e) � 1.

Proof. Recall that � = 2n(2n+ 1).

We proceed by contradiction. Let i be the �rst index such that ui+1(e) > 1 for some link e.

From the de�nition of ui+1(e) (cf. De�nition 7.3.1), ui(e) > 1� ri=b(e). Since we assume that
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ri � b(e)=(log�), we conclude that ui(e) > 1� 1=(log�). Thus:

xi(e) = (�ui(e) � 1)=n > (�1�1=(log�) � 1)=n = (�=2� 1)=n = 2n:

Therefore, ci = rixi(e) > ri2n. Since request �i includes link e, this implies that %i(Ti) > rin.

This is a contradiction since the maximum bene�t of �i is rin.

Theorem 7.3.13 The bmg algorithm solves the batched multicast admission control and rout-

ing problem for general topology networks.

Proof. The theorem follows directly from Lemma 7.3.12, the de�nition of the bmg algorithm

(Figure 7-1), and the de�nition of the batched multicast admission control and routing problem

for general topology networks (De�nition 7.3.1).

7.4 Non-Interleaved On-line Multicast Groups

This section presents an admission control and routing algorithm for batched and on-line mul-

ticast groups. We call the algorithm nomg (Non-interleaved On-line Multicast Groups). The

algorithm uses binary admission control for the batched multicast groups and non-binary ad-

mission control for the on-line multicast groups. Our service model for on-line multicast groups

includes a \source", which is a member that is guaranteed to be part of the multicast group, and

considers all other potential members as \destinations", whose actual membership is optional.

Since the algorithm considers on-line multicast groups, multiple requests can be associated

with any given multicast group. The nomg algorithm restricts the on-line multicast groups

to be non-interleaved. In other words, two requests associated with the same multicast group

cannot be separated by a request from a di�erent multicast group. We formally de�ne the

non-interleaved property in De�nition 7.4.1. Non-interleaved on-line multicast groups exhibit

most of the complications associated with on-line multicast groups. An extension of the nomg

algorithm, presented in Section 7.5, eliminates the restriction that the on-line multicast groups

must be non-interleaved.

Our algorithm achieves a competitive ratio of O(log6 n), where n is the number of nodes in

the network. Since unicast communication is a special case of multicast communication, the
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(logn) lower bound of [AAP93] applies to our algorithm (cf. Lemma 7.3.3).

7.4.1 Probabilistic Assumptions

On-line multicast groups introduce two sources of complications. Complications arise from the

use of non-binary admission control and from the lack of knowledge about the future multicast

group membership. We discuss the complications associated with non-binary admission control

�rst.

Consider a batched multicast group with binary admission control. The bmg algorithm of

Section 7.3 accepts the multicast group if the approximate Steiner Tree spanning the potential

members of the multicast group has cost less than the bene�t of the multicast group. Now

consider a batched multicast group with non-binary admission control. Informally, an admission

control and routing algorithm should admit any subset of the potential members as long as an

approximate Steiner Tree spanning the subset has cost less than the bene�t of the subset.

However, an algorithm that simply picks any subset with cost greater than its bene�t will, in

general, not have a polylogarithmic competitive ratio. Rather, an admission control and routing

algorithm for non-binary admission control must pick the subset of potential members with the

largest bene�t from among the subsets whose cost is less that their bene�t. Such a subset is said

to be maximal. Intuitively, choosing a non-maximal subset will cause unjusti�able rejections

of potential multicast members (cf. proof of Lemma 7.4.19). The maxsparse algorithm (cf.

Section 7.2.3) will be used to construct maximal subsets of potential multicast members.

We now turn to the issue of lack of knowledge about future membership in on-line multicast

groups. Consider an on-line multicast group with three potential members, s; v1; v2, where s

is the source and thus guaranteed membership in the multicast group. Assume that the set

s; v1; v2 is maximal, but that no subset is maximal. Let v1 be the �rst to request membership

in the multicast group. Let the cost of the minimum cost path from v1 to s be greater than

the bene�t of s and v1. The algorithm now has two choices. It can either accept v1 or reject

v1. We consider each choice separately.

� The algorithm accepts v1.

In this case assume that v2 does not request membership in the multicast group. Then

the multicast group consisting of s and v1 will be spanned by a tree (path) whose cost is
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greater than the bene�t of s and v1. However, the use of a tree whose cost is greater than

its bene�t will, in general, lead to a non-polylogarithmic competitive ratio.

� The algorithm rejects v1.

In this case assume that v2 does request membership in the multicast group. Indepen-

dently, of whether or not the algorithm accepts v2, we are now left with a non-maximal

subset of the potential members. (Recall that the only maximal subset includes s; v2 and

v2.) However, in general, the use of non-maximal subsets leads to a non-polylogarithmic

competitive ratio.

The example suggests that an algorithm with a good (polylogarithmic) competitive ratio must

know in advance whether or not v2 is going to request membership in the multicast group when

deciding whether or not to accept v1. In other words, it must know about future requests.

To circumvent the problems associated with not knowing about future membership requests,

we make some statistical assumptions about the requests. Namely, we make assumptions about

the likelihood that a certain node will request membership in a certain multicast group. Our

statistical assumptions are very general in that we allow the probability that a node requests

membership in a certain multicast group to be arbitrary. The statistical assumptions about

di�erent multicast groups are revealed in an on-line fashion, at any time before the �rst mem-

bership request for that multicast group. In e�ect, we can think of the multicast group as

\declaring" its statistical assumptions prior to its �rst use. We comment that the statistical

assumptions that we make do not eliminate the element of uncertainty; in particular, we al-

low probability distributions where the probability of any speci�c membership request is very

small. We deal with small probabilities by aggregating statistical information using the clus-

tering techniques of [AP90].

7.4.2 Problem Statement

We provide a formal de�nition for the admission control and routing problem for non-interleaved

on-line multicast groups. An informal discussion follows the de�nition. The admission control

and routing problem for non-interleaved on-line multicast groups is a probabilistic problem (cf.

De�nition 2.1.4).
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De�nition 7.4.1 (non-interleaved on-line multicast for a set of graphs G) Let I be a

multicast group identi�er alphabet. Let G be a set of graphs ranging over a node alphabet V. If
G 2 G, we describe G = (V;E) by a set of nodes V and a set of undirected links E between the

nodes. Furthermore, let � = 2jV j(2K1K2K3jV j log3 jV j+ 1). Now de�ne

Q1 = f((V;E); b) j (V;E)2 G and b : E ! <�0g;

Q2 = f(g; %; r) j g 2 I; % : V ! f0; rg; r 2 <>0; jfv j %(v) 6= 0gj � 2g;
Q3 = f(g; %; r; s) j g 2 I; % : V ! [0; r]; r 2 <>0; s 2 Vg;
Q4 = f(g; %; r) j g 2 I; % : V ! f0; rg; r 2 <>0; jfv j %(v) 6= 0gj = 1g:

If �i 2 Q2 [ Q4 and �i = (gi; %i; ri) then g(�i) = gi, %(�i) = %i, and r(�i) = ri. The same

de�nitions extend to �i 2 Q3. Furthermore, if �i 2 Q3 and �i = (gi; %i; ri; si) then s(�i) = si.

Finally, if �i 2 Q4 then v(�i) is the node v such that %(�i) 6= 0.

Let (�; �) be a request sequence, response sequence pair such that �i 2 Q2 [ Q3 [ Q4 for

all i 2 [1; j�j). Then, for all j 2 [1; j�j], uj(e) = 1
b(e)

P
1�i<j j�i 6=?;e2�i r(�i). Furthermore,

T j
g =

S
1�i�j jg(�i)6=g;�i 6=?

�i. Now de�ne:

Q = Q1 [ Q2 [ Q3 [ Q4;

R = fT j T is a tree over Vg [ f?g;
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S = f(�; �) j 1: �0 2 Q1; and �0 = ?;
2: �i 2 Q2 [Q3 [Q4 for all i 2 [1; j�j);
3: if �0 = ((V;E); b) then for all i 2 [1; j�j); fv j %(�i)(v) 6= 0g � V;

4: if �0 = ((V;E); b) then for all i 2 [1; j�j); if �i 2 Q3 then s(�i) 2 V;

5: if �0 = ((V;E); b) then jf�i j �i 2 Q4gj � jV j;
6: if �0 = ((V;E); b) then for all i 2 [1; j�j); r(�i) � mine2Ef b(e)

log�
g;

7: if �0 = (G; b) then for all i 2 [1; j�j); if �i 2 Q2 and �i 6= ? then �i

is a tree in G with leaves consisting of the set fv j %(�i)(v) 6= 0g;
8: for all i 2 [1; j�j); if �i 2 Q3 then �i = ? and there exist no j < i

such that �j 2 Q3 and g(�i) = g(�j);

9: for all i 2 [1; j�j); if �i 2 Q4 then there exist �j 2 Q3 such that

j < i; g(�j) = g(�i); r(�j) = r(�i) and g(�k) = g(�i)8j < k < i;

10: for all i 2 [1; j�j); if �i 2 Q3 and there exist �j 2 Q4 such that

g(�j) = g(�i) and �j 6= ? then s(�i) 2 T j
gi
;

11: if �0 = (G; b) then for all i 2 [1; j�j); if �i 2 Q3 and �i 6= ? then

T i
gi
is a tree in G containing v(�i);

12: if �0 = ((V;E); b) then for all e 2 E; uj�j(e) � 1g:

D = fD j 8g 2 I; 8v 2 V ; PrD[f� j 9�i 2 Q4; g(�i) = g; v(�i) = vg j
f� j 9�j 2 Q3; g(�j) = g; %(�j)(v) = ag] = a=r(�j)g:

In De�nition 7.4.1 there are three types of multicast requests: batch requests (Q2), init

requests (Q3), and join requests (Q4). A batch request requests the acceptance of a batched

multicast group. It is the same as the multicast requests in the batched multicast problem,

except that it also includes a multicast group identi�cation number. Thus, a batch request is

speci�ed by a triple, (g; %; r), where g is a group identi�cation number, % is a bene�t function,

and r is a bandwidth requirement. An init request initializes an on-line multicast group by

specifying the source and the expected bene�t associated with each node in the network. The

expected bene�t encodes the statistical information used by the algorithm. More precisely,

an init requests consists of a four tuple (g; %; r; s), where g is a group identi�cation number,

% is a bene�t function, r is a bandwidth requirement, and s is a source node. The bene�t
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function % is used to specify the expected bene�t associate with each of the nodes. Speci�cally,

the probability that node v will request membership in multicast group g is given by %(v)=r.

Finally, a join request requests membership in an on-line multicast group for some node.

A join request consist of a triple (g; %; r), where g is a group identi�cation number, % is a

bene�t function, and r is a bandwidth requirement. The bene�t function returns zero for all

nodes except the one requesting membership. For the node requesting membership, the bene�t

function returns r.

There are twelve conditions listed for S. We discuss the conditions in order. The �rst

condition states that the �rst request, �0, consists of the network topology and the capacity

information for the network. The response to the �rst request is ?. The second condition states

that each subsequent request is either a batch, init, or join request. The third condition

ensures that all nodes for which the bene�t is non-zero are actually nodes in the network.

The fourth condition ensures that the source node of an init request is an actual node in

the network. The �fth condition ensures that there are at most jV j on-line multicast groups.

The sixth condition enforces constraints on the bandwidth. In particular, it ensures that the

bandwidth of a multicast group is restricted to a 1=� fraction of the capacity of the lowest

capacity link. The seventh condition ensures that the tree constructed for an accepted batch

request is in the network and spans all multicast members. The requirement that the tree

must span all members reects the fact that we are using binary admission control for batch

requests. The eighth condition states that the response to an init request is ? and that only

one init request can be made for each multicast group. The ninth condition ensures that a

join request for group g is always proceeded by an init request for that group. Furthermore,

each join request for group g must specify the same bandwidth as the init request for group g.

Finally, condition nine encodes the requirement that the requests be non-interleaved. In other

words, for every join request �i for group g, every request between �i and the init request for

group g is also a join request for group g. Consider a multicast group g. In De�nition 7.4.1 we

de�ne T j
g to be the tree constructed for group g on the basis of the requests up to and including

request �j. The tenth condition requires that the source speci�ed for group g is included the

tree T j
g whenever the tree includes a non-source member of the multicast group. Consider a

join request �i. De�nition 7.4.1 de�nes v(�i) to be the node that request �i wishes to add to
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the multicast group g(�i). Condition eleven ensures that for every accepted join request �i,

T i
g(�i)

is a tree that includes v(�i). Finally, condition twelve enforces the capacity constraints.

In particular, ui(e) represents the percent of the capacity of link e that has been used by the

requests up to but not including request �i. We call ui(e) the utilization of link e just before

request �i is handled.

Finally, we de�ne a set D of probability distributions D. In particular, the set of probability

distributions must ensure that the probability that node v will request membership in multicast

group g is given by %(�i)(v)=r(�i), when �i is the init request for group g. Thus, the probability

that a request sequence contains a join request for group g and node v, given that it contains

a init request for group g with bene�t a is a=r where r is the bandwidth requirement of group

g.

We now show that lower bounds for admission control and routing for batched multicast

groups extend to admission control and routing for non-interleaved on-line multicast groups.

Lemma 7.4.2 Let P(fGg) be the non-interleaved on-line multicast admission control and rout-

ing problem for the set of graphs G where � = (2K1K2K3jV j2 log3 jV j + 4)12. Let P 0(fGg) be
the batched multicast admission control and routing problem for the set of graphs G where

� = (2K1K2K3jV j2 log3 jV j+ 4)12. Let P be the performance function of De�nition 7.3.2.

If CP0(fGg);P 0(A0) � K for all deterministic on-line algorithms A0 that solve P 0(fGg), then
CP(fGg);P (A) � K for all deterministic on-line algorithms A that solve P(fGg). Similarly,

if CbP0(fGg);P 0(A0
r) � K for all randomized on-line algorithms A0

r that solve P 0(fGg), then

CbP(fGg);P (Ar) � K for all randomized on-line algorithms Ar that solve P(fGg).

Proof. Notice that the non-interleaved on-line multicast admission control and routing problem

restricted to batch requests is the same as the batched multicast admission control and routing

problem. Now the lemma follows from Lemma 2.4.4 and Lemma 2.5.2.

As an immediate consequence of Lemma 7.3.3 and Lemma 7.4.2, we conclude that lower

bounds for unicast admission control and routing extend to admission control and routing for

non-interleaved on-line multicast groups.

Lemma 7.4.3 Let P(fGg) be the non-interleaved on-line multicast admission control and rout-

ing problem for the set of graphs G where � = (2K1K2K3jV j2 log3 jV j + 4)12. Let P 0(fGg)
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be the unicast admission control and routing problem for the set of graphs G where � =

(2K1K2K3jV j2 log3 jV j + 4)12. Let P be the performance function of De�nition 7.3.2. Let

P 0 be the performance function of De�nition 2.3.7.

If CP0(fGg);P 0(A0) � K for all deterministic on-line algorithms A0 that solve P 0(fGg), then
CP(fGg);P (A) � K for all deterministic on-line algorithms A that solve P(fGg). Similarly,

if CbP0(fGg);P 0(A0
r) � K for all randomized on-line algorithms A0

r that solve P 0(fGg), then

CbP(fGg);P (Ar) � K for all randomized on-line algorithms Ar that solve P(fGg).
Both statements also hold if P 0 is the the performance function in De�nition 2.3.8.

Proof. The lemma follows immediately from Lemma 7.3.3 and Lemma 7.4.2.

7.4.3 Algorithm

Overview. In response to an init request �i = (gi; %i:ri; si), the algorithm groups the nodes

into clusters (cf. Section 7.2.4). It then reserves bandwidth ri on a tree that spans the source,

si, and clusters whose expected bene�t is su�ciently high. A node that is an element of a

cluster to which bandwidth is reserved by the init request will be accepted if a join request

arrives for that node. On the other hand, a node that is not an element of such a cluster may

be rejected when a join request arrives for that node.

In response to a join request �i = (gi; %i:ri), the algorithm determines the minimum cost

path from the requesting node to the existing spanning tree T i
gi
for that multicast group. If the

cost of the path is su�ciently low, the node is accepted, otherwise, it is rejected. The cost of

the path is guaranteed to be su�ciently low for a node that is an element of a cluster to which

bandwidth is reserved by the init request for that multicast group.

In response to a batch request, the nomg algorithm proceeds exactly like the bmg algo-

rithm.

Details. Let the �rst request �0 be ((V;E); b). Let n = jV j. The admission control and

routing decision is based on the current utilization of the network links. Using the utilization,

the algorithm computes the exponential cost. The cost of link e, as seen by the algorithm

when considering the ith multicast request, �i, is de�ned by ci(e) = rixi(e), where xi(e) =

(�ui(e) � 1)=n; and � is the constant in De�nition 7.4.1.
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We �rst consider an init request �i = (gi; %i:ri; si). The algorithm constructs a set of

clusters Ci using the cluster algorithm. The input to the cluster algorithm is the graph G,

the cost function ci, and the parameter ri logn. The elements of the cluster set Ci are pairs,
(C; v), consisting of a cluster, C, and a center node, v, (cf. Section 7.2.4). The resulting set of

tuples will have the following properties:

1. For each (C; v) 2 C, ri logn � D(C) � K1ri log
2 n.

2. For each node v 2 V , 1 � j(C; u) j (C; u) 2 C; v 2 Cgj � K2 log n.

3. jCj � n.

4. The clusters in C can be colored with O(logn) colors such that for any two clusters C1; C2

with the same color, d(C1; C2) 2 
(ri logn).

Using the results of the cluster algorithm the nomg algorithm de�nes a new bene�t function

%0i. Informally, the goal of this bene�t function is to identify clusters in which the expected

bene�t is high enough that Cherno� bounds can be used to estimate the actual bene�t with

high probability. Speci�cally, %0i assigns a bene�t of zero to all nodes except center nodes for

which the expected bene�t of the associated cluster is greater than 12ri log n. For these center

nodes %0i assigns the expected bene�t of the nodes in the associated cluster. The graph G,

the cost function ci, the new bene�t function %0i, and the source si now form the inputs to

the maxsparse algorithm. The algorithm returns a 1-maximal O(log2 n)-sparse tree, T i+1
gi

.

Finally, the algorithm reserves bandwidth ri on the links of the tree. Subsequent join requests

will attach to T i+1
gi

. Figure 7-2 shows the code for an init request.

Recall that T i
gi
represent the multicast tree of group gi just before request �i is handled

(cf. De�nition 7.4.1). Now consider a join request �i. First the algorithm constructs the cost

function ci. Then, it identi�es the node vi which is requesting membership in the multicast

group. Using the cost function ci, it �nds the shortest path p with which to attach vi to the

multicast tree T i
gi
. If the cost of that path, ci(p), is less than K1 log

2 n times the bene�t,

%i(vi) = ri, of the requesting node, then vi is accepted. Otherwise, it is rejected. Finally, the

algorithm reserves bandwidth ri on the links of p. Figure 7-3 shows the code for a join request.

Now consider a batch request �i. The algorithm proceeds exactly like the bmg algorithm,

except for the fact that the ratio of ci(Tgi) to %i(Tgi) can now be 2K1 log
2 n rather than 2.
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nomg-init(gi; %i; ri; si):
for all e 2 E : c(e) = rix(e); (where x(e) = (�u(e) � 1)=n)
C = cluster(G; c; ri logn);
for all v 2 V :
%0i(v) =

P
v02C %i(v

0) if (C; v) 2 C and
P

v02C %i(v
0) � 12ri logn;

%0i(v) = 0 otherwise;
Tgi = maxsparse(G; c; %0i; si);
for all e 2 Tgi : u(e) = u(e) + ri

b(e)
;

Figure 7-2: The nomg admission control and routing algorithm an init request.

nomg-join(gi; %i; ri):
for all e 2 E : c(e) = rix(e); (where x(e) = (�u(e) � 1)=n)
vi = v 2 G s.t. %i(v) 6= 0;
if there exists a path p in G = (V;E) from vi to Tgi s.t.

P
e2p c(e) � K1ri log

2 n;
then route the requesting member on p, and set:
for all e 2 p : u(e) = u(e) + ri

b(e)
;

Tgi = Tgi [ p;
else reject the requesting member.

Figure 7-3: The nomg admission control and routing algorithm for a join request.

nomg-batch(gi; %i; ri):
for all e 2 E : c(e) = rix(e); (where x(e) = (�u(e) � 1)=n)
V 0 = fv 2 V j %i(v) 6= 0g;
Tgi = mcst(G; V 0; c);

if c(Tgi ) � 2K1 log
2 n%i(Tgi )

then route the requested multicast group on Tgi , and set:
for all e 2 Tgi : u(e) = u(e) + ri

b(e) ;

else reject the requested multicast group.

Figure 7-4: The nomg admission control and routing algorithm for a batch request.
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7.4.4 Analysis

The analysis consists of two parts: correctness and complexity. We consider complexity �rst.

The complexity analysis will prove that the nomg algorithm achieves its competitive ratio with

high probability (cf. De�nition 2.4.3). Thus, we limit the number of multicast groups to n (cf.

Section 2.4).

We introduce some notation for the analysis. Consider request sequence � = �0 : : : �k�1 and

multicast group gj. In De�nition 7.4.1 we denote the tree spanning the accepted members of

group gj after request �k�1 by T k
gj
. Let G0 be a subgraph of G. Then, T k

gj
jG0 represents the

nodes and links of T k
gj
that are also an element of G0. We de�ne two more quantities.

De�nition 7.4.4 (�(v; gj)) For each node v and group gj, let �(v; gj) be the index of the

highest index join or batch request in � that requests membership for node v in gj. (Note,

�(v; gj) is unde�ned when no such join or batch request exists.)

De�nition 7.4.5 (%gj) For each group gj, let %gj be the bene�t function for group gj. Speci�-

cally, %gj(v) = %�(v;g)(v) when �(v; gj) is de�ned, otherwise %gj (v) = 0.

The following lemma shows that certain join requests are guaranteed to be successful. This

lemma is based on the fact that the requests from di�erent multicast groups are not interleaved.

Lemma 7.4.6 Let � = �0 : : : �k�1 be a request sequence and � = nomg(�) be the corresponding

result sequence. Let �i = (gi; %i; ri; si) be an init request. Consider a cluster that either contains

the source or whose center node is included in T i+1
gi

. In other words, consider C such that

(C; v) 2 Ci and either si 2 C or v 2 T i+1
gi

.

Now consider a join request for group gi from a node in C. In other words, consider join

request �j = (gj; %j; rj) such that gj = gi and vj = v(�j) 2 C.

Then, the nomg algorithm will accept vj, i.e., vj 2 T k
gi
and �j 6= ?.

Proof. The proof takes advantage of the fact that the request sequence � is non-interleaved.

Consider the state just before request �i is handled. Recall that the diameter of each cluster

in Ci is less than K1ri log
2 n. Since vj 2 C, either there exists a path p from vj to si such

that ci(p) � K1ri log
2 n or there exists a path p from vj to the cluster center v such that

ci(p) � K1ri log
2 n. Now compare the cost for path p seen by the join request, cj(p), to the
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cost seen by the init request, ci(p). Since the request sequence is not interleaved, any increase

in cj(p) over ci(p) is due to the addition of a link in p to the multicast tree for group gi. Thus,

there exists some pre�x p0 of p such that p0 connects vj to the multicast tree of group gi and

cj(p
0) � K1ri log

2 n. The lemma now follows from the de�nition of the nomg algorithm (cf.

Figure 7-3) and the fact that %j(vj) = rj = ri.

Consider the init request (gi; %i; ri; si). Consider an element (C; v) 2 Ci of the cluster set
found by the nomg algorithm. The bene�t function %i(C) provides the expected bene�t from

the group gi join requests for all of the nodes in cluster C. Using Cherno� bounds, the following

lemmas show that, with high probability, the actual bene�t from the group gi join requests for

all of the nodes in cluster C is close to the expected bene�t.

Lemma 7.4.7 Let A be a sum of indicator variables. Furthermore, let E be the expectation of

A. If E � 12 logn, then A = �(E) probability at least 1�O(1=n3).

Proof. We proceed by providing an upper bound and a lower bound on A that holds with

probability at least 1� 1=n3. Based on the Cherno� bounds in [Rag86], we can conclude that

PrfA > eEg � e�E < 1=n3:

It follows that A = O(E) with probability at least 1� 1=n3. The Cherno� bounds in [Rag86]

also lead to the conclusion that

PrfA�E < �Eg � e
�2E

2 :

By choosing  = :8, we show that PrfA < :2Eg < 1=n3. Therefore, it follows that A = 
(E)

with probability at least 1� 1=n3.

Lemma 7.4.8 Let A be a sum of indicator variables. Furthermore, let E be the expectation of

A. If E � 12 logn, then A = O(logn) with probability at least 1�O(1=n3).

Proof. Based on the Cherno� bounds in [Rag86], we can conclude that

PrfA > (1 + �)Eg �
 

e�

(1 + �)(1+�)

!E

:

Now choose � = (24e logn)=E and substitute 12 logn for E. Then, PrfA > 24e logng �
(1=2)24e logn. Since (1=2)24e logn < 1=n3, it follows that A = O(logn) with probability at least

1� 1=n3.
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Lemma 7.4.9 Let �0 : : : �i be a request sequence pre�x where �i = (gi; %i; ri; si) is an init

request. Let D 2 D be a probability distribution over request sequences consistent with �0 : : :�i

(cf. De�nition 7.4.1). Let (C; v) 2 Ci, %i(C) � 12ri log n, and v 2 T i+1
gi

. De�ne �k�1 to be the

�nal request of any extension of the request sequence pre�x �0 : : :�i. Then,

PrD
h
O(1)%gi(T

k
gi
jC) � %i(C)

i
� 1�O(1=n3):

Proof. Consider any join request �j = (gj; %j; rj) such that i < j < k, gj = gi, and vj 2 C.

Then, by Lemma 7.4.6, vj 2 T k
gi
jC. Thus, for any extension �i+1 : : : �k�1 of the pre�x �0 : : : �i,

%gi(T
k
gi
jC) = %gi(T

k
gi
jC)=ri is just equal to the number of nodes in C that issue a join request.

Furthermore, %i(C) = %i(C)=ri is the expected number of nodes in C that issue a join request.

In other words, %gi(T
k
gi
jC) is just a sum of indicator variables and %i(C) is the expectation of

that sum. Furthermore, %i(C) � 12 logn. The lemma now follows from Lemma 7.4.7.

Lemma 7.4.10 Let D 2 D be a probability distribution over request sequences. De�ne �k�1 to

be the �nal request of any request sequence from distribution D. Then,

PrD

2
4O(log4 �)X

j

%gj(T
k
gj
) �

X
e2E

xk(e)b(e):

3
5 � 1�O(1=n3);

where j ranges over the indices of all batch and join requests.

Proof. Consider a speci�c request sequence � and the corresponding result sequence � =

nomg(�). First we construct an acceptance sequence ! from � and �. Consider a speci�c

request �i. We de�ne !i = (Ti; Ri; %i) as follows. Ti is the tree along which the nomg algorithm

reserves bandwidth in response to request �i. In other words, Ti includes the links e such that

ui(e) 6= ui+1(e). Ri(e) = ri for all e 2 Ti and Ri(e) = 0 for all e 62 Ti. Finally, if �i is join

and batch request, then %i = %(�i), and if �i is init request, then %i is the constructed bene�t

function %0i (cf. Figure 7-2). If the nomg algorithm did not reserve any bandwidth in response

to the request then Ti = G;.

By inspection, the ui function, xi function, and ci function of Lemma 7.3.6 correspond to

the ui function, xi function, and ci function of nomg. Furthermore, Ri is de�ned such that

Ri(e) � b(e)= log� for all i and e and max efRi(e)g � %i(Ti).

For join and batch requests nomg insures that ci(Ti)=%i(Ti) � O(log2 n). Consider an

init request next. Since the tree generated by the maxsparse algorithm is O(log2 n)-sparse,
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the nomg algorithm also guarantees that ci(Ti)=%i(Ti) � O(log2 n) for init requests. Now we

can apply Lemma 7.3.6 and the fact that logn � log� to conclude that

O(log3 �)
k�1X
i=0

%i(Ti) �
X
e2E

xk(e)b(e):(7.1)

Now we need to relate
Pk�1

i=0 %i(Ti) to
P

j %gj(T
k
gj
). By de�nition, the tree T k

gj
is equal to the

tree created by the union of the Ti in the subsequence of !i consisting of the triples created

from requests for group gj. However, the function %gj (T
k
gj
) only counts the bene�t from the

join and batch requests, not the init requests.

Consider any pre�x �0 : : : �i of a request sequence from distribution D such that �i =

(gi; %i; ri; si) is an init request. We need to account for the bene�t of the tree generated by the

nomg algorithm, %0i(T
i+1
gi

), which is counted in
Pk�1

i=0 %i(Ti) but not in
P

j %gj(T
k
gj
). By de�nition

of T i+1
gi

,

%0i(T
i+1
gi

) =
X

(C;v)2Ci
v2T igi

%0i(v) =
X

(C;v)2Ci
v2T igi

%i(C):

By Lemma 7.4.9, for each cluster C such that its cluster center is in T i+1
gi

, it is the

case that PrD
h
O(1)%gi(T

k
gi
jC) � %i(C)

i
� 1 � O(1=n3). Since there are at most n clusters,

O(1)%gi(T
k
gi
jC) � %i(C) for all clusters (C; v) 2 Ci with probability at least 1�O(1=n2).

Since every node is an element of at most O(logn) clusters, we can conclude that

PrD

2
6664
X

(C;v)2Ci
v2T igi

%i(C) � O(logn)%gi(T
k
gi
)

3
7775 � 1�O(1=n2):

Since there are at most n multicast groups, PrD
h
O(logn)

P
j %gj(T

k
gj
) �Pk�1

i=0 %i(Ti)
i
�

1�O(1=n). This fact, combined with equation 7.1 allows us to conclude that

PrD

2
4O(log4 �)X

j

%gj(T
k
gj
) �

X
e2E

xk(e)b(e)

3
5 � 1�O(1=n):

Having shown a lower bound for the total bene�t of the accepted multicast groups in terms

of xk(e)b(e), we now provide an upper bound, in terms of xk(e)b(e), for the total bene�t of the
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multicast groups that are accepted by the optimal o�-line algorithm, but rejected by the nomg

algorithm.

Consider request sequence � = �0 : : :�k�1 and the corresponding result sequence � =

nomg(�). Let �i = (gi; %i; ri; si) be an init request. We now de�ne several quantities.

De�nition 7.4.11 (Mgi) Mgi is a set nodes consisting of si and the set of nodes v such that

there exists a join request �j for which v = v(�j), gi = g(�j), �j = ? and �j is accepted by the

optimal o�-line algorithm.

In other words, Mgi consist of the source for group gi, and the set of nodes which issue join

requests for group gi but are rejected by the nomg algorithm and accepted by the optimal

o�-line algorithm. We divide the set Mgi into two sets: M>
gi
and M<

gi
.

De�nition 7.4.12 (M>
gi
) The set M>

gi
is a subset of Mgi :

M>
gi
= fvjv = si or (v 2Mgi and v 2 C where

((C; v0) 2 C and %i(C) � 12ri logn and si 62 C))g:

In other words, the set M>
gi

includes the source and the nodes in Mgi that are elements of

clusters in Ci that have bene�t greater than 12ri logn and do not include the source node.

De�nition 7.4.13 (M<
gi
) The set M<

gi
is a subset of Mgi :

M<
gi
= fvjv = si or (v 2Mgi and v 2 C where

((C; v0) 2 C and %i(C) < 12ri logn and si 62 C))g:

In other words, the set M<
gi

includes the source and the nodes in Mgi that are elements of

clusters in Ci that have bene�t less than 12ri logn and do not include the source node. Note

that Lemma 7.4.6 implies that Mgi = M<
gi
[M>

gi
.

Consider the following Cherno� bound lemma.

Lemma 7.4.14 Let �0 : : :�i be a request sequence pre�x where �i = (gi; %i; ri; si) is an init

request. Let D 2 D be a probability distribution over request sequences consistent with �0 : : :�i.

Furthermore, let (C; v) 2 Ci, %i(C) � 12ri logn and si 62 C.
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Let M>
gi

be de�ned as in De�nition 7.4.12 for any extension of the request sequence pre�x

�0 : : : �i. De�ne M
>
gi
jC be the nodes of M>

gi
that are also in cluster C. Then,

PrD
h
%gi(T

M>

gi
jC) � O(1)%0i(v)

i
� 1�O(1=n3):

Proof. For any extension of the request sequence pre�x �0 : : : �i, de�ne A to be the number

of nodes in cluster C that issue a join request. Thus, A is a random variable based on the

distribution D over request sequences. Let E be the expected number of nodes in cluster C

that issue a join request. E = %0i(v)=ri � 12 logn. Hence, by Lemma 7.4.7, PrD [A = �(E)] �
1 � O(1=n3). The lemma now follows from the observation that %gi(T

M>

gi
jC)=ri � A and that

E = %0i(v)=ri.

Lemma 7.4.15 Let �0 : : :�i be a request sequence pre�x where �i = (gi; %i; ri; si) is an init

request. Let D 2 D be a probability distribution over request sequences consistent with �0 : : :�i.

Let M>
gi

be de�ned as in De�nition 7.4.12 for any extension of the request sequence pre�x

�0 : : : �i. Let T
M>

gi
be any tree spanning M>

gi
. Then,

PrD
h
%gi(T

M>

gi
) � O(log2 n)rixk(T

M>

gi
)
i
� 1�O(1=n2):

Proof. Recall that the clusters in Ci can be colored with O(logn) colors so that the minimum

cost path between any two clusters of the same color is 
(ri logn), where the cost of a link is

given by ci. Consider any particular extension of request sequence pre�x �0 : : : �i. Consider

M>
gi
for that extension. Clearly, there exists some color, say red, such that a 
(logn) fraction

of the nodes in M>
gi

are elements of clusters with the color red. Denote by R>
gi
the nodes in

M>
gi
that are elements of red clusters. Furthermore, de�ne R>c

gi
to be the center nodes of the

red clusters which have elements in R>
gi
. Let TR>

gi
be the subtree of TM>

gi
spanning the nodes in

R>
gi
.

Let TR>c

gi
be the minimum cost (using cost function ci) tree spanning si and the nodes

in R>c
gi
. By Lemma 7.4.6 and the de�nition of R>c

gi
, the tree T i+1

gi
constructed by the nomg

algorithm does not include the center nodes in R>c
gi
. Since T i+1

gi
is 1-maximal and does not

include the center nodes in R>c
gi
, it must be the case that

ci(T
R>c

gi
) � %0i(T

R>c

gi
):(7.2)
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To complete the proof, we relate the terms in this inequality back to TM>

gi
. First consider

the cost. Since the minimum cost path between any two clusters of the same color is 
(ri logn)

and the diameter of each cluster is O(ri log
2 n), ci(T

R>c

gi
) � O(logn)ci(T

R>

gi
). Furthermore, since

TR>

gi
is a subtree of TM>

gi
, ci(T

R>

gi
) � ci(T

M>

gi
). Thus,

O(logn)ci(T
M>

gi
) � ci(T

R>c

gi
):(7.3)

Now consider the bene�t. The argument about the bene�t is probabilistic. Thus, we no longer

consider a speci�c request sequence. Rather, we consider random variables determined by the

distribution D over request sequences. By de�nition of %0i, Lemma 7.4.14, and the fact that

there are at most n clusters, PrD
h
O(1)%0i(T

R>c

gi
) � %gi(T

R>

gi
)
i
� 1 � O(1=n2). Furthermore,

by construction, for any extension of request sequence pre�x �0 : : : �i, %gi(T
R>

gi
)O(logn) �

%gi(T
M>

gi
). Thus,

PrD
h
O(logn)%0i(T

R>c

gi
) � %gi(T

M>

gi
)
i
� 1�O(1=n2):(7.4)

Combining Equations 7.2, 7.4, and 7.3, we have

PrD
h
O(log2 n)ci(T

M>

gi
) � %gi(T

M>

gi
)
i
� 1�O(1=n2):

Since ci(e) = rixi(e) and xi(e) is increasing in i, rixk(e) � ci(e). Therefore,

PrD
h
O(log2 n)rixk(T

M>

gi
) � %gi(T

M>

gi
)
i
� 1�O(1=n2):

To provide the same bounds for M<
gi
we need the following Cherno� bound lemma.

Lemma 7.4.16 Let �0 : : :�i be a request sequence pre�x where �i = (gi; %i; ri; si) is an init

request. Let D 2 D be a probability distribution over request sequences consistent with �0 : : :�i.

Furthermore, let (C; v) 2 Ci, %i(C) < 12ri logn and si 62 C.

Let M<
gi

be de�ned as in De�nition 7.4.13 for any extension of the request sequence pre�x

�0 : : : �i. De�ne M
<
gi
jC be the nodes of M<

gi
that are also in cluster C. Then,

PrD
h
%gi(T

M<

gi
jC) = riO(logn)

i
� 1�O(1=n3):
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Proof. For any extension of the request sequence pre�x �0 : : : �i, de�ne A to be the number

of nodes in cluster C that issue a join request. Thus, A is a random variable based on the

distribution D over request sequences. Let E be the expected number that issue a join request.

E = %i(C)=ri < 12 logn. Hence, by Lemma 7.4.8, A � O(logn) with probability at least

1�O(1=n3). The lemma now follows from the observation that %gi(T
M<

gi
jC)=ri � A.

Lemma 7.4.17 Let �0 : : :�i be a request sequence pre�x where �i = (gi; %i; ri; si) is an init

request. Let D 2 D be a probability distribution over request sequences consistent with �0 : : :�i.

Let M<
gi

be de�ned as in De�nition 7.4.13 for any extension of the request sequence pre�x

�0 : : : �i. Let T
M<

gi
be any tree spanning M<

gi
. Then,

PrD
h
%gi(T

M<

gi
) � O(log2 n)rixk(T

M<

gi
)
i
� 1�O(1=n2):

Proof. Recall that the clusters in Ci can be colored with O(logn) colors so that the minimum

cost path between any two clusters of the same color is 
(ri logn), where the cost of a link is

given by ci. Consider any extension of request sequence pre�x �0 : : :�i. Consider M
<
gi
for that

extension. Clearly, there exists some color, say red, such that a 
(logn) fraction of the nodes

in M<
gi
are elements of clusters with the color red. Denote by R<

gi
the nodes in M<

gi
that are

elements of red clusters. Furthermore, de�ne R<c
gi

to be the center nodes of the red clusters

which have elements in R<
gi
. De�ne TR<

gi
to be the subtree of TM<

gi
spanning the nodes in R<

gi
.

Let TR<c

gi
be the minimum cost (using cost function ci) tree spanning si and the nodes

in R<c
gi
. Since no element of R<c

gi
is an element of a cluster containing si and since the min-

imum cost path between any two clusters of the same color is 
(ri logn), we conclude that

ci(TR<c

gi
) � jR<c

gi
j
(ri log n). To consider the bene�t associated with TR<

gi
we can no longer

consider any extension of request sequence pre�x �0 : : : �i. Rather, a probabilistic argument is

needed. By de�nition of R<
gi
, Lemma 7.4.16, and the fact that there are at most n clusters,

PrD
h
jR<c

gi
jO(ri logn) � %gi(T

R<

gi
)
i
� 1�O(1=n2). Thus,

PrD
h
O(1)ci(T

R<c

gi
) � %gi(T

R<

gi
):
i
� 1�O(1=n2):(7.5)

To complete the proof, we relate the terms in this inequality back to TM<

gi
. The following

discussion holds for any extension of request sequence pre�x �0 : : : �i. First consider the bene�t.

151

■ 



By construction,

O(logn)%gi(T
R<

gi
) � %gi(T

M<

gi
)(7.6)

Now consider the cost. Since the minimum cost path between any two clusters of the same

color is 
(ri logn) and the diameter of each cluster is O(ri log
2 n), ci(T

R<c

gi
) � O(logn)ci(T

R<

gi
).

Furthermore, since TR<

gi
is a subtree of TM<

gi
, ci(T

R<

gi
) � ci(T

M<

gi
). Thus,

O(logn)ci(T
M<

gi
) � ci(T

R<c

gi
):(7.7)

Combining Equations 7.5, 7.6, and 7.7, we have

PrD
h
O(log2 n)ci(T

M>

gi
) � %gi(T

M>

gi
)
i
� 1�O(1=n2):

Since ci(e) = rixi(e) and xi(e) is increasing in i, rixk(e) � ci(e). Therefore,

PrD
h
O(log2 n)rixk(T

M<

gi
) � %gi(T

M<

gi
)
i
� 1�O(1=n2):

Lemma 7.4.18 Let �0 : : :�i be a request sequence pre�x where �i = (gi; %i; ri; si) is an init

request. Let D 2 D be a probability distribution over request sequences consistent with �0 : : :�i.

Let Mgi be de�ned as in De�nition 7.4.11 for any extension of the request sequence pre�x

�0 : : : �i. Let TM
gi

be any tree spanning Mgi. Then,

PrD
h
%gi(T

M
gi
) � O(log2 n)rixk(T

M
gi
))
i
� 1�O(1=n2):

Proof. Consider any extension of request sequence pre�x �0 : : : �i. Consider Mgi , M
<
gi
and M>

gi

for that extension. Since the cluster set Ci covers the graph G and Lemma 7.4.6 shows that

all nodes that are in the same cluster with the source node, si, are accepted, we conclude that

Mgi = M<
gi
[M>

gi
.

Let TM<

gi
be the subtree of TM

gi
that spans the nodes in M<

gi
. Let TM>

gi
be the subtree of TM

gi

spans the nodes in M>
gi
. Then,

2rixk(T
M
gi
) � rixk(T

M>

gi
) + rixk(T

M<

gi
):
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The lemma now follows from Lemmas 7.4.15 and 7.4.17 and the fact that

%gi(T
M>

gi
) + %gi(T

M<

gi
) � %gi(T

M
gi
):

Now we can provide an upper bound on the total rejected bene�t in terms of cost function

xk(e)b(e).

Lemma 7.4.19 Let D 2 D be a probability distribution over request sequences.

For any request sequence from distribution D let I be the set of group identi�er used in

that request sequence. For any on-line group gi 2 I, de�ne Mgi as in De�nition 7.4.11. For

any batched group gi 2 I, let Mgi be the empty set unless, nomg rejected the group gi and the

optimal o�-line algorithm accepted the group gi. In that case, Mgi consists of the members of

the multicast group, i.e., the set fv j %j(v) 6= 0 where j = �(v; gi)g. Then,

PrD

"
O(log2 n)

X
e2E

xk(e)b(e) �
X
i2I

%gi(Mgi):

#
� 1� O(1=n):

Proof. Consider a speci�c request sequence � and the corresponding result sequence � =

nomg(�). First we construct a rejection sequence  from � and �. Consider multicast group

gi. De�ne gi = (Mgi ; rgi; %gi) as follows. Mgi is de�ned as in the statement of the lemma.

Furthermore, rgi gives the bandwidth requirement of the multicast group. Finally, the bene�t

function %gi is just %gi (cf. De�nition 7.4.5).

Let TM
gi

be the spanning tree for Mgi use by the o�-line algorithm. Since the trees TM
gi

are

accepted by the o�-line algorithm, the correctness of that algorithm implies that the capacity

constraints are not violated, i.e., for all e 2 E, 1
b(e)

P
i2Ije2TMgi

rgi � 1.

Now consider any gi for a batched multicast group. Let j be the index of the request for

the multicast group, i.e., j = �(v; gi) for some v 2 TM
gi
. Since nomg rejected the request �j,

the Steiner Tree found by the mcst algorithm T j
gj

has cost greater than 2K1 log
2 n times its

bene�t. Speci�cally, cj(T
j
gj
) > 2K1 log

2 n%j(T
j
gj
) = 2K1 log

2 n%j(T
M
gi
). (Recall, by construction,

gi = gj and TM
gi

is the tree used by the optimal o�-line algorithm to span the multicast members

spanned by T j
gj
.) The mcst algorithm guarantees that the cost of T j

gj
is at most twice that of

the minimum cost spanning tree. Thus,

cj(T
M
gi
) � 1=2cj(T

j
gj
) > K1 log

2 n%j(T
M
gi
):
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Since cj(e) = rjxj(e) and xj(e) is increasing in j, rjxk(e) � cj(e). Therefore, rjxk(T
M
gi
) >

K1 log
2 n%j(T

M
gi
). By de�nition of %gj , %j = %gj . Thus, gi = gj implies that %j = %gi . Further-

more, let rgi be the bandwidth required by multicast group gi. Thus, rj = rgi . Therefore,

rgixk(T
M
gj
) > K1 log

2 n%gi(T
M
gi
):

Now consider any gi for an on-line multicast group. In this case, the discussion no longer

holds for every request sequence. Rather, the discussion is probabilistic. Let rgi be the required

bandwidth of broadcast group gi. Lemma 7.4.18 states that

PrD
h
%gi(T

M
gi
) � O(log2 n)rgixk(T

M
gi
)
i
� 1� O(1=n2):

Furthermore, since there are at most n on-line multicast groups in any request sequence,

%gi(T
M
gi
) � O(log2 n)rgixk(T

M
gi
) for all multicast groups with probability at least 1� O(1=n).

By inspection, the xk function of Lemma 7.3.9 corresponds to the xk function of the nomg

algorithm. Since %i(TM
gi
) < O(log2 n)rgixk(T

M
gi
) for all gi with probability at least 1� O(1=n),

we can apply Lemma 7.3.9 to conclude that

PrD

"
O(log2 n)

X
e2E

xk(e)b(e) �
X
i2I

%gi(T
M
gi
)

#
� 1�O(1=n):

The lemma now follows from the observation that %gi(T
M
gi
) � %gi(Mgi).

Using Lemmas 7.4.10 and 7.4.19 we can now prove the competitive ratio for the nomg

algorithm. Recall that the goal of the algorithm is to maximize the amount of accepted bene�t

(cf. De�nition 7.3.2).

Theorem 7.4.20 Let P be the non-interleaved on-line multicast admission control and routing

problem for general topology networks. Let P measure the amount of accepted bene�t. Then,

the nomg algorithm has a competitive ratio, CP;P (nomg), of O(log6 n) with probability at least

1�O(1=n).

Proof. De�ne �k�1 to be the �nal request of any request sequence from any distribution D 2 D.
Lemma 7.4.10 states that

PrD

2
4O(log4 �)X

j

%gj(T
k
gj
) �

X
e2E

xk(e)b(e)

3
5 � 1�O(1=n):
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where j ranges over the indices of all batch and join requests. Thus, for any distribution

D 2 D, the distribution D picks, with probability at least 1 � O(1=n), a request sequence �

such that the bene�t accepted by the nomg algorithm, P (�;nomg(�)), is bounded from below

by 1=O(log4 �)
P

e2E xk(e)b(e).

Now consider the requests that were rejected by the nomg algorithm but accepted by the

optimal o�-line algorithm. Speci�cally, De�ne I and Mgi for each gi 2 I as in Lemma 7.4.18.

Lemma 7.4.18 states that

PrD

"X
i2I

%gi(T
M
gi
) � O(log2 n)

X
e2E

xk(e)b(e)

#
� 1�O(1=n):

for any distribution D 2 D, the distribution D picks, with probability at least 1 � O(1=n), a

request sequence � such that the bene�t accepted by the optimal o�-line algorithm, but rejected

by the nomg algorithm is bounded from above by O(log2 n)
P

e2E xk(e)b(e).

With probability at least 1 � O(1=n), P (�;nomg(�)) + O(log2 n)
P

e2E xk(e)b(e) is an up-

per bound on the total bene�t accepted by the optimal o�-line algorithm. Therefore, with

probability at least 1� O(1=n) the competitive ratio of the nomg algorithm is less than:

Po(�)

P (�;nomg(�))
� P (�;nomg(�)) +O(log2 n)

P
e2E xk(e)b(e)

P (�;nomg(�))

� P (�;nomg(�)) +O(log2 n)O(log4 �)P (�;nomg(�))

P (�;nomg(�))
= O(log6 �):

The last step follows from the fact that � = 2n(2K1K2K3n log
3 n+ 1).

We now prove the correctness of the nomg algorithm. In other words, we show that nomg

solves the non-interleaved on-line multicast problem. We �rst consider the capacity constraint.

Lemma 7.4.21 Let � = �0�1 : : : �k�1 be the request sequence and � = nomg(�) be the corre-

sponding result sequence. For each i � k and each link e 2 E, ui(e) � 1.

Proof. Recall that � = 2n(2K1K2K3n log
3 n+ 1).

We proceed by contradiction. Let i be the �rst index such that ui+1(e) > 1 for some link

e. From the de�nition of ui+1(e) (cf. Figures 7-2, 7-3, and 7-4), ui(e) > 1� ri=b(e). Since we

assume that ri � b(e)=(log�), we conclude that ui(e) > 1� 1=(log�). Thus:

xi(e) = (�ui(e) � 1)=n > (�1�1=(log�) � 1)=n = (�=2� 1)=n = 2K1K2K3n log
3 n:

155

■ 



Therefore, ci = rixi(e) > ri2K1K2K3n log
3 n. This leads to a contradiction for each type of

request.

First consider an init request. Since each node is an element of at mostK2 logn clusters and

there are at most n nodes in the network, %0i(T
i+1
gi

) � K2rin logn. Furthermore, the K3 log
2 n

sparsity of the tree T i+1
gi

implies that K3 log
2 n%0i(T

i+1
gi

) � ci(T
i+1
gi

). Thus,

riK2K3n log
3 n > ri2K1K2K3n log

3 n

which is a contradiction.

Next consider a join request. For a join request, if � 6= ?, then ci(p) � riK1 log
2 n (cf.

Figure 7-3). This contradicts the fact that ci(e) > ri2K1K2K3n log
3 n.

Finally consider a batch request. The bene�t of a batch request, %i(T
i
gi
), is bounded by

rin. The fact that the multicast group was accepted implies that 2K1rin log
2 n � ci(T

i
gi
). This

contradicts the fact that ci(e) > ri2K1K2K3n log
3 n.

Theorem 7.4.22 The nomg algorithm solves the non-interleaved on-line multicast admission

control and routing problem for general topology networks.

Proof. The theorem follows directly from Lemma 7.4.21, the de�nition of the nomg algorithm

(Figures 7-2, 7-3, and 7-4), and the de�nition non-interleaved on-line multicast admission con-

trol and routing problem for general topology networks (De�nition 7.4.1).

7.5 Interleaved On-line Multicast Groups

This section presents an admission control and routing algorithm for batched and on-line multi-

cast groups. It extends the nomg algorithm by removing the restriction that request sequences

must be non-interleaved. We call the algorithm iomg (Interleaved On-line Multicast Groups).

The service model for the iomg algorithm is the same as that for the nomg algorithm. In

particular, the algorithm uses binary admission control for the batched multicast groups and

non-binary admission control for the on-line multicast groups. On-line multicast groups also

specify a \source" node that is guaranteed membership in the multicast group. (De�nition 7.5.1

formally de�nes the admission control and routing problem for interleaved on-line multicast

groups.)
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Our algorithm has a competitive ratio of O(log6 n), where n is the number of nodes in

the network. Since unicast communication is a special case of multicast communication, the


(logn) lower bound of [AAP93] applies to our algorithm (cf. Lemma 7.5.4).

7.5.1 Interleaved Requests

The following example illustrates why the nomg algorithm cannot handle interleaved request

sequences. Consider a multicast group gi and a cluster C such that the nomg algorithm reserves

a path to the cluster C center node v in the tree Tgi constructed as a result of the init request

for group gi. The path to the center node v is constructed in reliance on two facts. First, we

rely on the fact that enough join requests are likely to arrive in the cluster. Second, we rely

on the fact that the nodes issuing the join requests will be able to �nd a path that connects

them to the multicast tree. The �rst fact is guaranteed by the probabilistic assumptions (cf.

Lemma 7.4.9 for the nomg algorithm). For the nomg algorithm the second fact is guaranteed

by Lemma 7.4.6. (The proof of this lemma rests on the fact that the request sequences for the

nomg algorithm are non-interleaved.) However, for the iomg algorithm, the second fact cannot

be relied upon since the proof of Lemma 7.4.6 is no longer valid. In particular, requests from

other multicast groups can cause the links in cluster C to be 100% utilized before the join

requests in cluster C for group gi arrive. Thus, the nodes issuing the join requests in cluster

C for group gi are prevented from connecting to the multicast tree for group gi. In particular,

there may no longer be a path with su�cient bandwidth from a node issuing a join request to

the center node v of cluster C. In this event, the path reserved to the center node v of cluster C

in tree Tgi may no longer be justi�able. (I.e. Lemma 7.4.10 which relies on Lemma 7.4.6 would

fail to hold.) To address this problem, the iomg algorithm reserves some bandwidth on paths

in cluster C to ensure that the nodes issuing join requests in cluster C for group gi will be able

to connect to the center node v of cluster C. The amount of bandwidth reserved by the iomg

algorithm for any particular node is proportional to the probability that the node will actually

issue a join request for the multicast group. In particular, for each multicast group, the iomg

algorithm reserves for each node the excepted amount of bandwidth that the node will need in

order to connect to the multicast group.
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7.5.2 Problem Statement

We provide a formal de�nition for the admission control and routing problem for interleaved

on-line multicast groups. The problem is the same as the admission control and routing problem

for non-interleaved on-line multicast groups (cf. De�nition 7.4.1) except that the restriction to

non-interleaved request sequences is removed and the constant � is di�erent. The admission

control and routing problem for interleaved on-line multicast groups is a probabilistic problem.

De�nition 7.5.1 (interleaved on-line multicast for a set of graphs G) Let G be set of

graphs. The interleaved on-line multicast admission control and routing problem for G is the

same as the non-interleaved on-line multicast admission control and routing problem for G with

the following modi�cations. The constant � = (2K1K2K3jV j2 log3 jV j+ 4)12. Furthermore, the

ninth condition on S now is: for all i 2 [1; j�j), if �i 2 Q4 then there exist �j 2 Q3 such that

j < i, g(�j) = g(�i), and r(�j) = r(�i). (In other words, the condition that g(�k) = g(�i) for

all k 2 (j; i) is eliminated.)

We use the performance function in De�nition 7.3.2 that measures the accepted value.

As with admission control and routing for non-interleaved on-line multicast groups, the

lower bounds for admission control and routing for batched multicast groups and the lower

bounds for unicast admission control and routing extend to admission control and routing for

interleaved on-line multicast groups. We �rst show that the lower bounds for non-interleaved

multicast groups extend to interleaved multicast groups.

Lemma 7.5.2 Let P(fGg) be the interleaved on-line multicast admission control and routing

problem for the set of graphs G. Let P 0(fGg) be the non-interleaved on-line multicast admission
control and routing problem for the set of graphs G where � = (2K1K2K3jV j2 log3 jV j + 4)12.

Let P be the performance function of De�nition 7.3.2.

If CP0(fGg);P (A0) � K for all deterministic on-line algorithms A0 that solve P 0(fGg), then
CP(fGg);P (A) � K for all deterministic on-line algorithms A that solve P(fGg). Similarly, if

CbP0(fGg);P (A
0
r) � K for all randomized on-line algorithms A0

r that solve problem P 0(fGg), then
CbP(fGg);P (Ar) � K for all randomized on-line algorithms Ar that solve P(fGg).

Proof. Notice that the non-interleaved on-line multicast admission control and routing problem

is a restricted form of the interleaved on-line multicast admission control and routing problem.
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Now the lemma follows from Lemma 2.4.4 and Lemma 2.5.2.

As an immediate consequence of Lemma 7.4.2 and Lemma 7.5.2, we conclude that lower

bounds for batched multicast admission control and routing extend to admission control and

routing for interleaved on-line multicast groups.

Lemma 7.5.3 Let P(fGg) be the interleaved on-line multicast admission control and routing

problem for the set of graphs G. Let P 0(fGg) be the batched multicast admission control and

routing problem for the set of graphs G where � = (2K1K2K3jV j2 log3 jV j+ 4)12. Let P be the

performance function of De�nition 7.3.2.

If CP0(fGg);P (A
0) � K for all deterministic on-line algorithms A0 that solve P 0(fGg), then

CP(fGg);P (A) � K for all deterministic on-line algorithms A that solve P(fGg). Similarly, if

CbP0(fGg);P (A
0
r) � K for all randomized on-line algorithms A0

r that solve problem P 0(fGg), then
CbP(fGg);P (Ar) � K for all randomized on-line algorithms Ar that solve P(fGg).

Proof. The lemma follows immediately from Lemma 7.4.2 and Lemma 7.5.2.

As an immediate consequence of Lemma 7.4.3 and Lemma 7.5.2, we conclude that lower

bounds for unicast admission control and routing extend to admission control and routing for

interleaved on-line multicast groups.

Lemma 7.5.4 Let P(fGg) be the interleaved on-line multicast admission control and routing

problem for the set of graphs G. Let P 0(fGg) be the unicast admission control and routing prob-

lem for the set of graphs G where � = (2K1K2K3jV j2 log3 jV j+ 4)12. Let P be the performance

function of De�nition 7.3.2. Let P 0 be the performance function of De�nition 2.3.7.

If CP0(fGg);P 0(A0) � K for all deterministic on-line algorithms A0 that solve P 0(fGg), then
CP(fGg);P (A) � K for all deterministic on-line algorithms A that solve P(fGg). Similarly,

if CbP0(fGg);P 0(A0
r) � K for all randomized on-line algorithms A0

r that solve P 0(fGg), then

CbP(fGg);P (Ar) � K for all randomized on-line algorithms Ar that solve P(fGg).
Both statements also hold if P 0 is the the performance function in De�nition 2.3.8.

Proof. The lemma follows immediately from Lemma 7.4.3 and Lemma 7.5.2.
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7.5.3 Algorithm

Recall that the utilization function ui represents the utilization of the network just before

request �i is handled. The nomg algorithm uses the ui function in the cost function ci used to

handle request �i. In contrast, the iomg algorithm uses a slightly di�erent utilization function,

uri , for the cost function ci used to handle request �i. Informally, the di�erence between function

ui and function uri is that u
r
i tracks the expected utilization due to some of the requests rather

than the actual utilization due to those requests.

Description. We consider each type of request separately. We start with an init request

�i = (gi; %i; ri; si). There are three additional steps performed by the iomg algorithm for an

init request. (Compare Figures 7-2 and 7-5.) First, the iomg algorithm updates both the ui and

the uri functions for the links that are included in Tgi . Second, for each cluster (C; v) 2 Ci, where
the center node v is included in Tgi , the algorithm constructs a shortest path tree, TC

i , that is

rooted at v and spans the nodes u 2 C with %i(u) 6= 0. The shortest path tree computation

is done by the sptree procedure. (The sptree procedure can use any standard shortest path

tree algorithm.) The inputs to the sptree algorithm are the cluster C, the root v, the set of

nodes that must be spanned (speci�ed by %i), and the cost function c. Consider some node u in

the shortest path tree TC
i . When node u issues a join request for group gi it will use the path

that connects u to the center node v in order to connect to the group gi multicast tree (see the

discussion of join request for iomg algorithm). The shortest path trees for each of the clusters

are combined into a forest Fgi . The third additional step performed by the iomg algorithm

for an init request considers clusters (C; v) 2 Ci where v is not included in Tgi and si 2 C.

These clusters are merged into a subgraph C0. Then the algorithm constructs a shortest path

tree, TC0

i , that is rooted at si and spans the nodes u 2 C0 with %i(u) 6= 0. The shortest path

tree is added to the forest Fgi . For each link in Fgi , the iomg algorithm updates the value of

uri as follows. De�ne the quantity %i(e; Fgi) as the minimum of ri and the sum of %i(u) for all

nodes u that use link e on a path to the root node of a tree in Fgi . Then the iomg algorithm

adds
%i(e;Fgi)

b(e)
to ur(e). Informally,

%i(e;Fgi )

b(e)
represents the expected change in utilization of link

e due to future join requests from nodes in cluster C that use link e to reach a root node in

Fgi . Since the multicast group does not transmit along links in Fgi until an actual join request

160



requires such links, the utilization function u is not updated. However, the utilization function

u will be updated as part of a join request.

Now consider a join request. The iomg algorithm breaks the nodes issuing join requests

into two groups: nodes that are an element of the forest Fgi and those that are not. Nodes

that are not an element of Fgi are handled as in the nomg algorithm except that the utilization

function ur must also be updated. (Compare Figures 7-3 and 7-6.) Now consider a join request

�i = (gi; %i; ri) where vi = v(�i) and vi is an element of F i
gi
. iomg use the FPATH procedure

to determine a path for vi. Speci�cally, the FPATH procedure takes as input the forest F i
gi

and the multicast tree T i
gi
. It determines a path p from vi to a node in the current multicast

tree T i
gi
such that the path p is in one of the trees of F i

gi
. By construction of F i

gi
and T i

gi
, such

a path is guaranteed to exist. Since the node vi can be a member of more than one tree in

the forest F i
gi
, there may be multiple paths. The FPATH procedure picks one of the paths

arbitrarily. (The implementation of the FPATH procedure is trivial. We do not provide the

details.) Finally, the utilization functions u and ur is updated for path p.

Now consider a batch request. For a batch request, the iomg algorithm works exactly

like the nomg algorithm except that the utilization function ur is also updated. (Compare

Figures 7-4 and 7-7.)

7.5.4 Analysis

The analysis consists of two parts: correctness and complexity. We consider complexity �rst.

The complexity analysis parallels that of the nomg algorithm. In fact, most of the lemmas

in Section 7.4.4 apply to the iomg algorithm with no modi�cation except that the utilization

function ur should be used in place of the utilization function u. In this section, we will only

restate the lemmas that actually change for the iomg algorithm. However, even the lemmas

that change tend to be very similar to the version in Section 7.4.4. Therefore, the proofs

will only mention the points at which the lemmas in this section di�er from the versions in

Section 7.4.4.

The proof of the following lemma di�ers entirely from the proof of the corresponding lemma,

Lemma 7.4.6, for the nomg algorithm. Recall that the proof of Lemma 7.4.6 is based on the

fact that the request sequences for the nomg algorithm are non-interleaved.
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iomg-init(gi; %i; ri; si):
for all e 2 E : c(e) = rix(e); (where x(e) = (�u

r(e) � 1)=n)
Ci = cluster(G; c; ri logn);
for all v 2 V :
%0i(v) =

P
v02C %i(v

0) if (C; v) 2 Ci and Pv02C %i(v
0) � 12ri logn;

%0i(v) = 0 otherwise;
Tgi = maxsparse(G; c; %0; si);
for all (C; v) 2 Ci s.t. v 2 Tgi
TC
gi
= sptree(C; v; %i; c);

Fgi = Fgi [ TC
gi
;

C0 = [(C;v)2Cijv 62Tgi;si2C
C;

TC0

gi
= sptree(C0; si; %i; c);

Fgi = Fgi [ TC0

gi
;

for all e 2 E :
ur(e) = ur(e) + ri

b(e)
if e 2 Tgi ;

ur(e) = ur(e) +
%i(e;Fgi )

b(e)
if e 62 Tgi and e 2 Tgi ; (*)

u(e) = u(e) + ri
b(e)

if e 2 Tgi ;

Figure 7-5: The iomg admission control and routing algorithm an init request.

iomg-join(gi; %i; ri):
for all e 2 E : c(e) = rix(e); (where x(e) = (�u

r(e) � 1)=n)
vi = v 2 G s.t. %i(v) 6= 0;
if v 2 Fg then path p = FPATH(Fgi ; Tgi);
for all e 2 p : u(e) = u(e) + ri

b(e)
;

Tgi = Tgi [ p;
else

if there exists a path p in G = (V;E) from vi to Tgi s.t.
P

e2p c(e) � K1ri log
2 n;

then route the requesting member on p, and set:
for all e 2 p :
ur(e) = ur(e) + ri

b(e)
;

u(e) = u(e) + ri
b(e)

;

Tgi = Tgi [ p;
else reject the requesting member and set:

Figure 7-6: The iomg admission control and routing algorithm for a join request.
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iomg-batch(gi; %i; ri):
for all e 2 E : c(e) = rix(e); (where x(e) = (�u

r(e) � 1)=n)
V 0 = fv 2 V j %i(v) 6= 0g;
Tgi = mcst(G; V 0; c);

if c(Tgi ) � 2K1 log
2 n%i(Tgi )

then route the requested multicast group on Tgi , and set:
for all e 2 Tgi :
ur(e) = ur(e) + ri

b(e) ;

u(e) = u(e) + ri
b(e) ;

else reject the requested multicast group and set:

Figure 7-7: The iomg admission control and routing algorithm for a batch request.

Lemma 7.5.5 Let � = �0 : : : �k�1 be a request sequence and � = nomg(�) be the corresponding

result sequence. Let �i = (gi; %i; ri; si) be an init request. Consider a cluster that either contains

the source or whose center node is included in T i+1
gi

. In other words, consider C such that

(C; v) 2 Ci and either si 2 C or v 2 T i+1
gi

.

Now consider a join request for group gi from a node in C. In other words, consider join

request �j = (gj; %j; rj) such that gj = gi and vj = v(�j) 2 C.

Then, the nomg algorithm will accept vj, i.e., vj 2 T k
gi
and �j 6= ?.

Proof. Since vj is an element of a cluster C such that (C; v) 2 Ci and either v 2 T i+1
gi

or C

contains the source, we can conclude that vj 2 F i+1
gi

. Now the de�nition of iomg for the join

request implies that vj 2 T k
gi
and �j 6= ?.

Lemma 7.5.6 Let �0 : : : �i be a request sequence pre�x where �i = (gi; %i; ri; si) is an init

request. Let D 2 D be a probability distribution over request sequences consistent with �0 : : :�i

(cf. De�nition 7.4.1). Let (C; v) 2 Ci, %i(C) � 12ri log n, and v 2 T i+1
gi

. De�ne �k�1 to be the

�nal request of any extension of the request sequence pre�x �0 : : :�i. Then,

PrD
h
O(1)%gi(T

k
gi
jC) � %i(C)

i
� 1�O(1=n3):

Proof. The proof is exactly the same as the proof of the corresponding nomg lemma,

Lemma 7.4.9, except that Lemma 7.5.5 is referenced place of Lemma 7.4.6.

Lemma 7.5.7 Let D 2 D be a probability distribution over request sequences. De�ne �k�1 to
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be the �nal request of any request sequence from distribution D. Then,

PrD

2
4O(log4 �)X

j

%gj(T
k
gj
) �

X
e2E

xk(e)b(e):

3
5 � 1�O(1=n3);

where j ranges over the indices of all batch and join requests.

Proof. The di�erences with the corresponding nomg lemma, Lemma 7.4.10, arise only in the

construction of the acceptance sequence. Speci�cally, !i = (Ti; Ri; %i) is de�ned di�erently for

init requests and some join requests.

Consider a join request, �i = (gi; %i; ri), �rst. The element !i is constructed di�erently

than in Lemma 7.4.10 when the requesting node vi = v(�i) is an element of the forest F i
gi
. In

this case, the iomg algorithm does not change the utilization function uri (cf. Figure 7-6). As

a consequence, we set Ti = G; and let Ri(e) = 0 for all e 2 E. Furthermore, %i = %(�i).

Now consider an init request, �i = (gi; %i:ri; si). For the iomg algorithm, Ti is the union

of T i+1
gi

and F i+1
gi

. Furthermore, Ri is de�ned as follows. Ri(e) = ri for all e 2 T i+1
gi

, Ri(e) =

%i(e; F i+1
gi

) for all e such that e 2 F i+1
gi

and e 62 T i+1
gi

, and Ri(e) = 0 for all e 62 Ti. Furthermore,

%i(v) = %0i(v) when v 6= si and %i(v) =
P

u2Cjsi2C;(C;v)2Ci %(�i)(u) when v = si.

By inspection, the ui function and xi function of Lemma 7.3.6 correspond to the uri function

and xi function of iomg. Furthermore, Ri is de�ned such that Ri(e) � b(e)= log� for all i � k

and e 2 E. In the case of join requests, the ci function of Lemma 7.3.6 correspond to the ci func-

tion of iomg. Thus, for the types of join requests considered here, ci(Ti)=%i(Ti) � O(log2 n).

(For the other types of join requests, i.e., requests where v(�i) 62 F i
gi
, see Lemma 7.4.10.)

For init requests, the ci function of Lemma 7.3.6 di�ers slightly from the ci function of

iomg. To simplify the discussion refer to the cost function of iomg by ciomgi and the bene�t

function of iomg by %iomgi . Our goal is to conclude that ci(Ti)=%i(Ti) � O(log2 n) on the basis

our information from the ciomgi and %iomgi .

The di�erence between the cost functions depends on the link. The cost functions correspond

for all links except those where Ri(e) 6= ri. From the de�nition of Ri(e), the links e for which

Ri(e) 6= ri are the links that are in F i+1
gi

but not in T i+1
gi

. For such links ciomgi (e) = rixi(e) and

ci(e) = %iomgi (e; F i+1
gi

)xi(e). (Recall that %
iomg

i (e; F i+1
gi

) represents the sum of %iomgi (u) for all nodes

u that use link e on their path to a root in the forest F i+1
gi

.) Thus, ci(e) =
%iomgi (e;F i+1gi

)

ri
ciomgi (e).
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Physically,
%iomgi (e;F i+1gi

)

ri
represents the expected number of nodes that both will issue a join

request and have e on their path to a root the forest F i+1
gi

.

Consider cluster (C; v) 2 Ci such that v 2 T i+1
gi

and TC
i � F i+1

gi
(cf. Figure 7-5). Let p(u)

be the path in tree TC
i from u to v, the root of TC

i . Now the de�nition of
%iomgi (e;F i+1gi

)

ri
and the

fact that TC
i is a shortest path tree implies that

ci(T
C
i ) =

X
u2TCi

%iomgi (u)

ri
ciomgi (p(u)):

Since cluster C has diameter O(ri log
2 n) based on cost function ciomgi

ci(T
C
i ) �

X
u2TC

i

%iomgi (u)O(log2 n):

By de�nition, %0i(v) =
P

u2TCi
%iomgi (u), where v is the center node of cluster C. Thus,

ci(T
C
i ) � %0i(v)O(log

2 n).

Now consider cluster (C; v) 2 Ci such that v 62 T i+1
gi

but si 2 C. Let C0 be the union of all

of these clusters (cf. Figure 7-5). Based on the code in Figure 7-5, TC0

i � F i+1
gi

. Let p(u) be the

path in tree TC0

i from u to si, the root of T
C0

i . Now the de�nition of
%iomgi (e;F i+1gi

)

ri
and the fact

that TC0

i is a shortest path tree implies that

ci(T
C0

i ) =
X
u2TCi

%iomgi (u)

ri
ciomgi (p(u)):

Since C0 has diameter O(ri log
2 n) based on cost function ciomgi

ci(T
C0

i ) �
X

u2TC
0

i

%iomgi (u)O(log2 n):

Now sum over all trees in the forest F i+1
gi

. The construction of %i for the acceptance sequence

and the de�nition of T i+1
gi

and F i+1
gi

imply that

ci(F
i+1
gi

) � %i(T
i+1
gi

)O(log2 n):(7.8)

For the links in T i+1
gi

the cost function ci of Lemma 7.3.6 corresponds to the cost function

ciomgi of iomg. Since the tree T i+1
gi

generated by the maxsparse algorithm is O(log2 n)-sparse,

the iomg algorithm also guarantees that ci(T
i+1
gi

)=%0i(T
i+1
gi

) � O(log2 n) for init requests. By
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construction of %i for the acceptance sequence, %
0
i(T

i+1
gi

) = %i(T
i+1
gi

). So,

ci(T
i+1
gi

) � %i(T
i+1
gi

)O(log2 n):(7.9)

Now Equations 7.9 and 7.8, along with the fact that ci(Ti) � ci(F
i+1
gi

) + ci(T
i+1
gi

) imply that

ci(Ti)=%i(Ti) � O(log2 n). Finally, we note that max efRi(e)g � %i(Ti).

The remainder of the proof proceeds exactly as in Lemma 7.4.10 except that references to

Lemma 7.4.9 are replaced with references to Lemma 7.5.6.

Theorem 7.5.8 Let P be the interleaved on-line multicast admission control and routing prob-

lem for general topology networks. Let P measure the amount of accepted bene�t. Then,

the iomg algorithm has a competitive ratio, CP;P (iomg), of O(log6 n) with probability at least

1�O(1=n).

Proof. The proof is exactly the same as the proof of the corresponding nomg lemma,

Lemma 7.4.20, except that Lemma 7.5.7 is referenced place of Lemma 7.4.10.

We now prove the correctness of the iomg algorithm. In other words, we show that iomg

solves the interleaved on-line multicast problem with high probability (cf. De�nition 2.1.6). We

�rst consider the capacity constraint.

Lemma 7.5.9 Let � = �0�1 : : : �k�1 be the request sequence and � = nomg(�) be the corre-

sponding result sequence. For each i � k and each link e 2 E, ui(e) � 1=8.

Proof. Recall that � = (2K1K2K3n
2 log3 n+ 4)12.

Consider any request �i. For all request types, ui+1(e) � ui(e) � ri=b(e). Since ri �
b(e)= log�, ui+1(e)� ui(e) � 1= log�. Therefore, ui+1(e)� ui(e) � 1=48.

For all request types, the iomg algorithm guarantees that ci(e) � 2K1K2K3rin log
3 n (cf.

proof of Lemma 7.4.21). Since ci(e) = rixi(e) = ri(�ui(e) � 1)=n,

(�ui(e) � 1)=n � 2K1K2K3n log
3 n

) ui(e) � log(2K1K2K3n
2 log3 n+ 1)

log�

) ui(e) � 1

12
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The lemma now follows from the fact that u1+1 � ui(e) � 1=48

Lemma 7.5.10 Let D 2 D be a probability distribution over request sequences. De�ne �k�1

to be the �nal request of any request sequence from distribution D. Then, PrD [uk(e) � 1] �
1�O(1=�).

Proof.

Consider urk(e) for a particular request sequence � and response sequence � = iomg(�). We

divide urk(e) into two parts: uRk (e) and uEk (e) such that urk(e) = uRk (e) + uEk (e). In particular,

uEk (e) represents the additions to u
r
k(e) due to the starred line of the iomg algorithm in Figure 7-

5. Thus, it represents the additions to urk(e) due to the shortest path forests Fgi . Physically,

uEk (e) represents the expected amount of bandwidth added to link e due to the forests Fgi .

De�ne uRk (e) = urk(e) � uEk (e). Furthermore, de�ne uAk (e) = uk(e) � uRk (e). Physically, uAk (e)

represents the actual amount of bandwidth added to link e (using join requests) due to the

forests Fgi .

Thus, uAk (e) is a random variable which is the weighted sum of indicator variables where

the weight factor for each variable is at most 1= log� (since ri � 1= log�). The expectation

of that sum is given by uEk (e). Furthermore, by Lemma 7.5.9, uEk (e) � 1=8. Now, de�ne

A = uAk (e) log� and E = uEk (e) log�. Then, A is a random variable which is the weighted sum

of indicator variables where the weight factor for each variable is less than 1. The expectation

of that sum is given by E. Furthermore, E � 1
8
log �. Based on the Cherno� bounds in [Rag86],

we can conclude that

PrfA > 2eEg � e�2E � e�(2=8)�log� � 1=�

Hence, PrD[uAk (e) � 6uEk (e)] � 1 � O(1=�). Since 6uEk (e) � 6=8 � 3=4, we conclude that

PrD[u
A
k (e) � 3=4] � 1� O(1=�).

Based on Lemma 7.5.9, uRk � 1=8. The lemma now follows from the fact that urk(e) �
uRk + uAk (e) and the fact that PrD[uAk (e) � 3=4] � 1�O(1=�).

Theorem 7.5.11 The iomg algorithm solves the interleaved on-line multicast admission con-

trol and routing problem for general topology networks with probability greater than 1�O(1=�).
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Proof. The theorem follows directly from Lemma 7.5.10, the de�nition of the iomg algorithm

(Figures 7-5, 7-6, and 7-7), and the de�nition interleaved on-line multicast admission control

and routing problem for general topology networks (De�nition 7.5.1).

7.6 Towards Practical Multicast Algorithms

7.6.1 Introduction

In the introduction to this chapter we suggest that the multicast algorithms in this chapter

can serve as the basis for practical multicast admission control and routing algorithms much in

the same way that the aap algorithm serves as the basis for the exp algorithm, our practical

unicast admission control and routing algorithm.

The bmg algorithm can serve as the basis for a practical admission control and routing

algorithm for batched multicast groups. In particular, we believe that the bmg algorithm needs

exactly the same modi�cations that are made to the aap algorithm in constructing the exp

algorithm. Speci�cally, the constant � used in the cost function c and the relationship between

� and the bene�t function % need to be modi�ed. (See Chapter 5.)

The nomg and iomg algorithms can serve as the basis for practical admission control

and routing algorithms for on-line multicast groups. However, the modi�cations needed for

the nomg and iomg algorithms are signi�cantly more extensive than those needed for the bmg

algorithm. This section focuses on the issues related to using the nomg and iomg algorithms as

the basis for practical multicast admission control and routing algorithms for on-line multicast

groups.

The remainder of this section is organized as follows. Section 7.6.2 discusses the O(log6 n)

competitive ratio achieved by the nomg and iomg algorithms. The section explains why we

expect the ratio of the performance of an optimal o�-line algorithm to the performance of

the nomg and iomg algorithms to be much better than O(log6 n) in practice. Section 7.6.3

highlights some of the key concepts that used by the nomg and iomg algorithms and that we

also expect to use in practical versions of the algorithms. Finally, Section 7.6.4 discusses areas

in which the nomg and iomg algorithms must be modi�ed to improve their performance in

practice. We do not provide detailed descriptions of practical admission control and routing
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algorithms for on-line multicast groups since we do not believe that a detailed description can

be asserted with con�dence without an extensive simulation study like that given for unicast

communication in Chapter 6.

7.6.2 Source of Competitive Ratio

The nomg and iomg algorithms achieve a competitive ratio of O(log6 n). There are several

sources for the logn factors in the competitive ratio. We will discuss the source of each of

the logn factors and argue why we do not expect to see the factors when comparing practical

versions of the algorithms to an optimal o�-line algorithm.

One logn factor in the competitive ratio is due to the fact that the requests arrive on-

line. Hence the admission control and routing decisions must be made without knowledge

of how the decisions will a�ect future requests. The O(logn) competitive aap algorithm for

unicast admission control and routing and the O(logn) competitive bmg algorithm for batched

multicast admission control and routing have a log n factor in their competitive ratios for the

same reason. We do not expect practical versions of the nomg and iomg algorithms to su�er

from this log n factor. In particular, consider the exp algorithm, our practical unicast admission

control and routing algorithm developed based on the aap algorithm. The simulation results

for the exp algorithm suggest that the exp algorithm performs close to the optimal o�-line

algorithm in practice. We expect that practical versions of the nomg and iomg algorithms will

include the same types of modi�cations that lead from the aap algorithm to the exp algorithm.

As a consequence, we do not expect the logn factor due to the on-line arrival of the requests

to appear in practice when practical versions of the nomg and iomg algorithms are compared

to an optimal o�-line algorithm.

A log2 n factor in the competitive ratio is due to the fact that we can only construct a

1-maximal O(log2 n)-sparse tree, rather than a 1-maximal 1-sparse tree. (See the de�nitions

of the init request code, Figure 7-2 and Figure 7-5, and the discussion of the maxsparse

algorithm in Section 7.2.3.) Thus, in the worst case, the maxsparse algorithm, used by the

nomg and iomg algorithms, will construct a tree where the cost of the tree is O(log2 n) greater

than the bene�t of the tree. At present we have no practical experience with the maxsparse

algorithm. However, the structure of the algorithm suggests that the tree constructed by the
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maxsparse algorithm will, in practice, have much lower sparsity. Furthermore, the e�ect of a

high sparsity tree is an admission control policy that tends to be more greedy. In practice we

may be able to compensate for this e�ect by adjusting the constants in the cost function. (See

the discussion in Chapter 5 of the constants used for the exp algorithm.)

A logn factor in the competitive ratio is due to the fact that a given node can be an element

of logn clusters. (See the de�nitions of the init request code, Figure 7-2 and Figure 7-5, for

information on how clusters are used.) As a result, a node can be counted up to logn times

when determining the bene�t of the tree that spans the cluster centers and that is constructed

in response to the init requests. In practice, we have never observed the cluster algorithm

to produce a set of clusters where a node is a member of logn clusters. In fact, our experience

with the cluster algorithm suggests that, in practice, most nodes are elements of just one

cluster, while a few nodes are elements of two clusters. Nodes that are elements of more than

two clusters are extremely rare. In other words, in practice, the overlap between clusters is

minimal. As a result, we do not expect to see this logn factor in practice when the nomg and

iomg algorithms are compared to an optimal o�-line algorithm.

Another logn factor in the competitive ratio results from the fact that the logn separation

between clusters can only be guaranteed for a logn fraction of the clusters. Recall that the

separation between clusters is needed to provide a lower bound on the cost of a tree spanning the

nodes whose join requests are rejected. However, since the overlap between clusters is minimal,

the cluster algorithm will typically achieve a log n separation for a constant fraction of the

clusters. The e�ect of the log n factor in the competitive ratio is further mitigated in practice

by the fact that the log n separation between clusters is only important if all the nodes whose

join requests are rejected are concentrated at the boundary of the clusters. If the nodes whose

join requests are rejected are not concentrated at the boundary of the clusters and the clusters

have little overlap, a strong lower bound on the cost of a tree spanning the nodes whose join

requests are rejected can be established for nodes from all clusters, not just for nodes from a

logn fraction of the clusters.

The �nal log n factor in the competitive ratio for the nomg and iomg algorithms arises

from the fact that a cluster can have a diameter that is as much as logn larger than the desired

diameter. Recall that the nomg and iomg algorithms connect nodes to the multicast tree using
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the cluster centers. By using the cluster centers we overestimate by a logn factor the lower

bound on the cost of a tree spanning the nodes whose join requests are rejected. Overestimating

the lower bound on the cost of a tree spanning the nodes whose join requests are rejected may

cause certain join requests to be unnecessarily rejected. Fortunately, experience with the

cluster algorithm suggests that the clusters will have a diameter that is at most a small

constant factor larger than the desired diameter. Furthermore, the over estimation of the cost

of a tree spanning the nodes whose join requests are rejected only becomes signi�cant when

most of the nodes whose join requests are rejected are concentrated at the boundary of the

clusters. In practice, we do not expect this to be the case. Thus, we expect our estimate of the

lower bound on the cost of a tree spanning the nodes whose join requests are rejected to be

fairly accurate.

7.6.3 Key Concepts from Competitive Algorithms

The polylogarithmic competitive ratio that we achieve for the nomg and iomg algorithms

suggests that probabilistic information can be exploited to provide e�ective admission control

and routing algorithms for on-line multicast groups. There are three key concepts that are used

by the nomg and iomg algorithms to exploit the probabilistic information and that we believe

will continue to play a key role in practical versions of the nomg and iomg algorithms. We

discuss these concepts in this section.

Aggregation. The initial admission control and routing decisions for on-line multicast groups,

made in response to init requests, are not made for individual nodes, rather the decisions are

made for groups of nodes. The cluster algorithm determines the groups of nodes for which the

initial admission control and routing decisions are made. Making admission control and routing

decisions for groups of nodes, rather than individual nodes, has two key advantages. First, the

number of nodes that will actually issue a join request can be predicted with much greater

accuracy for a group of nodes than for an individual node. Our competitive analysis proof

exploits this fact. In particular, we group nodes such that we can predict with high probability,

i.e., with probability greater than 1 � O(1=n3), the number of nodes that will actually issue

a join request in any given cluster. Making accurate predictions about the number of nodes
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that will issue a join request will clearly be useful in practice as well. The second advantage

of grouping nodes is the fact that the probabilistic information used by the algorithm will be

much easier to determine for groups of nodes than for individual nodes. We discuss this issue

further in Section 7.6.4.

Pre-reservation. Our algorithms pre-reserves resources for on-line multicast groups. In par-

ticular, both the nomg and the iomg algorithm pre-reserve bandwidth on a tree spanning the

cluster centers of clusters from which the algorithms have decided they will admit join requests.

This pre-reservation is important. Let v be a node issuing a join request such that the cost

of the path to v can only be justi�ed if other nodes near v also join the multicast group. The

pre-reservation ensures that the nodes, whose successful join requests node v needs in order

to justify the cost of its path, will, when they issue their join requests, �nd enough network

resources available to join the multicast group. In practical versions of the nomg and iomg

algorithms we expect to use a much less aggressive form of pre-reservation. We discuss this

issue further in Section 7.6.4.

Partial pre-reservation. The nomg algorithm only pre-reserves resources to cluster centers.

Thus, it only pre-reserves resources for groups of nodes. Since the request sequences for the

nomg algorithm are non-interleaved, the nomg algorithm can assume that any node issuing a

join request will be able to join the multicast group using its local cluster center. For interleaved

request sequences, this assumption no longer holds. Thus, to ensure that individual nodes will

be able to connect to the multicast tree using their local center node, the iomg algorithm must

pre-reserve resources for individual nodes. In particular, it must pre-reserve resources along

the paths from the individual nodes to the local center node. However, the probability that

any individual node will join a particular multicast group can be very low. Thus, it is not

feasible to pre-reserve all the resource that each node might need to connect to the multicast

tree. The iomg algorithm addresses this problem by for pre-reserving for each node an amount

of resources that is proportional to the probability that the node will join the multicast group.
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7.6.4 Key Changes for Practical Algorithms

In this section, we suggest how practical multicast algorithms might be constructed from the

nomg and iomg algorithms. We discuss �ve areas where the nomg and iomg algorithms need

to be modi�ed.

Constants. As with the aap algorithm, the constants used in the nomg and iomg algorithms

are chosen for the worst case situation. Thus, we do not expect them to perform well in practice.

However, the same techniques that were used to set the constants for the unicast algorithm can

be used for the nomg and iomg algorithms. (See Chapter 5.) In fact, we believe that exactly

the same constants used for the exp algorithm can be used for practical versions of the nomg

and iomg algorithms. (A review of the discussion in Chapter 5 shows that the discussion applies

without modi�cation to multicast communication.)

Pre-reservation. In Section 7.6.3 we mention that the pre-reservation done by the nomg

and iomg algorithms can be less aggressive in practice. Recall that the nomg and iomg

algorithms reserve resources along the tree spanning the center nodes of the clusters. This

pre-reservation can be done for subsections of the tree instead of the entire tree. Consider for

example a cluster where the expected number of multicast members is high enough to support

a connection to the source without taking into account the expected multicast members from

nearby clusters. Furthermore, assume that the expected multicast members of the cluster are

not needed to support connections to nearby clusters. In this case, no pre-reservation is needed

for the cluster. Rather, resources along a path to the cluster need only be reserved when the

�rst join request arrives from a node in the cluster.

Reoptimization. The nomg and iomg algorithms use minimum spanning trees rather than

the shortest path trees that have typically been used by the Internet community [WDP88,

DC90, Dee91, Moy92]. The advantage of minimum spanning trees is the fact that they are

typically much more e�cient. It is easy to construct situations where a shortest path tree

requires many more resources to span the members of a multicast group than are required by a

minimum spanning tree. Moreover, a shortest path tree will never require fewer resources than
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a minimum spanning tree. In fact, the use of a shortest path tree in our multicast algorithms

would lead to a linear (instead of the current polylogarithmic) competitive ratio.

However, the disadvantage of minimum spanning trees is that the optimality of any partic-

ular tree can be seriously eroded by a dynamic membership. In contrast, shortest path trees

remain optimal in the face of dynamic membership. Thus, unlike shortest path trees, our min-

imum spanning trees will require some periodic reoptimizations when the membership in the

multicast groups has changed substantially.

Gathering probabilistic information. The nomg and iomg algorithms rely on proba-

bilistic information that may not be available in practice. Furthermore, if the information is

available, it could be inaccurate. These inaccuracies could stem both from honest mistakes on

the part of users and from misinformation, the goal of which is to a�ect the admission control

decisions of the network.

We suggest several ways of dealing with these issues. First, the lack of information can be

dealt with by using default probability information and then learning the correct probability

information over time. This technique is likely to be successful for multicast groups whose

behavior reaches a steady state. However, many multicast groups may not have steady state

behavior. Consider, for example, a multicast group that distributes CSPAN. For some debates

there may be considerable interested. However, for other debates, CSPAN may be lucky to get

a single viewer. There are several possible approaches to such multicast groups. One approach

is to use probabilistic information that is content dependent. In this case, CSPAN might warn

the network whenever it expects a particular debate to be popular. Another possibility is to

have two sets of probabilistic assumptions: a high use set and a low use set. Whenever many

join requests are detected over a short period of time, the network starts using the high use

set of assumptions. After a prolonged period with few arrivals the network switches to the low

use set. The advantage of this approach is that it does not require constant user intervention.

The problems with getting accurate information can be countered by aggregating members for

which probability information is collected. For example, the probabilistic information could be

collected on a per local access network basis rather than a per user basis. (Recall from our

discussion in Chapter 4 that local access networks should use greedy admission control. Thus,
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our multicast admission control and routing algorithms will only be concerned with connect-

ing access networks to multicast groups rather than connecting individual users to multicast

groups.) Finally, we consider the issue of misinformation. There are two complementary ap-

proaches. First, the network can learn about the true probabilistic information much in the

same way it has to learn about the information for situations where no probabilistic information

is available. Second, the network can impose �nancial or service penalties on users that provide

probabilistic information that turns out to be signi�cantly incorrect.

Dynamic membership. Dynamic multicast membership poses problems in addition to those

associated with the optimality of the minimum spanning tree. The following example illustrates

one of the additional problems associated with dynamic multicast membership. Consider two

nodes that are close to each other, but that are so far from the source that the cost of connecting

them to the multicast tree of the source can only be justi�ed if both of them join the tree. If

the probability of each of them joining the multicast group is high, then the nomg and iomg

algorithms will accept the �rst join request that comes from one of them in anticipation that

the other node will also join eventually. Unfortunately, if the membership is dynamic, the �rst

of the two nodes may have left the multicast group by the time the second node issues a join

request. In this case, the expensive connection from the source is, at any given time, only

supporting one node. However, the assumption for our example was that the connection could

not be justi�ed unless it is supporting two nodes. This argument can be formalized to show

that the competitive ratio would become linear in the size of the network if the multicast group

membership were dynamic. To address this problem, we propose collecting slightly di�erent

probabilistic information. In particular, instead of knowing the probability that a give node

will ever join a multicast group, the algorithm should know the probability that it will join

the multicast group over some small time interval. This way, the algorithm can determine the

likelihood that two nodes, which are close to each other, but which are so far from the source

that the cost of connecting them to the multicast tree can only be justi�ed if both of them join

the tree, will actually want to join the multicast group in overlapping time intervals.
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C h a p t e r 8

Discussion and Future Work

This chapter consists of three sections. Some of the algorithms discussed in this thesis are not

practical in their present form. However, the algorithms illustrate several principles important

to admission control and routing algorithms. These principles are summarized in Section 8.1.

The admission control and routing problem can be seen as an instance of a more general resource

allocation problem. Section 8.2 discusses the applicability of our results to the more general

resource allocation problem. The section also mentions that we expect resource allocation

problems that require admission control to become increasingly important in the near future.

Finally, Section 8.3 mentions several open problems.

8.1 Lessons From Theory

Non-greedy admission control. The theoretical analysis presented in this thesis provides

strong support for the use of non-greedy admission control strategies. In particular, the lower

bounds on the oblivious competitive ratio provided for lines, trees, meshes, trees of meshes, fat-

trees and hypercubes are all strictly lower than the lower bounds on the competitive ratio for

greedy admission control and routing algorithms for the same topologies. Furthermore, for the

tree and the fat-tree we provide randomized algorithms that match the oblivious lower bounds

and thus beat the greedy lower bounds. For general topology networks we prove an 
(n) lower

bound on the competitive ratio for greedy admission control algorithms. Furthermore, the aap
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algorithm of [AAP93] and the multicast algorithms of Chapter 7 beat this 
(n) lower bound

by achieving polylogarithmic competitive ratios. The lower bounds in [AAP93] show these

algorithms to be close to optimal. The simulation results for the exp algorithm in Chapter 6

con�rm the theoretical support for non-greedy admission control.

The following example, constructed for a hypothetical telephone network, illustrates the

intuition supporting the use of non-greedy admission control. Assume a user is attempting to

place a call from Boston to New York. However, the links on the direct path between Boston

and New York are currently 100% utilized. Assume further that there is a path through San

Francisco that has enough capacity to carry the call from Boston to New York. If the links

along the path through San Francisco have low utilization, the call from Boston to New York

should clearly use the path. However, if the links along the path through San Francisco have

high utilization, the call from Boston to New York should not use the path, because this might

block two future calls, e.g., one from Boston to San Francisco and one from San Francisco to

New York. Essentially, the non-greedy admission control should reject the call from Boston

to New York in the hope/assumption that it will be able to carry two calls along the same

path. This hope/assumption is based on observing the high utilization on the links of the path

through San Francisco. This high utilization signals both that the links are likely to run out

of capacity soon and that the links carry many current (and future) calls, some of which may

use the links more e�ciently than a call from Boston to New York that is routed through San

Francisco.

Randomization. For trees and meshes the lower bounds for deterministic algorithms are

higher that the lower bounds we provide for the oblivious competitive ratio of randomized al-

gorithms. Furthermore, for trees we provide a randomized algorithm, tree, that beats the

deterministic lower bound and matches the oblivious lower bound. (See Chapter 4.) The ran-

domization in that algorithm is used for several purposes, including for the purpose of preventing

pathological request sequences from causing a poor competitive ratio. (If the roadblocks were

not placed randomly, a request sequence that always requests circuits whose paths go through

the roadblocks would cause a poor competitive ratio.) Thus, the tree algorithm suggests

that randomization can be an important tool for avoiding poor performance from pathological
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request sequences.

Hierarchical backbone networks. Many modern networks, like the Internet and the tele-

phone system, are structured into many small low capacity regions (access networks) and a

large high capacity region (backbone network) that connects the access networks to each other.

Thus, these networks can be seen as hierarchical backbone networks (cf. Chapter 4). The theo-

retical results in this thesis suggest that greedy admission control should be used for the access

networks while non-greedy admission control should be used for the backbone network. Our

mechanism for constructing admission control algorithms for hierarchical backbone networks

suggests that we should use greedy admission control in the access networks. Greedy admis-

sion control has a good competitive ratio in the access networks since each of these networks

only has short paths. Furthermore, our fat-tree algorithm (cf. Chapter 4) suggests that we

should use non-greedy admission control in the backbone network. The simulation results of

Chapter 6 further support this approach. In particular, they show that non-greedy admission

control is most e�ective for the high bandwidth links typically used in backbone networks,

while it is not very e�ective for the low bandwidth links often used in access networks. Recall,

from the discussion in Section 6.3 that the increased performance advantage of the non-greedy

algorithms on high capacity networks is based on the law of large numbers. In particular, high

capacity backbone networks typically serve more circuits. Thus, the expectations arising from

the statistical assumptions are more likely to be accurate predictions.

Multicast. There are several important implications for practical multicast algorithms that

arise out of the competitive multicast algorithms presented in Chapter 7. We consider four

implications. First, the probabilistic information about which nodes may join a multicast group

can be successfully exploited. In fact, using the clustering techniques, the information can even

be exploited when the likelihood that any particular node will join a particular multicast group

is low. The need to use the clustering to aggregate the probability information of multiple

nodes represents the second important implication of Chapter 7. The third observation is that

pre-reservation of resources is important. In particular, our algorithms reserve resources along

the tree connecting the center nodes of the clusters. This pre-reservation is needed for closely

situated clusters of the network that individually cannot justify the use of some expensive path
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to connect to the multicast group, but together can justify the use of the path. For such

multicast groups the pre-reservation guarantees that each of the clusters will in fact be able to

join the multicast group once join requests from nodes in that cluster arrive. (In practice, this

pre-reservation can likely be done less aggressively. See Section 7.6.4.) Finally, our multicast

algorithm for interleaved on-line multicast groups suggests that resource reservation that is

proportional to the probability that a node will join a multicast group is needed.

8.2 Future Applications of Admission Control

The admission control and routing problem is an instance of a more general resource allocation

problem. Speci�cally, consider a system which manages some kind of resource. In the case of

circuit networks, this resource is bandwidth. However, one can imagine systems where the key

resource might be cpu time, disk space, access time to some shared data structure, etc. Users

send requests to this system. In response to these requests, the system �rst decides whether

or not it will accept the requests and then decides which speci�c resources it wants to use

to service the requests. There are four key characteristics that make such resource allocation

systems candidates for the techniques presented in this thesis. First, they must have unrelated

users. In particular, if the system rejects one user, this should not signi�cantly impact the

desire of other users to join the system. Our admission control strategies are predicated on the

idea that users requiring too many resources be rejected in favor of those that require fewer

resources. If rejecting the requests that require many resources causes those that require few

resources not to arrive, our strategy would clearly not be successful. The second characteristic

is that many users are needed. Having many users ensures that the predictions made by the

algorithm about future events on the basis of statistical assumptions are more likely to be

accurate. (See the discussion in Sections 8.1 and 6.3.) The third characteristic is that multiple

resources must be needed to satisfy a request. If not, the entire notion of comparing requests

that require many resources to requests that require few resources makes no sense. The fourth

characteristic is that resources must actually be reserved for users.

Today there are not many systems that meet the four above described characteristics. (The

long distance telephone networks are examples of such systems. In fact, these networks use

some of the ideas that came from the symmetric loss network literature [ACF+92].) However,
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we expect that there will be many systems like this in the near future. Some immediate

examples are the public Lotus Notes system that AT&T is developing and the Internet if it

moves towards circuit routing and a usage based fee system. Furthermore, the proliferation of

home computers, the growth in on-line services, and the substantial infrastructure investments

that phone and cable companies are making, suggest that large scale systems with the above

described characteristics will become increasingly important.

For many systems we actually expect the gains that can be achieved by e�ective admission

control to be much greater than the gains we are able to achieve in unicast communication.

(See Chapter 6.) For unicast communication the e�ect of a poor admission control decision

is limited by the length (in the number of links) of the longest allowable path. (This is the

maximum number of short requests that may have to be rejected as a result of admitting the long

request.) However, for multicast communication, for example, the e�ect of a poor admission

control decision is only limited by the size of the largest multicast group. For example, consider

a region of the network to which capacity constraint imply that the nodes in the region can

only connect to one more multicast group outside the region. Now a poor admission control

decision could admit a multicast group with one member in that region instead of a multicast

group with thousands of members in that region.

8.3 Open Problems

General topology networks. The aap algorithm of [AAP93] provides the optimal compet-

itive ratio for admission control and routing algorithms when every virtual circuit requests at

most 1= logn fraction of the capacity of the lowest capacity link. Our general topology multicast

algorithms of Chapter 7 make similar restrictions. Our algorithms for trees and fat-trees over-

come these restrictions. In particular, they can accommodate circuits that require the entire

capacity of the links. An open question is whether or not algorithms with good (polylogarith-

mic) competitive ratio that do not restrict circuits to a small fraction of the link capacity exist

for general topology networks.

Exploiting special topologies. The competitive ratios achieved by the aap algorithm of

[AAP93] and our multicast algorithms of Chapter 7 for general topology networks are polylog-
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arithmic in the size of the network. However, for certain special topologies, better competitive

ratios are possible. For example, a constant competitive ratio can be achieved on symmetric

loss networks. An open question is whether or not certain network characteristics, such as for

example connectivity, can lead to competitive ratios that are better than polylogarithmic.

Multicast with dynamic membership. In Section 7.6.4 we discuss some of the compli-

cations associated with dynamic membership. In that section we propose using information

about the probability that a node will join a multicast group over some small time interval. An

open question is how to incorporate this type of information into the analysis of Chapter 7.

Practical multicast algorithms. In Section 7.6.4 we describe some possible approaches to

designing a practical multicast admission control and routing algorithm. We intend to explore

those approaches. At present though, the question of how to design a practical multicast

admission control and routing algorithm remains open.
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