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Abstract

Networks of the future will be characterized by a va-
riety of computational devices that display a level
of dynamism not seen in traditional wired networks.
Because of the dynamic nature of these networks, re-
source discovery is one of the fundamental problems
that must be faced. While resource discovery sys-
tems are not a novel concept, securing these systems
in an efficient and scalable way is challenging. This
paper describes the design and implementation of an
architecture for access-controlled resource discovery.
This system achieves this goal by integrating access
control with the Intentional Naming System (INS), a
resource discovery and service location system. The
integration is scalable, efficient, and fits well within a
proxy-based security framework designed for dynamic
networks. We provide performance experiments that
show how our solution outperforms existing schemes.
The result is a system that provides secure, access-
controlled resource discovery that can scale to large
numbers of resources and users.

1 Introduction

Resource discovery is one of the fundamental chal-
lenges that must be faced in the context of pervasive
computing. Simply stated, the goal of resource dis-
covery is to provide a user with a snapshot of the
computational environment in which he is operat-
ing. Resource discovery is vital to enabling operation
in pervasive networks as the network state is unpre-
dictable. The dynamism of pervasive networks also
brings rise to problems of security. Although often
overlooked, security is a critical component necessary
for the practical realization of pervasive computing.
As a resource provider, we want to guarantee that for-
eign users that enter our environment will not be able
to act maliciously. Similarly, as a user in a foreign en-
vironment, we want to know what resources we are
able to use and which ones we can trust. Such access
restrictions are easily handled in fixed networks as
foreign users can simply be denied admission to the

network. But the fundamental notion behind per-
vasive computing gives rise to the idea of resources
and users of varying privileges interacting in the same
environment. Further complicating the issue is that
pervasive computing environments handle a diverse
and heterogeneous set of users and resources [2], in-
cluding computationally-limited devices, so it is im-
portant to enforce a security framework that can be
extended to many disparate resources. Communica-
tion channels must be secure and access control must
be granted to resources in order to regulate usage.
While several systems [7, 15, 9] propose resource dis-
covery solutions for dynamic environments, they do
not consider how the integration of security protocols
influences scalability and performance.

Resource discovery systems are typically imple-
mented in the network layer, below security, allow-
ing networks to overlay any desired security proto-
col. An access control framework can be layered over
a resource discovery protocol, but these two proto-
cols seem to have different goals. The goal of a re-
source discovery system is to find the resource or ser-
vice that best matches the criteria for which a user is
looking. On the other hand, a security protocol that
enforces access control is concerned primarily with
allowing users to perform authorized operations on
protected resources. The problem is that the best
criteria-matching resource (e.g. “the nearest, least-
loaded printer”) may not necessarily be a resource to
which a user has access.

The primary focus of this paper is to address the
issue of resource discovery in a pervasive computing
environment. More specifically, this paper presents
a system that integrates access control with resource
discovery in order to enable scalable and efficient op-
eration. This paper describes a resource discovery
system that is scalable and efficient and is designed
to elegantly integrate with a proxy-based security sys-
tem [4].

The proxy-based security system uses a dis-
tributed SPKI/SDSI protocol [13] which allows for
private, encrypted communication between heteroge-
neous lightweight devices in a pervasive computing
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environment.
The architecture presented in this paper makes four

key contributions:

• A scalable model for resource discovery based
on the Intentional Naming System [1] that in-
tegrates access-control information with service
information.

• Integration of access-controlled resource discov-
ery with a proxy-based security infrastructure to
provide secure and authentic communication in
a pervasive computing environment.

• Implementation of a resource lookup algorithm
that makes access control decisions while finding
the best resource.

• Design of lightweight, high-performing access
control lists.

In the remainder of this section, we briefly out-
line the proxy-based security architecture that is a
basis for our system. We summarize the resource dis-
covery problem in terms of a simple scenario in Sec-
tion 2. Section 3 details our system architecture and
describes how we have developed an access-controlled
resource discovery system. We present the advan-
tages and performance evaluation of our system in
Section 4. We discuss some related systems in Sec-
tion 5 and conclude the paper in Section 6.

1.1 Background

The resource discovery system presented here is de-
signed to be an integral part of a larger proxy-based
security architecture [4]. Resources are defined to
be any piece of hardware or software that is provid-
ing a service to members of the network. A resource
may be location-aware. In this architecture, each re-
source has an associated trusted software proxy. A
proxy is software that runs on a network-visible com-
puter and its primary function is to execute com-
mands on behalf of the resource it represents. Prox-
ies store certificates and other information for the
resource they represent and are trusted implicitly.
Proxies communicate with each other using a pro-
tocol based on SPKI/SDSI (proxy-proxy protocol).
A separate resource-proxy protocol is used for se-
cure communication between resources and proxies.
Having two different protocols allows us to run a
computationally-inexpensive security protocol on im-
poverished resources and a sophisticated protocol for
resource authorization on more powerful resources.
Figure 1 shows an overview of this system and the
protocols it uses.

Proxy−Proxy

Resource Resource
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ProxyProxy

Resource−Proxy
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Resource−Proxy

Device
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Resource Network
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Figure 1: An overview of the basic components in the
proxy-based security infrastructure. Proxies communi-
cate via the proxy-proxy protocol. Devices and resources
communicate with proxies via the resource-proxy proto-
col.

The proxy-proxy protocol layers SPKI/SDSI access
control over an application protocol, which in turn is
layered over a key-exchange protocol. This allows us
to deal with a variety of application protocols that
may be implemented across wired or wireless links
in a heterogeneous network. SPKI/SDSI features an
elegant model for access control lists (ACLs) and del-
egation of authority.

2 The Problem Restated

The problem that the system in this paper solves is
that of how to scale a system of resources that are
protected by access control. It is tremendously in-
efficient if a user repeatedly attempts to contact a
resource that he is prohibited from using. One only
has to consider an environment with a large number
of protected resources. If a user has no knowledge
of which resources he can access, it could take an
exhaustive computational effort to find an accessible
resource. In order to gain scalability and efficiency,
the resource discovery system needs to know about
access control privileges so that it can return the best
resource to which a user has access. By knowing the
user’s authorizations (i.e., the groups to which he has
membership) and the access control lists of the sup-
ported resources, a resource discovery system can ef-
fectively meet this goal.

2.1 A Simple Scenario

This issue is especially pertinent when dealing with
networks where the state of the network is highly dy-
namic. It is very plausible that a user will not know
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Figure 2: This figure illustrates the conflict experienced
by a resource discovery system in an access-controlled en-
vironment. How does Edward find the closest, accessible
copy of schedule.doc without performing an exhaustive
search?

exactly what resources are available, nor will the user
know which he is authorized to use. As a simple ex-
ample, consider an environment which treats all de-
vices in the network as resources in a peer-to-peer ap-
plication. Figure 2 illustrates the following scenario:

Edward, a manager at a large software firm,
arrives in the morning at a conference with
his location-aware device. Upon arriving
and coming online, Edward wants to down-
load his personalized conference schedule for
the given day. At this conference, there
are two tracks: one for managers and one
for software developers. Thus, the users in
the system are divided into two groups, KA

managers and KB developers. All the
users already at the conference have a doc-
ument, schedule.doc, in their repository,
but the document is track-specific. That
is, the copy of schedule.doc that mem-
bers of KA managers have is different than
the copy that members of KB developers
have. When Edward comes online, he wants
to synchronize his copy of schedule.doc by
getting the latest version. The conference
is spread out over several buildings and the
users are spatially far apart. Because the
physical area of the conference is large, there
is no central repository for the schedules.
Instead, schedule distribution and synchro-
nization happen peer-to-peer. As a member
of KA managers, Edward must get the doc-
ument from another member of his group.

Members of KA managers do not have ac-
cess to the schedules of members of KB

developers, and vice versa. Edward would
also like to get the schedule from the ge-
ographically closest user, in order to mini-
mize his delay and make the synchronization
process as fast as possible.

2.2 Problems

This scenario creates a conflict of interests. Not only
must Edward find the closest user, but he must also
find a user that is in his group (a resource to which
he has access). A simple resource discovery system
could easily tell Edward the location and identity
of the closest user. This problem has been solved
many different ways [1, 16, 11]. But, how does Ed-
ward know if the physically-closest user is a mem-
ber of his group? And, if this user is not a member
of his group, where exactly is the closest member of
Edward’s group? Mobility of the users only further
complicates the issue. It would be time consuming
and inefficient for Edward to blindly search for the
closest member of his group. The only way in which
a resource discovery system can identify the closest,
accessible resource is to know ahead of time Edward’s
identity and authorizations.

2.3 A Näıve Solution

Before presenting our solution, it is instructive to
outline a näıve solution. This solution will be used
as a baseline of comparison in terms of performance
and will be important for the analysis of Section 4.
Resource discovery systems that do not incorporate
the ideas presented in this paper will typically oper-
ate by returning the address(es) of the best criteria-
matching resource. It will become clear that issues
of scalability and efficiency are major obstacles with
such a system.

In attempting to discover the geographically-
closest user, Edward will query the resource discovery
system through his personal proxy. The proxy will
tell the resource discovery system to “find me the
closest user”. Ideally, Edward would like to contact
the closest, accessible user, but this resource discov-
ery system does not know anything about Edward’s
identity or authorizations. In response to the query,
the resource discovery system will return a list of the
geographically-closest users to Edward’s proxy. At
this point, Edward’s proxy does not know which of
the resources in the list are accessible to him. The
only reasonable way for the proxy to proceed is to
sequentially iterate through the resources in the list
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in the hope that they are accessible. The proxy must
engage in some sort of authorization check in order
to determine if the user has access to the resource.
As long as a contacted resource fails, the proxy will
have to repeat the process.

This approach can be inefficient and surely is not
scalable. If a given user has access to every resource
in the network, then the efficiency of access control
is not an issue. But, in most heterogeneous environ-
ments, users are assumed to be diverse and access
privileges will exhibit the same differences. In Ed-
ward’s scenario, if he is not close to any users of his
group, he would have to iterate through many inac-
cessible resources before finally finding a match. Ed-
ward is faced with executing a process on the order
of O(n) if there are n other resources in the network.
The results of Section 4 will illustrate this point.

3 System Architecture

A better approach would be to give the resource dis-
covery system knowledge about the access control
lists that protect the resources. We require that the
designed system be secure, efficient, scalable, and ro-
bust. In order to meet our goals, the Intentional
Naming System (INS) [1] was selected. The solution
presented here uses several modifications to inten-
tional naming that enables access control decisions
to be made while finding the best resource. Before
detailing our solution, we summarize INS as a stan-
dalone resource discovery system.

3.1 Intentional Naming Overview

Intentional Naming System (INS) is a resource dis-
covery and service location system intended for dy-
namic networks. INS is ideal for dynamic networks
because an application only needs to tell the service
the resource characteristics it is seeking. Since the
availability of resources may be dynamic, these sys-
tems require a naming service that is just as flexi-
ble. The Domain Naming Service (DNS) works well
for static networks since an application can be fairly
confident in the names of resources. INS provides
users with a layer of abstraction so that applications
do not need to know the availability or exact name
of the resource for which they are looking. A sim-
ple example of a user’s request in INS is to find the
nearest, least-loaded printer. DNS would require the
user to know the exact name of the resource, such as
pulp.lcs.mit.edu.

INS uses a simple language based on expressions
called name specifiers, which are composed of an
attribute and value. An attribute is simply a
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Figure 3: A graphical view of an example INS name-tree.
The name-tree consists of alternating layers of attribute-
nodes, which contain attributes and value-nodes (possible
values). Value-nodes contain pointers to all the name
records they correspond to. The bold region shows an
example name-specifier.

category by which a resource can be classified.
For example, a camera in the system can be de-
scribed by its resolution, battery-life, and/or
available-memory. An INS name, or intentional
name, is a hierarchy of these atomic name specifiers.
An example of an INS name is [service=camera
[resolution=640x480] [battery-life=87%]
[available-memory=56mb]] to describe a camera
with the specified properties.

INS is comprised of a network of Intentional Name
Resolvers (INRs) that serve client requests for re-
sources and maintain information about the search-
able metatdata of each resource. Data is represented
in the form of a dynamic name-tree, which is a data
structure used to store the correspondence between
name specifiers and the destination resource. The
structure of a name-tree strongly resembles the hi-
erarchy of a name specifier. Name-trees consist of
alternating levels of attributes and values, with mul-
tiple values possible at each attribute. A particu-
lar name specifier is resolved by traversing the tree,
making sure to visit all the corresponding attribute-
value pairs of the target resource. Each leaf value in
the name-tree has a pointer to a name-record, which
holds the physical location of the resource. Figure 3
illustrates an example name-tree.

3.2 Security Integration with INS

The solution presented here uses several modifica-
tions to intentional naming that enable access control
decisions to be made while finding the best resource.
While INS does allow for a security framework to be
layered over it, we have already seen how a system can
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benefit from integrating access control decisions with
resource discovery. INS is extended in the following
three ways to provide access-controlled resource dis-
covery:

1. implementation of a real-time maintenance of
the access control lists in the INS name resolvers,

2. introduction of a certificate-based authorization
step during resolution of an INS request, and

3. design of a lookup algorithm that prunes the
possible name records by eliminating resources
based on a user’s identity and authorizations.

In the following sections, the key extensions of INS
are presented. Finally, we will return to the scenario
that is discussed above to see how this new system
integrates access-control information and INS knowl-
edge to efficiently return the best, accessible resource.
Another key factor influencing this design was its in-
clusion as a small piece of a larger security infras-
tructure. Therefore, some of the components of this
design were chosen to leverage the existing function-
ality of the proxy-based security system [4].

3.2.1 Storage of ACLs in INS

Assuming that resources have the ability to inform
INS of the access control lists that protect them, how
can these lists be properly stored in the INS knowl-
edge base so that they can be referenced when mak-
ing resource decisions? INS uses a name-tree to store
its knowledge about resources in the system. Name-
trees are dynamic, changing their structure based on
how resources advertise and re-advertise themselves
to INS.

An access control list is treated as an additional
attribute that defines a resource. One can specify
a camera based on its resolution, say; similarly,
an access control list is just another way to classify
the camera. In order to store ACLs as attribute-
value pairs, a new type of attribute was introduced.
Previously, all attributes were treated as searchable,
in that they were used as a dimension along which
a resource can be explicitly queried. But, when a
user makes a request for a resource, the user cannot
specify the ACL attribute-value pair in the query.
Nor do we want the ACLs being represented as ad-
ditional branches in the name-tree. So, in order to
store ACLs, the concept of a hidden attribute was
defined. INS attributes are now defined as search-
able or hidden, with the only hidden attribute being
that of the ACL. When advertising its service pro-
file, a resource will advertise its ACL like any other

searchable attribute, but the name resolvers are re-
sponsible for denoting the ACL as a hidden attribute
and storing it on the name-record for the particular
resource.

Storing ACLs as attribute-value pairs is advanta-
geous because we do not change the manner in which
data is stored and we do not have to radically al-
ter the way in which queries are handled (ref. Sec-
tion 3.2.2). The structure of the name-tree remains
the same, while the hidden attributes are stored di-
rectly on the name-records for each resource.

3.2.2 Redesign of lookup algorithm and ACL
propagation

[1] describes the LOOKUP-NAME algorithm that INS
uses to retrieve name-records for a given name-
specifier. This algorithm operates by pruning at-
tribute branches of the name-tree that fail to match
the given search criteria, ultimately arriving at a sub-
set of all the name-records that contains the possi-
ble matching resources. This algorithm works well
with the way name-trees are organized in INS. Since
the name-trees consist of alternating levels of at-
tributes and values, it is very easy to prune branches
of the tree while progressing through the target name-
specifier. But, left alone, this algorithm fails to work
with hidden attributes such as ACLs.

Due to the transparency that is required, users
will not explicitly construct queries with ACL name-
specifiers. One option for determining a user’s ac-
cessible resources would be as follows. First, the
LOOKUP-NAME algorithm would be run to comple-
tion, arriving at a list of criteria-matching resources.
At this point, INS would have a handle to the name-
records for each of the matching resources. We could
proceed by iterating through these possible name-
records and checking whether the user making the
request is on the ACL. While this approach will save
us considerably over the approach of contacting each
of the resources for access decisions, it still is ineffi-
cient. A closer inspection of the LOOKUP-NAME al-
gorithm reveals additional ways in which this process
can be optimized.

We designed a modified algorithm, LOOKUP-

NAME-AC, that eliminates potential name-records
while pruning S, the set of all possible name-records.
The LOOKUP-NAME-AC algorithm operates under
some assumptions on the state of the INS name-tree.
In order for the algorithm to terminate successfully,
the algorithm assumes that each value node in the
name-tree contains an intermediate ACL. This inter-
mediate ACL is computed to be the logical OR (∨)
of the intermediate ACLs stored at all of the value
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nodes that are its children in the INS name-tree. Be-
ginning at the value-nodes that contain pointers to
name-records, intermediate ACLs are computed. For
these leaf nodes, the intermediate ACL is simply the
ACL of the name-record to which it points. After
computing the ACLs at these leaf nodes, the inter-
mediate ACLs for the parent nodes are computed all
the way up the name-tree. OR’ing (∨) multiple ac-
cess control lists happens at the “entry” level. That
is, the result of the logical OR (∨) of two ACLs is
a new ACL with every entry that exists in either of
the two ACLs. For example, if acla = [e1, e2, e3] and
aclb = [e1, e2, e4, e5], then:

acla ∨ aclb = [e1, e2, e3, e4, e5], (1)

where the notation acl = [e1,...,en] indicates that
e1,...,en are entries of the ACL. Figure 4 illustrates
how ACLs are propagated up the INS name-tree from
the leaf nodes.

The modified algorithm is similar to its predeces-
sor, except now it eliminates candidate records based
on whether the user is included in intermediate ACLs.
This new algorithm takes the user’s identity and
authorization rules as arguments. For each name-
specifier in the INS query, INS will prune branches
that do not match the search criteria and that do not
contain the user in their intermediate ACLs through
a series of recursive calls. When the algorithm termi-
nates, it returns only the relevant, accessible name-
records. By taking the OR of the ACLs, we enable
access control decisions to be made while INS is lo-
cating the proper name-record, eliminating the need
to iterate through inaccessible resources and branches
of the tree. This simplifies the task of the lookup al-
gorithm as well as potentially reducing the amount of
the name-tree that needs to be traversed. This algo-
rithm terminates without the need to backtrack and
does not ever check a given ACL more than once. The
additional cost of this algorithm, though, is clearly in
these checks that the algorithm must make for each
name-specifier, but we argue in Section 4 that this
tradeoff is still advantageous.

3.2.3 Dynamic maintenance of name-trees

ACLs are resource properties that may change.
Groups or keys may be added or removed, or the
operations allowed by a particular group/key may
be changed. In dealing with name-tree mainte-
nance, there are three qualities that any design should
achieve:

• Freshness. Our primary goal is to keep the
state information in the INS name-tree fresh. At

any point in time, we want to know with high
probability that the access control and resource
information is up-to-date.

• Responsiveness. The maintenance procedure
should be responsive to changes made to the ac-
cess control information. It is important that
changes to ACLs are rapidly reflected in the INS
knowledge base.

• Authentication and Privacy. Finally, main-
tenance updates should be authentic and pri-
vate. There are a whole suite of attacks that
can be centered around unauthentic updates (re-
play, DoS). Also, entities should not be able to
maliciously learn sensitive information about re-
sources. For these reasons, the security of main-
tenance updates is very important.

Many of these issues have been considered when de-
signing INS for service updates, so our focus is specifi-
cally on how access control updates are handled. Re-
sponsiveness is achieved by using triggered updates
which are fired when an ACL changes state. Periodic
updates are also used to enforce freshness. The util-
ity of these updates comes from the fact that ACLs
typically have expiration times. Clearly, the update
period should be chosen such that it is less than the
ACL expiration time (Tupdate < texpire) but not so
small that it unnecessarily floods the network with
update packets. Upon receiving an update request,
INS actively modifies its name-tree to reflect the cur-
rent state of access rights and intermediate ACLs are
recomputed. Handling the privacy and authenticity
of these messages, as well as the authenticity of mes-
sages in which a resource updates INS with its other
service attributes, is a subject of ongoing research.

3.2.4 User authorization rules

In order for this system to function, INS needs ac-
cess to the user’s set of current authorizations. The
modified lookup algorithm depends on knowing the
user’s identity and the groups of which he is a mem-
ber. Each proxy in the system stores a user’s signed
SPKI/SDSI certificates. [5] describes an efficient al-
gorithm for determining, from a set of SPKI/SDSI
certificates, the access control groups of which a par-
ticular user is a member and the operations that he
is allowed to perform. Complete and detailed de-
scriptions of the procedures are found in [5], but this
is well beyond the scope of this paper. In essence,
a (finite) transitive closure is taken over the certifi-
cates, and rules representing the user’s authorizations
are extracted. The rules are simple and not signed.
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Figure 4: This shows how ACLs are propagated from the leaf nodes up the INS tree to the root of the data structure.
At each intermediate value-node in the tree, an ACL is stored and is computed by taking the logical OR (∨) of the
ACLs at all of the child nodes.

However, each rule has a representation as a signed
user certificate, or a chain of signed user certificates.
The closure algorithm is run when there is a change
in the user’s certificates, such as when he acquires a
new certificate, or when one of his certificates expires.

The proxy presents the user’s authorization rules
to INS with the user’s query. INS uses the rules
to check if the user is on an (intermediate or leaf)
ACL contained at a node in the INS tree (using the
LOOKUP-NAME-AC algorithm). An important point
is that these ACL checks performed by INS can be
made fast and efficient. The ACL check is used to
determine if a user is on an ACL, and it is not nec-
essary for INS to know the proof that the user would
generate to show that he is on the ACL.

When INS has completed its searching and re-
turned an address, the proxy will then use a secure
authentication and authorization protocol to contact
the resource [4]. The modified INS system we present
now returns only resources to which the user has ac-
cess, so the proxy should only have to execute this
security protocol once.

3.3 ACL Design

Access control lists are vital components of this sys-
tem. As such, the design of the ACLs are very impor-
tant in terms of storage and performance. Since we
are storing ACLs on INS nodes, the simple operations
of checking, OR’ing, and generating ACLs must per-
form well and optimize the storage space that they
consume.

Instead of utilizing an existing implementation, we

chose to design our own lightweight representation
for ACLs. An ACL is a collection of ACL entries
which are keyed by a user’s public key. As a result,
ACLs in our system are internally represented by a
lexicographically-ordered tree, where an entry can be
found by traversing the tree and making a simple
lexicographic decision at each depth. When entries
are added to the ACL, they are added in the proper
location of the sorted tree. We use a red-black tree
(binary tree) implementation of a sorted map. A red-
black tree with n elements has at most a depth of
2log(n + 1). Such an implementation guarantees a
log(n) time cost for adding new indices and looking
up values. By using a sorted tree, we rely on the pre-
computation at insertion to reduce the overall lookup
time.

3.4 The Scenario Revisited

After presenting the components of the access-
controlled resource discovery system, it is helpful to
revisit the scenario presented in Section 2.1 to see
how this new system handles the same problem.

Again, Edward is looking to obtain a copy of his
schedule, schedule.doc, from the closest user in his
group. Edward places a request for the document
via his proxy. Edward does not explicitly have to
indicate to his proxy his group membership or the
fact that he wants to retrieve the document from an-
other group member; this is handled automatically
by his proxy. Edward’s proxy contacts an INR with
which it has previously registered. It then queries
the INR for the best accessible resource, translating
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the request specified by Edward to an INS-specific
name-specifier. Edward’s proxy also computes his
authorization rules (they may be computed on the
fly or pulled from the proxy’s cache) and sends them
along with the request to the INR. The INR, which
has received access control advertisements from all
the registered resources in the network, takes the re-
quest and the user’s authorizations and executes the
LOOKUP-NAME-AC algorithm. After a single execu-
tion of this algorithm, the INR returns the closest, ac-
cessible resource to Edward’s proxy. Edward’s proxy
then uses a secure protocol to contact the resource
and uses a standard secure copy protocol to retrieve
the file from the resource. Because INS knew about
Edward’s group membership, it returned a resource
that is accessible, meaning the time-consuming secu-
rity protocol would only have to be executed once.

4 Evaluation

A prototype system was implemented in Java using
INS 2.0, a pure Java implementation of INS. In this
section, a formal evaluation of this system is pre-
sented. The overall goal is to quantify how our design
outperforms a resource discovery system that does
not integrate access control with resource decisions.
These experiments were all conducted using off-the-
shelf Intel Pentium II 266MHz computers with a 512
KB cache and 128 MB RAM, running Windows NT
Server 4.0. The software was built and run using
Sun’s Java Virtual Machine version 1.3.

4.1 Comparison of resource retrieval
time

A measure of the time savings of our solution is nec-
essary to evaluate its effectiveness. As a baseline, this
system will be compared to a basic scheme, where INS
is used as the resource discovery system, but does not
have access to ACLs or the authorizations of the re-
quester. This basic scheme was described in detail
in Section 2.3. For convention, we will assume that
the user, U is operating in a network with n total
resources.

To understand the performance gains of this new
solution, we must analyze the time it takes U to suc-
cessfully access the most optimal resource and com-
pare this time in both the basic and access-controlled
systems. This time is denoted as tBASIC for the basic
scheme and as tAC for the access-controlled system.
Each of these time values can be generally expressed
by the following equation:

tx = tquery + (
n∑

k=1

bk · (tlatency + tacl−check)) + tcrypto

(2)
tquery is the query time, the time it takes the resource
discovery system to respond to U ’s request. tquery

also includes any time U ’s proxy uses to prepare the
request. bk is a boolean value that is 1 if U contacts
resource k and 0 if U does not. tlatency is the round-
trip network latency between two proxies. This is
essentially the time it takes U to retrieve a resource’s
ACL over the network. tacl−check is the ACL-check
time, the time it takes for a simple ACL check to
be performed. ACL checks were made very fast with
our adopted implementation (as will be shown later
in this section). Finally, tcrypto is the time it takes
U to derive the full authorization proof and for this
proof to be verified by a particular resource’s proxy.

4.1.1 tBASIC

In the basic scheme, the time for U to successfully
access the most optimal resource is given by the fol-
lowing equation:

tBASIC = tqueryBASIC
+

1
p
· (tlatency + tacl−check)

+ tcrypto (3)

This derivation of tBASIC can be found in [12].
tqueryBASIC

is the time it takes the LOOKUP-NAME

algorithm to execute and p is the probability U has
access to a given resource.

4.1.2 tAC

Similarly, the time to retrieve a resource using our
access-controlled solution is given by:

tAC = tqueryAC
+ tlatency + tcrypto

= tqueryBASIC + Dn · tacl−check

+ tlatency + tcrypto (4)

The key difference is that tAC is not dependent on
the likelihood that U has access to a given resource.
Instead, the query time, tqueryAC

, depends on Dn,
which represents the number of ACL checks that will
have to be made while traversing the INS name-tree.
It is a function of the number of resources in the
network (n), but is also affected by the complexity of
the name-tree and name-specifiers. For more details,
see [12].
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Figure 5: The lookup rate (lookups/sec) is plotted
against the number of names in the name-tree. As the
number of names increases, the lookup rate progressively
gets smaller, starting from a maximum of around 700
lookups/sec to 200 lookups/sec.

4.1.3 Name Lookup Performance, tqueryBASIC

and tqueryAC

To quantify the difference between tqueryBASIC
and

tqueryAC
, we constructed a large, random name-tree

and timed how long it took the tree to perform 1000
random lookups using each algorithm. The name-tree
and name-specifiers were chosen uniformly according
to the parameters defined in [1] (ra = 3, rv = 3, na

= 2, and d = 3). n, the number of distinct, unique
names in the tree, was varied from 1 to 13000 in in-
crements of 100 to see how tqueryBASIC and tqueryAC

vary with increasingly large name-trees. The maxi-
mum heap size of the JVM was limited to 64MB, thus
limiting the range of the experimentation.

Figure 5 shows the results of this experiment. Us-
ing the basic LOOKUP-NAME algorithm, the perfor-
mance went from a maximum of around 700 name
lookups/sec to a minimum of 200 lookups/sec. From
Figure 5, it is evident that as the number of names
in the name-tree increases, the lookup rate decreases.
As a result, the amount of time required for a single
lookup increases. But, the drop-off is not as drastic
as one would think and clearly is not linear. For a
moderately large system with approximately 2000 re-
sources (or names), the average lookup time is around
1.8 ms. For small systems on the order of hundreds of
resources, the lookup time is around 1.4 ms. These
times are small and the difference in lookup times
between the small and large systems is minimal.

The experiment was repeated in the access-
controlled case. Each resource was initialized with
ACLs containing 10 unique entries and the interme-
diate ACLs were computed. Figure 6 presents the
performance results of the LOOKUP-NAME-AC algo-
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Figure 6: The lookup rate (lookups/sec) is plotted
against the number of names in the name-tree. Each
name in the name-tree is protected by an ACL with 10
unique keys. As the number of names increases, the
lookup rate progressively gets smaller, starting from a
maximum of around 325 lookups/sec to 240 lookups/sec.

rithm as the number of names in the tree varied from
1 to 3500. As is evident from this figure, the lookup
rate is significantly reduced from the rate without the
ACL checks. The experiment was terminated at a
maximum of 3500 names due to memory constraints
of the JVM. With approximately 100 name-records in
the tree, a rate of 325 lookups/second was achieved.
In the non-access-controlled case, this rate was much
higher at around 700 lookups/sec. At approximately
3500 name-records, the rate of the LOOKUP-NAME-

AC algorithm was at 240 lookups/sec, indicating only
a drop of in about 90 lookups/sec. Conversely, the
rate in the basic case dropped to 450 lookups/sec with
3500 names, indicating a drop of 250 lookups/sec.

Table 1 details the average lookup times for the two
algorithms for varying sizes of the name-tree. The
difference between the lookup times is on the order
of few milliseconds and can be attributed directly to
the intermediate ACL checks that are made. In the
following section, it will be shown that tacl−check, the
time for a simple ACL check is on the order of ap-
proximately .07 ms. Based on the name-trees we used
during the experimentation, we can calculate approx-
imately 15 intermediate ACL checks. This roughly
accounts for about a 15 × .07 ≈ 1.05 ms difference be-
tween the lookup times. The numbers in Table 1 seem
to support this back-of-the-envelope calculation.

4.1.4 Access Control List Performance,
tacl−check

One of the fundamental differences between a basic
solution and ours is the use of ACL checks during
the name-lookup process. In order to determine the
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Names in Average Lookup Time (ms)
Name-Tree LOOKUP-NAME-AC LOOKUP-NAME

100 3.24 1.45
200 3.23 1.47
500 3.35 1.48
1000 3.52 1.61
1500 3.66 1.76
2000 3.80 1.88
2500 3.94 2.04
3500 4.23 2.31

Table 1: This table shows the average lookup time ex-
perienced by the two algorithms for varying sizes of the
name-tree.
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Figure 7: The ACL check rate (in ACL checks/sec) is
plotted against the number of entries in the ACL. It is
evident that the rate decreases with an increasing number
of entries, but only slightly. Also of note, are the four
regions of concentration of points.

cost of an ACL check, random large ACLs were con-
structed with the number of distinct entries in the
ACL ranging from 1 to 14000 and the number of ACL
checks that could be executed in the span of a sec-
ond was measured. Figure 7 illustrates the results of
this experiment. As expected, as the number of en-
tries in the ACL grows, the ACL check rate decreases
logarithmically. ACLs in our system are represented
by red-black trees (binary trees), keyed by the users’
public keys, that guarantee a log(n) time cost for
adding new indices and looking up values. As the
number of entries in the ACL goes from 1 to 1000,
the check rate decreases by 500 checks/sec. A similar
rate decrease can be seen as the number of entries is
varied from 1000 to 10000.

Figure 7 shows five stratified regions of lookup

rates, that correspond to the number of decisions that
must be made in order to find a key in the ACL. De-
pending on where a key is located in the range of pos-
sible keys, the number of decisions to find it in the
tree can vary. For an ACL of 1000 entries, the time
it takes to perform an ACL check can be one of the
following values: .083 ms, .074 ms, .067ms, or .061ms
(according to the four different regions in the graph).
These values are an order of magnitude smaller than
the time taken by the LOOKUP-NAME algorithm to
find a name. Therefore, the idea of making several
ACL checks during the name retrieval process adds a
minimal time cost and seems very reasonable.

4.1.5 Round-Trip Network Latency, tlatency

tlatency is the round-trip network latency between
proxies in the network. It is a fundamental compo-
nent of the resource retrieval time in the basic solu-
tion (tBASIC), which requires a client proxy to ex-
plicitly contact potential target proxies in order to
determine access privileges. To estimate this param-
eter, simulations were run in ns [8].

A precise measure of tlatency is somewhat subjec-
tive, as the exact value of the round-trip time between
two proxies depends on the network infrastructure,
number of hops between proxies, current traffic con-
ditions, link bandwidth, and any additional network
characteristics. For simulation purposes, we adopt
a network structure where proxy-proxy communica-
tion will take at most two hops. Two routers are
linked together, with each router containing seven
end proxies, each sending packets according to the
following traffic flows. A third router is connected to
INS and the other two routers. Therefore, in order to
communicate with another proxy, a proxy must only
send packets through two hops. The links between
proxies and routers each have a bandwidth of 133
Mbps and a propagation delay of 5 ms. The router-
router links have a bandwidth of 100 Mbps. There
are three main traffic flows in this network, namely
Proxy-Proxy traffic, Proxy-INS service updates, and
Proxy-INS requests. A single proxy-proxy flow was
started between two proxies and the round-trip time
for each packet was measured over a span of thirty
seconds. Figure 8 shows the results of this experi-
ment.

As is evident from this figure, the round-trip time
stays almost constant throughout the duration of the
traffic flow. Initially, there is some variance as TCP
uses a slow-start mechanism to find the optimal win-
dow size. But, after equilibrium is reached, the mean
RTT of proxy-proxy communication is 48.37 ms. It is
worth noting that in a network with many resources,
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Figure 8: The results of the simulation are shown here.
The RTT of packets sent between proxies is constant
throughout the packet flow. The mean RTT between two
network proxies is 48.37 ms.

this number is a best-case scenario. The link band-
widths used were large, the propagation delays were
small, and the two-hop assumption will break down
as the number of resources increases. Despite using
favorable conditions, we see that tlatency is three full
orders of magnitude larger than tacl−check. As will
be shown in Section 4.1.6, this result plays a key role
in determining the efficiency of our access-controlled
resource discovery system.

4.1.6 tAC versus tBASIC

In this section, we analyze the difference in retrieval
times between the two solutions. Subtracting Equa-
tion 4 from 3, we get:

∆t(n) = tBASIC(n)− tAC(n)

=
1
p
(tlatency + tacl−check)−

(Dn · tacl−check + tlatency) (5)

From Equation 5, we can see that whether the access-
controlled scheme outperforms the basic scheme de-
pends on whether 1

p ·(tlatency+tacl−check) is greater
than (Dn · tacl−check + tlatency). If it is, we can
conclude it is more efficient for INS to perform the
ACL checks as it descends down its name tree, rather
than leaving this up to the user’s proxy. In or-
der to make this comparison, we consider our sce-
nario (in Section 2.1) with 1000 total users divided
equally among the two groups (KA managers and
KB developers). Therefore, the probability that
Edward has access to any given resource is p = 0.5.
If we also assume the structure of the name-tree is

as described previously, Dn = 15. From our experi-
ments in Section 4.1.4, we will assume an ACL check
with 1000 entries per ACL takes .083 ms. Finally,
the latency between proxies will be assumed to be
48.37 ms (as calculated in Section 4.1.5). Using these
parameters, the difference in lookup time is:

∆t(n) =
1

0.5
(48.37 + 0.083)− (15 · 0.083 + 48.37)

= 47.291 ms (6)

Even with the parameters chosen to favor the ba-
sic solution, the access-controlled solution wins by a
large margin. It is likely that this is a conservative es-
timate. With 1000 resources in the network, tlatency

will likely be greater than 48.4 ms as the propagation
delays of the links will increase and the number of
hops between proxies will increase. Furthermore, if p
becomes smaller, the basic solution is subject to more
trips across the network, making our savings greater.
The main difference in the resource retrieval times for
each solution can be attributed directly to the fact
that ACL checks are extremely fast. Our solution is
not subject to the network latency and the three or-
ders of magnitude saved in performing an ACL check
give our solution a clear advantage. The query time
saved in the basic solution is minimal compared to
the time that the ACL checks save.

4.2 Performance of ACL propagation

The LOOKUP-NAME-AC algorithm requires that inter-
mediate value nodes in the name-tree have computed
the logical OR of all the ACLs in its subtree. In or-
der to do this, the propagateAcls method is called
periodically (for freshness) and any time a triggered
update is initiated by a user’s proxy.

The propagateAcls method is invoked every time
an update to an ACL occurs. For analysis pur-
poses, the time between ACL updates is denoted
εtriggered. Immediately after an ACL update occurs,
the propagateAcls method must be called. Since
the method is synchronized, the name routers can-
not service any incoming requests during this time,
backlogging requests in a queue. This creates some-
what of a “time-slotted” service model (as shown in
Figure 9), where the requests can only be serviced
between the end of the execution of propagateAcls
and the time the next update arrives.1 Essentially,

1In reality, there are other maintenance updates that the
INRs handle, such as changes to service profiles (e.g. growth
in the number of documents in a particular printer’s queue, or
a particular speaker going offline, etc.). But for the simplicity
of this analysis, these updates are ignored here. The argument
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Figure 9: The propagateAcls method must be called
after an ACL update has been sent to the INR. Since the
method is synchronized, new requests cannot be serviced
while the method is being executed. Servicing of requests
can only occur between the execution of propagateAcls
and the next update.

the INR can serve requests for some time, update it-
self, serve requests, and so on. Clearly, the goal here
is to minimize the maintenance time with respect to
the available service time so that the service slots are
much bigger compared to the maintenance slots.

This “slotted” model can potentially lead to prob-
lems, because users will not stop sending requests
when the INR is under maintenance. A queue will
build up as the name-tree is under maintenance and
the requests in the queue along with all other requests
must be processed before the next update arrives, or
the system will experience congestion and collapse.
If we model the queue as an M/M/1 queue [3] with
Poisson arrivals and exponential service times, a for-
mulation can be made as to when operation of the
system will be successful (i.e., no collapse). The ar-
rival rate of INS requests is λ. The service rate is
µ (the average service time is 1

µ ). In this system,
1
µ equals tqueryAC . The time for the execution of
propagateAcls is tpropagate. The collapse condition
will occur if all the requests are not serviced before
the next ACL update arrives. While the INR is under
maintenance, we expect NQ, the queue size, to grow
to λtpropagate (by Little’s Theorem [3]). Similarly,
while the INR is in the service slot, the number of in-
coming requests will be λ(εtriggered - tpropagate). The
time to service these requests must be less than the
duration of the service slot in order for queue buildup
to be avoided. That is:

εtriggered À tpropagate · µ

µ− λ
(7)

Is it a reasonable assumption that this condition
holds? We have seen that tpropagate is on the order of
a few seconds and 1

µ is on the order of a few millisec-
onds. According to Equation 7, it can be seen that as

presented can be easily extended to account for these updates
as well.
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Figure 10: There are three plots shown here. The first
plot shows the memory used by standard name-trees with-
out ACLs. The second plot shows the same name-trees
with ACLs on the records. The final plot shows the name
trees with the ACLs after the propagateAcls method has
been called (the name trees contain intermediate ACLs).
As the number of name-records increases, the memory
used increases linearly.

long as the INR is not receiving requests at the same
frequency (every few milliseconds), then the system
will be fine. Even if λ is on the order of a request/ms,
the frequency of ACL changes will be on the order of
minutes, not milliseconds. The condition in Equa-
tion 7 will easily hold and the system operation will
be smooth.

4.3 Tradeoffs

The premise our solution makes is that basic solutions
scale poorly and are based on inefficiencies that limit
the performance of the system. Specifically, finding
a resource requires explicit contact to check access
privileges. From the experiments, we have verified
this by showing our solution significantly reduces the
resource retrieval time. At the same time, it makes
a large system with many resources manageable and
efficient. A similarly-sized system may be inoperable
under the basic resource discovery approach.

While saving time, our solution does add greater
requirements for storage to INS. This is primarily
driven by the need to store ACLs (both resource-level
and intermediate) in the name-tree, a constraint not
made necessary by the basic solution. We analyze the
additional space required by our solution and com-
pare it to that of the basic solution.

Ultimately, the goal is to evaluate how much more
memory the access-controlled solution requires than
the basic solution. Again, using randomly con-
structed name trees (with the same dimensions as
described in prior experiments), the number of name-
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records in the tree was varied from 0 to 2500 and
the physical size of these trees was measured. As a
base case, the name-trees were created without ac-
cess control lists. These are the name-trees used
by the basic solution. As a second experiment,
the name-trees were then created with each name-
record containing an ACL with 10 unique entries.
The size of these trees was measured. The final ex-
periment involved measuring the size of the name-
trees after the propagateAcls method was called.
The propagateAcls method forces the computation
of the intermediate ACLs, so the memory used in-
creases. Figure 10 shows the results of these experi-
ments.

From this figure, we can clearly see that the name-
trees required by the access-controlled solution use
much more memory than the basic name-trees. A
name-tree of 2000 name records that does not store
ACLs uses approximately 9.4 MB of storage, whereas
a name-tree that stores ACLs and has executed its
propagation takes up 38.1 MB. In fact, from the fig-
ure, ACL-propagated name-trees use 3.75 times more
space, on average, than basic name-trees:

size(TAC(n)) = 3.75 · size(TBASIC(n))
= 3.75× [(0.0185 · n) + 0.40] Mb

(8)

For relatively small name-trees, this difference is not
substantial. But, as the number of name-records
grows fairly large, the difference in the name-tree
sizes is significant. The computational resources re-
quired to store the name-trees become large as the
system scales. As the number of name-records grow,
the sizes of the intermediate ACLs also grow accord-
ingly. Note, this is the worst case scenario. Even
though each ACL has 10 different entries, it is very
possible that entries can be repeated across resources,
thereby somewhat limiting the size of the trees. De-
spite this fact, integrating access-control into INS re-
quires additional memory in the name routers.

Nevertheless, storage is cheap and can be solved
simply by adding more memory to each INR. On the
other hand, saving time is not as simple as installing
additional components to each router. As such, the
storage-time tradeoff is one that is worth making.

5 Related Work

There are several protocols that have been developed
that provide resource discovery services. This sec-
tion presents some of these protocols and gives a brief
analysis of each.

Jini network technology [14] is a Java environment
developed by Sun Microsystems that supports re-
source discovery. The overall goal of Jini is to turn a
network into a flexible, easily-administered tool with
which resources can be easily found by clients. In
practice, Jini extends the Java application environ-
ment from a single virtual machine to a network of
machines. Communication between a network of vir-
tual machines occurs by exchanging serialized Java
objects over Java Remote Method Invocation (RMI).
Jini provides a lookup service to all clients in the
network. The lookup service enables clients to query
for the resources through a standard Java interface.
While Jini offers a great deal of flexibility, its reliance
on the Java Virtual Machine (JVM) makes it only as
secure as the minimally secure JVM. The Jini archi-
tecture does not include any security in addition to
the normal Java security facilities (for protecting the
client JVM from malicious code), and the security as-
pects of RMI are insufficient for a trust-based security
model [6]. RMI execution is layered on top of Java
sockets and is abstracted in such a way that network
connections are formed automatically. While Java
uses secure sockets, it is difficult for a client to verify
that a stub is using secure sockets, potentially com-
promising sensitive information. Furthermore, issues
such as access-control are not explicitly handled by
Jini.

The Service Location Protocol (SLP) [17] is a de-
centralized, lightweight, scalable and extensible pro-
tocol for service (or resource) discovery within a sys-
tem. SLP eliminates the need for a user to know the
name of a network host, but rather, the user supplies
the desired type of service and a set of attributes
which describe the service. SLP is not designed to
scale to large numbers of users and its performance
is questionable in unknown dynamic networks.

Universal Plug-and-Play (UPnP) is Microsoft’s
standard for resource discovery. Resources in the sys-
tem advertise and describe themselves using the eX-
tensible Markup Language (XML). UPnP relies heav-
ily on XML, HTTP, and IP and therefore can leverage
known and tested communication models. For secu-
rity, UPnP relies on existing World Wide Web secu-
rity models such as SSL. While these methods are
secure, they are computationally intensive and may
not be applicable in an environment where clients and
resources are computationally-starved.

The Portolano Project [16], developed at the Uni-
versity of Washington, is a large-scale networking in-
frastructure designed to support pervasive computing
environments. Initial security proposals involve using
IPsec-based authentication [10], but these issues have
yet to be explored and remain an area of ongoing re-
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search.

6 Conclusion

This paper has experimentally verified the merits of
our resource discovery system that integrates access
control by comparing it to alternative systems. The
resource retrieval time is greatly reduced using this
architecture, while security is not compromised. This
allows our system to scale to levels that traditional re-
source discovery systems wishing to implement access
control would be unable to efficiently reach. While
the implementation and execution of this system does
require additional memory in each intentional name
router, sacrificing storage for time and efficiency is a
worthwhile tradeoff.

Together with the proxy-based security model, this
architecture meets all the goals of a secure system. It
features efficient and scalable access-control for all
resources while integrating with a powerful resource
discovery system. We believe that this architecture
is a flexible and generalized security infrastructure
ready to support the pervasive computing trends that
will surely dominate the future.
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