
Bandwidth Management in Wireless Sensor Networks

Bret Hull, Kyle Jamieson, and Hari Balakrishnan
MIT Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139
�bwhull, jamieson, hari�@lcs.mit.edu

April 8, 2003

Abstract

Wireless sensor networks are often used in monitoring and
control applications, where software running on general-
purpose computers “pull” information from remote sensors
and “push” actuations into the network. The sensors them-
selves form a multihop wireless network communicatingwith
one or more sensor access points (SAPs) that interface be-
tween application software and the sensor network. This pa-
per addresses the problem of managing wireless network
bandwidth and improving network capacity in a sensor net-
work deployed as a shared infrastructure, concurrently used
by different applications.

Our bandwidth management architecture incorporates three
ideas: first, we develop a simple rule system that allows appli-
cations and the network administrator to specify how traffic
generated by sensors should be treated by the sensor network.
Each rule is a function that maps a sensor data type and gen-
erated value to a transmission rate and a traffic class. Second,
we show how using multiple SAPs and SAP selection method
that considers packet loss probabilities, path load, and path
lengths improves the capacity of the network and the perfor-
mance of individual sensor streams. Third, we show that hop-
by-hop flow control, rather than end-to-end congestion con-
trol, is a better way to cope with the nature of sensor network
traffic and avoids unnecessary packet losses that waste valu-
able wireless network bandwidth. Our experimental results
from a 40-node indoor wireless sensor testbed show that these
three techniques are simple to implement and allow scarce
network bandwidth to be used efficiently.

1 Introduction

Wireless sensor networks are often used in remote monitoring
and control applications. Two resources—wireless link band-
width and node energy—are scarce in many sensor networks,
and need to be managed carefully. This paper addresses three
important problems caused by constrainedwireless link band-
width in sensor networks:

1. How to allocate network bandwidth to sensor streams?
2. How to control network congestion?
3. How to improve the data forwarding capacity of the net-
work?

As sensor nodes get even smaller, and sensor networks grow
larger in size, we believe that these bandwidth considerations
will become increasingly more imperative and important.

The context for our work is a centrally administered, shared
sensor network infrastructure, used concurrently by different
applications. As an example, we apply our techniques to an
indoor sensor network deployed on one floor of our build-
ing, with light, temperature, and acoustic sensors monitoring
conditions. This network is concurrently used for different
applications, including one that monitors temperature in of-
fice and machine rooms, one that monitors light usage, and
one that combines these feeds with acoustic data to moni-
tor room occupancy on the floor. In such sensor applications,
the relative importance of sensor data streams often depends
on the type and values of the data being sensed, and on how
data from different sensor streams correlate with each other.
For example, if the goal of the temperature monitoring ap-
plication is to actuate heating or cooling only in those rooms
that are occupied, then it would make sense to allocate more
network bandwidth for data streams coming from occupied
rooms compared to empty rooms. As a more extreme exam-
ple, if sensors in an area detect abnormally high temperature,
it may signify a disastrous event like a fire, in which case it
would be prudent to allocate almost all of the bandwidth to
those streams.

Shared sensor network infrastructures therefore require a
bandwidth allocationmethod, by which the nodes can decide
how to allocate network bandwidth to sensor streams. The
allocation method has to handle traffic that exhibits a high
degree of spatial correlation, when a group of nodes in close
proximity all detect an event of interest. It has to be able to
change bandwidth allocations in the network depending on
observed phenomena.

1

Our solution to this problem is based on rules that allow each
node to map any sensor data stream to a desired traffic rate
and traffic class depending on its values and other attributed
(e.g., the location of the sensed data). The network supports
a small number of traffic classes, which the nodes schedule
according to priority order. We show how our rule system al-
lows interesting bandwidth allocation decisions to bemade by
both application developers and the network administrator.

Any network with constrained bandwidth requires conges-
tion control to achieve good performance and avoid catas-
trophic congestion collapse when the offered load exceeds
available network capacity along its paths. We show that tra-
ditional Internet-style end-to-end congestion control proto-
cols are not well-suited to our domain, and develop a hop-
by-hop flow control scheme that achieves good performance
with low congestion-triggered packet loss rates. This hop-by-
hop method allows sources to adapt their transmissions to
feedback obtained from nodes further along the path to the
destination, without causing high drop rates or entailing the
overhead of end-to-end acknowledgments and the slower re-
sponse of end-to-end congestion control.

Many sensor network architectures, including ours, partition
the application. A portion of the application, typically involv-
ing sensor data sampling, together with simple filtering, ag-
gregation, and compression, runs on the nodes in the sensor
network, with the results of these operations streaming to the
portion of the application running on general-purpose com-
puters. This architecture requires a sensor access point (SAP)
to interface between the application partitions. Sensor net-
work nodes form a multihop wireless network to communi-
cate data to the SAP.

The problem with a single SAP is that it restricts the capacity
of the network to the wireless link bandwidth of the SAP. An
obvious solution to this problem is to deploymultiple SAPs to
increase the available capacity of the network. If each nodes is
able to send data to any one of multiple SAPs, then the over-
all capacity of the network can be considerably higher than
with just one SAP. However, it is not clear how nodes can
pick the right SAP to avoid hot spots and realize this poten-
tially higher capacity. We analyze this problem and develop a
new routing metric that combines hop-count, path load, and
wireless path loss rate for nodes to use while selecting the
best SAP. We also show how local rules at a node alleviating
traffic oscillations, a common problem in networks where the
routing protocol reacts to traffic load.

We have implemented the three components of our band-
width management solution: a rule system together with pri-
ority queuing, a hop-by-hop flow control scheme, and a rout-
ing protocol based on load, congestion loss, and hop-count
for SAP selection, on TinyOS. In addition to experiments on
smaller networks, we present the results of several experi-
ments on a deployed 40-node in-building sensor network.

App3App2App1

Rule Manager

Route Selection

P
rom

iscuous R
eceive all traffic

dest=self

F
orw

arding E
ngine

parent

Figure 1: stack

2 Design

This section starts by describing the basic application model
and network assumptions underlying our work. It then de-
scribes the details of the rule system, hop-by-hopflow control
scheme, and SAP selection method.

2.1 Application model

The data acquisition model for wireless sensor networks de-
pends on the application at hand.While many of the ideas pre-
sented in this paper apply to many classes of sensor networks,
some are designedwith a specific usage pattern in mind.What
follows is a description of the type of sensor network appli-
cations that motivates our work.

In our framework, an application is simply defined as the log-
ical segment of code running on each sensor node, that ac-
quires the sensor’s readings, processes these readings (per-
haps correlating them with other sensed values, aggregating
values, or compressing them), and then makes a decision as
to whether and when it is appropriate to transmit the resulting
data. Among applications that follow this model, two broad
categories emerge: sensor applications that periodically send
readings, and those that send readings contingent on events
occurring.

The fundamental characteristic of the first type of application
is that the values produced by the application are sent out at a
relatively constant rate. The basic structure of such an appli-
cation is shown in the left-hand column of Figure 2. Periodi-
cally, a timer fires, causing a sensor value to be obtained and
transmitted over the network. Depending on the value being
sensed, the rate at which data is generated or polled may need
to be adjusted. Over time, this rate could change dramatically
based on the state of the phenomena being sensed. However,
from a bandwidth management perspective, these are essen-
tially constant bit rate (CBR) sources.

The other type of application is event-based, and does not
send out sensor values (or some other value derived from the
sensor reading) at regular intervals. Instead, the value and
quantity of the traffic propagated through the network de-
pends on whether or not the values being sensed, or how they
change over time, represent an event. The notion of exactly
what constitutes an “event” worth reporting is a function of

2

// timer fired to poll sensor
Timer.fired() {

// obtain sensor reading
val = Sensor.getValue();

// transmit
Network.send(val);

// rate may change depending
// on value
new_rate = getNewRate(val);

if (current_rate != new_rate) {
current_rate = new_rate;
Timer.setRate(new_rate);

}
}

Sensor1.event(val) {
processValue(SENSOR_1, val);

}

Sensor2.event(val) {
processValue(SENSOR_2, val)

}

processValue(type, val)
{
// record the reading and possibly
// perform some analysis
updateLocalState(type, val);
event = getNextEventToSend();
if (event != DO_NOT_SEND)

Network.send(event);
}

Figure 2: Pseudo-code representative of the class of applications with which our architecture is designed to interact. Left: a
periodic sensing application. Right: an event-based sensing application.

the sensor type and the environment in which it is deployed.
The right-hand column of Figure 2 shows an example of how
an event-based sensor application might be structured. The
essential point to note is that the sensing of the environment is
entirely decoupled from the rate at which events are sent. Ap-
plications either poll their sensors or explicitly receive events,
but this rate is generally much higher than the rate at which
events are sent through the network. It is up to the applica-
tion to decide how correlate multiple sensor readings and how
the changes or levels of such sensor readings correspond to
events.

Of course, these two types of applications will usually co-
exist, providing the basic building blocks for a wide range
of monitoring systems. In addition, in response to data ob-
tained from the sensor network, the monitoring station may
respond by actuating events in the environment or by request-
ing changes in the nature and rate of the sensed data being
reported.

When wireless network bandwidth is scarce relative to node
computation, either because the transmission bandwidth is
small or because it consumes a large amount of energy to
transmit packets on the wireless link, bandwidth management
is an important problem.We address this broad problem along
three dimensions: dynamic bandwidth allocation based on the
nature of sensed data and events, congestion control, and im-
proving the capacity of the network using multiple SAPs and
load-sensitive packet routing.

In this paper, we ignore energy-efficiency and focus on solely
on bandwidth management. As such, some of our techniques
are optimized by promiscuous packet reception and by nodes
overhearing each other to implement suppression and obtain
better information about the state of the network. These tech-

niques interact poorly with some previously proposed energy-
optimizing approaches. We don’t explore these interactions
further in this paper, leaving that for future work. However,
in our indoor sensor deployment, we have found that it has
been easy to connect all our sensors to nearby power outlets,
and the primary practical bottleneck in our system is in fact
wireless bandwidth. We expect this to be true of many other
indoor sensor deployments as well.

2.2 Rule System

Rules allow applications and network administrators to spec-
ify how data packets should be treated by nodes in the sensor
network. A rule maps packets, whose payload includes a sen-
sor data type and a value being reported, to a desired recep-
tion rate and a traffic class. Specifically, a rule is a function �
that takes the sensor’s data type, the value being reported, and
other attributes (e.g., sensor location, local node state corre-
sponding to the stream, etc.) as input and produces a rate and
traffic class.

� �type, value, attr� �� �rate, class�� (1)

The desired reception rate is an aggregate rate at which the
monitoring application running “behind” the sensor access
point wants data that matches the rule’s precondition. The
traffic class in a rule allows a network administrator as well
as application writers to specify the relative importance of
different data ranges for sensor streams. For example, one
rule might specify that the temperature sensors provide an ag-
gregate data rate of 4 packets/second, while a second more-
specific rule might specify that temperature sensors that re-
port values above 80 degrees from certain locations do so at

3

10 packets/second on a different traffic class that is treated
at higher priority in the network. The semantics our system
attempts to provide are that the aggregate rate at which data
matching a rule reach the SAP nodes is no larger than the
specified rate, with the messages delivered on the specified
traffic class. In practice, these semantics are “best-effort” in
that they may not always be met. We discuss this in Sec-
tion 2.2.2.

A network administrator disseminates rules to nodes (e.g., us-
ing a broadcast protocol, or by manually configuring the sen-
sors before they are deployed), ordering the rules in prece-
dence order. Whenever a node receives or generates a packet,
it classifies the packet according to the rules and enqueues the
packet on the queue corresponding to the traffic class.

2.2.1 Rule syntax and semantics

Our rule system is simple—it applies simple logical expres-
sions to packet fields and determines what to do with the
packet. The formal specification is as follows:

rule � � precond�� �rate class� �
precond � comparison � precond OR precond �

precond AND precond � NOT precond �
(precond)

comparison � application op value
application � light � temp � occupancy � � �
op � > � < � >= � <= � != � ==

One can generalize the above rule format to include more
complex rules that trigger actions, but we have found that
even this restricted set is rather powerful and can lead to
complex interactions between rules. In general, a given data
packet can match multiple rules; our current approach to han-
dling this is to take the action corresponding to the first rule
that matches in the precedence order specified earlier. We
may revisit this decision in the future when we gain more
experience with the rule system.

Rules may interact with application computation running in
the sensor network, especially with aggregate operators im-
plemented at sensor nodes. When a node receives a packet,
before consulting the rules to determine how to forward the
packet, the node’s network layer first determines if the ap-
plication layer running at the node has registered interest in
processing packets of that type, in which case the packet is
delivered to the appropriate packet handler. The specification
of application handlers is done using the same rule syntax
described above, with the �rate, class� result being replaced
with an application’s input packet queue.

2.2.2 Rule enforcement

Each node enforces rules in two ways: it implements a packet
scheduling discipline to classify and forward packets in dif-
ferent traffic classes, and it implements a rate-control mech-
anism to throttle packets to the rates specified in their best-
matching rule.

The semantics we associate with a traffic class are delay
priority semantics rather than bandwidth sharing semantics.
That is, we choose a simple static priority forwarding scheme
where packets are sent from the highest-priority queue that
is not empty. In an earlier prototype of our system, we im-
plemented traffic classes using a weighted fair queuing disci-
pline, which shares link bandwidth amongst the queues, but
found that it was not well-suited to our network and appli-
cations. There are two reasons for this. First, the rules al-
ready specify packet rates, which are honored in best-effort
fashion by the network, and a different scheduling mecha-
nism to ensure bandwidth sharing does not interact well with
the rate-control. Second, runningWFQ does not allow impor-
tant messages to be sent at higher priority than less-important
ones, because it is hard to estimate a priori the bandwidth
that might be required for messages at different levels of im-
portance at any given time. When important events happen,
our goal is to forward them on in preference to less-important
data without “inversion,” a task that is facilitated by running
a simple priority scheduler at each link.

Each node controls the rate at which packets matching any
given rule are sent on the network using two forms of suppres-
sion. For each rule, a node maintains the last time at which a
packet was sent from the node to a SAP, as well as the size of
the packet. When the node receives a packet, it forwards the
packet on only if the time since the last transmission on the
packet’s matching rule was larger than the duration required
by the specified rate; otherwise, the packet is simply dropped.
The node thus implements, for every rule, a leaky bucket filter
of depth 1.

Each node also implements distributed suppression by listen-
ing opportunistically to other transmissions and updating its
local estimate of the last time a packet matching any of its
local rules was sent. This is a useful optimization when there
is spatial locality in rules, for instance when geographic loca-
tion is used as a rule’s attribute, or when there is a high degree
of spatial correlation in a data stream. Both of these situations
are common in many sensor networks.

If there were only one SAP in the network topology, the max-
imum rate at which any rule’s packets are delivered won’t
exceed the specified rate, although with multiple SAPs this
statement is not true. Of course, nodes that are on paths to
different SAPs will still implement suppression independent
of the SAP to which the packet is destined.

4

2.3 Hop-by-Hop Flow Control

Any network with competing and dynamically varying traf-
fic requires some form of congestion control to avoid high
packet loss rates, long queues, or congestion-triggered col-
lapse. On the Internet, congestion control is done end-to-end
at the transport in transport protocols like TCP or in end-
system modules like the Congestion Manager [3].

End-to-end flow control schemes like TCP are not well-suited
to our domain for the following reasons:

1. Mismatch with applications that send at constant period-
icity, with occasional bursts. As explained in Section 2.1,
many sensor network applications involve low-rate CBR
flows that might experience a sudden increase in trans-
mission rate when an interesting event occurs.With TCP,
every incoming ACK causes an increase in the trans-
mission window size. The problem is that if the stream
wasn’t actually saturating the network (as in a low-rate
CBR), this window inflation is artificial and does not sig-
nify that the capacity indicated by the window is actually
available! Now, when an event occurs that causes a se-
quence of packets to be sent in quick succession, TCP
would assume that the large window was usable, but the
result would be packet loss because the network isn’t ac-
tually capable of sustaining this large window (rate).

2. End-to-end acknowledgment overhead. Many end-to-
end congestion control schemes require ACKs to be sent
from the receiver, to allow the sender to obtain an ac-
curate idea of the state of the network. Many sensor
streams don’t require the reliability semantics of TCP,
making the cumulativeACKs unnecessary. Furthermore,
since most sensor data packets are small, end-to-end
ACKs would consume a substantial fraction of the over-
all network bandwidth.

3. Bad performance when windows are small. Protocols
like TCP are notorious for poor performance when win-
dows are small [2]. Although some recent solutions have
been proposed for this problem [1], a fundamental prob-
lem is that small-window paths often tend to cause high
packet loss rates in the way TCP adapts while probing
for more bandwidth.

Our solution to this problem is to revive an old idea—hop-
by-hop flow control—and adapt it to sensor networks. This
idea has been proposed before in a few different contexts,
most notably high-speed networks where it was once be-
lieved that end-to-end approaches could not work well in
large bandwidth-delay product networks.

The idea in hop-by-hop flow control it that a congested
node provides essentially immediate feedback to an upstream
neighbor sending packets to it about the onset of conges-
tion. In our system, we take advantage of the ability to syn-
chronously send small link-layer messages from a receiving
node to a transmitting node. The conventional use of this fea-

ture is to send link-layer ACKs upon successful reception, but
we use it to send synchronous NACKs (negative acknowledg-
ments) when the instantaneous queue size at a node exceeds a
high-water threshold. The idea is that the packet causing this
NACK will be enqueued, but the notification will cause the
transmitting node to slow down. With this slow-down, trans-
mitting nodes upstream from this part of the network will
soon throttle back as queues fill up. The key point is that this
happens without packet loss.

When a node receives a synchronous NACK in response to a
transmission, it throttles its rate of transmission to that neigh-
bor. Our scheme determines how long to wait by overhearing
the congested nodes transmissions, and resuming transmis-
sions to the neighbor after it hears at least two packet trans-
missions from the neighbor. This indicates that two packets
of space have cleared the neighbor’s queue.

Implicit ACKs are an alternative to using synchronous
NACKs. A node receives an implicit ACK when it hears
its downstream neighbor forward a recently-sent packet. We
considered this alternative, previously explored by Woo and
Culler [19] in a different rate control proposal, but found the
following problems with it. First, if nodes have queues of
even a few packets in length, a packet enqueued near the tail
of the downstream queue may take a variable amount of time
depending on the available bandwidth to actually be transmit-
ted. This implies both that a non-trivial timeout needs to be
set, and that the feedback could take as long as the queue
depth to arrive at the upstream node. The second problem
is even worse—this method does not work when the down-
stream node’s application layer suppresses packet (e.g., be-
cause it is doing some aggregation). The synchronous-NACK
solution does not have these problems.

By using the hop-by-hop scheme with synchronous NACKs,
the expectation is that once a packet is admitted into the sys-
tem, it is generally not dropped due to congestion.1 Drops
only occur due to data transmission errors or through explicit
suppression by application-layer computation at nodes. This
is a useful feature in wireless networks where network band-
width is a scarce resource, and where it is wasteful to send
packets only to have them dropped at later points on their
path. Our performance results in Section 4 show that this ap-
proach uses available bandwidth prudently.

2.4 SAP Selection

A large sensor network connected using a single SAP rapidly
becomes unusable because the link connecting the SAP to the
rest of the network becomes the bottleneck. A solution to this
capacity problem is to use multiple SAPs. This leads to the
SAP selection problem: how does a node decide which SAP

1Even if a drop is required because a downstream queue is full, a down-
stream node preemptively drops a lower-priority packet from its input queue
when a higher-priority packet arrives at a full queue.

5

to send its data to at any point in time?

Every node in the sensor network needs to select a “good”
path to send data toward an access point. This is a standard
routing problem, but we are interested in not the best path to a
given destination node but the best path to any one of several
possible APs. Previously, researchers have shown that a pure
hop-count metric for path selection, standard in wired routing
protocols, is not appropriate for wireless networks because
picking a path with the smallest number of hops tends to pick
marginal links that are maximally separated from each other,
whose link quality is therefore bad [5, 21].

One potential solution to this problem, explored by Yarvis et
al., is to pick the path with the largest end-to-end probabil-
ity of success. While this helps individual nodes pick the best
paths, it does not take into account the cost to the network
of nodes picking these paths. Because this metric prefers a
long path with low packet loss probability over a shorter path
with higher loss probability to an AP, it introduces a larger
load into the network by requiring a larger number of wire-
less transmissions. This reduces the overall capacity of the
wireless network, because the capacity decreases as the av-
erage number of hops traversed by the communicating nodes
grows [12].

In our network, nodes don’t retransmit lost packets at the link-
layer, as in 802.11. Furthermore, because our network uses
hop-by-hop flow control to reduce congestion-related packet
losses, proactively avoiding paths that have a higher traffic
load is worthwhile. On any path, a measure of the benefit of
using a path is proportional to the end-to-end packet success
rate, and inversely proportional to the aggregate traffic load
along the path. The cost of using the path, in the form of
increased bandwidth used, is proportional to the number of
hops it has. Together, the ratio of cost to benefit gives us the
following path metric,�� for a path � :

�� �
�hops�� � ���	� Load
path success prob

(2)

2.4.1 Routing protocol

Each node picks the path � with smallest value of�� . Dis-
seminating the information required to pick an appropriate
path is easy to do using a distance-vector protocol, because
the three components of the metric—“hops”, “load”, and
“path success probability”—are all associative metrics. Each
node propagates these three different quantities in distance-
vector fashion corresponding to the path to the node’s current
estimate of the “best” SAP.

Each node receives routing announcements from its neigh-
bors and maintains the identity of its current “parent” that it
will use to forward packets to its “best” SAP according to the
metric�� . The node does not explicitly maintain the identity
of any SAP, because it is interested in “anycasting” its data to

the best SAP. Because of this, our approach scales well as
the number of SAPs increases, without requiring any addi-
tional routing state at any node. We show how this is done in
Section 3.3. To avoid routing loops, the protocol uses the in-
creasing sequence number solution proposed in DSDV [17].

2.4.2 Avoiding load-induced oscillations

Load-based routing systems can suffer from load-induced os-
cillations, when traffic shifts between two or more paths be-
cause the system always finds an unused path to be better,
only for it to become worse when traffic shifts to use that
path. This is not a new problem, and is one reason why such
approaches have proved difficult to implement on the Inter-
net.

We use a simple heuristic to alleviate the severity of the prob-
lem in our context. For each node � , the load that it adver-
tises to its neighbors is the maximum number of packets per
second traversing any link from � to the SAP it is associ-
ated with. The load that it uses to calculate�� is that figure,
minus the number of packets per second that it sources onto
the network. This prevents the load term as used in the metric
calculation from changing just because a node sources traffic
onto the network. The key idea is for each node to not use the
contribution to a path’s load caused by the node itself.

3 Implementation

We selected the Berkeley Mica Mote sensor network node
on which to implement these bandwidth management tech-
niques. Our implemented system is called Mist. The Mica
Motes are equipped with a 4 MHz Atmel ATMEGA 128
micro-controller, a 40 Kbps ASK radio, and can be attached
to a variety of sensor boards. We run the TinyOS [9] operat-
ing system on theMotes, a tiny event-driven operating system
written for the Motes. TinyOS and the Mist codebase are both
written in NesC [6], a language resembling embedded C.

3.1 Rules

To implement the rule manager, we constructed a parser that
accepts our rule grammar as specified in Section 2.2. The out-
put of the parser is an array of opcodes, one corresponding to
each step in the evaluation of the rule antecedent. These op-
codes may be transmitted from a SAP to nodes in the sensor
network, or may be statically-linked with the Mist codebase
running on the Mote. For simplicity in implementation, we
chose the latter, but for ease in changing the rule opcodes, we
plan to implement the former in the future.

6

3.2 Flow Control

To implement our hop-by-hop flow control protocol, each
node monitors the number of packets � backlogged in a
transmission queue of size �. When � � �	
, it replies
to route-through traffic sent to it from other nodes with syn-
chronous acknowledgments (ACKs) at the MAC layer. When
� � �	
, it replies with synchronous negative acknowledg-
ments (NACKs).

The reception of an ACK has no impact on flow control. Upon
receiving a NACK from a downstream parent, a sending node
shuts off its transmission to that parent for a period of time.
The node attempts to resume transmissions to the parent when
it hears two packets sent by the parent, or after one second,
whichever is smaller.

Since NACKs and ACKs are synchronous, they are only
broadcast at the tail end of a packet transmission. This negates
the need for a preamble or other such overhead to synchro-
nize the senders and receivers. The side effect of this partic-
ular implementation is that other nodes sending to the same
parent cannot take advantage of this feedback mechanism. In
order implement the flow control mechanism exactly as de-
scribed in the previous section, NACKs should be broadcast
to all children. This feature was left out for simplicity, but our
approaches matches the desired results very closely.

3.3 SAP Selection

SAPs are selected based on the metric described in the Sec-
tion 2.4. To implement this, each node maintains a table of
potential parents that can be selected to forward traffic. Peri-
odically, for each neighbor, a node calculates this metric and
selects the neighbor with the minimum value as the parent.
Nodes construct this table by promiscuously listening on the
channel for activity from neighboring nodes.

To facilitate the calculation of the routing metric for each
neighbor, every outgoing packet of a node is tagged with
information in addition to that which is already present in
the TinyOS header. These fields include: source address, se-
quence number, hop-count, path-load, path link quality, pri-
ority, SAP ID, origin node address, and parent address. These
values are recorded for each neighbor in our table (using the
source address field as the key), to be used by the node when
recalculating the metric.

In order to calculate the load parameter of the metric for a
given neighbor, a node must maintain an estimate of the load
experienced by the SAP with which it is currently associated.
SAPs advertise a moving average (EWMA) of the number
of packets forwarded over a 10-second window in the “path-
load” field of the packets they transmit. All nodes that are
associated with a given SAP propagate this value in the path-
load field of the packets they transmit. When it comes time
for a node to calculate the load parameter of the metric for

each of the its neighbors, the node relies on the advertised
path load value from each of its neighbors to make this calcu-
lation. If the neighbor for which we are currently calculating
the metric is associated with a different SAP (as dictated by
the last value of the SAP id field) than our parent, then the
load parameter of the metric is simply the advertised path-
load. However, if the neighbor is associated with a different
SAP, the local node’s contribution to this path-load level must
be subtracted, as explained in Section 2.4.2. The local node’s
contribution to the path load is simply an EWMA of the num-
ber of packets forwarded over a 10-second window.

Each node calculates the path success rate parameter of the
metric for a given neighbor by multiplying the path success
rate advertised by the neighbor in its path link quality field
with the node’s own estimate of the single-hop link quality to
that neighbor. Each packet sent on any link contains a link-
specific monotonically increasing sequence number (which
wraps-around). A neighbors can then infer one-hop link qual-
ity based on gaps in the received sequence number space from
packets it overhears on any link. This value represents the link
quality along the direction opposite to the usual flow of data,
because data would flow from the overhearing node toward
the node it heard from. Despite this asymmetry, the informa-
tion is useful at obtaining reasonable estimates. Our solution
does not currently handle asymmetric losses adequately.

Finally, to calculate the hop-count parameter of the metric for
a given neighbor, a node uses the value last advertised in the
hop-count field for a packet sourced by that neighbor. When
nodes transmit a packet, the hop-count field is set to be one
greater than that of the node’s parent.

Since theMotes lack a floating point unit, our implementation
only uses integer arithmetic. It scales link quality to a value
between 0 and 128. Rather than directly calculating the met-
ric, the implementation calculates the logarithm of the metric.
This allows us to use additions in place of multiplications and
subtractions in place of divisions while comparing metrics to
make a choice of smallest one to pick.

We have not yet implemented the loop-avoidance algorithm
using increasing sequence numbers a la DSDV. Instead, for
every packet originated by the node, the origin and parent
address fields of the packet header are filled in to their cor-
responding values.2 This allows parents to discover their di-
rectly connected children; parents will never include a child
among the set of nodes that could become parents. Such a
scheme avoid 2-hop loops, but larger loops could still exist.
However, this has not yet proved to be much of a problem in
practice, but it is clear that implementing the loop-avoidance
method will make the system more robust.

Our implementation is somewhat heavy-handed in its distri-
bution of link metric information. Fields such as hop-count

2These fields are also used to provide a visualization of the network to
facilitate better analysis.

7

should not change very frequently. As a result, many of the
fields included in the header could instead be transmitted us-
ing explicit routing messages, reducing the header overhead.
However, for the purposes of our experiments, the benefits
of having constantly updated routing information outweighed
the loss of payload bandwidth.

4 Experiments

This section presents experimental results to validate each of
our three design components: the rule system, static priority-
based queuing, and our SAP selection metric.

4.1 The Rule System

We now experimentally show how the rules described in Sec-
tion 2.2 enable traffic to be mapped onto different bandwidth
classes, which in turn enables important events to be given
priority both at the network layer in queues, and at the MAC
layer.

4.1.1 Static Priority-Based Queuing

In these experiments flows compete with another for the
common bandwidth to a SAP. We run these experiments
on a small test topology, unrelated to our larger 40-node
testbed discussed below. Our rule-based system sets the prior-
ity for eachMotes’ traffic, based on information that the Mote
senses. We first turn off Mote rules, and stimulate four Motes
to send to a common SAP. The Motes send through a com-
mon bottleneck node. The results are shown in Figure 3. As
we see in the figure, the Motes share the bandwidth equally
between them.

Next, we enabled Motes’ rules. We simulated an important
event near nodes 61, 63, and 68. Node 60 continued to send
unimportant traffic. The results are shown in Figure 4. The
low-priority flow gets much less of the bandwidth because
the high-priority flows’ packets evict the low-priority flows’
packets in the bottleneck node’s transmission queue.

The two foregoing experiments show how a static priority
queuing discipline can give important traffic preference over
unimportant traffic. We now turn to MAC-layer support, to
add further support for preferential service of important traf-
fic.

4.1.2 MAC Layer Support

Although allowing high-priority packets to overwrite low-
priority packets when buffer space runs out can lead to an im-
provement in high-priority streams’ throughput, MAC-layer
support is needed to ensure that if any high-priority packets
are waiting to be sent, their nodes will win any contention

 0

 2

 4

 6

 8

 10

 60000 65000 70000 75000 80000

T
hr

ou
gh

pu
t (

pa
ck

et
s

pe
r

se
co

nd
)

Time (ms)

Node 60, low priority
Node 61, low priority
Node 63, low priority
Node 68, low priority

Figure 3: Instantaneous throughput achieved by Motes oper-
ating with rules disabled. There are four senders in this exper-
iment, all transmitting as fast as possible to a common SAP,
through a fifth common bottleneck node.

Metric Receive rate Throughput (pps)
SAP Selection 0.919 14.67
Minimum hop-count 0.749 11.23

Table 1: A three-node experiment showing the benefit of us-
ing the SAP Selection metric on receive rate and throughput.

competition at the MAC layer. In this section, we show how
the MAC layer can be modified to accomplish exactly that.

We configured three Motes to send packets as fast as possi-
ble to a common SAP. The traffic that the Motes sent was
classified into high and low priorities based on a field in each
packet’s header. Nodes 1 and 2 were configured to sent 90%
high-priority traffic and 10% low-priority. Node 3 was con-
figured to send only low-priority traffic. The black bars in
Figure 5 show the desired allocation of bandwidth: the high-
priority traffic from nodes 1 and 2 should consume all of the
channel, and be split evenly between the two. The dark grey
bars in the figure show the performance of our implementa-
tion, which comes very close to the desired bandwidth alloca-
tion. The light grey bars show that without our modifications,
low-priority traffic would consume some of the high-priority
traffic’s bandwidth.

4.2 SAP Selection

Our first experiment demonstrates the drawbacks of using a
simple hop-count metric for SAP selection. We placed three
Motes in a linear formation in an office environment.We des-
ignated one of the three motes on the end of the linear chain
as the SAP. Both other motes attempted to send data to the
SAP. There was a marginal link from the far Mote to the SAP.
Using our SAP selection metric, we were able to avoid the

8

 0

 2

 4

 6

 8

 10

 120000 125000 130000 135000 140000

T
hr

ou
gh

pu
t (

pa
ck

et
s

pe
r

se
co

nd
)

Time (ms)

Node 60, low priority
Node 61, high priority
Node 63, high priority
Node 68, high priority

Figure 4: Instantaneous throughput achieved by Motes op-
erating with rules enabled. The setup for this experiment is
identical to the one in Figure 4.

marginal link, and forward packets from the far Mote over
the two-hop link. Using the minimum hop-count metric, both
Motes sent over their respective one-hop routes. Even though
the SAP selection metric was forwarding packets over two
hops instead of one, the marginal link from the SAP to the far
Mote was bad enough that the SAP selection metric resulted
in better throughput and receive rate. This unsurprising result
forms the basis for an intuition for why our SAP selection
metric performs better in the next experiment, a test situated
in an 40-node testbed.

4.2.1 Testbed Experiment

In order to exhaustively test the SAP selection metric, we con-
ducted an experiments using a large sensor network testbed.
The layout of the sensor network is described in Figure 6.
We placed 40 nodes throughout one floor of an office build-
ing. Total aggregate throughput for the SAPs was recorded
for 200 seconds. We tested:

	 The SAP selection metric, as described in Section 2.4.

	 The hop count metric, which minimizes the number of
transit nodes traversed until a SAP is reached.

In addition to varying the path selection metric, the num-
ber of SAPs available to the nodes was varied between one,
two, and three. Each node in the network sends a 36-byte test
probe message every two seconds. Figures 7, 8, and 9 shows
the number of such messages that each SAP received when
there are one, two, and three SAPs, respectively. These fig-
ures show that our metric allows more nodes to successfully
reach the SAP.

The results of the experiment are summarized in Figure 10.
Independent of the number of SAPs, our metric outperforms

1 high, low 2 high, low 3 high, low
0

10

20

30

40

50

P
er

ce
nt

ag
e

of
 to

ta
l b

an
dw

id
th

Desired
With static priorities
Without static priorities

Figure 5: static priorities are good

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

pa
ck

et
s

pe
r

se
co

nd
)

Node number (cardinal)

Shortest Paths
SAP Selection

Figure 7: Throughput in a 40-node, single-SAP testbed, bro-
ken down by node number. For each node, we plot the de-
livered throughput in packets per second in our testbed. The
offered load is two 36-byte packets per second. The x-axis
of the “Shortest paths” results is shifted by one half-unit for
clarity.

9

I

•
□

□

: il. 11

-

I I i, 1 ii. I,

38

43

15

16

21

24

33

5166683937634365

25

64

62 26 44 50
27

46

8
13

16

3

47
6

29
23

1140

184849

61

42

67

35

SAP
#1

SAP
#2

SAP
#3

Figure 6: Our testbed topology. This map shows where we placed each Mote on an office floorplan.

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

pa
ck

et
s

pe
r

se
co

nd
)

Node number (cardinal)

Shortest Paths
SAP Selection

Figure 8: Throughput in a 40-node, two-SAP testbed, broken
down by node number. We run the same experiment as in
Figure 7, but use two SAPs instead of one.

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

pa
ck

et
s

pe
r

se
co

nd
)

Node number (cardinal)

Shortest Paths
SAP Selection

Figure 9: Throughput in a 40-node, three-SAP testbed, bro-
ken down by node number. We run the same experiment as in
Figure 7, but use three SAPs instead of one.

1 SAP 2 SAPs 3 SAPs
0

10

20

30

40

50

A
ve

ra
ge

 A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
pp

s)

SAP Selection
Shortest Path

Figure 10: Effects of the SAP selection metric on the ag-
gregate throughput of the network. SAP selection improves
throughput to varying degrees depending on the number of
SAPs deployed.

simple hop count. In addition, it is clear that adding SAPs to
sensor networks improves the network capacity.

5 Related work

5.1 Congestion control and routing

As part the design of a MAC protocol for sensor networks,
Woo and Culler propose a rate control method [19]. Their
proposal is to use adaptive rate control at each node using
additive-increase and multiplicative-decrease (AIMD). When
a node finds that a packet it previously sent was forwarded
on, then it increases the transmission rate additively to the
neighbor. When it does not hear a previous transmission be-
ing successfully forwarded (presumably after a timeout), it

10

-

ii i i, !1 Ill ii !I I I 1! ii i i

" i

-

-

•
D

reduces the transmission rate to that neighbor. This scheme
differs in several important details from ours. First, we use
synchronous NACKs if queue space is unavailable at a down-
stream node, which providesmuch faster feedback about con-
gestion. Second, because nodes overhear other transmissions,
they maintain good information about the congestion state at
their parents. Our scheme does not require any approximate
estimation that schemes like AIMD require.

Hop-by-hop flow control protocols have been extensively
studied in the context of ATM and Gigabit Ethernet [16, 11,
14, 15]. The motivation in these high-speed networks is to
avoid the burst behavior of end-to-end protocols like TCP
at small round-trip times. In sensor networks, hop-by-hop
flow control is attractive because it allows good congestion
adaptation without incurring losses or requiring the expensive
end-to-end acknowledgments that are unnecessary for many
streams that don’t require TCP-style reliability.

Our rule-based approach to sensor network bandwidth allo-
cation does not seem to have directly related previous work.
Madden et al.’s TAG sensor query processing system im-
plements aggregates inside the sensor network [13], and can
be used in conjunction with our rules. In traditional Internet
routers, classifiers and policy rules are used to effect both for-
warding and routing decisions.

Sensor information dissemination protocols like Directed
Diffusion [10] and Spin [8] route packets according to node
interest but do not take congestion, load, or packet loss into
account. As described in Section 2.4, Yarvis’ et al.’s tree-
based routing metric considers loss rate and optimizes path
success probability [21].

5.2 Energy-efficient protocols

This paper addresses problems caused by scarce network
bandwidth and ignores energy consumption. A complete sys-
tem will of course need to optimize both energy and band-
width, and it would be interesting to study which of our tech-
niques are problematic for energy consumption. For exam-
ple, some of our techniques are optimized by nodes overhear-
ing each other’s transmissions, which requires nodes to be on
and listening on the wireless channel when they might instead
sleep to save energy. It might be possible to run topology for-
mation algorithms like Span [4], GAF [20], or LEACH [7]
that produce and change topologies on slower time-scales,
and our bandwidth management schemes on each individual
instance of the network topology.

Woo and Culler [19] compared the performance of vari-
ous contention window-based MAC schemes, varying carrier
sense time, backoff increase/decrease policies, and transmis-
sion deferral policies. All of their protocols used contention
windows with the uniform distribution. Their evaluation of
these conventional protocols was exhaustive, and leads us
to our present design point. They also noted that 802.11 is

energy-inefficient, since it listens throughout its backoff pe-
riod, and its backoff period can grow to be quite long.

Ye et al.’s S-MAC [22] is a MAC protocol designed for sav-
ing energy in sensor networks. It uses periodic listen and
sleep, the collision avoidance facilities of 802.11, and over-
hearing avoidance to reduce energy consumption. Singh et
al.’s PAMAS [18] reduces energy consumption by power-
ing off nodes when they are about to overhear a transmis-
sion from one of their neighbors. These schemes may be in-
compatible with some of our techniques that rely on promis-
cuous packet reception to improve bandwidth usage. A de-
tailed study of the trade-offs between bandwidth-efficiency
and energy-efficiency in shared-medium wireless sensor net-
works is an important topic for future work.

6 Conclusion

This paper presented three techniques to manage wireless net-
work bandwidth in sensor networks. These techniques are
tuned for a broad class on monitoring and control applica-
tions, where software running on general-purpose computers
“pull” information from remote sensors and “push” actua-
tions into the network. We described a simple rule-based ap-
proach to dynamically allocate bandwidth to sensor streams, a
hop-by-hopflow control protocol to control congestion, and a
load- and loss-sensitive SAP selection protocol that improves
the overall capacity of the sensor network.

We have implemented these techniques in the TinyOS envi-
ronment, and have conducted several experiments on a 40-
node indoor wireless sensor testbed. Our results show that we
can achieve an experimental increase in network capacity of
up to 100%, while simultaneously reducing loss rates from
25% to 9% on some links.

A few important principles come out of our work. First, when
wireless bandwidth is scarce, as is common in many sensor
networks, it is important to maximize the “value” of each
packet accepted into the system for transmission. This means
that it is better to not accept the packet at the source, rather
than accept it only to drop it later along the path. We find
that hop-by-hop flow control is a simple and effective way
to achieve this goal. Second, when events of interest occur,
bandwidth needs to be shifted dynamically. We believe that
our rule-based system provides an effective method to ac-
complish this in many cases. Third, achieving good capacity
requires multiple SAPs and corresponding routing and SAP
selection methods. While we do not claim that our proposal
is optimal (or indeed even understand all the interactions well
enough), we believe that our path selection metric combining
hop-count, path load, and path success probability, is a good
starting point and has advantages over traditional hop-count-
based routing metrics.

This paper did not address energy-efficiency, focusing instead

11

solely on bandwidth management.We made this choice in or-
der to understand the bandwidth issue in isolation, and also
because our indoor sensor network runs using power sockets
on walls. An important direction for future work is in under-
standing how techniques for optimizing these two different
resources interact with each other.

References

[1] ALLMAN, M., BALAKRISHNAN, H., AND FLOYD, S. En-
hancing TCP’s Loss Recovery Using Limited Transmit. Inter-
net Engineering Task Force, Jan. 2001. RFC 3042.

[2] BALAKRISHNAN, H. Challenges to Reliable Data Transport
over Heterogeneous Wireless Networks. PhD thesis, Univ. of
California, Berkeley, August 1998.

[3] BALAKRISHNAN, H., RAHUL, H., AND SESHAN, S. An
Integrated Congestion Management Architecture for Internet
Hosts. In Proceedings of the ACM Conference on Appli-
cations, Technologies, Architectures, and Protocols for Com-
puter Communication (SIGCOMM) (Cambridge, MA, 1999),
pp. 175–187.

[4] CHEN, B., JAMIESON, K., BALAKRISHNAN, H., AND MOR-
RIS, R. Span: An Energy-Efficient Coordination Algorithm for
Topology Maintainence in Ad HocWireless Networks. In Pro-
ceedings of the Seventh International ACM Conference on Mo-
bile Computing and Networking (MOBICOM) (Rome, Italy,
July 2001), pp. 85–96.

[5] DE COUTO, D. S. J., AGUAYO, D., CHAMBERS, B. A., AND
MORRIS, R. Performance of multihop wireless networks:
Shortest path is not enough. In Proceedings of the First Work-
shop on Hot Topics in Networks (HotNets-I) (Princeton, New
Jersey, October 2002), ACM SIGCOMM.

[6] GAY, D., LEVIS, P., VON BEHREN, R., WELSH, M.,
BREWER, E., AND CULLER, D. The nesC Language: AHolis-
tic Approach to Networked Embedded Systems. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI) (San Diego, CA,
June 2003).

[7] HEINZELMAN, W., CHANDRAKASAN, A., AND BALAKR-
ISHNAN, H. Energy-Efficient Communication Protocol for
Wireless Microsensor Networks. In Proceedings of the 33rd
Hawaii International Conference on System Sciences (HICSS)
(January 2000).

[8] HEINZELMAN, W., KULIK, J., AND BALAKRISHNAN, H.
Adaptive Protocols for Information Dissemination in Wireless
Sensor Networks. In Proceedings of the Fifth International
ACM Conference on Mobile Computing and Networking (MO-
BICOM) (Seattle, WA, 1999).

[9] HILL, J., SZEWCZYK, R., WOO, A., HOLLAR, S., CULLER,
D., AND PISTER, K. System Architecture Directions for Net-
work Sensors. In Proceedings of the 9th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (Cambridge, MA, 2000), pp. 93–104.

[10] INTANAGONWIWAT, C., GOVINDAN, R., AND ESTRIN, D.
Directed Diffusion: A Scalable and Robust Communication

Paradigm for Sensor Networks. In Proceedings of the Sixth
International ACMConference on Mobile Computing and Net-
working (MOBICOM) (Boston, MA, 2000), pp. 56–67.

[11] LEE, D., COLERI, S., DONG, X., AND ERGEN, M.
FLORAX—Flow-Rate Based Hop by Hop Back-pressure
Control for IEEE 802.3x. In 5th IEEE International Confer-
ence on High Speed Networks and Multimedia Communica-
tions (Jeju Island, Korea, July 2002).

[12] LI, J., BLAKE, C., DECOUTO, D. S. J., LEE, H. I., AND
MORRIS, R. Capacity of Ad Hoc Wireless Networks. In Pro-
ceedings of the Seventh International ACM Conference on Mo-
bile Computing and Networking (MOBICOM) (Rome, Italy,
July 2001), pp. 61–69.

[13] MADDEN, S., FRANKLIN, M., HELLERSTEIN, J., AND

HONG, W. TAG: a Tiny AGregation Service for Ad-Hoc Sen-
sor Networks. In Proceedings of the Fifth USENIX Symposium
on Operating Systems Design and Implementation (OSDI)
(Boston, MA, December 2002).

[14] MISHRA, P., AND KANAKIA, H. A Hop by Hop Rate-based
Congestion Control Scheme. In Proceedings of the ACM Con-
ference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication (SIGCOMM) (Baltimore,
MD, August 1992), pp. 112–123.

[15] NOUREDDINE, W., AND TOBAGI, F. Selective Backpres-
sure in Switched Ethernet LANs. In Proceedings of the IEEE
Global Telecommunications Conference (GLOBECOM) (Rio
De Janeiro, Brazil, December 1999), pp. 1256–1263.

[16] ÖZVEREN, C., SIMCOE, R., AND VARGHESE, G. Reliable
and Efficient Hop-by-Hop Flow Control. In Proceedings of
the ACM Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication (SIG-
COMM) (London, UK, August 1994).

[17] PERKINS, C., AND BHAGWAT, P. Highly dynamic
destination-sequenced distance-vector routing (dsdv) for mo-
bile computers. Computer Communication Review (October
1994).

[18] SINGH, S., WOO, M., AND RAGHAVENDRA, C. S. Power-
Aware Routing in Mobile Ad Hoc Networks. In Proceedings
of the Fifth Annual ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom) (Dallas, TX,
1998), pp. 181–190.

[19] WOO, A., AND CULLER, D. A Transmission Control Scheme
for Media Access in Sensor Networks. In Proceedings of the
Seventh International ACM Conference on Mobile Computing
and Networking (MOBICOM) (Rome, Italy, 2001).

[20] XU, Y., HEIDEMANN, J., AND ESTRIN, D. Geography-
Informed Energy Conservation for Ad Hoc Routing. In Pro-
ceedings of the Seventh International ACM Conference on Mo-
bile Computing and Networking (MOBICOM) (Rome, Italy),
pp. 70–84.

[21] YARVIS, M., CONNER, W., KRISHNAMURTHY, L., MAIN-
WARING, A., CHABRA, J., AND ELLIOTT, B. Real-World
Experiences with an Interactive Ad Hoc Sensor Network. In
Proceedings of the IEEE International Conference on Par-
allel Processing Workshops (Vancouver, BC, August 2002),
pp. 143–152.

12

[22] YE, W., HEIDEMANN, J., AND ESTRIN, D. An Energy-
Efficient MAC Protocol for Wireless Sensor Networks. In
Proceedings of the 21st International Annual Joint Conference
of the IEEE Computer and Communications Societies (INFO-
COM) (New York, NY, June 2002), pp. 1567–1576.

13

