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I. INTRODUCTION

The most important mud deposits are formed at

the mouths of large rivers. Here the decrease in the

velocity of their streams, and the presence of certain

salts in the ocean water, which act as electrolytes

when the grains are of colloidal size, cause the sedi-

mentation of the suspended matter. In time deltas are

formed there. Other important deposits occur on the

beds and sites of natural streams and lakes. This pro-

cess of sedimmantatlon goes on continuously, and large

areas of land take the place of previous water surfaces.

As time goes on, these mud deposlts, besides increasing

in size, become more or less consolidated and often

serve as a foundation for large and important cities.

Therefore one can easlly see the importanceof

a careful study of the behavior of such mud deposits

under varying conditions. By local observations and by

a single laboratory experiment, which will be described

later, we can determine the rate at which sedimentation

tekes place, whether it is uniform or not, the specific

weight, and other physical characteristics of the deposit:

the coefficient of permeability, etc. Having these data,

we are in a position to fully determine and predict the

state of stress, water-content, and settlement at anv time.

The knowledge of the stress conditions in a mud

deposit is important in so far as it explains practically



all phenomena connected with foundation construction on

soft grounds.

As to the structure of the sediment, two cases

willl be considered, namely: that of a sediment of homo-

geneous material and that in which there exists within the

sediment a thin layer of less permeable material. |

Three aspects of the process of consolidation of

such mud seposits will be considered. (a). Consolidation

due to the own weight of the material; (b). consolidation

due to the weight of a top fill of very permeable material

or its equivalent - evaporation; and (c). consolidation by

drainage. In all cases the bottom surface of the sediment

will be assumed horizontal and impermeabls.

The theory developed will hold not only for mud

deposits but also for clays and fine-grained materials in

general, provided that no air is present in the voids of

the material.

Free use will be made of Fourier's Series and

Integrals in the attempts to solve the differential equa-

tions. The application of Heavisidet's Operational Method

of solving differential equations will be illustrated in

one case,



II. GENERAL LAWS AND DEFINITIONS.

l. Definitions.

Volume of Voids (n) is the ratio between the

total volume of voids (N) and the total volume of mater=

fal (V):

n=X
Vv

Voids Ratio (£) is the ratio between the tdrl

volume of voids and the total volume of solid matter (V.):

f= N - XN = n_
Vg V=N len

The voids-ratio then, 1s a measure of the water content

per unit of solid matter.

Granular Pressure or Stress (p) is the intensity

of the pressure acting between the grains of the material

at a given point and in a svecified direction.

Hydrodynamic Pressure or Stress (w) is the excess

of the intensity of the water pressure over the hydrostatic

pressure at a given point, and’ acts with the same intensity

in all directions.

Reduced Dimensions (x,y,z) are dimensions (or dis-

tances) equivalent to &amp; volume of voids (or voids-ratio)

equal to zero. We are forced to use reduced dimensions be-

cause 1f there is a change in either or both of the above

defined pressures, in a given mass of mud, there will be,

as a consequence, a change in its water content which in

turn will cause a change in its dimensions. Hence the

true dimensions are as variable as the internal stresses



themselves, while the reduced dimensions are unaltered by

any one of the above changes.

2.Darcy's Law:

This law states that if water 1s admitted through

a layer of granular material of cross-sectional area (A)

and thickness 1, then the quantity of water Q, percolating

through any section of the layer, perpendicular to its cross

section, per unit of time, is given by

Q=31kA (1)

In this formula, i 1s the hydraullc gradient which, for

steady flow of water, is equal to the ratio 2 (Fig. 1),

h being the hydraulic head,and X: the coefficient of per-

meabllity of the material. From the above formula we see

that the coefficient of permea-

bility is equal to the velocity

of percolation per unit of time,

under a hydraulic head equal to

the thickness of the layer, l.e.;

under a hydraulic gradient equal

to unity. If, however, the flow is not steady, and if we

call w the hydraulic head at a section distant s from any

convenient reference line, then

»  Ww
os

at the section under con=-

sideratione.

Hence, Q =K SW a
da

(2)

This law is strictly true for laminary flow of



water such as 1s generally that through fine-grained mater-

jals. It has been verified by many experiments (1),

3e Laboratory Experiment.

With this experiment we aim to obtain two cur-

ves showing the variation of

water-content with pressure

end the variation in the coeffi-

-

&gt;

client of permeability with water
content. }

The curves representing these

variations are shown in Fig.2.

The apparatus used to ob-

tain the p = ¢§¢ curve consists

of a container in which a layer

of the material to be tested 1s placed and then covered by

filter paper and sand immersed in water. The pressure p

is then applied at the top and varied through the range

jesired. (2)

(1)« For formulae for the coefficient of permeability, k,
for sands and clays, and for a discussion regarding the

validity of the law of Darcy, see:

Principles of Soll Mechanics, by Dr. Charles

Terzaghl, Engineering News Record, Nov. 14, 1925.

Cf. also Terzaghits "Erdbaumechanik", Chapter IV.

(2)¢ Cf. Principles of Soil Mechanics by C. Terszaghi,
Engineering News hecord, Nov. 19, 1925 and Nov. 26, 1925,

Also Terzaghit's "Erdbaumechanik", Fig. 13, p. 83 and p. 87,
equation (24).
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The pressure-moisture curve thus obtalned is valid for the

case of linear flow of water. If, however, there exists a

flow of water in more than one direction, an apparatus sim-

ilar to the above one can be made having lateral filters,

provided the lateral pressures are known functions of the

top pressure pe. Thls is seldom the case and most of the

problems fall under the one dimensional case.

The relation between the water-content (&amp;¢) and

the pressure p is given by the following equation (2)

¢m-at log, (p + pi) = 8' (p + pi) + C

where «', g', P; and C are constants,

Since g' is very small (3) the above squation may be

written

h
ny
wy -ty * loge (p +

dp p+ a

3)
 re

2

‘o)

which is the equation of the tangent to the curve.

The ratio a = = == modulus of compression, may

be taken as constant and equal to the average of its ex-

treme values if the range through which p varies is not

very large. (4)

The ratio x (where k is the coefficient of per-

meability) was found to be almost constant for materials

with plastic consistency, (5), and will be so considered

in what follows.

(3) "Erdbaumechanik", p. 162



Hence we can write:

dp p+

and k = ¢ = consent,

a

(4)

(5)

The constants « and e should be determined for

the range through which the pressure p ranges in the ac-

tual problem dealt with. For very small pressures, g is

very large, while for large values of p it is very small.

4. General Equation of Stresses in a Mass of Granular

Material with Water~-Filled Volds.

pra

Let a mass of mud be

referred to a system

of rectangular coordin-

ates. Let O be its or-

1gin and let (x!', y!,

z') be the coordinates

of the center of an

elementary prism whose

sides are Ax', Ay!', A2', Assume the flow of water to be in

ax

the positive directions of the coordinate axes X, Y and Z,

and let w! be the hydrodynamic pressure at the center of

this elementary prism; i.e.. at point (x', v', 2z').

(4). C. Terzaghis Eng. News-Record, Nov. 26, 1926, p. 874.
Also "Erdbsaumechanlk’ Pe. 141.

(5)s "Erdbaumechanik" Fig.- 22, p. 121. Also pp. 126-7.



The hydrodynamic pressure intensities at the

faces of this prism - which is assumed to be very small

and finally approach the limiting value zero - will there=

fore be:

Plane YZ: left face wil

XZs front " w?

XY: lower " wt-xz

r

a

OW! ot.
2 3 right face: pe

AW! :
537 AY ; back " wt+d

dW?! ;
soTiz's upper " what

2

pW!
2x1 AX,

FAA
Ay! 7.

dW!
Soi AZ,

Now, according to the law of Darcy, the quantity of water

(Q), percolating normally through a plane surface whose

sectional area is A, per unit of time, in a direction s,

1s given by

q =x ds A

and since the flow of water is

in the positive directlon of s, w' must decrease as 8 in-

creases and therefore az is a negative quantity.

Therefore, the time rate of percolation is glven

numerically by

8 = = k aw! A.

08

Applying thls relation to parallel opposite faces

of the elementary prism, we get ‘the following values of

Q for the faces parallel to the YZ plane:
2

e UAVIAZID (wled OW! 1)=. tag (NLLOW!
left face: =-kay'az ==, (v 3 oF )==kaytaz (5x 5 TI )

2

" peavtazt—0 (wrk OU ix )zakavtage (AIL TW,right kaytaz = (w +s Sov ox )==kiytag (&gt;= 3 sees X )

Subtracting the second expression from the first, we find

the difference between inflow and outflow per unit of time

 +t be

LAXIAYTIAZY PRA
im—————1

oxte
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and similar expressions for the other pairs of parallel

faces.

Therefore the difference between the total ine

flow and the total outflow of water in the elementary prism

per unit time 1s

XFwrt  d*wr | Fw
k Ax'Aytaz Sos + S37e + STE)

This difference should be equal to the time rate

of change (an increase in this case) in water content of

the elementary prism.

At this point, attention is called to the fact

that, in tke above differentiations, k has been considered

as a constant, and equal to the average value of the co-

efficient of permeability. Thus, to a continuous change

in the granular pressure at a given point from P, to pa

say, there 1s a corresponding change in water content per

| [therefore the cosffi-

unlit of solld matter of &amp;; - £,, and,from a value k, to a
cient of permeability varies continuously]
value k,. If the changes in pressures are relatively

small, we are justified in assuming k constant, and having

a value intermedlate between k, andkj.

If, however, due account 1s to be taken of the

variation in the values of k, we should proceed as follows:

Let k be the value of the coefficient of permeability at

the center of the elementary prism; then its value at the

two faces parallel to the YZ plane are

Ie 22K xs and k+ 3 2X xt.

Hence the time rate of percolation at these two faces is



"y

given by

(=k2Kaxt)2(wr-=2H5 52, 2X) 5x (0 = 2 pr axt) ayes

1 ak
and “(x45 +, ax') = (wt! + = 2%

2 oq AX') go (wr + 55ST 4x) ay! az

Differentiating and subtracting the second ex

the first we find

Fw? ok Jw!
' "az! (kw + — me

AX' AY ( = Tax PT

Aregssion from

as the difference between the inflow and outflow of water

per unit of time. Therefore the difference between total

inflow and outflow per unit of time in the prism is ex-

pressed by
iw dwt dw! dk dw',dk Iw! dk ow!

A HE ———. CEE emitters +axtayt ost | k(oxre * dy1® togrE) t &gt; x1 ox! BY" IY" szraz|’)

In order to find an expression for the time rate

of change in water content, we have to introduce reduced

dimensions. Let the new (reduced) dimensions of our elem-

entary prism be ax, Ay and Az,and let (x,y,z) be the co-

ordinates (reduced) of its center, where the hydrodynamic

pressure is now w instead of w!', These transformations do

not change the value of w numerically, for it 1s still

equal to w! but referred to a new system of codrdinates.

w is then spd valent to the temperature (or potential)

difference in the case of flow of heat (or electricity)

through an isotropic body.

The expressions (6) and (7) for the time rate of

change in water content, in terms of the reduced dimensions

ATS
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iw Fw dw
kaxayaz (33 + 578 +578) (8)

Fw ww. Jw, ok dw , dk aw dk Iw
snd ox a7 az | k(GoE + 505 + STE 3 33 03 az sz) (©)

Now we have seen that € measures the water con-

tent per unit volume of solid matter, and if we let 4¢ be

the change in water content per unit of volume of solid

matter in the time element At, then the change in water

gontent of the elementary prism 4xayaz per unlt of time

will be ax Ayaz 2£ 110)

But SL 24 ==Vt 9p 9t 5

Therefore (10) becomes =A xAy Az a3

Equating (8) and (9) to (11) we obtains

dp _ _ k (2'w dw _ dw

3% =-3 Gx toys toed)
if k 1s taken as constant, and

2p - _ kw, 2’w dw 3 2k dw , 2k Ow ,L 2k dw
At == dy® 028 (= a= # 5% ov + oy 3%) (13)

(11)

if due account is taken of the variation in the coc.

of permeability.

*Ieient

These are the fundamental differential equations

for the stress distribution in a mass of granular material.

Equation (7) is similar to Fourier's equation of

heat conduction, the only difference being in having p

instead of w in the left-hand member.

In applying the differential equation (either (12)

or (13)) to mud deposits, two distinct stages must be con-

sidered. The first stage comprises the lapse of time
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between the sedimentation of the first and last layers of

material, that 1s, when material 1s still being deposited,

After this stage no more material 1s added to the deposit,

and its consolidation takes place either under the own

weight of the solld matter or under the influence of an

external load or evaporation. This 1s the second stage.

In the first stage, since the (reduced) dimensions

of the deposit change continuously with the time, it is

evident that t is not an independent variable, while in

the second stage the time and space variables are complete-

ly independent of each other.

We will designate by tv! the time in the first

stage and by t that in the second stage.
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ITI. Problem I. Mud Deposit of Homogeneous Material -

Uniform Rate of Sedimentation - Bottom Surface Impermeable

and Horizontal. Consolidation due to the own weight

of the deposit.

le. Formation of mud deposits.

Fig. 4 shows a deposit of homogeneous material

of total thickness He. As the true thickness at any time

t' varies from H'=0 to a final value H, the reduced

thickness varies from h!=0 to h'=h. We choose the bottom

surface as the origin of coordinates. Since the conditions

injhorizontal plane are the same at all points, there will

be flow of water in only one direction, and we can take

a cylinder of the material’unit cross-sectional area whose

heizht increases continuously up to a value H (reduced =

h) to represent the actual conditions.

1

Fla 4
Fig. 5.

Fig. 5 1llustrates the cass of sedimentation in

an inclined plane. Here there will be flow of water in two

directions, but if the slope of the plane 1s small, as is

usually the case, the lateral flow may be disregarded and
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the problem treated under the case of linear flow of

water.

Before attempting to solve the problem illus-

trated by Flg. 4, we wlll show why there is flow of water

in the vertical direction and how it affects the state

of internal stresses.

Let Y+ 1 be the specific

welght of the deposited

material when dry, then ¥

wlll be its specific weight

under water.

Let g be the quantity (grams)

£.
—

2

*

a7 of dry substance deposited per

unit surface per unit time, and q the corresponding quan-

tity under water which is different firom g since it is ex-

pressed in grams, 1.e., as welght.

¥
hen SZ ees eo

T q +1 g

gonsider the deposit at a time when its total re-

duced thickness is ht! (Fig. 6). As time goes on, more and

more material is being sedimented so that after a certain

Japse of time the top surface of the deposit 1s located at

a height h'' (reduced) from the bottom. Pick out an ab-

bitrary point at a distance z (reduced) from the bottom.

As the top surface of the deposit increased from a posi-

tion a to a position b the total weight of the material

(or the total pressure) at P increased from J (h'=2z) to

§(h''-=z). Part of this increase in the total pressure at



15.

P 1s taken up by the solid particles, and part by the

water. Therefore the hydrodynamic pressure increases

continuously. But since a difference in hydrodynamic

pressure implies flow of water (in the same way as a

difference in temperature (or potential) implies flow of

heat (or electricity)), we will have water coming out con-

tinuously from the top surface. As a consequence the

water-content at P decreases as the thickness of the de-

posit increases, and the smaller is z the smaller will be

the water content for a given thickness of the deposit.

On the other hand, the granular pressure (p) at P must

increase with the increase in the thickness of the deposit

(as can be seen from pressure-moisture curves in Section 11)

and also the smaller 1s z for a given thickness, the great-

er will be the granular pressure pe.

We will now pass to the solution of our problem,

first by applying the differential equation for k constant

and then for k variable.

The differential equations (12) and (13) for the

case of linear flow of water become:

st a 028 0oz®

and

yt 0D zB a 92 02

(15)

(16)

2. Solution of Equation (15).

(a). Pirst stages Since time is not an independ-

ent variable during the first stage of the process of con-

solidation, we write (15)as follows:
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°p = - 0 OW

ot Dz3 (15a)

Let the total reduced thickness of the deposit be h' and

let 3 be the time required far the deposit to reach a

height hl The volume of material sedimented per unit area

and unit of time 1s 3 and this is also the thickness of

the layer of material deposited per unit of time. There-

fore in a time interval tl, the thickness of material de-

posited is del, and this must be equal to h'.

ty =X nt,
pe

Consider now any point at a

helght z from the bottom such

that z € h'

The time requlred for the layer

at height z to come into exist-

Fig. T ence 1s t} = : Z.

Of course no flow of water through the layer lo-

cated at a distance £ from the bottom could possibly exist

before the layer ltself had come into existence. Since

the variable time in the differential equation (15a) con-

cerns the interval from which water begins to percolate

through the layer under consideration (i.e., from which

the layer has come into existence) up to any value t', we

must have t1=0 for a time tg= &amp; z, and therefore

£1 =1 (ht = z) :

zg"

Yhe total downward pressure acting at a height z

from the bottom is T(ht = z), and this must be balanced by
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the granular and hydrodynamic pressures in order to maintain

squilibrium; hence

or

and

 nD +w=238h~2)

OW — _ { «2p

20% dg

Xw _ _ dp

0z=3 Jz8

(18)

(19)

(20)

From (17) and (19) we obtain the relation

dP__4a ap °
dg! ¥ d=

By substitution in (15a) we get

q dp = ¢ 4%p
Y dz dz=s

 Mr a%p 4p &amp;2
dz® dz

=0

where b = Fo

The solution of (21) is p = A + Be PZ

(21)

(22)

(23)

where A and B are constants of integration.

To determine A and B we know that p and w are

zero for z = h' (Fig. 7) and since the bottom surface is

assumed to be impermeable, we must havedw =0 for z = 0,

that 1s, the curve of hydrodynamic pressure must be per-

pendlcular to the bottom surface. Todx = 0 corresponds

4D = «7 and therefore the boundary conditions are

z =h' s: p=0, w=20

z = 0 p d¥ =o, 4B = -¥

From conditions (24) and(25) we find

A= JandaB=- $g =b nt
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Therefore p = (e=D2Z _ Dh! (26)

The hydrodynamic pressures is then found from (18).

The pressure distribution when ht = h, 1.e., at the time

when sedimentation 1s assumed to stop is

p =L (e~P2 - 0h,

w = ¥ (h-z) -3 (e™P2 - e~ oh,

(27)

Anal (28)

be Second Stage. We willl consider here the ef-

fect of the own weight of the material on the process of

consolidation. In this stage the time is independent of

z and therefore from (18) we get

2p=.dW
ot ot

Substituting in (15) we have the following differential

aquation:

ow, Ow
&gt;t Jdz=

(29)

which is identleal with Fouriert!s equation for the linear

flow of heat, provided w and ¢ are made to correspond to

the temperature difference and the diffusivity resvect-

tvelv(6).

If we make use of this analogy, our problem will

be equivalent to that of non-steady flow of heat through a

plate of isotropic material of thickness h, having one

(6) For a thermodynamic analogy of this problem, see Prin-

ciples of Soll Mechanics, by C. Terzaghi, Engineering
News Record Nov. 26, 1925, and also Terzaghit's
TErdbaumechanic!, pp. 142-143.
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bounding plane impermeable to heat and the other at zero

temperature.

We will solve (29) by Fourier's method (7); we

wlll find a Fourier series development for w which will

satisfy (29) and also the boundary conditions.

Deroy

02

d=terrtr—r—r—rm”

ap

pk ativy—to

CTTMeEnrT

w,—hrrt The property that the bottom surface (z = 0) is im-

permeable gives rise to the following interpretation (®),

Suppose that we have a plate of

VHlekness equal to 2h (Fig. 8),

| 2
. provided with a plane of separa-

tion at its center which is imper-

meable to heat. Let both halves

of this plate have identiml teme

perature distributions as shown in

either half (1) or (2) mayFig. 8. Then, without changing the
| be removed]

temperature distribution on the other half, since there is

no flow of heat through the central plane. Making the

trarformation

7 = Hh e« (30)

the boundary conditions will be

ang

w =0 for x =0

w=0 for st = 2 }Ys
(31)

(7). Cf. Byerly's Fourier's Series and Spherical Harmonics

and also Ingersoll and Zobel's Mathematical Theory of Heat
Conduction. pp. 44=65,

(8). Cf. Ingersoll-Zobel!s Math. Theory of Heat Conduction
Pe 72 and n. 107.
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In order to simplify our equations we will count

the time so that t = 0 corresponds to the time when sedim-

entation no longer occurs.

The initial distribution of the hydrodynamic pres-

sure (or temperature) throughout the layer of thickness 2h

is, according to equations (18) and (26)

Lo~PR px
wa, = fq (x) =fx Ls (e¥*=1) for t = 0 and

O€£x£h

wy, -: £g(x) = ¥(2h-x) = Loh [b(2n-x)_y]

for t = 0 and h £ x £ 2h (33)

Equation (29) after the transformation (30), becomes:

ow tw
——— ZC eeea——
ot J x2 (34)

To solve (34) let w = oe” t** where o and B are

constants to be determined. Substituting this assumed va-

lue of w in (34) we obtain the relation

A= cg 2

and in order to have our solution in terms of trigonometric

functions (instead of hyperbolic) we set

gR= ~-A2 or §= + 1) where 1 = /=1

Therefore w = e~CARL 2 12x is a solution of (34).

Remembering that etl¥ = cos vy * 1 sin y, we shall have

w = e~CABt cos x (35)

md wea A genia (36)

as particular (or partial) solutions of equation (34).

Now solution (36) will satisfy both of the bound-

ary conditions (31) for all values of t provided that we

take
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- Nr

Az om

where n is an integer (n = 1,2,3¢¢..)

Therefore Ww = 6 Sart sin ZZ x

is a particular solution of (34).

If, in (37), we assign to n any arbitrary integral

ppsitive value, the equation thus obtained will satisfy

both (31) and (34) and will therefore be a particular solu=-

tion. Consequently there are an infinite number of var-

ticuler solutions satisfying (31) and (34). Any of these

particular solutions when multiplied by a constant is also

a solution, and therefore the general solution of equation

(34) is given bY ..o0 RA—

“hz n
a, © sin IU

2h
MNe1

Rr X (38)

where a, is constant, i1i.e., it assumes constant values

for all integral values of n.

To complete the solution it remains only to deter-

mine a, as a function of n. To do this we make use of the

fact that the initial distribution of hydrodynamic pressure

1s known (equations (32) and (33)), that is, for t = 0,

= (x) where ¢ (x) stands for both f£,(x) and fg(x).

Therefore ue

Q(x) = &gt; a sin or x
nz|

From this expression we obtain

a = x) sin BL .

"Th | $¢ ) ors 4%

Substituting in this expression the two values of

(x) given by (32) and (33) we get
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rh

f «bh

oF x - 2 (7% - 1)] stn BT dx
\.O

oh o PP 1 (2n-x) nw _

[205 = &lt;p 18 -1 sin = X dx

a.

Integrating and simplifying we obtaln

2 2

2 a, = -° ( cos nr - cos =) + 22 sin
nw nw

2 [&gt;]

bh

 mT cos nm) - Ee (cos nt « 1) onnw

6 (2b sin II nn -
| LJ-3 nw 1)

awe .

The right-hand member of this equation gwanishes

for all even values of n and therefore only odd values of

n should be considered. When n is odd we have:

h

Ton = one sintg sin = . 2hb -bh
neq e 4 hab=® 2 2

-bh
16¥1%,ZEDgin O04 67°

or a = == 5

’ T n(4h"b® + ns 1 8)

"2hb sin An + o~Th

\[ n(4h®b2 + n® 7 8)
ya
=1,3,5,

CL t ’ nw 1}
ie 8 sin 5h (h-2)

J

lw“7 3)

(40)
 og

Kaui

is the equation giving the value of the hydrodynamic

pressure for any positive values of t and z. Knowing w

we can compute p from equation (18).
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Equation (40) is seen to satisfy the differential

equation (34) and both of the boundary conditions:

w=p=0 for z = 0 and &amp; = 0 for z = 0 and for all values of

t. When t =00 equation (40) gives w = 0, p = ¥(h=z) as

should be the case.

The series represented by equation (40) converges

very rapidly (as will be shown later in applying it to a

concrete problem), so that an approximate solution may be

obtained by setting n = 1, and disregarding the subsequent

terms in the series. Dolng this we have

gu 3 o~bh en .
16th® ————o- e 4n? ° sin —.(h=-z) (41)

T 4hehe + wR 2hw=

We wlll now attempt a solution for the case in

which due esccount is taken of the variation of the coeffi-

cient of permeability k, and the modulus of compression Be

3« Solution of Equation (16).

(a)s First Stage: From equation (3) we have

dp p+p

andk=ac=S=.

p+@

18k -cda_-_¢c_ dp
a dz a dz p+g dz

t = (h=z) and w = {(h=z) = p

dt? § dz nd dz ¥ dz? dz= dz?
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Substituting in (16) we get

dp = o |&amp;2R.1dpdg too |L2 Lo (re)

dep , (A .c¥y4p__c¢(ad _
rently of) ar os G9)° =o “2

Fa

Eh

This differential equation is of a type seldom encountered,

and therefore we will give all the steps required for its

solution.

lo)¢

= 4p 4%p _ , dm
First, let m PL then PE m ap

dm ¥ oc ~

Sas + ¢ - pi) m pre mae 0

dm a... 1 - = 0

and we get

Let now m = mg +u where m_ is a constant at our

disposal to which we will give such a value as to simplify

our differential equation. Substituting, we have:

au. 1...{._q,H
dp  P+¢ p+ Yc  p+p

Takemo==1

Then 4 w 1 u= « 3.

dp p+p Te

Let now u =

variebles,

ay - 1 1 ax + 3 =
Therefore (35 = vy) + =(7 a5 3) 0

y where both xX and y are independent

Now let y be such that dy . 1 y=0
: do p+8
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Its solution is y =p +83.

With this value of y the differential equation becomes

ax - = 4
(p+8) a

which has

"

3. log R (p+p)s

as a solution, R being a constant of integration.

 = Xy = $= (p+) log R (p+@)

and =m=m+us==y=d(p+p) log R (p+p)

or + 4 (ptf) log R (p+f) +7 =0 (43)

The boundary conditions are, as before

z = hs: p=w=0

z=0:MW=0orPL=-72 =

If we call p; the value of p at the bottom of

the deposit (z = 0) where iE = «f we will have from (43)

the following condition:

q -

To(Patf) log R (pt p) =¢

Since g 18 essentially positive and R must be

finite, we must have

R(p,#8) = 1 (44)

_ Let r = log R (p+f). Then the solution of (43)

is A |r Te (2 + S) (45)
A
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oo” hh  hy

where S 1s a constant of integration and

A= RY%c
+

In order to evaluate the integral in (45), expand eT

in a power series, and then the integral will take the

form { dr i

If r 1s small we can disregard the terms in the

series development containing r in powers higher than the

second. With this assumption only an approximate solution

can be obtained but smech a solution is not expected to

differ appreciably from the exact solution, since for

small values of z (where the variation of p is greater)

r is very small, it being zero when z = 0 on account of

(44) 1f (44) is still to hold true after the above assump-

tion 1s made. (This will be shown later to be the cass).

Equation (45) then becomes:

1 d
= = - 3.ATT = - (z + 8)

Dry re
1

or il __1 log £ ~ (1 =X) = V(1-%)® - 2

V(1-3)2-2 r - (1- 3) + V(i-%ys -2
FI

i (z + 5) (A)

if (1=Lye7) &lt;2
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1 lye
if (1 2) &lt; 2.

Since integrals of logarithmic functions are in

general logarithmic functions we will assume solution (A)

to hold.

Substituting in (A) the values of r and A and

Introducing the boundary conditions, &amp;e =» for z =0

where p = py,and p = 0 for z = h, we gets

[10g R (pa +p) 1° -2 (1 - = logR(py +p) =

2 2 - g

R(pa +g)

One solution of this equation is R(p; + e) = 1 which is

in accordance with equation (44).

The equation of the nressure distribution is

logR(p+8) = (1 = w5a3) -VQ - m)s - 2

ry S—————— p 3

ae 5 c) 2 2 Y c) 2 S

cis

-=~(46)

The constant Rp, is ‘determined from (44) and R and 8 from

the following equations:



Fe -

—

/ 9 |
log RE = (1 = F#¥e) - (1 - Ryee)® -2

log RS = (1 = z785) + V(1 - omzye = »

(1 - 5735) + V(1 - meez)® = 2

I. -V _ 4 2(1 RT%c) (1 Rie). - 2

o~RIV/ (1 - Te) ® - 2h

 47)

- # -

Rri/ (1 Shy5) 2 8

[- (1 - Tres) + (1g5)°- 2]

(48)

By working out the solution in terms of trigonom-

etric functions, (solution (B)), and determining the con-

stants R, S and p;, it was found that the condition ex-

pressed by equation (44) does not hold, and therefore it

does not represent the solution of our problem.

Equation (47) can be solved only by trials. In

order to make the solution of equation (47) easier we will

work out a less accurate solution by setting ef = 1 - »

which is not much in error for small values of r. The equa-~

tion thus obtained will be less complex, and will shww

approximately the values of R to be tried in equation (47).

We have

1 dr -

Hr =-fs (2+ 9) (49)

Integrating and simplifying we get



"

20pd

1 = —2—( Ri 2c ) logR(p +6) = 1 - (re - RY)(z + 8S).

Introducing the boundary conditions, we have

(1-2) 10 +0) + =F =
mise) 108 R (Pa +0) + gpm) = 1,

one solution of which is R (p; + ) = 1, and this is

also in accordance with (44).

Also S = 0,

(1 - 073) log Rf =1 = o~(Fs = RN 1 (50)

q .

and (1 - =25-) log R (p +p) =1 = olFs ~ RI)Z (51)

R can be found from (50) and then values of p for sever-

al values of z are given by (51).

(b). Second Stage: In this stage, since % 1s

independent of z, the differential equation is partial in-

stead of ordinary and if it van be solved at all the re-

sulting equation will be so complex as to make the analysis

worthless. As a matter of fact, a comparison between the

results obtained by applying equations (27) and (46) to

a concrete problem, which will be given later, conclusively

shows that they differ but slightly, and therefore equation

(27) is accurate enough for any practical purpose. The

same would, of course, be true for the second stage of

sonsolidation. Consequently, there 1s no need of trying to

solve equation (16) for the second stage.

So far we have determined the pressure distribution
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with. reference to the reduced depth of the deposit. We

will now show how it can be determined with reference to

the actual or true thickness of the deposit, and also its

settlement at any time.

4, Actual Pressure ‘Distribution and Settlements.

Let H be the actual thickness of the deposit

which corresponds to the reduced thickness h. Let also

Z be the distance of a point in the actual deposit meas-

ured from the bottom surface, and corresponding to the

reduced distance ze. Then
h£

 (LL +E) dz
a0

 (1 +¢)d
¥

(52)

(53)

where, as before,§¢ 1s the voids-ratio and measures the

water-content per unit of solid matter.

In general we know the true depth of the deposit

and what we want to find is its reduced thickness. If

€ 4s known for several depths, then a curve can be plot-

ted and the integrals (52) and (53) calculated gravhi-

cally.

Now it was pointed out that there 1s a definite

relation between the water content and the granular pres-

sure for any given material,and this is given by

¢ = «oc; log (p +f) =o (p +p) + C1

or, since oz is very small, we may write

t= -=alog (p +8) + Cge
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Now p can be expressed as a function of z: For

the first stage of consolidation it is expressed by equa-

tion (27) and for the second stage by equation (40) where

p=3%(h = 2) -w, the variable t being kept constant dur-

ing the integration since this is performed with respect

to z only.

Therefore Z

Zz = J aoe (p+p) + c| dz

where C0 = 1 + Cae

Having thus obtained Z as a function of z, and

the pressure distribution in terms of z, the latter will

be determined in terms of Z by simply changing the ordin-

ates by the transformation (54). In practice, however,

the variation of £ with2issmallandpracticallyuniform

so that an average value of §¢ may be taken and introduced

in equation (53). Let Eo be the average value of ¢ , then

2=(1+¢&amp;) 2

which 1s a linear transformation and is equivalent to

7 =
H

ll (558)

The compute the settlement of the top surface of

the deposit, let H, and €o respectively, be the true depth

and the volds-ratio at time t = 0, i.e., just after sedim-

sentation has stopped. Let H; and £. be the corresponding

guantities at any subsequent time t = ty. If we denote
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by s the settlement of the top surface at any time 1,

we will have 8, = H, - H, as the total settlement of the

top surface of the deposit in the time interval t,.

Now the time rate of change in water-content per

unit of solid matter is 2 which is a negative quantity

since ¢ decreases with the time and therefore the time

rate of change in water-content in a layer of thickness

dz located at distance z above the bottom surface is

JE
== dz = a
d+

3.)
dt

12«

Hence the rate at which the top surface of the

deposit is settling at any specified time t = t, is
h

ds

(42) - | apat) _ = |e (Gy) az
t=t- 0 ot $=%

(56)

Therefore the total settlement which takes place

in a time interval from t=0¢tot = t, 1s
’ 3 1

a(2) az at = | ds of)

and that from a time t = t, to a time t = tg, 1s

ty h

| | a (SE) dz dt
+ 0

Introducing the value of op (= - £5) from equation(40)

in equations (56) and (57) and keeping a constant during

the integrations, we get:

2hb nm -bh gps
ds - ZZ sin + © cnr .

at 9 ar 2 e Zh=) 4h®p® + nq 8
Nh=13.--
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C
3

ds _ 92828 gh
and 8 = |g ds ET

ln

bh
Sh sin B_+ oe i
nC2
ne (4h2b2+n= 2)

¢ nn

«(1 -e 4h (57a)

as the rate of settlement and total settlement of the

of the deposit at any time,t.

top

At this point it is well to point out the fact

that the coefficient of permeability k, as used in the

previous equations is in terms of the reduced dimensions,

while in performing the experiment already described, its

value was obtained in terms of the true dimensions of the

layer of material under test. In applying the law of

L Lt 0

Darcy, let Q =k 1 A refer to the true dimensions of

the layer and Q = k 1 A to the reduced dimensions. Then,

since Q = Q' and A = A' we must have

kt i = KK 1

i I kt
k = J. fm.

or a YET 1+
Bho

(58)

according to Fig. 1 .where 1 1s the true thickness of the

layer and h the hydraulic head.

If the average value of £€ 1s again introduced, we

shall have

Ir = h
= kt (58a)

We are now in a position to apply our formulae

to a specific problem, but before we do so we will inves-

of
tigate the meaning of some the previous equations.
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Equation (27) shows that the smaller b (b=Fg)

is, the greater wlll be p for a given value of Zz. Hence,

of two mud deposits for which a, § and k are the same, the

one for which gq is smaller (a measures the rate at which

solid matter is being sedimented) will be in a mome consol-

idated state thah the other. This fact deserves some con-

sideration for frequently, at the same basin, for some

reason or other, sedtmonba tion 1s much more intensive in

some particular locations than in others, and the fact that

the material deposited 1s the same throughout the basin

would lead to the erroneous conclusion that the state of

internal stresses should be the same throughout the basin.

Also, other things being equal, the greater is the coeffi-

cient of permeability, the more consolidated will be the

deposit.

Equation (26) shows that the state of internal

stress 1s independent of the hydrostatic head under which

the deposit is belng formed, and merely depends on the

thickness of the deposit. This is evident because the ex-

cess in hydrostatic pressure, l.e., the Bydrodynamic pres-

sure is what produces the flow of water within the mater-

ial.

Equation (40) shows that the time rate of change

of the hydrodynamic stress .(3F), decreases with the time

in the same rate as the hydrodwnamlic stress itself. The

slope (2%) of the w = z curve for a glven value of z is



zZ5.

continuously decreasing as time goes on, and therefore the

quantity of water percolating through a given section of

the deposit per unit time decreases with the time. This

means that the variation of p with the time is greatsr

at the beginning of the process of consolidation than for

large values of t, 1.e., the consolidation 1s more effect-

ive at the beginning of the (second) stage.

5. Example.

We shall now take up the problem of determining

the state of internal stress and settlements of a delta

deposit advancing at a glven constant speed towards the

ocean as is given on p. 177 of Terzaghli's "Erdbaumechanik’

The consolidation of the deposit is due only to its own

weight. The deposit is advancing towards the ocean at

a rate of 1 me. per year and its true depth is 60 m.; the

plane on which sedimentation takes place has a slope of

1 to 10 and therefore the time required for the formation

of a layer of 50 m. 1s 500 years. The specific weight of

the material sedimented is 2.7 grams per cublec centimeter,

end this gives ¥ = 2,7 = 1 = 1.7 grams per cubic centi-

meter. The average value of the volds-ratio is 1.0 and

therefore the reduced thickness of the deposit is 25 m.

The rate: of sedimentation is then 2 = 5 cuble centil-

meter per vear and per unit of area. Therefore:

qd = 5 xX 17 = 8.5 gr/cm? per year.

The true average value of the coefficient of
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permeability is 1.63 cm./year and therefore its reduced

value is

 kc =
1.63 _ 1.63 _

1+€, = a 0.815 cm./year.

The average value of the modulus of compression

a = 0.00024 cm.&gt;/gr.

Having these informations we are in a position

to determine the pressure distribution throughout the de-

posit.

(a)e First Stage. Let h! = 10 m = 1,000 cm.

—ga- 8.,5x0,00024 _

 GC
atl.

—— K = 3,295,

L = Ll 23,183
b 0.001472 ym

-bh!
nN."230858

fh = 1.7 x 2,500 = 4,250 gr./cm.=.

From equation (26) we obtain the following

values of p and w for z = 0, and z = 500 ems., resvpect=

ivelvs

D
»
A 1 153 (1 = 0.2305) = 887 gr./cm.®

w = 813 20a fon

D = 1,153 (0.4790 = 0.2305) = 287 gr./cm.=

 Ww = 5673,
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At the end of the first stage of consolidation, (h =

2,500 cms.) we have the following pressure distribution:

2 CmSs., 0

p gr./cm® 1,125

w gr./em® 3,125'2,875

500

525

1,000

| ok’

2.313

1,500

110

1.590

2,000

20

820

2,500

 nN

0

be. Second Stage. In thls case we will compute the pres-

sures for t = 500, 1,000 and 5,000 years, the time being

measured from the beginning of the stage, i.s8., after the

sediment has reached a height equal to h.

Equation (40) may be written in the form:

16 ¥ h% &gt; - ot i.
a N, e sin on (h-z)

n=13.5,"

Br sin = + o OB

n(4h2b=2 + n3n=)

2

16 ¥h™b = 79.700.

The results may now be tabulated as follows:
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enn 2

dhe

-

nw
sin 2h (h=2)

=

+0 ,0370

=). 00264

+0 .000820

£=500

0.512

0.00238

£=1,000

0.262

0.0000061

t=5,000

0.00122

7=0)

oy

 rR

2k

L

z=, h

+0 924

=) * 216

=) «e383

z=% h

+0.707

+0 70%

= ® 707

=O

+0 . 383

+0.924

+0.924

From this table we can compute the values of

Rh t ny

Nn, © ~Zh7 sin =r (h-z)

which are given in the following table. A
®
-



Values t = 500 t = 1,000 t = 5,000

of 2

0)

~h
a

in
-
p

th

n
a.
E— 1

+0.,0190

+0 .,0175

+0.01386

+0,00726

rN = 2

£6.28 x 107°

+1.36 x 10°90

“4.44 x 10~°

-5.80 x 10-6

n=1

+0. 00969

+0.00895

+0.,008685

+0.,00371

n
li

a 2

+1.61 x 10°8

| 40.348 x 10°

-8
«1.14 x 10

1.49 x 10-8

n =1

+0, 0000451

+0 ,00004186

+0 0000319

+0 .,0000173

n = 3

 NW
tO
»
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All the computations were carried through in order

to show how rapidly the series envolved in equation (40)

converges. From the above table we see that the error

Introduced by neglecting the terms for which n= 3, 5 =

is, in all cases, much less than one in one thousand.

Therefore equation (41) should to advantage be used in

all cases, except for very small values of t.

The following table gives the values of p and

w for the above values of t and z.
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Values values of w in gr./cm.® values of p in gr./cm.”

of 2

J

Ly
4

= h

5 h

£=500

1,510

1,395

1,083

57 4

t=1.000

771

713

546

2986

£t=5,000

3¢0

3.3

2.5

1.4

t=500

2,740

1,803

1,042

134

£=1,000

3,479

2,483

1,579

16°

£=5,000

4,246

3,194

2,123

1,061
7

HH
-
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The times 500, 1000 gne 5,000 years correspond respect-

ively to points in the deposit at the distances 500, 1,000

and 5,000 m. from the coast. From the above table we see

that at a point 5 km. from the coast the deposit 1s prac-

tically consolidated. It should be remembered that so far

as we have studied only the process of consolidation of

the deposit under the action of its own weight, and evap-

oration together with other irregular phenomena occurring

at the top surface of the deposit play an important part

during the process of consolidation as will be shown later.

No data are available to compute the water con-

tent throughout the deposit, but, at least for the first

stage of consolidation, we can take

7 =2 2

by
and this single transformation obtain the actual pres-

sure curves,

The results given in the above table are shown

graphically in Fig. 9.

(c). Settlements and Rates of Settlements.

These are found from equations (56a) and (57a)

vhich were obtained for the case of a = constant.

1f, however, there is an appreciable variation 1n

the values of a, we have, as already pointed out,

A em

vo +98

where «&amp; and 68 are constants. Then







 00, J

ind  8S

h

eo. [=
dt oo Pp +8 Ot

| 98 gg,

jy, dt

—

-

d z

The above integrations would lead to such com-

plex expressions as to be of no practical value and there-

fore 1t seems that if the varlation of a 1s to be account-

ed for, it Is better to computeafor several values of t

and then find the rates of settlement for these values of

t and a from (56a). Then the total settlement during any

given time interval can be computed by simple additions.

It is hovever, believed that equations (56a) and (57a) are

accurate enough for any practical purvose.

Equation (56a) shows that the rate at which the

top surface of the deposit 1s settling decreases expon-

entlially with the time, it being a maximum at the beginning

of the stage (t = 0) and zero for t =00 , Equation (57a)

shows that the total settlement of the top surface in-

creases exponentially with the time and 1s zero at the

beginning of the stage (t = O). All of these facts have

been actually observed in Nature.

We will now apply (56a) and 57a) to the previous

example for t = 0, 50, 100, 500, 1,000, 2,000, 3,000 and

5,000 years. The results are given in the followlng table,

and represented grarvhically in Pig. 10.



Values

of t yvears

ds
— in cm./yvear
— /y

in me

0

135

0

50

1.26

0.611

100 500

| 1.20 | 0.71

1.29 5.27

1,000

0.40

8.30

2,000 3,000 | 5,000

0.105,0.0276| 0.00184

10.25 10.82 11.00

(®

0

11.08

Ao
Hh
»
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Both equations (56a) and (57a) depend directly

on a since k = ¢ a or, in other words, the constants b

and¢are not affected by the variation in a. Now a

decreases with the time and therefore the curve of g8

should be lower for large values of t, but thls does

not indicate that the curve of s would be lowered in the

same proportion, for it depends also on the previous val-

ues of a. Thus, 1f for t = 2,000 years the value of a

were one-half of that used in computing the above table,

we would have curves as those shown,in Fig. 10.

We can compute Z in terms of z and find the ac-

tual pressure distribution for given values of t., Since

we do not know the values of «&amp; and g for the material of

the deposit in question, we will use equation (55a) in-

stead of equation (54). The results are as follows:

Vales of t,years

Ratio Z/z or H/h

0

o

30)

1.976

100

1.9048"

S00

1.77Q

1.000 5.000

1.688 | 1.560

(d). Solution by Applying Equations (46) and (51).

In order to obtain the pressure distribution we

need the value of § e This is not known. We will therefore

proceed to find the variation of the pressures p with .

The computations are very tiresome, and will not be given

here. The results obtained by applving equation (51)

are glven in the following table, where p, is the



15

granular pressure at the bottom surface of the deposit,

i

0.00010

20

25

20

26

40

&gt;

8,820

3,770

2,750

2,060

1,480

1,200

685

3 DD.

1,180

1,230

1,250

1,270

1,295

1,300

1.315

Maximum

Brror in¢

0.72

Sed1

8.46

16.8

18.7

The last column indicates the maximum error

introduced by placing eT = l-r. This of course does

not mean that the results obtained deviate from the ex-

ect ones by the same amounts, since is not a constant

but a variable, no fixed relation existing between the

two errors in question.

The above results are 1lllustrative in that they

show how little p, depends on@. @ was made to vary from

8,820 to 685 while the corresponding values of p were

found to be 1,180 and 1,315.

We turn now to the more accurate solution repre=-

sented by equation (46). As already pointed out, this

equation represents the solution of our problem only when

(1 =. =
"R 2c) &gt;2.

Thls shows that R in this case must be less than

about 0.000359{( For this value of R the equation does
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not hold, the pressure curve being a triangle. p, was

computed from equation (46) for two values of R and

the results are as follows:

| a Pi

8,820 | 1,180
0.00030 | 1.960 1,37C

The maximum érrors introduced by placing o ¥

= are in both cases very small,

The pressures for other values of z were computed

the results being shown in Fig. ll.

Now the values of g are in general, much smaller

than these for whlch p,; was computed, so that it seems

that there would be wider discrepancies than those shown

by the preceeding curves. But, on the other hand, in order

to compare the results of the two theorles, o« and PB must

be such as to make the average value of a, as computed

from

id seine

p +p

compatible with the average value of

0.00024. The value of a (0.00024) was computed from a

range in wvoids-ratio of from 1.2 to 0.a(9) which corres-

pond resvectively to the voits-vatio at the top surface

(9). XK. Terzaghi's "Erdbaumechanik" p. 178, See also p.l4l.
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where p = 0 and the bottom surface where p = pi.

Hence

Also

Therefore

1.2208 = ,00024 or p-

pa=-0

12 = = «log (0 +p) +GC

0.8 = = otlog (py +e) + C

Ly» i y JOY re/cm=.

——r

—

0.4 _ 0.4

log(1+53) Log(1+22869)
If then, a varies according to the above law,

a and © must be such that the average value of a, as p

1s made to vary from O to 1,668, will be

i ol A

Combining the two last equations . We pet

0.4
 166a. (1,668 + 28) = 0.8

log(l+=is=)
- 0.00048 g8== 0.

Solving this equation, we get:

= 8,730 and X= 1.06.

If the pressure distribution is now computed

from equation (46) for the above value of 6 the resulting

p - 2 curve will be closer to that represented by equation

(27) than the one shown in the preceeding figure for which

@= 1,960 gr./em.®. This leads to the conclusion that the

theory developed for a constant is far more accurate than

one could ever expect. Hence, the differential equation



a

F

(16) can be entirely dropped out of consideration, and

equation (15) used instead. This wlll be done in what

follows,
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IV Problem 2 - Mud Deposit under the Influence of a very per-

meable Fill, placed on top of it at the Beginning of the

Second Staze of Consolldation.

l. Determination of stresses.

The consolidation due to the own weight of the

material has already been considered in the preceding sec-

tion. The combined effect of the own weight of the ma-

terial and that of the top fill will be ascertained by pro-

perly combining the solution obtained for the two cases

separately. Therefore in order to study the behavior of

the mud deposit under the influence of the top fill alone,

we disregard the weight of the material and proceed as

follows, after neglecting the time required for deposit-

ing the fill, and also the resistance of the fill against

percolation.

Let h be the reduced thick-

ness of the deposit, and let

p and w, be the grandlar and

the hydrodynamic pressures res-

pectively at any section dis-

tantz(or x) from the bottom

(or top) surface at any par-

ticular time t.

Let t = 0 correspond to instant

at which sedimentation has just

Fa. 12.
ceased and let the £111 be de-

posited at this same instant,
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Let p, be the pressure per unit area exerted by the fill

resting on the top of the deposit.

Since the resistance of the fill against perco-

lation of water 1s neglected, the hydrodynamic pressure at

the surface of the deposit will be zero and the granular

pressure will be equal to py; (Fig.12). In order to have

equilibrium we must have the following relation between p

and w (10).

D+ W =D, [3Y)

As before, we have

and from (59) we

where x = h = 7

92 = ow% 352 ’

get

dw - cow _ cd’w

2T 282 0x2’
(60)

No water can possibly flow during the period of

time in which the fill is deposited, (which is practically

equal to zero and so considered) and therefore we must have

w = p, throughout the deposit for t = 0

Hence the boundary conditions are

WwW=0forx=0andt&gt;0

2¥- 0 for x = h (61)

WwW=19p, fort=20

The second of the above boundary conditions is

equivalent to

w=20 for x = 2h

as already pointed out.
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[2t i Lg Xt +@x

be the solution of (60).

then A = cs? = = oA®

therefore 2
w =e “NM teoshx

2
w =e ~Mtainmx

particular solutions of (60).are

(62)

(63)

Now (63) 1s seen to satisfy both w= 0 for x = 0

and w = 0 for x = 2h, provided we set

A - Nr
Te

where n = 1,2,3, ewe

Hence the general solution of the differential equa-

tion (60) is given by
nzco 2 o

Se - on’r t nrW= dane Tgne sin
” 9

Nat Sh
(64)

where a, represents constants mulv- ‘lying every term of the

series

But w = py fort= 0, and therefore

P1 = Sa, sin nr

a, = &amp; | mn sin ZT xdx
0

2p1or =_-= (1 = cos nm}

on Sr
and this 1s zero for even values of n and equal to 4pj

nT

Yt

for odd values of Noe

Hence we have

 WwW ==

\ 4h
is nw
rg) cos TRH 2 (65)

/ n nm
N:1%.. sin o=

(10) ¢f. K. Terzaghi, "Erdbaumechanik" pp. 143-4.
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2 2
 cen t nw

apn (1-4): Ihe cos TH )
nm

(3... n sin 5

»
-

vBt

In regard to the boundary conditions we made use

of two conditions which, at first, seem to be inconsistent,

namely: w= 0 for x = 0 and w = Pq for t = 0 throughout the

deposit. Now, at the very surface of the deposit the gra-

nular pressure must always be equal to Pp) while at any

other section, Py is taken up partly by the capillary water

and partly by the granular material (according to (59)),

but at t = 0, when py 1s supposed to be applied, no water

can possibly flow on account of the smallness of the value

of the coefficient of permeability, and since water ls

practically incompressible, 1t follows that at t = 0 the

whole pressure py must be taken up by the capillary water,

Consequently there is a dlscontlinuity in the pressure dis-

tribution at the surface of the deposit at the instant t = 0.

The assumption that w = p,q for t = 0 may be read=-

11y confirmed by applying Heaviside's Operational Method (11)

to the differential equation (60). Since this method

(11) Cf. Heaviside's Operators in Engineering and Physics by
E.J. Berg, Journal of be Franklin TostTaite Nov IooT- Also:
An Analo between Pure Mathematics and Operational Mathematles
of MomrTotas Dy WMeans of the Theory of H-rfunctions, Dy

J.J. Smith, Journal of the Franklin Institute, Oct., Nov.,
and Dece, 1925.
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affords a simple way of solving the above differential equa-

tion and at the same time no assumption concerning w is in-

volved, 1t wlll be glven below.

We will now use the differential equation in terms

YY  DO Instead of we. It is

d
22 o 228

The boundary conditions are

Pp =py for z = nh

oh d
22 = 0for z = 0)

(67)

(68)

(69)

We now lntroduce an operator in (67), 1.e., we

&gt;
ag

Then

Jy

Jd =

ST r

EaC =
de rp

2
dp _r 2
dz? =p = =A"p (70)

where AZ = - Z, Abeing a function of r ( 1.e. of t) but

not of z.

The solution of (70) is

P = Cy. coslz + Co, sindz

where Cy and Co are functions of r.

Introducing the boundary conditions (68) and (69)

we have

3 &amp; Cq - Pa

cospy h
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CO8AZ 1
Hence p = Py Cosh

(71)

where 4 1s the so-called "unit function"

Equation (71) may be written as follows

p =p XE
where Y(r) and Z(r) are functions of re.

The Solution of equation (72) is given by Heaviside

in the form of a series which is called the "Expansion

Theorem". It is as follows

P = Py

am

Y(0) S Y(r)eTt

— dr

LTP),Tp===

g

ris To» --=-=ctc. being the roots of the equation Z(p) = 0,

and Yq) and Z(0) being the values of Y(p) and Z(,) when

r is zero.

We can now apply the expansion theorem (73) to

equation (71).

He have

Y(p) = cos Az and Z(p)= coskh

The roots of Z(n,)y = 0 + cosAh = 0 are

A= Li (n=1,3,5 ~

- =A?

i.)

Therefore Pr = = en?

ATC
(74)

Now A= O when » = 0.and therefore

Y(0) = (so2l) =1
Z (0) coslh/ _ 0

Cw1)
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dz - 2 d4z(r) A = AT nw (76)
r=(r) = cA rp el Zz sin 5"

Substituting (74), (75) and (76) together with the

value of Y(r) in the expansion theorem (73) we have:

- eff
z

- 1-4 \° * cosh
Py T

ai

n sin 30

TL es 1,5,===

which is the same as equation (66).

Before we take up any specific problem we will ine

vestigate how the state of internal stresses ese affected

by the presence of evapoation at the surface of the deposit.

2+ ConsolidationbyEvaporation

Evaporation of water at the surface of the deposit

produces tension (surface tension) in the capillary water,

the intensity of which depends on the temperature and

degree of humidity of the atmosphere and also upon the

velocity of the wind at the surface. We will not describe

here the phenomenon of evaporation(12), but just point out

that 1t produces tension in the capillary water, which, in

turn,affects the state of stresses in the granular material.

Let wy be the intensity of tension existing in the

capillary water at the surface of the deposit. Since there

is eaguilibrium, the hydrodynamic and the granular pressures

(12). Cf. K. Terzaghi,"Erdbaumechanik' pp. 137-9, 162
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must be equal and opposite in sign, in every section of the

deposit. It follows then that at the top surface there

must be granular pressure equal to wy,but opposite in sign.

Hence, although no granular pressure exists at the very

surface of the deposit, there wlll always exist a pressure

Pq (= =w;) at an infinitesimal distance below the surface.

We have here the same type of discontinuity in the pressure

distribution at the surface as in the case of the permeable

top fill.

The ppoblem of determin) Sie effect of evaporation

on the process of consolidation of a mud deposit is largely

Indeterminate for the following reasons: first, w, 1s varl-

able and does not seem to follow any definite law, its value

varying from zero up to values higher than 100 kg/cme;

second, as evaporation becomes intensive, the water withdraws

from the surface towards the interior of the deposit (as is

the case when the quantity of water percolating upwards from

the Interior of the deposit 1s less than that which 1s be-

ing evaporated), tr forming a more compact layer of mater

1al at the surface which 1s less permeable than the remaind-

er of the deposit.

If, however, we assume a constant value for WE

which may be taken as the average value during a certain per-

tod of time the solution will be represented by equation (66)

yt



AS.

WSeo==

—

enZy® .

a\e TF apr

ill

. . sn sin 1%

n = 1,3.5,--2

(77)

3. Settlements

The time rate of settlement of the surface of

the deposit due to a granular pressure pj; at the surface

can be found from equation (56). It is

2 _2
 en’.

ds = 2kpi1 le “ane
at = /n

n= 1,3,50e=

{ (3 J

Ihis converges very rapidly and therefore we can

Fake
2

cr

ds = 2kpj == t
IFT Te 4h

(73a)

unless t 1s small, in which came (78) should be used.

The total settlement at any particular time t, is:

3
—_

a

2 2
- CN™n

8apih (1-0 Et
Ie — m—— _

/ -

n=1,3,5

) (79)

If t is large we can use the following formula which

gives sufficient accuracy

a =

2
w CI

Sep (1.052 - e Int ©)
(79a)

In both cases a was considered constant during

the integrations.
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4, Example. We will now investigate the conditions of

stress and settlements of the mud deposit of Problem I,

under the influence of a permeable fill, exerting a pres-

sure of 1 g/cm” on the top surface of the deposit.

He have c = 3,395, Py = 1,000

a = 0,0002¢, h = 2,500

The results of the computations are shown in

Figures 13 to 17. Fig. 13 shows the stress distribution

for the case of a top permeable fill exerting a pressure of

1,000 gr/cm® at the top surface of the deposit.

Fig. 14 shows the stress distribution due to the

above pressure, and that of the own weight of the solid

matter.

Fige 15 shows the influence of evaporation for a

value of Ww, equal to 10 kg/cme The value of Ww is in

general much larger and variable, but this serves the pur-

pose of showing the general shape of the curves.

Fig. 16 shows the rates of settlement and total

settlements due to the weight of the top fill.

Fig. 17 shows these same two items combined with

those due to the welght of the deposit.

The shape of the curves in Fig. 14 are seen to

agree with that of experimental curves obtained by Dr. C.

Terzaghl and published in the Journal of the Boston Society

of Civil Englneers (Vol XII, No. 10, Dec. 1925).
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V Problem 3. Mud Deposit having within it a thin Layer of

less Permeable Material.

te)

We will assume here

that at a height 1

from the bottom of

the deposit whde depth

oF i
1 m 1s h, there exists a

layer of material of

thickness (m = 1)

£1u 13
having a coefficient

of permeability smaller than that of the remainder of the

deposit. (See Fig. 18.)

In a problem of this sort, we can not expect to

have an accurate solution by applying the simple differ-

ential equation

2h =
® wg dw

Doe

since the conditions are too variable throughout the deposit.

If we attempt to use the more complex differential equation

(16) the problem will be beyond solution. Even by apply-

ing the above differential equation [equation (15) ] , the

mathematical analysis becomes so complicated that we are

forced to make some approximations.

In Fig. 18 the deposit 1s shown divided into three

layers. Let the characteristic constants (already defined)

for layers (1) and (3) bey, q, a, and k and let those for
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layer (2) be I; , q1, a1, and kyo Let also the granular

and the hydrodynamic pressures in these layers be res-

pectively py, Po» P3,and Wj, Wo, and ws.

l. First Stage: In this stage the differential equation can

be solved without any difficulty.

We have

2
dDf —~ O0°W]1

Ei = Stpeds for 04z&lt;1

Dr = ¢10°W2 for 1¢ zt m
ot! 02

(81)

2
22 = ¢ ¥W3 formsz4hn

0! 5%
The values of tl as functions of z corresponding

to the above differential equations are respectively,

eA]
3

wk

Lt!

+!

F-?

“
J—“—"——y

i(1 =z) +X(m=-1) +§(h =m), 0%2&lt;1
a Qy a

UH (m-z) + $(pn -

3 tr2) th -m), 1 &lt; 7 &lt; m

Ln - 2), m&lt;z&lt;h

Hence the differential equations (80), (81), and (82) become:

2
a

Pl +b dp;

az? dz

2

dz? dz

2

APs | 4.9P3
qe dz

0

-_p
torn 0

= 0

(80a)

(81a)

(82a)
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where

and

b =
Te

by = 13

Yieq

The solutions oi (80a), (8la) and (82a) are,

respectively,

ana

r = A+Be
-02Z

Do
«ba2

=C+De1+

p. = E + Fe “PZ

(83)

(84)

(85)

where A,B, C, D, E and F are constants to be determined.

The relations between the w'a and the p's are

w. =8(h =n) +¥1(m=1) +§(1 - 2) = p, (83a)

wo = §(h =m) + ¥ (mn - z) = Po

Nz = (nh - 2)
g’

 vy

(84a)

(85a)

therefore

-¥-9
az ?

2114

wg = -¥; - dpo
dz dz

vs _ -f - ars

32 de

Remembering that the quantity of water (per unit

of time) which leaves layer (1) is the same as that which

enters laver (2) (the same thing being true for layers

(2) and (3) ), we will have the following boundary conditions:
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For z = 0 : 3W1=o,
dz

id

z=h zp, =0,

ot ry

 st P11 = Ps

“#=M 3 Py = Pgs

dwy aw
2 - 1 ¢ k =k, &amp;

dz 137

dw. dw
mE Rr FE

Ia

(a)

(b)

(c)

(da)

(e)

(£)

Introducing these boundary conditions we get

the following relations between the constants A, B, C, D,

E and Fc:

Bb = «1

E + pe PR 0

a + Be Plz ¢ + pe PR

E + Fe P= ¢ + De P1®

KT + woBe = “Kf, + k,b De "1"

- ke1¥q +; byDe 1 = x ¥ + KpFe™0

Solving these six equations simultaneously, we get:

hk (al)

(bl)

(ch)

(al)

(e7)

B =}
5

=bl

D=k,§, + ki(e =~ 1)

 ~=b1d

F = 1 [x e Pl wy xd ~blrn S——" - l - ©

Kkbe PM 33 om—

~b31

ra~b1l o o-bymy|



a4

E = -Fo~Ph

- bh «bm kb

Eb; © kpPy

C =F + Fe ol . pe~PIm

Hence the distribution of pressures throughout

the deposit is fully determined for the first stage.

2+ Second Stage. In this stage, since t 1s independent of

z, the three differentlal equations will be partial in-

stead of ordinary. Unfortunately these differential equa-

tions can not be solved and therefore we will take

yy

# = 2
| 2°

2
dw = p O°W

°F YR: (86)

as the general equation for the second stage, where r stands

for ¢ for layers (1) and (3), and for ¢c,for layer (2)e 1» is

then variable but wlll be considered constant in order to

make the problem solvable.

Changlng the origin of coordinates to the top sure

face (86) becomes

ow D 2w
=r

TT C52
(86a)

whereX=hh«2

Wie now proceed as in the case of the mud deposit

of homogeneous material.

The boundary conditions are
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w=0 for x= 60,

 . ¢1 w=0forx=2h,

the last condition resulting from the fact that

2
lS,

OW _

SE = Oe

The conditions are now represented

by Fig. 19, where the pressure

distribution 1s symmetric with

respect to the impermeable sure

face.

 2

The general solution of equation

(86a) is given, as before, by:

Fig. 19

N &gt;

N

Rr
ira
—

Doe rn 2

Die “~The tein BX
nec 2n2

I J t cospyz
2 sin i

(87)

(87a)

When t = 0, w = §(x), where P(x) indicates the pres-

sure distribution at the end of the first stage and 1s,

therefore, a discontinuous function, but always finite.

Therefore its integration should be performed by parts.

Since for t = O WE P(x), we must have

A= # [9 singlx ax.
i)



-» rr

 s ®

The expressions for @ (x) are as follows (See

Fig. 19).

For layer (3) : wy = fx = E = Fe-P(h=x)

(2) + wy, = (¥=¥)(h = m) +5x - ¢ - Do-P1(h=x)

(1) + wy = (¥3 =% ym-l) + Fx = 4 - Be~P(R=X)

(11) : wpd= (¥; = §)(m-1) Fx = &amp; = Be~P(x-1)

(21) : wol= T(h-m) + ¥3(hm) = Hix = -pe=b1(x-h)
(37) s we'= 2h « Jx = E = rep (X-1)

Therefore h-1 h
- nm nwAph = Jp. ax + | wpe naz dx + wyotegms dx +

9 h-m h-1

ht rh+m 2hTT .
1 sin ZX dx + J ws sin Se xdx + [wy sinfy xdx,

h h+1 h+m

where the values of the w's are given by the preceding

equations.

Performing the above integrations and simplifying

Ne ret

_ 4h |

A = 2 (¥ - | (2 sin or - nmcos 5°) (cosmrm - cosgrl)

3
nw

in" (msin Bp - 1 sin on) | + 8h sin nm
Toi TH Zn nn? =

2 {2 sinnu|(E-C) sinnn p4 c - Asin om |2d | oh at| *

$+ E(cos n= 1) = (¥-71) 2 sin nn (m sin

+ 2h cos nw (cosnmnl - COS NT" M)} =

2 2h on

nm -lsinnnl)
i



=oF

4h -bm
na, 2 sin nn|Fe (b cos nT, «4 nw sin nn m) -

4h°p° + nn 2 Zh Zw mh

Be
=bl -bh

(b cos nM) = nlgin np 1] + Fe nn - mw
Sr on 213 EL (1 - cos nm)

-b,1

2 Bb sin | - 4h fos ar | o 17(
hp? + nn?

((bcos nnl = nn sin nn

 ep Bm mm

nrsin nn m|
h 2h

=bym
1) -e (b.cos nw m-—-

a

188)

Now once the values of the trigonometric functions

are tabulated, expression (88) is not very hard to compute,

but it seems tobe too long to be of any practical value.

In case the thickness of layer (2) is not large,we

can set 1 = m and get a much simpler equation for A. This

will be shown later, by an example, to invalve a very small

error. Also Ag is seen to be.small for even values of n,

the prevailing term in (88) being 8Y¥h sin nm

a) z

Setting 1 = m = 1' (where 1* is now

between 1 and m) in (88) we get:

the average

A. = 8h sin nw +2|2 sin nn -
n Zz = = gL (EB A) sin

nn

5h
1

ny}
E{cos nT = n)] - 4h 2 (F = B) sin nv ¢ PL

2.2 22 a
4h Db 4+ nT

(b cos nr 1! =

Ph

+ 2 Bb sin nr |
3

Nai
7 nnn

&gt;h
1') + PF

«bh

pL 8 (1 = cos nw )+

‘=D



38

A still more approximate expression is

A = 8%h gin nw ~ 8hBb sin nn
” it

non 2 50° + none 2 / 30)

It should be remembered that the assumption or

approximate 1 = m was made only in order to obtaln a sim-

pler expression for A and should not affect the constants

A,B,C etc.

The fact that the state of stress for the first

stage of consolidation can be determined, furnishes already

valuable information. For the second stage of consolida-

tion, we can obtain only an approximate solution, and there-

fore we will not enter into many details wlth regard to the

mathematical.analysis.

Wie will now determine the value of » which will

represent, approximately, the state of stress in layer (1).

To do this,we know that the quantity of water which leaves

layer (1) per unit time must be the same as that which enters

layer (2) per unit of time. If a solution could be ob-

tained for thls stage, we would have three stress equations

one for each layer, and instead of r, we would have ¢ for

layers (1) and (3), and ¢y for layer (2). Assuming that

equation (87) represents the solution of our problem is

equivalent to assuming that

Oe, - 1 GP pen
r=c r=cj.

oa
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Although this is not true, it affords a means of estimating

the value of r with the following modifications, Compute

values of te for several values of t, within a

certain period of time, and then compute the corresponding

values of kK (29) for the same values of t. Now
1'3z’ z=1,r=cq -

take the average of each palr of values for the same value

of t which then represents the quantity of water percolat-

ing through the section z = 1 per unit of time and ver unit

of area. After this 1s done we determine the value of

r, say Ty, which will make the same average values between

AW w
k(&gt;) and K =1.P=T0z2/ z= 21l,r=r, 1 z)z=1, 1

approximately the same as the average values already obe

tained.

Another method which may be used to determine

r ia the following. The rate at which the granular stres

p 1s increasing with the time (SR) at the end of the first

stage of consolidation for sections far away from the top

surface of the deposit, should be about the same as its rate

of tnoreasd/ ot the beginning of the second stage. In other

words,

2 22w,
- (EX = - SL
° 2 's = 23 TO z=2z,,t=0

The right hand member of this equation can be computed only

by taking t&gt; 0, and finding its limit as t is made to ap=-

proach zero, otherwise a very large number of terms wouldbe

required in the series (87). The method of procedure is:
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2
compute 4d W for, say, z = 0 and z = 1 (equation (83) «

2
dz

Then compute 2 (equation (87)) for the same values of z

and for sovers] values of t, say, 50,100, and 500 years by

assigning to r a trial value. With these values, plot curves

between Ee yams and t and produce them to meet the axis

t = 0. »r should then be such as to satisfy the above

squation.

In all cases r must be Ca lI Co

We are not interested in the stress distribution

in layer (2) which may be considered as a plane of separation

between lavers (1) and (3).

The stress distribution in layer (3) can not be

determined unless we make some approximations. In this

case, however, we know the limiting values between which the

pressures must lie. let the granular and hydrodynamic stress

for this layer be Px and Wes respectively. The two limit-

ing values for w, are given by equation (87) for r = I.

and rr = ¢ for 0&lt;x&lt; h-m. They are

N=

= n® sin nw.

n=}

Nh=0o 2

SE ry© 3 sin nix,

Ln 2h

Now the éhange in water-content of layer (2) is

very small, and can be neglected. Therefore we can assume

that the quantity of water which leaves layer (1) per unit

time is the same as that which enters layer (3) per unit



71 oii.

of time. This leads to the equation:

ow
(—2) —- o (OV
0z ‘g=1 (=F rnin (82)

where or has an intermediate value between 2(
x

(w§ and wi'). This equation serves either as a check on

the results or as a means of determining to which of the

equations (91) and (91a) the pressure ws; is closer.

3.SettlementsandRatesof Settlements.

These can be determined by directly applying equations

(56) and (57). Let w. be the average between w! and

wi! and let 1' be the distance of the center of layer (2)

from the bottom of the deposit. Then, taking a constant,

we have
l l

ds - [opy a | 22. =C3 = g z + a ax =

at Jot ,0t

4 0% 2° % ot at)

Integrating, we will have for the rate of settlement,

n=00 rn®n®,
hs Nig, o nolqt) +

br e (142 sin ant cos = 1 )

5) en®n2,
ca 4h” (1-cosBT1) ALN (93)

The total settlement of the to

at any time t 1s:

n=co rn2ge

_ sh \ An [(1+2 sin BF sin BM1ocosBMit)qo407©
TT / Tn 2 2h 2h

n Zh —t(1-cosopl') (1-e 4 gad}
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In computing the values of ss and s from (93)

and (94) for very small values of t, two or more terms

should be considered. For large values of t, only one

term in the above series will give results accurate

snouch for any practical purpose.

4. Example. We will now lnvestigate the state

of stresses in a mud deposit with a total reduced thick-

ness of 25 me. and having within it a layer of less per-

meable material with a reduced thickness of 50 cm.

Such a large thickness for this layer is chosen in order

to give an idea of the discrepancies in the values of

A_ as computed from equations (89) and (90).

The characteristic constants of the materials

are (1)

Layers (1) and (3): ¥= 1.7, a = 0.00024, k = 0.815

Laver (2) Y= 1.9, a.= 0.00050, k.= 0.20

Take a = a, = 8.5

= x ve — Q ue 2
Therefore c¢ S 0,395, b To 0.001472,

and ec. = ¥1 = 200, b = = = 0,01118.

a4 ¥.C1

Phe reduced dimensions are

i = 1,200 cme, m = 1,250 cme axl h = 2,500 cme.

(1) ¢f. XK. Terzaghl, "Erdbaumechanik" Fig. 30, p.l71.
Also Principles of Soil liechanics, kngineering News-

Record, Nov. 26, 1925.
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It would take too much space tf we were to re-

produce here all the computations involved in the deter-

mination of the state of stress in each layer. There-

fore we will illustrate enly the steps in which some doubt

might arise in the interpretation of the equations.

(a). First Stage. There 1s nothing in particu-

lar to be said about the determination of p and w for

this stage. We first compute the values of the constants

A, B, C, D, E and F. Then the granular pressures are

determined from equations (83), (84) and (85) and the

hydrodynamic pressures from equations (83a), (84a) and

(858). The results of the computations are graphically

represented by Fig. 20.

(b). Second Stage. The values of Ans computed
(89)

from equations (88) ,and (90) for n=l, n=2 and n=3 are

Formula (88): A, = 2,820, Ag = practically zero

(89): A, = 2,825, Ag = O Ag = = 330

(90): A, = 2,930, Ap = 0, Ag = « 150.

This shows that, for n = 1, either formula (89) or (90)

may be used to compute A,, while for large values of n,

formula (89) should be used.

Determination of r: The average values between

Ge), v=o and ka(§5),; rec,’ for t,= 100, 500 and

a

1,000 years are, resvectively,

0.91, 0.68 and 0.46 om.2 /year.
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The value of r, (r,), which gives average val-

ues of x(SY) and x1 (57) _ _ closer to the
z=1l, =r, z2=1ly r=r,

above onesls r, = 2,600. These average values for the

above values of t are, respectively,

0.91+ , 0.71 and 0.42 cm.°/year.

The second method gives 8 value for r,; of about

2000+.

We will therefore take r,=2,300. This value is

not too large because part of the influence exerted by the

more impermeable laver is already included in the values

of A

The results of computations are shown graphically

in Fig. 20 for t=0, 100, 500 and 1,000 years.
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VI. PROBLEM 4. (Consolidation of Mud Deposits by

Dralnage.

l. General. We have seen how slow 1s the process

of consolidation of mud deposits (or of fine-grained

materials) when under the influence of the own weight of

the material. This 1s doe to the extremely low value of

the coefficient of permeability of fine-gralned soils.

It 1s evident that in order to effectively drain a mud

deposit, we must have at least one layer of coarser mater-

jal (like sand) within the deposit. If, in the mud de-

posit discussed in Problem III, the interposed layer had

heen composed of a coarser material like sand, the hydro-

dynamic pressure, at the bottom end top of the layer,

would be the same because of the extremely high value of

the coefficient of permeabllity of sand compared with that

of mad or clay. Hence, when a layer of very permeable

material (which we may call sand) comes between the layers

of mud. , this layer can be éntirely disregarded in the com=-

putation of the stresses, using as reduced dimension: , that

of the deposit without the sand layer.

2.Determination of Stresses. Consider now a

mud deposit of total reduced thickness h, interposed by a

sand layer whose center lies at a distance (reduced) 1

from the bottom surface which we assume horizontal and im-

permeable.
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Let us now suppose that a pipe 1s driven into the

deposit to reach the layer of sand and that the water 1s

discharged at the top surface of the deposit. Under theses

conditions, the pressure in the water at the section z=l

1s hydrostatic, 1.e., the hydrodynamic pressure 1s zero.

LetT=O correspond to the Instant at which drainage be-

gins. This instant 1s a short time after the pipe has

been driven, to account for the rapid change in the hydro-

dynamic pressure in the sand layer 1ltself.

The boundary conditions are (Fig. 21):

‘en
,

ow

3, =O for =
A

= Q,

w=0 forz=1,

vw=0 forz=h,and

w= f(z) forT= 0.

Fig.21

We will need to conslder only the case in which

the deposit is in its second stage of consolidation. The

effect of drainage at a particular location of the devosit

1s effective over a considerable distance from it on ac-

count of the high value of the coefficient of permeability

of the sand. unless the sand layer is discontinuous.

For T = 0, and for any value of t, the pressure

distribution is given by equation (38) or
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nw
— Xw= Den T sin 33

n=,3,--- .C nswd,
where T = e ZN=

(95)

(06)

and a, 1s given by equation (39)

T 1s not a function of T, because T refers to

the time before drainage has started.

Let pi, W3,and Panbe the granular and hydro-

dynamic pressures at the portion of the deposit below

and above the sand layer, respectively (See Fig. 21).

Let also __cn2yse .

a. T= a_.8e ih?
Ko (97)

then sy for7=0, w= 2 K sin 2CZ-"n Zh
(05a)

Ve have now to -olve two differential equations, name-

lv:

dW, 08OW _ Ww
2+ © 0x2 (58)

ang

dwg - , O%W
 a =o 2

(a) Solution of equation (99): This equation is

{99)

S11D=~

jected to the following boundary conditions:

and

Wg = 0 for x =0

We = 0 for x= h = 1

We = WwW = f(x), forT= 0 and

0%-Ehoe1

(100)

(101)

(102)
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The particular solutions of (99) are, as before,

“a AB

We = © CAST sini x (103)

and Wg = o~CART COSA X (104)

Now the particular solution (103) will satisfy both (100)

and (101), for all values of T, provided that we take

A=DT
wr) m=1, 2

 ~-
J). ese

Hence the general solution of (99) is
m=oo - C mene :

We = &gt; o (h=-1)% mT x
e fm sin h-1

(105)

R Wwe have that,for T = 0,

&gt; Kn sin ed x = f(x),
h=1,3,--

m- 0

D mmo = &gt; nnRy sin gan k K, sin oh
m= n=1,3,--

Therefore

X (106)

h-1

J %s sin SEX sin
4 n=i3,--

= 2

R,=73
mm

hoix 4 X (107)

Integrating, we get

(h=1)% &gt; m sin 2% cos mT cos gm §108)Kn —— — nema TO —

(32) ® - (2X ) 2
nis. (Zp)® = (BL

Therefore Mm=co

wo = 21 | m sin Z© cos mm cos gpl
2 = h=1)? Kp —————— =»

(3R)® = (ILy® |
zl ne=15- Zh =r)

fF o- Sener .

le (h=17 sin 2 x| (109)

and Pa = 1X = Ww, 11098.)
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(b). Solution of equation (98): The solution

has to hold for h-=1 £ x  h. Let (Fig. 22)

-hen

 Vv
-

Ra b'¢ - h + 1

OW, - 0 Bw

oY ¢ oy=

or X = 7 21 = 1

(08a)

The boundary conditions are:

wo, =0 for vy = 0

2 = 0 for y=1 or w;=0
vy

for y=21

(110)

(111)

w,= (vy), for =0 and

Eq. 22. o= wv £ 1.

This latter condition reduces to

and

N OW

9.(y) = SK, sin Z=(y+h-1) for O%y=l,
n=z1,3.-- &lt;h

¢=ly) = SX sin 27 (tr+1-y) for 12y22l.
N=,3..

tlhe particular solution (103):

(112)

“CARY
Ww. = © ¢ sinAy

will satisfy both (110) and (111), if we set

A= oo a
oT m 1,2.3

Hence the general solution of (98a) is:

m=oo - cm®=n®
41%

&gt; Se sin 0 y
m 21

n=|

ihenY = 0, wy; = ¢(y) and therefore

(113)
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L

S = a K sin BW(y+h-1)} sin mn y dy +
m 1 1 2h 21

n=l3-21
f nw -3 Ey sin =p (hd y) sin

1 h=43,

Integrating we shall have:

mi «+ gy.
57 J 4

= 57

Sy © T= x m sin 25 cos yy 1
n er eel tr: oro A come&gt; mn, 2 n

nz\i3,-- (=) - (=)

Sy, being zero for even values of ma.

Hence

4w

Ww, = 72

&lt; Ba’nu cm n

N K_ m sin —2 cos a 1 212 T.
/ / (Mry=. NW, =2 e

m=i3.- naj. 1 ) (5)

« gin MU
21 y

(114)

{115)

It is more convenient to have our equations referred to

a single origin of coordinates. Take this as the bottom

surface and let z be the distance of any section from

this surface.

LHP h.a A"a

x = hez for lz £n,

v - 7 = Por O £2 oo £1.

And therefore
w

_ 2m. k m sin i cos mT COS el

+ (h-1) (20) = _ (Ble
Mazi, N=)3,-- 2h h-1

cm2y 8 t

Th=17% mm -

sin = (h=-2) (116)

for 1 &lt;= z £ h, and
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— 1 Te

_ 4 sin I cos BY 1 ~grh
nefds&gt; Dx Remieefl Sar

mes hese (D2 - (B®

3in oul57 1-2) (117)

Por O Sz=.1.

In both Cases: Piyz = ¥(h-2z) = Wiyge

3. Sand Layer at the Bottom of the Deposit.

In case the layer of sand 1s located immediately above the

bottom impermeable surface, the pressure distribution

will be the same as that given by eauation (116) by

setting 1 = 0, It 1s:
Mm=00

cm=n 2

3 Kk, I sin = cos mn “he rt
I ne - 4 me

Me) n={,3,---

Ar

« 3in LL= (h=-z) (118)

and p = ¥ (h-z) - w, the solution now holding for

0 y = he.

4. Settlements and Rates of Settlement.

The effect of drainage on the settlements and rates of

settlement of the ton surface of the deposit can be

found by applying equations (56) and (57) to the above

equations.

We have

ds ! OW W
— 1 0

—— we a a| ST d 2 a Soo dz (119)
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oWy ow
Substituting the values of “s== and 5x= from (116) and

(117) and taking &amp; constant during integrations, we get

cm2n2
ds — 2k m2 sin nr cos El = T
57 5 | XK, 2 Zn o 41 =&gt; 9) BL (Bys

ms=l| 3, ns h,3.-. 1 7)

i
4k m2 sin 25 cos &amp;¥ 1 .cmBu?

ey K 2h yetor &gt; 'n Eane(h-1)%"(120)

m=13,.- n=43,.- hoi) ~{z5)

as the rate of settlement of the top surface of the de-

posit. The total settlement of the top surface at any

timeT , due to drainage alone, is:

I -
nw nw cm®en2

2] 88 gy=88 x 1p cos Hp “118°C
ag Rl HEL mye (Le

0 mzt.3,.~ Nzt3, 7) %)

4a sin 33 nq cm®2q 2
—_— =5 cos = 1 - 3

72 (n-1) Ky — 2 Bh ~ (1.4 (h=1)2"
(oye o (Ry? ) (121)

m=(3..- nsid.-- h-1 } ( on)

Equations (120) and (121) refer to the case in which the

laver of sand 1s located at a distance 1 from the bottom

anirface.

For the case of the sand layer located at the

bottom surface. we have from equation (120) by setting

1 ®= 0 in the second term of the right hand member,

ni cmv? |

ds _ 16k &gt; &gt; m2 gin = = RZ!dr ~ h Xn Tones ©

| m=13,- n=13--

Placing 1 = 0 in the second term of the right hand member
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of equation (121) we get

16 a n nn cm=2 =

Ls &gt; Dx,en5 (1-e B7 5
M=,3.. h=13.. 4mB3-~-n=

(123)

These twp Jast equations give the rates of set-

tlement and total settlement of the top surface of the

deposit at any time,T «

It should be noticed that the total settlement

given by equation (121) and (123) 1s that due to drain-

age alone. Therefore, if the total settlement from the

beginning of the secpnd stage, to a timel=T,, is de-

sired, we will have to add to the above equations, a

constant term giving the total settlement at a time

t=t, corresponding to T= 0.

(5). Example. We will now determine the stress

distribution and settlements of the mud deposit dis-

cussed in ProblemI,¥%for t = 500 and t = 1,000 years.

Two cases will be considered: that in which the sand

laver is located at the center of the deposit. and that

in which it is located at the bottom.

The constants are:

3
&gt; = 3,395, a = 0,00024, h = 2,500 en.

-

r= = 1.250 cm.

and 1 = 0.

(a). Sand Layer at Middle of Deposit. The results

of computations are as follows:



Initial State: t = 500 years

Va lues 0f w fo Tr (9%m2)
4
h T= 50 | T= 100 T= 500

") 1,370 1,060 27

1/4 950 750 58

3/8 514 105 37

5/8 193 04

3/4 266 91

Initial state: t=1,000 years

Va lu© s  of w for (97tm?)

T= BO T= 100 I T= 500

700 540 30

485 380 35

260 210 2%

JE rx

136 4

JD
oD
2



The rates of settlement and total settlements are;

ds
=: in |

cme/Vre'

3 in m.

Initial state: t = 500 years

+=10 T=50 T=100 T=500

5.83 2.65 1.43 0.12

0.69 2.14 3.09 5.50

Initial state t = 1,000 years.

T=10 | T=50  T=100 | T=500

2.98 1.35 0.73 0.0%

0.35 1.09 1.57 2.81

pe
J
»



(b). Sand Layer at the Bottom of the Deposit:

The hydrodynamic pressures are:

Initial state: t=500 vears

2
h

values of w for (fem?)

 T= 50 | T= 100 I T= 500

Ny 501 230 54

Initial state: tt = 1,000 years

_ values of w for (7m?)

T= 50 yy T= 100 [t= 500

258 168 17

A

1

da

2
-d

1

373

3136

5:3

90

“30

1 70

»

oy,©2
ay

ir

5

145

503

2H

296

 Zz 319

240

 2

1D

17

JL
&amp;))



The rates of settlement and total settlements are:

ds
&lt;= in cm. /year

S in ne.

Initial state; t=500 yrs.

TT =10 I=50 —=100 =500

4.26 2.02 1.53 0.14

0.52 1.69! 2.59 5.21

Initia} state: t=1000 yrs.

T=10 =50 =100 | T=500

2.18 1.03 0.79 0.0%

0.27 | 0.86 1.32 2.66

 20
~3
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These results are plotted in Figs. (23), (24),

(25), and (26). From them we learn of how much more rap-

1d is the process of consolidation due to drainage then

that due to the own weight of the material. Consider,

for instance, the deposit whose initial state (T= 0)

corresponds to t = 500 years, After 500 years the total

settlements for the two cases considered are 5.50 m. and

5.21 m. while the total settlement due to the own weight

of the material for the same period of time, (t = 500

to t = 1,000 years) is 3.03 m.(Problem I). This differ-

ence 1s not very large, but if we compare the rates

of settlement due to drainage with those due to the own

weight of the material (Problem I), we wlll notice a very

large difference.
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