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ABSTRACT

We study pseudo-polynomial time algorithms for the fundamental 0-

1 Knapsack problem. Recent research interest has focused on its fine-

grained complexity with respect to the number of items 𝑛 and the

maximum item weight 𝑤max. Under (min, +)-convolution hypoth-

esis, 0-1 Knapsack does not have𝑂 ((𝑛+𝑤max)2−𝛿 ) time algorithms

(Cygan-Mucha-Węgrzycki-Włodarczyk 2017 andKünnemann-Paturi-

Schneider 2017). On the upper bound side, currently the fastest

algorithm runs in 𝑂 (𝑛 +𝑤12/5
max
) time (Chen, Lian, Mao, and Zhang

2023), improving the earlier 𝑂 (𝑛 +𝑤3

max
)-time algorithm by Polak,

Rohwedder, and Węgrzycki (2021).

In this paper, we close this gap between the upper bound and

the conditional lower bound (up to subpolynomial factors): The

0-1 Knapsack problem has a deterministic algorithm in 𝑂 (𝑛 +
𝑤2

max
log

4𝑤max) time.

Our algorithm combines and extends several recent structural

results and algorithmic techniques from the literature on knapsack-

type problems:

(1) We generalize the “fine-grained proximity” technique of

Chen, Lian, Mao, and Zhang (2023) derived from the additive-

combinatorial results of Bringmann and Wellnitz (2021) on dense

subset sums. This allows us to bound the support size of the useful

partial solutions in the dynamic program.

(2) To exploit the small support size, our main technical com-

ponent is a vast extension of the “witness propagation” method,

originally designed by Deng,Mao, and Zhong (2023) for speeding up

dynamic programming in the easier unbounded knapsack settings.

To extend this approach to our 0-1 setting, we use a novel pruning

method, as well as the two-level color-coding of Bringmann (2017)

and the SMAWK algorithm on tall matrices.
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1 INTRODUCTION

In the 0-1 Knapsack problem, we are given a knapsack capacity

𝑡 ∈ Z+ and𝑛 items (𝑤1, 𝑝1), . . . , (𝑤𝑛, 𝑝𝑛), where𝑤𝑖 , 𝑝𝑖 ∈ Z+ denote
the weight and profit of the 𝑖-th item, and we want to select a

subset 𝑋 ⊆ [𝑛] of items satisfying the capacity constraint𝑊 (𝑋 ) :=∑
𝑖∈𝑋 𝑤𝑖 ≤ 𝑡 , while maximizing the total profit 𝑃 (𝑋 ) := ∑

𝑖∈𝑋 𝑝𝑖 .

Knapsack is a fundamental problem in computer science.
1
It is

among Karp’s 21 NP-complete problems [43], and the fastest known

algorithm runs in𝑂 (2𝑛/2𝑛) time [39, 57]. However, when the input

integers are small, it is more preferable to use pseudopolynomial

time algorithms that have polynomial time dependence on both 𝑛

and the input integers. Our work focuses on this pseudopolynomial

regime. A well-known example of pseudopolynomial algorithms

is the textbook 𝑂 (𝑛𝑡)-time Dynamic Programming (DP) algorithm

for Knapsack, given by Bellmann [7] in 1957. Finding faster pseu-

dopolynomial algorithms for Knapsack became an important topic

in combinatorial optimization and operation research; see the book

of Kellerer, Pferschy, and Pisinger [45] for a nice summary of the

results known by the beginning of this century. In the last few

years, research on Knapsack (and the easier Subset Sum problem,

which is the special case of Knapsack where 𝑝𝑖 = 𝑤𝑖 ) has been

revived by recent developments in fine-grained complexity (e.g,

[2, 6, 10, 29, 48, 49]) and integer programming (e.g., [33, 54]), and the

central question is to understand the best possible time complexities

for solving these knapsack-type problems.

Cygan, Mucha, Węgrzycki, and Włodarczyk [29] and Künne-

mann, Paturi, and Schneider [49] showed that the 𝑂 (𝑛𝑡) time com-

plexity for Knapsack is essentially optimal (in the regime of 𝑡 =

Θ(𝑛)) under the (min, +)-convolution hypothesis. To cope with this
hardness result, recent interest has focused on parameterizing the

running time in terms of 𝑛 and the maximum item weight 𝑤max (or

the maximum item profit 𝑝max), instead of the knapsack capacity

𝑡 . This would be useful when the item weights are much smaller

than the capacity, and results along this line would offer us a more

fine-grained understanding of knapsack-type problems. This pa-

rameterization is also natural from the perspective of integer linear

programming (e.g., [33]): when formulating Knapsack as an integer

linear program, the maximum item weight 𝑤max corresponds to

the standard parameter Δ, maximum absolute value in the input

matrix.

1
In this paper we use the term Knapsack to refer to 0-1 Knapsack (as opposed to other

variants such as Unbounded Knapsack and Bounded Knapsack).
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However, despite extensive research on 0-1 Knapsack along

these lines, our understanding about the dependence on 𝑤max is

still incomplete. Known fine-grained lower bounds only ruled out

(𝑛 + 𝑤max)2−𝛿 algorithms for Knapsack [29, 49] (for 𝛿 > 0). In

comparison, Bellman’s dynamic programming algorithm only runs

in 𝑂 (𝑛𝑡) ≤ 𝑂 (𝑛2𝑤max) time. Several papers obtained the bound

𝑂 (𝑛𝑤2

max
) via various methods [5, 6, 33, 44].

2
Polak, Rohwedder,

and Węgrzycki [54] carefully combined the proximity technique of

Eisenbrand and Weismantel [33] from integer programming with

the concave (max, +)-convolution algorithm ([44] or [3]), and ob-

tained an 𝑂 (𝑛 +𝑤3

max
) algorithm for Knapsack. These algorithms

have cubic dependence on (𝑛 + 𝑤max). Finally, the very recent

work by Chen, Lian, Mao, and Zhang [25] broke this cubic bar-

rier with an 𝑂 (𝑛 + 𝑤12/5
max
)-time algorithm, which was based on

additive-combinatorial results of Bringmann and Wellnitz [16].
3

None of the above algorithms match the (𝑛 +𝑤max)2−𝑜 (1) con-
ditional lower bound. The following question has been asked by

[12, 25, 54]:

Main question: Can 0-1 Knapsack be solved in 𝑂 (𝑛 +𝑤2

max
) time?

We remark that this 𝑂 (𝑛 +𝑤2

max
) running time is known to be

achievable for the easier Unbounded Knapsack problem (where each

item has infinitely many copies available) [5, 21, 31], matching the

(𝑛 +𝑤max)2−𝛿 conditional lower bound for Unbounded Knapsack

[29, 49]. As argued by [54], the 0-1 setting appears to be much more

difficult, and most of the techniques for Unbounded Knapsack do

not appear to apply to the 0-1 setting.

1.1 Our Contribution

In this paper, we affirmatively resolve this main question, closing

the gap between the previous 𝑂 (𝑛 +𝑤12/5
max
) upper bound [25] and

the quadratic conditional lower bound [29, 49].

Theorem 1.1. The 0-1 Knapsack problem can be solved by a deter-

ministic algorithm with time complexity 𝑂 (𝑛 +𝑤2

max
log

4𝑤max).

In our paper we only describe an algorithm that outputs the total

profit of the optimal knapsack solution. It can be modified to output

an actual solution using the standard technique of back-pointers,

without affecting the asymptotic time complexity.

By a reduction described in [54, Section 4], we have the following

corollary which parameterizes the running time by the largest item

profit 𝑝max instead of𝑤max.

Corollary 1.2. The 0-1 Knapsack problem can be solved by a deter-

ministic algorithm with time complexity 𝑂 (𝑛 + 𝑝2
max

log
4 𝑝max).

Independent works. Independently and concurrently to our work,

Bringmann [11] also obtained an 𝑂 (𝑛 +𝑤2

max
) time algorithm for

0-1 Knapsack (more generally, Bounded Knapsack).

Chronological remarks. The current paper is a substantially up-

dated version of an earlier manuscript (posted to arXiv in July 2023).

This earlier manuscript contained much weaker results, and is ob-

solete now. Our current paper incorporates part of the techniques

2
We use𝑂 (𝑓 ) to denote𝑂 (𝑓 poly log 𝑓 ) .
3
An earlier work by Bringmann and Cassis [13] obtained an algorithm in

𝑂 (𝑛𝑤max𝑝
2/3
max
) time, which was the first algorithm for 0-1 Knapsack with subcu-

bic dependence on (𝑛 + 𝑤max + 𝑝max ) .

from our earlier manuscript, and also builds on the very recent

work by Chen, Lian, Mao, and Zhang [25] (posted to arXiv in July

2023).

1.2 Technical Overview

Our Knapsack algorithm combines and extends several recent struc-

tural results and algorithmic techniques from the literature on

knapsack-type problems. In particular, we crucially build on the

techniques from two previous papers by Chen, Lian, Mao, and

Zhang [25], and by Deng, Mao, and Zhong [31]. Now we review

the techniques in prior works and describe the ideas behind our

improvement.

Fine-grained proximity based on additive combinatorics. There

was a long line of work in the 80’s and 90’s on designing Sub-

set Sum algorithms using techniques from additive combinatorics

[17–19, 34, 35, 37], and more recently these techniques have been

revived and applied to not only Subset Sum [16, 48, 52, 54] but also

the more difficult Knapsack problem [25, 30]. Ultimately, these algo-

rithms directly or indirectly rely on the following powerful result

in additive combinatorics, pioneered by Freiman [36] and Sárközy

[56] and tightened by Szemerédi and Vu [58], and more recently

strengthened by Conlon, Fox, and Pham [27]: Let S(𝐴) = {∑𝑏∈𝐵 𝑏 :

𝐵 ⊆ 𝐴} denote the subset sums of 𝐴. Then, if set 𝐴 ⊆ [𝑁 ] has size
|𝐴| ≫

√
𝑁 , then S(𝐴) contains an arithmetic progression of length

𝑁 (and this arithmetic progression is homogeneous, meaning that

each element is an integer multiple of the common difference).

Another technique used in recent knapsack algorithms is the

proximity technique from the integer programming literature, see

e.g., [28, 33]. When specialized to the Knapsack case (1-dimensional

integer linear program), a proximity result refers to a distance

upper bound between the optimal knapsack solution and the greedy

solution (sort items in decreasing order of efficiencies 𝑝𝑖/𝑤𝑖 , and

take the maximal prefix without violating the capacity constraint).

Polak, Rohwedder, and Węgrzycki [54] exploited the fact that these

two solutions differ by at most 𝑂 (𝑤max) items, which allowed

them to shrink the size of the dynamic programming (DP) table

from 𝑡 down to 𝑂 (𝑤2

max
) (by performing DP on top of the greedy

solution to find an optimal exchange solution). They achieved𝑂 (𝑛+
𝑤3

max
) time by batch-updating items of the same weight 𝑤 using

the SMAWK algorithm [3] (see also [5, 44]).

The very recent paper by Chen, Lian, Mao, and Zhang [25] devel-

oped a new “fine-grained proximity” technique that combines these

two lines of approach. They used the additive-combinatorial results

of Bringmann and Wellnitz [16] (which built on works of Sárközy

[55, 56] and Galil and Margalit [37]) to obtain several powerful

structural lemmas involving the support size of two multisets 𝐴, 𝐵

(with integers from [𝑤max]) that avoid non-zero common subset

sums, and these structural lemmas were translated into proximity

results using exchange arguments. These fine-grained proximity

results of [25] are more powerful than the earlier proximity bounds

used in [33, 54]; the following lemma from [25] is one example:

given a Knapsack instance, we can partition the item weights into

two subsets [𝑤max] =W1⊎W2, such that |W1 | ≤ 𝑂 (√𝑤max), and
the differing items between the greedy solution and the optimal

solution whose weights belong toW2 can only have total weight

𝑂 (𝑤3/2
max
). This lemma immediately led to a simple 𝑂 (𝑛 + 𝑤5/2

max
)
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algorithm [25]. A bottleneck step in this algorithm is to use DP to

compute partial solutions consisting of items with weights from

W1: they need to perform the batch DP update (based on SMAWK)

|W1 | times, and the size of the DP table is still𝑂 (𝑤2

max
) as in [54], so

the total time for this step is𝑂 (𝑤2.5
max
). To overcome this bottleneck,

[25] usedmore refined proximity results based on themultiplicity of

item weights, and obtained an improved running time𝑂 (𝑛 +𝑤2.4
max
).

DP strategy based on multiplicity. In our work, we completely

overcome this bottleneck of [25]: we can implement the DP for

items with weights fromW1 in only 𝑂 (𝑤2

max
) time. This is the

main technical part of our paper. (The other bottleneck in [25]’s

simple 𝑂 (𝑛 + 𝑤5/2
max
) time algorithm is to deal with items whose

weights come fromW2, but this part can be improved more easily

by dividing into 𝑂 (log𝑤max) partitions with smoothly changing

parameters. See Section 3.1.) Now we give an overview of our

improvement.

We rely on another additive-combinatorial lemma (Lemma 3.5)

which can be derived from the results of Bringmann and Wellnitz

[16]; it is analogous and inspired by the fine-grained proximity

results of [25], but is not directly comparable to theirs. It implies

the following proximity result: Let 𝐷 denote the set of differing

items between the greedy solution and the optimal solution. Then,

for any 𝑟 ≥ 1, there can be at most 𝑂 (
√︁
𝑤max/𝑟 ) many weights

𝑤 ∈ [𝑤max] such that𝐷 contains at least 𝑟 items of weight𝑤 (i.e.,𝑤

has multiplicity ≥ 𝑟 in the item weights of 𝐷). In other words, if we

figuratively think of the histogram of the weights of items in𝐷 , then

the number of columns in the histogram with height ≥ 𝑟 should be

at most 𝑂 (
√︁
𝑤max/𝑟 ). As a corollary, the total area below height 𝑟

in this histogram is at most

∑𝑟
𝑟 ′=1𝑂 (

√︁
𝑤max/𝑟 ′) = 𝑂 (√𝑟𝑤max).

Our DP algorithm exploits the aforementioned structure of 𝐷 as

follows. We perform the DP in 𝑂 (log𝑤max) phases, where in the

𝑗-th phase ( 𝑗 ≥ 1) we update the current DP table with all items

of rank in [2𝑗−1, 2𝑗 ). Here, the rank of a weight-𝑤 item is defined

as the rank of its profit among all weight-𝑤 items (an item with

rank 1 is the most profitable item among its weight class). By the

end of phase 𝑗 , our DP table should contain the partial solution

consisting of all items in 𝐷 of rank < 2
𝑗
, i.e., the partial solution

that corresponds to the part below height 2
𝑗
in the histogram

representing 𝐷 . As we mentioned earlier, this partial solution only

has𝑂 (
√︁
2
𝑗𝑤max) items, and hence𝑂 (𝑤max ·

√︁
2
𝑗𝑤max) total weight,

so the size of the DP table at the end of phase 𝑗 only needs to be

𝐿𝑗 := 𝑂 (𝑤max ·
√︁
2
𝑗𝑤max).

To efficiently implement the DP in each phase, we need to cru-

cially exploit the aforementioned fact that the number of weights

𝑤 ∈ W1 with multiplicity ≥ 2
𝑗−1 − 1 in 𝐷 is at most 𝑏 𝑗 :=

𝑂 (
√︁
𝑤max/2𝑗 ). (Note that in phase 𝑗 = 1 this threshold is 2

𝑗−1−1 =
0, and the upper bound 𝑏1 = 𝑂 (√𝑤max) simply follows from

|W1 | = 𝑂 (√𝑤max) guaranteed by [25]’s partition.) Our goal is

to perform each phase of the DP updates in 𝑂 (𝑏 𝑗 · 𝐿𝑗 ) = 𝑂 (𝑤2

max
)

time. To achieve this goal, we surprisingly adapt a recent technique

introduced in the much easier unbounded knapsack settings by

Deng, Mao, and Zhong [31], called “witness propagation”. In the

following we briefly review this technique.

Transfer of techniques from the unbounded setting. The unbounded

knapsack/subset sum problems, where each item has infinitely

many copies available, are usually easier for two main reasons: (1)

Since there are infinite supply of items, we do not need to keep

track of which items are used so far in the DP. (2) There are more

powerful structural results available, in particular the Carathéodory-

type theorems [21, 31, 32, 46] which show the existence of optimal

solution vectors with only logarithmic support size.

Deng, Mao, Zhong [31] recently exploited the small support size

to design near-optimal algorithms for several unbounded-knapsack-

type problems, based on their key new technique termed “witness

propagation”. The idea is that, since the optimal solutions must have

small support size (but possibly with high multiplicity), one can

first prepare the “base solutions”, which are partial solutions with

small support and multiplicity at most one. Then, they gradually

build full solutions from these base solutions, by “propagating the

witnesses” (that is, increase the multiplicity of some item with non-

zero multiplicity). The time complexity of this approach is low since

the support sizes are small.

Now we come back to our DP framework for 0-1 knapsack de-

scribed earlier, and observe that we are in a very similar situation

to the unbounded knapsack setting of [31]. In our case, if we in-

tuitively view our DP as gradually growing the columns of the

histogram representing 𝐷 , then after phase 𝑗 − 1, there can be

only ≤ 𝑏 𝑗 columns in the histogram that may continue growing in

subsequent phases. This means the “active support” of our partial

solutions has size ≤ 𝑏 𝑗 : when we extend a partial solution in the DP

table during phase 𝑗 , we only need to consider items from 𝑏 𝑗 many

weight classes, namely those weights that have “full multiplicity”

in this partial solution by the end of phase 𝑗 − 1. (If there are more

than 𝑏 𝑗 many such weights, then the proximity result implies that

this partial solution cannot be extended to the optimal solution,

and we can safely discard it.) This gives us hope of implementing

the DP of each phase in 𝑂 (𝑏 𝑗 · 𝐿𝑗 ) = 𝑂 (𝑤2

max
) using the witness

propagation idea from [31].

However, we still need to overcome several difficulties that arise

from the huge difference between 0-1 setting and unbounded setting.

In particular, the convenient property (1) for unbounded knapsack

mentioned above no longer applies to the 0-1 setting. In the follow-

ing we briefly explain how we implement the witness propagation

idea in the 0-1 setting.

Witness propagation in the 0-1 setting. In each phase 𝑗 of our DP

framework, we are faced with the following task (from now on we

drop the subscript 𝑗 and denote 𝑏 = 𝑏 𝑗 , 𝐿 = 𝐿𝑗 ): we are given a DP

table 𝑞 [ ] of size 𝐿, in which each entry 𝑞 [𝑧] is associated with a

set 𝑆 [𝑧] ⊆ W1 of size |𝑆 [𝑧] | ≤ 𝑏 (this is the “active support” of

the partial solution corresponding to 𝑞 [𝑧]). For each entry 𝑞 [𝑧], we
would like to extend this partial solution by adding items whose

weights come from 𝑆 [𝑧]. More specifically, letting 𝑥𝑤 ≥ 0 denote

the number of weight-𝑤 items to add (where𝑤 ∈ 𝑆 [𝑧]), we should
update the final DP table entry 𝑞′ [𝑧 +∑𝑤∈𝑆 [𝑧 ] 𝑥𝑤𝑤] with the new

profit 𝑞 [𝑧] +∑𝑤∈𝑆 [𝑧 ] 𝑄𝑤 (𝑥𝑤). Here𝑄𝑤 (𝑥) is the total profit of the
top 𝑥 remaining items of weight𝑤 (note that𝑄𝑤 (·) is concave). Our
goal is to compute the final DP table 𝑞′ [ ] (which should capture the
optimal ways to extend from 𝑞 [ ]) in 𝑂 (𝑏𝐿) time. (Note that in the

idealistic setting where all 𝑆 [𝑧] are contained in a common superset
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𝑆 of size |𝑆 | ≤ 𝑏, this task can be solved via standard applications

of SMAWK in 𝑂 (𝑏𝐿) total time in the same way as [5, 44, 54]. The

key challenge in our setting is that, although each 𝑆 [𝑧] has size
≤ 𝑏, their union over all 𝑧 may have much more than 𝑏 types of

weights.)

We first focus on an interesting basic case where each set 𝑆 [𝑧]
has size at most 𝑏 = 1. In this case, for each DP table entry 𝑞 [𝑧]
with 𝑆 [𝑧] = {𝑤} we would like to perform the DP update 𝑞′ [𝑖] ←
max(𝑞′ [𝑖], 𝑞[𝑧] + 𝑄𝑤 ((𝑖 − 𝑧)/𝑤)) for all 𝑖 such that 𝑖 ≥ 𝑧 and

𝑖 ≡ 𝑧 (mod 𝑤). Similarly to [5, 44, 54], we try to use the SMAWK

algorithm to perform these DP updates. However, since these sets

𝑆 [𝑧] may contain different types of weights 𝑤 , we need to deal

with them separately. This means that for each weight 𝑤 , there

may be only sublinearly many indices 𝑧 with 𝑆 [𝑧] = {𝑤}. Hence,
in order to save time, we need to do SMAWK for each 𝑤 in time

complexity sublinear in the entire DP table size 𝐿, and only near-

linear in 𝑛𝑤 =
��{𝑧 : 𝑆 [𝑧] = {𝑤}

}��
. So we need to let SMAWK return

a compact output representation, which partitions the DP table into

𝑛𝑤 segments, or more precisely, 𝑛𝑤 arithmetic progressions (APs)

of difference 𝑤 , where each 𝑧 ∈
{
𝑧 : 𝑆 [𝑧] = {𝑤}

}
is associated

with an AP containing the indices 𝑖 for which 𝑞′ [𝑖] is maximized

by 𝑞 [𝑧] +𝑄𝑤 ((𝑖 −𝑧)/𝑤). This is an very interesting scenario where

we actually need to use the tall-matrix version of SMAWK.

Then, we need to update these APs returned by these SMAWK

algorithm invocations (for various different weights𝑤 ) to the DP

table 𝑞′ [ ]. That is, for each 𝑖 , we would like to pick the AP that

contains 𝑖 and maximizes the profit 𝑞 [𝑧] +𝑄𝑤 ((𝑖−𝑧)/𝑤) mentioned

earlier. Naively going through each element in every AP would

take time proportional to the total length of these APs. This would

be too slow: although the total number of APs is only 𝑂 (𝐿), their
total length could still be very large. To solve this issue, we design

a novel skipping technique, so that we can ignore suffixes of some

of the APs, while still ensuring that we do not lose the optimal

solution, so that the total time is reduced to 𝑂 (𝐿).
We first explain the key insight behind our skipping technique,

through the following example. Suppose index 𝑖 is contained in

two APs computed by SMAWK for two different weights𝑤1 ≠ 𝑤2,

denoted by 𝐼1 = {𝑧1 + 𝑥𝑤1 : ℓ1 ≤ 𝑥 ≤ 𝑟1} and 𝐼2 = {𝑧2 + 𝑥𝑤2 :

ℓ2 ≤ 𝑥 ≤ 𝑟2}. The final DP table entry 𝑞′ [𝑖] is updated using

max{𝑞 [𝑧1] +𝑄𝑤1
((𝑖 − 𝑧1)/𝑤1), 𝑞[𝑧2] +𝑄𝑤2

((𝑖 − 𝑧2)/𝑤2)}, and we

suppose the first option is larger. Then, we claim that all elements

in 𝐼2∩ (𝑖, +∞) are useless. To see this, consider any 𝑖∗ ∈ 𝐼2∩ (𝑖, +∞),
and denote 𝑖∗ = 𝑧2+𝑥∗𝑤2, 𝑖 = 𝑧2+𝑥𝑤2 (𝑥

∗ > 𝑥 ), so 𝑖∗ ∈ 𝐼2 represents
a solution of total weight 𝑖∗ and profit 𝑞 [𝑧2] +𝑄𝑤2

(𝑥∗). However,
we can show this solution represented by 𝑖∗ ∈ 𝐼2 is dominated by

another solution defined as follows: add (𝑥∗ − 𝑥) many weight-𝑤2

items to the solution represented by 𝑖 ∈ 𝐼1, achieving the same

total weight 𝑖 + (𝑥∗ − 𝑥)𝑤2 = 𝑖∗ but higher (or equal) total profit
𝑞 [𝑧1]+𝑄𝑤1

((𝑖−𝑧1)/𝑤1)+𝑄𝑤2
(𝑥∗−𝑥) ≥ 𝑞 [𝑧2]+𝑄𝑤2

(𝑥)+𝑄𝑤2
(𝑥∗−

𝑥) ≥ 𝑞 [𝑧2] + 𝑄𝑤2
(𝑥∗) (recall 𝑄𝑤2

(·) is concave). Hence, we can

safely ignore the solution represented by 𝑖∗ ∈ 𝐼2 without affecting
optimality.

4,5

4
We need more tie-breaking arguments to deal with the possibility that 𝑖∗ ∈ 𝐼2 is not
strictly dominated (i.e., they have equal profit). We omit them in this overview.

5
The solution we showed that dominates the solution represented by 𝑖∗ ∈ 𝐼2 is not
represented by any AP element, as it uses items of both types of weights 𝑤1 and 𝑤2 .

It is possible that 𝑖∗ ∈ 𝐼2 is still the best weight-𝑖∗ solution among those represented

The key insight above can be naturally used to design the follow-

ing skipping technique: We initialize an empty bucket 𝐵 [𝑖] for each
index 𝑖 in the DP table. For each of the 𝑂 (𝐿) many APs returned

by SMAWK, we insert the (description of the) AP into the bucket

indexed by the beginning element of this AP. Then we iterate over

the buckets 𝐵 [𝑖] in increasing order of 𝑖 . For each 𝐵 [𝑖], we pick the

AP from this bucket that maximizes the profit value at 𝑖 , and update

the profit value 𝑞′ [𝑖] accordingly. Then, we copy this maximizing

AP from bucket 𝐵 [𝑖] to the bucket indexed by the successor of 𝑖 in

this AP; the other non-maximizing APs in bucket 𝐵 [𝑖] will not be
copied. In this way, the total time is𝑂 (𝐿), since we start with𝑂 (𝐿)
APs and each bucket only copies one AP to another bucket.

Now we briefly describe how to generalize from the |𝑆 [𝑧] | ≤ 1

case to |𝑆 [𝑧] | ≤ 𝑏 for larger 𝑏. First we make an ideal assumption

that we can partition all possible weights into𝑏 parts,W1 =W (1)⊎
W (2)⊎· · ·⊎W (𝑏 )

, so that |𝑆 [𝑧]∩W (𝑘 ) | ≤ 1 for all 𝑧 and 𝑘 . In this

ideal case, we can iteratively perform 𝑏 rounds, where in the 𝑘-th

round we restrict the sets 𝑆 [𝑧] to 𝑆 [𝑧] ∩W (𝑘 )
, and perform the DP

updates using the𝑏 = 1 case algorithm described above in𝑂 (𝐿) time.

(Note that after each round we should modify the active supports

𝑆 [𝑧] accordingly: if 𝑞′ [𝑖] is updated using 𝑞 [𝑧] +𝑄𝑤 ((𝑖 −𝑧)/𝑤) for
some𝑤 in this round, then the new 𝑆 [𝑖] for the next round should

be the old 𝑆 [𝑧].) Hence the total time is 𝑂 (𝑏𝐿). In the non-ideal

case, we use the two-level color-coding technique originally used

by Bringmann [10] in his subset sum algorithm. This technique

gives us some properties that are weaker than the ideal assumption

but still allow us to apply basically the same idea as the ideal case.

The correctness of our algorithm described above (namely that

our skipping technique does not lose the optimal knapsack solution)

is intuitive and is based on exchange arguments, but it takes some

notations and definitions to formally write down the proof. In the

main text of the paper, we formalize the intuition above, and abstract

out a core problem called HintedKnapsackExtend
+
(Problem 1)

that captures the scenario described above in a more modular way,

and prove some helper lemmas for Problem 1 (for example, to allow

us to decompose an instance with large 𝑏 to multiple instances with

smaller 𝑏).

1.3 Further Related Works

In contrast to our 0-1 setting, the unbounded setting (where each

item has infinitely many copies available) has also been widely

studied in the literature of Knapsack and Subset Sum algorithms,

e.g., [5, 21, 31, 40, 41, 46, 50].

For the easier Subset Sum problem, an early result for Subset Sum

in terms of 𝑛 and𝑤max is Pisinger’s deterministic 𝑂 (𝑛𝑤max)-time

algorithm for Subset Sum [53]. This is not completely subsumed

by Bringmann’s 𝑂 (𝑛 + 𝑡) ≤ 𝑂 (𝑛𝑤max) time algorithm [10], due to

the extra log factors and randomization in the latter result. More

recently, Polak, Rohwedder, and Węgrzycki [54] observed that an

𝑂 (𝑛 +𝑤2

max
) time algorithm directly follows from combining their

proximity technique with Bringmann’s 𝑂 (𝑛 + 𝑡) Subset Sum al-

gorithm [10]. They improved it to 𝑂 (𝑛 + 𝑤5/3
max
) time, by further

by the AP elements (which use only one type of weight), but it is fine to omit it since

eventually it is not useful for the optimal knapsack solution.
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incorporating additive combinatorial techniques by [16]. Very re-

cently, [25] obtained 𝑂 (𝑛 +𝑤3/2
max
)-time algorithm for Subset Sum,

using their fine-grained proximity technique based on additive

combinatorial results of [16].

Recently there has also been a lot of work on approximation

algorithms for Knapsack and Subset Sum (and Partition) [15, 20,

24, 30, 42, 51, 52]. Prior to this work, the fastest known (1 − 𝜀)
approximation algorithm for 0-1 Knapsack had time complexity

𝑂 (𝑛+1/𝜀2.2) [30]. Notably, [30] also used the additive combinatorial

results of [16] to design knapsack approximation algorithms; this

was the first application of additive combinatorial techniques to

knapsack algorithms. In August 2023, Mao [51] and Chen, Lian,

Mao, and Zhang [24] independently improved the time complexity

to𝑂 (𝑛+1/𝜀2), which is nearly tight under the (min, +)-convolution
hypothesis [29, 49].

1.4 Open Problems

There are several interesting open questions.

• In the regime where 𝑛 is much smaller than 𝑤max, can we

get faster algorithms for 0-1 Knapsack? The independent

work of He and Xu [38] achieved 𝑂 (𝑛1.5𝑤max) time. By

combining with our result, one can also bound the run-

ning time as𝑂 (𝑛+min{𝑛1.5𝑤max,𝑤
2

max
}) ≤ 𝑂 (𝑛𝑤4/3

max
). Can

we achieve 𝑂 (𝑛𝑤max) time (which would also match the

(𝑛+𝑤max)2−𝑜 (1) conditional lower bound based on (min, +)-
convolution hypothesis [29, 49])?

• Can we solve 0-1 Knapsack in𝑂 ((𝑛+𝑤max +𝑝max)2−𝛿 ) time

for any constant 𝛿 > 0? Bringmann and Cassis [12] gave

algorithms of such running time for the easier unbounded

knapsack problem. They also showed that such algorithms

require computing bounded-difference (min, +)-convolution
[22, 26].

• Can we solve 0-1 Knapsack in 𝑂 (𝑛 + 𝑤2

max
/2Ω (
√
log𝑤max ) )

time, matching the best known running time for (min, +)-
convolution [9, 23, 59]? Algorithms with such running time

are known for the easier unbounded knapsack problem [5,

21, 31].

• Can Subset Sum be solved in𝑂 (𝑛+𝑤max) time? This question

has been repeatedly asked in the literature [2, 4, 12, 16, 54].

Currently the best result is the very recent𝑂 (𝑛+𝑤3/2
max
)-time

randomized algorithm by Chen, Lian, Mao, and Zhang [25].

• Can our techniques be useful for other related problems,

such as scheduling [1, 14, 47] or low-dimensional integer

linear proramming [33]?

1.5 Paper Organization

Section 2 contains definitions, notations, and some lemmas from

previous works, which are essential for understanding Section 3.

Then, in Section 3 we describe our algorithm for 0-1 Knapsack. A

key subroutine of our algorithm is deferred to Section 4.

2 PRELIMINARIES

2.1 Notations and Definitions

We use 𝑂 (𝑓 ) to denote 𝑂 (𝑓 poly log 𝑓 ). Let [𝑁 ] = {1, 2, . . . , 𝑁 }.

Multisets and subset sums. For an integer multiset 𝑋 , and an

integer 𝑥 , we use 𝜇𝑋 (𝑥) to denote the multiplicity of 𝑥 in 𝑋 . For

a multiset 𝑋 , the support of 𝑋 is the set of elements it contains,

denoted as supp(𝑋 ) := {𝑥 : 𝜇𝑋 (𝑥) ≥ 1}. We say a multiset 𝑋 is

supported on [𝑁 ] if supp(𝑋 ) ⊆ [𝑁 ]. For multisets 𝐴, 𝐵 we say 𝐴 is

a subset of 𝐵 (and write 𝐴 ⊆ 𝐵) if for all 𝑎 ∈ 𝐴, 𝜇𝐵 (𝑎) ≥ 𝜇𝐴 (𝑎). We

write 𝐴 ⊎ 𝐵 as the union of 𝐴 and 𝐵 by adding multiplicities.

The size of a multiset 𝑋 is |𝑋 | = ∑
𝑥∈Z 𝜇𝑋 (𝑥), and the sum of

elements in 𝑋 is Σ(𝑋 ) = ∑
𝑥∈Z 𝑥 · 𝜇𝑋 (𝑥). The set of all subset sums

of 𝑋 is S(𝑋 ) := {Σ(𝑌 ) : 𝑌 ⊆ 𝑋 }. We also define S∗ (𝑋 ) := {Σ(𝑌 ) :
𝑌 ⊆ 𝑋,𝑌 ≠ ∅} to be the set of subset sums formed by non-empty

subsets of 𝑋 .

The 𝑟 -support of a multiset 𝑋 is the set of items in 𝑋 with multi-

plicity at least 𝑟 , denoted as supp𝑟 (𝑋 ) := {𝑥 : 𝜇𝑋 (𝑥) ≥ 𝑟 }.

Vectors and arrays. We will work with vectors in ZI where I is

some index set. We sometimes denote vectors in boldface, e.g., 𝒙 ∈
ZI , and use non-boldface with subscript to denote its coordinate,

e.g., 𝑥𝑖 ∈ Z (for 𝑖 ∈ I). Let supp(𝒙) := {𝑖 ∈ I : 𝑥𝑖 ≠ 0}, ∥𝒙 ∥0 :=

|supp(𝒙) |, and ∥𝒙 ∥1 :=
∑
𝑖∈I |𝑥𝑖 |. Let 0 denote the zero vector. For

𝑖 ∈ I, let 𝒆𝑖 denote the unit vector with 𝑖-th coordinate being 1 and

the remaining coordinates being 0.

We use 𝐴[ℓ . . 𝑟 ] to denote an array indexed by integers 𝑖 ∈
{ℓ, ℓ + 1, . . . , 𝑟 }. The 𝑖-th entry of the array is 𝐴[𝑖]. Sometimes we

consider arrays of vectors, denoted by 𝒙 [ℓ . . 𝑟 ], in which every

entry 𝒙 [𝑖] ∈ ZI is a vector, and we use 𝑥 [𝑖] 𝑗 to denote the 𝑗-th

coordinate of the vector 𝒙 [𝑖] (for 𝑗 ∈ I).

0-1 Knapsack. In the 0-1 Knapsack problem with 𝑛 input items

(𝑤1, 𝑝1), . . . , (𝑤𝑛, 𝑝𝑛) (where weights 𝑤𝑖 ≤ 𝑤max and profits 𝑝𝑖 ≤
𝑝max are positive integers) and knapsack capacity 𝑡 , an optimal

knapsack solution is an item subset 𝑋 ⊆ [𝑛] that maximizes the

total profit

𝑃 (𝑋 ) :=
∑︁
𝑖∈𝑋

𝑝𝑖 , (1)

subject to the capacity constraint

𝑊 (𝑋 ) :=
∑︁
𝑖∈𝑋

𝑤𝑖 ≤ 𝑡 . (2)

We will frequently use the following notations:

• LetW = supp({𝑤1,𝑤2, . . . ,𝑤𝑛}) ⊆ [𝑤max] be the set of

input item weights.

• ForW′ ⊆ W, let 𝐼W′ := {𝑖 ∈ [𝑛] : 𝑤𝑖 ∈ W′} denote the
set of items with weights inW′.
• For 𝐼 = {𝑖1, . . . , 𝑖 |𝐼 | } ⊆ [𝑛], let weights(𝐼 ) = {𝑤𝑖1 , . . . ,𝑤𝑖 |𝐼 | }
be the multiset of weights of items in 𝐼 .

We assume𝑤max ≤ 𝑡 by ignoring items that are too large to fit

into the knapsack. We assume𝑤1 + · · · +𝑤𝑛 > 𝑡 , since otherwise

the trivial optimal solution is to include all the items. We assume

𝑤max ≤ 𝑛2, because when𝑤max > 𝑛2 it is faster to run the textbook

dynamic programming algorithm [7] in 𝑂 (𝑛𝑡) ≤ 𝑂 (𝑛 · 𝑛𝑤max) ≤
𝑂 (𝑤2

max
) time. We use the standard word-RAM computation model

with Θ(log𝑛)-bit words, and we assume 𝑝𝑖 ≤ 𝑝max fits into a single

machine word.
6

6
If this assumption is dropped, we simply pay an extra 𝑂 (log𝑝max ) factor in the

running time for adding integers of magnitude (𝑛𝑝max )𝑂 (1) .
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The efficiency of item 𝑖 is 𝑝𝑖/𝑤𝑖 . We always assume the input

items have distinct efficiencies 𝑝𝑖/𝑤𝑖 . This assumption is justified

by the following tie-breaking lemma proved in the full version.

Lemma 2.1 (Break ties). Given a Knapsack instance 𝐼 , in𝑂 (𝑛) time

we can deterministically reduce it to another Knapsack instance 𝐼 ′

with 𝑛,𝑤max and 𝑡 unchanged, and 𝑝′
max
≤ poly(𝑝max,𝑤max, 𝑛),

such that the items in 𝐼 ′ have distinct efficiencies and distinct profits.

2.2 Greedy Solution and Proximity

Greedy solution. Sort the 𝑛 input items in decreasing order of

efficiency,

𝑝1/𝑤1 > 𝑝2/𝑤2 > · · · > 𝑝𝑛/𝑤𝑛 . (3)

The greedy solution (or maximal prefix solution) is the item subset

𝐺 = {1, 2, . . . , 𝑖∗}, where 𝑖∗ = max{𝑖∗ : 𝑤1+𝑤2+· · ·+𝑤𝑖∗ ≤ 𝑡}, (4)
i.e., we greedily take the most efficient items one by one, until the

next item cannot be added without exceeding the knapsack capacity.

Since the input instance is nontrivial, we have 1 ≤ 𝑖∗ ≤ 𝑛 − 1, and
𝑊 (𝐺) ∈ (𝑡 −𝑤max, 𝑡]. Denote the remaining items as𝐺 = [𝑛] \𝐺 =

{𝑖∗ + 1, 𝑖∗ + 2, . . . , 𝑛}.

Remark 2.2. As noted by [54], the greedy solution𝐺 can be found

in deterministic 𝑂 (𝑛) time using linear-time median finding algo-

rithms [8] (if we only need the set 𝐺 rather than the order of their

elements), as opposed to a straightforward 𝑂 (𝑛 log𝑛)-time sorting

according to Eq. (3).

Every item subset 𝑋 ⊆ [𝑛] can be written as 𝑋 = (𝐺 \ 𝐵) ∪ 𝐴
where 𝐴 ⊆ 𝐺 and 𝐵 ⊆ 𝐺 . Finding an optimal knapsack solution 𝑋

is equivalent to finding an optimal exchange solution, defined as a

pair of subsets (𝐴, 𝐵) (𝐴 ⊆ 𝐺, 𝐵 ⊆ 𝐺) that maximizes 𝑃 (𝐴) − 𝑃 (𝐵)
subject to𝑊 (𝐴) −𝑊 (𝐵) ≤ 𝑡 −𝑊 (𝐺). Since any optimal knapsack

solution 𝑋 satisfies𝑊 (𝑋 ) ∈ (𝑡 −𝑤max, 𝑡], we have
0 ≤𝑊 (𝐴) −𝑊 (𝐵) =𝑊 (𝑋 ) −𝑊 (𝐺) < 𝑤max (5)

for any optimal exchange solution (𝐴, 𝐵).

Proximity. For any optimal exchange solution (𝐴, 𝐵), a simple

exchange argument shows that the weights of items in 𝐴 and in 𝐵

do not share any non-zero common subset sum, i.e.,

S∗ (weights(𝐴)) ∩ S∗ (weights(𝐵)) = ∅. (6)

Indeed, for an optimal knapsack solution 𝑋 = (𝐺 \ 𝐵) ∪𝐴, if non-
empty item sets 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵 have the same total weight,

then (𝑋 ∪ 𝐵′) \ 𝐴′ is a set of items with the same total weight

as 𝑋 but strictly higher total profit (since efficiencies of items in

𝐵′ ⊆ 𝐺 are strictly higher than efficiencies of items in 𝐴′ ⊆ 𝐺 due

to Eqs. (3) and (4)), contradicting the optimality of 𝑋 .

The following proximity bound Eq. (7) is consequence of Eq. (5)

and Eq. (6), and was used in previous works such as [25, 54] (see

e.g., [54, Lemma 2.1] for a short proof): for any optimal exchange

solution (𝐴, 𝐵), it holds that
|𝐴| + |𝐵 | ≤ 2𝑤max . (7)

In other words, any optimal knapsack solution 𝑋 differs from the

greedy solution 𝐺 by at most 2𝑤max items. The bound of Eq. (7)

immediately implies

𝑊 (𝐴) +𝑊 (𝐵) ≤ 2𝑤2

max
(8)

for any optimal exchange solution (𝐴, 𝐵).

Weight classes and ranks. We rank items of the same weight𝑤

according to their profits, as follows:

Definition 2.3 (Rank of items). For each 𝑤 ∈ W, consider the

weight-𝑤 items outside the greedy solution,𝐺∩𝐼{𝑤} = {𝑖1, . . . , 𝑖𝑚},
where 𝑝𝑖1 > 𝑝𝑖2 > · · · > 𝑝𝑖𝑚 . We define rank(𝑖1) = 1, rank(𝑖2) =
2, . . . , rank(𝑖𝑚) =𝑚. Similarly, consider the weight-𝑤 items in the

greedy solution, 𝐺 ∩ 𝐼{𝑤} = {𝑖′
1
, 𝑖′
2
, . . . , 𝑖′

𝑚′ }, where 𝑝𝑖′
1

< 𝑝𝑖′
2

<

· · · < 𝑝𝑖′
𝑚′
. We define rank(𝑖′

1
) = 1, rank(𝑖′

2
) = 2, . . . , rank(𝑖′

𝑚′ ) =
𝑚′. In this way, every item 𝑖 ∈ [𝑛] receives a rank(𝑖).

Then, a standard observation is that an optimal solution should

always take a prefix from each weight class:

Lemma 2.4 (Prefix property). Consider any optimal exchange solu-

tion (𝐴, 𝐵). If 𝑖 ∈ 𝐴, then {𝑖′ ∈ 𝐺 ∩ 𝐼𝑤𝑖
: rank(𝑖′) ≤ rank(𝑖)} ⊆ 𝐴,

and rank(𝑖) ≤ 2𝑤max.

Similarly, if 𝑖 ∈ 𝐵, then {𝑖′ ∈ 𝐺 ∩ 𝐼𝑤𝑖
: rank(𝑖′) ≤ rank(𝑖)} ⊆ 𝐵,

and rank(𝑖) ≤ 2𝑤max.

We defer the proof to the full version.

We remark that all items 𝑖 ∈ [𝑛] with rank(𝑖) ≤ 2𝑤max can be

deterministically selected and sorted in𝑂 (𝑛 +𝑤2

max
log𝑤max) time

using linear-time median selection algorithms [8].

2.3 Dynamic Programming and Partial

Solutions

Our algorithm uses dynamic programming (DP) to find an optimal

exchange solution (𝐴, 𝐵) (𝐴 ⊆ 𝐺, 𝐵 ⊆ 𝐺). Now we introduce a few

terminologies that will help us describe our DP algorithm later.

Definition 2.5 (Partial solutions and 𝐼 -optimality). A partial ex-

change solution (or simply a partial solution) refers to a pair of item

subsets (𝐴′, 𝐵′) where 𝐴′ ⊆ 𝐺, 𝐵′ ⊆ 𝐺 . The weight and profit of

the partial solution (𝐴′, 𝐵′) are defined as 𝑊 (𝐴′) −𝑊 (𝐵′) and
𝑃 (𝐴′) − 𝑃 (𝐵′) respectively.

Let 𝐼 ⊆ [𝑛] be an item subset. We say the partial solution (𝐴′, 𝐵′)
is supported on 𝐼 if 𝐴′ ∪𝐵′ ⊆ 𝐼 . We say (𝐴′, 𝐵′) is 𝐼 -optimal, if there

exists an optimal exchange solution (𝐴, 𝐵) such that𝐴′ = 𝐴∩ 𝐼 and
𝐵′ = 𝐵 ∩ 𝐼 .

Definition 2.6 (DP tables). ADP table of size𝐿 is an array𝑞 [−𝐿 . . 𝐿]
with entries 𝑞 [𝑧] ∈ Z∪ {−∞} for 𝑧 ∈ {−𝐿, . . . , 𝐿}.7 (By convention,
assume 𝑞 [𝑧] = −∞ for |𝑧 | > 𝐿.) We omit its index range and simply

write 𝑞 [ ] whenever its size is clear from context or is unimportant.

For an item subset 𝐼 ⊆ [𝑛], we say 𝑞 [ ] is an 𝐼 -valid DP table,

if for every entry 𝑞 [𝑧] ≠ −∞ there exists a corresponding partial

solution (𝐴′, 𝐵′) supported on 𝐼 with weight𝑊 (𝐴′) −𝑊 (𝐵′) = 𝑧

and profit 𝑃 (𝐴′) − 𝑃 (𝐵′) = 𝑞 [𝑧]. An 𝐼 -valid DP table 𝑞 [ ] is said to

be 𝐼 -optimal if it contains some entry 𝑞 [𝑧] that corresponds to an

𝐼 -optimal partial solution.

For example, the trivial DP table with 𝑞 [0] = 0, 𝑞[𝑧] = −∞(𝑧 ≠

0) is ∅-optimal (it contains the empty partial solution (∅,∅)). In
dynamic programming we gradually extend this ∅-optimal DP

table to an [𝑛]-optimal DP table which should contain an optimal

exchange solution. As a basic example, given an 𝐼 -optimal DP table

7
For brevity we call it size-𝐿 despite its actual length being (2𝐿 + 1) .
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𝑞 [−𝐿 . . 𝐿], for 𝑖 ∉ 𝐼 we can obtain an (𝐼 ∪ {𝑖})-optimal DP table

𝑞′ [−𝐿 −𝑤𝑖 . . 𝐿 +𝑤𝑖 ] in𝑂 (𝐿 +𝑤𝑖 ) time via the update rule 𝑞′ [𝑧] ←
max{𝑞 [𝑧], 𝑞[𝑧 ∓𝑤𝑖 ] ± 𝑝𝑖 } (where ± is + if 𝑖 ∈ 𝐺 , or − if 𝑖 ∈ 𝐺).

Previous dynamic programming algorithms for 0-1 Knapsack

[5, 25, 44, 54] used the following standard lemma based on the

SMAWK algorithm [3]:

Lemma 2.7 (Batch-updating items of the same weight). Let 𝐼 ⊆ [𝑛]
and 𝐽 ⊆ 𝐺 be disjoint item subsets, and all 𝑗 ∈ 𝐽 have the same weight

𝑤 𝑗 = 𝑤 . Suppose an upper bound 𝐿′ is known such that all (𝐼 ∪ 𝐽 )-
optimal partial solutions (𝐴′, 𝐵′) satisfy |𝑊 (𝐴′) −𝑊 (𝐵′) | ≤ 𝐿′.

Then, given an 𝐼 -optimal DP table 𝑞 [−𝐿 . . 𝐿], we can compute an

(𝐼∪𝐽 )-optimal DP table𝑞′ [−𝐿′ . . 𝐿′] in𝑂 (𝐿+𝐿′+|𝐽 |+𝑤max log𝑤max)
time.

The same statement holds if the assumption 𝐽 ⊆ 𝐺 is replaced by

𝐽 ⊆ 𝐺 .

We defer a proof sketch to the full version.

3 ALGORITHM FOR 0-1 KNAPSACK

In this section we present our algorithm for 0-1 Knapsack (The-

orem 1.1). In Section 3.1, we recall a crucial weight partitioning

lemma from [25] based on fine-grained proximity, which natu-

rally gives rise to a two-stage algorithm framework. The second

stage can be easily performed using previous techniques [25, 54]

and is described in Section 3.1, while the first stage contains our

main technical challenge and is described in Sections 3.2, 3.3 and 4:

In Section 3.2, we give a rank partitioning lemma based on an-

other proximity result. Given this lemma, in Section 3.3 we abstract

out a core subproblem called HintedKnapsackExtend
+
, and de-

scribe how to implement the first stage of our algorithm assuming

this core subproblem can be solved efficiently. Our algorithm for

HintedKnapsackExtend
+
will be described in Section 4.

3.1 Weight Partitioning and the Second-Stage

Algorithm

Chen, Lian,Mao, and Zhang [25] recently used additive-combinatorial

results of Bringmann and Wellnitz [16] to obtain several powerful

structural lemmas involving the support size of two integer multi-

sets 𝐴, 𝐵 avoiding non-zero common subset sums. These structural

results (called “fine-grained proximity” in [25]) allowed them to

obtain faster knapsack algorithms than the earlier works [33, 54]

based on ℓ1-proximity (Eq. (7)) only. Here we recall one of the key

lemmas from [25].
8

Lemma 3.1 ([25, Lemma 3.1], paraphrased). There is a constant 𝐶

such that the following holds. Suppose two multisets 𝐴, 𝐵 supported

on [𝑁 ] satisfy
| supp(𝐴) | ≥ 𝐶

√︁
𝑁 log𝑁

and

Σ(𝐵) ≥
𝐶𝑁 2

√︁
log𝑁

| supp(𝐴) | .

Then, S∗ (𝐴) ∩ S∗ (𝐵) ≠ ∅.

8
The original statement of [25, Lemma 3.1] had a worse log𝑁 factor than the

√︁
log𝑁

factor in Lemma 3.1. By inspection of their proof, they actually proved the stronger

version stated here in Lemma 3.1.

Using this fine-grained proximity result, Chen, Lian, Mao, and

Zhang obtained a weight partitioning lemma [25, Lemma 4.1],

which is a key ingredient in their algorithm. Our algorithm also

crucially relies on this weight partitioning lemma in a similar way,

but for our purpose we need to extend it from the two-partition

version in [25] to 𝑂 (log𝑤max)-partition.9
Recall the following notations from Section 2.1:𝑊 (𝐼 ) = ∑

𝑖∈𝐼 𝑤𝑖 ,

W = supp({𝑤1,𝑤2, . . . ,𝑤𝑛}) ⊆ [𝑤max], and 𝐼W′ := {𝑖 ∈ [𝑛] :
𝑤𝑖 ∈ W′}.

Lemma 3.2 (Extension of [25, Lemma 4.1]). The setW of input

item weights can be partitioned in 𝑂 (𝑛 +𝑤max log𝑤max) time into

W = W1 ⊎ W2 ⊎ · · · ⊎ W𝑠 , where 𝑠 < log
2
(√𝑤max), with the

following property:

DenoteW≤ 𝑗 =W1 ∪ · · · ∪W𝑗 andW> 𝑗 =W\W≤ 𝑗 . For every
optimal exchange solution (𝐴, 𝐵) and every 1 ≤ 𝑗 ≤ 𝑠 ,

• |W𝑗 | ≤ 4𝐶
√︁
𝑤max log𝑤max · 2𝑗 , and

• 𝑊 (𝐴∩𝐼W> 𝑗
) ≤ 4𝐶𝑤

3/2
max
/2𝑗 and𝑊 (𝐵∩𝐼W> 𝑗

) ≤ 4𝐶𝑤
3/2
max
/2𝑗 ,

where 𝐶 is the universal constant from Lemma 3.1.

The proof of Lemma 3.2 is similar to that of the original two-

partition version [25, Lemma 4.1], and is deferred to full version.

Given this weight partitioningW = W1 ⊎ W2 ⊎ · · · ⊎ W𝑠 ,

our overall algorithm runs in two stages: in the first stage, we

only consider items whose weights belong toW1, and efficiently

compute an 𝐼W1
-optimal DP table (see Definition 2.6) by exploiting

the small size of W1. Then, the second stage of the algorithm

updates the DP table using the remaining items 𝐼W2
⊎ · · · ⊎ 𝐼W𝑠

.

The second stage follows the same idea as [25] of using Lemma 3.2

to trade off the size of the DP table and the number of linear-time

scans needed to update the DP table. In contrast, the first stage is

more technically challenging; we summarize it in the following

lemma, and prove it in subsequent sections:

Lemma 3.3 (The first stage). LetW1 ⊆ [𝑤max] from Lemma 3.2

be given. Then we can compute an 𝐼W1
-optimal DP table in 𝑂 (𝑛 +

𝑤2

max
log

4𝑤max) time.

The overall 𝑂 (𝑛 +𝑤2

max
log

4𝑤max) algorithm for 0-1 Knapsack

then follows from Lemma 3.3 and Lemma 3.2, using arguments sim-

ilar to [25]. In the full version, we include the proof of Theorem 1.1

assuming Lemma 3.3.

3.2 Rank Partitioning

GivenW1 ⊆ [𝑤max] of size |W1 | ≤ 𝑂 (
√︁
𝑤max log𝑤max) from

Lemma 3.2, we partition the items whose weights belong toW1

into dyadic groups based on their ranks (Definition 2.3), as follows:

Definition 3.4 (Rank partitioning). Let 𝑘 = ⌈log
2
(2𝑤max +1)⌉. For

each 1 ≤ 𝑗 ≤ 𝑘 , define item subsets

𝐽+𝑗 := {𝑖 ∈ 𝐺 ∩ 𝐼W1
: 2

𝑗−1 ≤ rank(𝑖) ≤ 2
𝑗 − 1},

and

𝐽 −𝑗 := {𝑖 ∈ 𝐺 ∩ 𝐼W1
: 2

𝑗−1 ≤ rank(𝑖) ≤ 2
𝑗 − 1}.

Note that 𝐽+
1
⊎ 𝐽 −

1
⊎ · · · ⊎ 𝐽+

𝑘
⊎ 𝐽 −

𝑘
form a partition of {𝑖 ∈ 𝐼W1

:

rank(𝑖) ≤ 2
𝑘 − 1}.

9
We remark that [25, Lemma 5.3] also gave a three-partition extension of this lemma,

but in a different way than what we need here.
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Denote

𝐽+≤ 𝑗 = 𝐽+
1
∪ · · · ∪ 𝐽+𝑗 ,

and

𝐽 −≤ 𝑗 = 𝐽 −
1
∪ · · · ∪ 𝐽 −𝑗 .

Note the the rank partitioning defined in Definition 3.4 can be

computed in 𝑂 (𝑛 +𝑤max log𝑤max) time.

Our rank partitioning is motivated by the following additive-

combinatorial Lemma 3.5, which can be derived from the results of

Bringmann and Wellnitz [16]. Recall the 𝑟 -support supp𝑟 (𝑋 ) of a
multiset 𝑋 is the set of items in 𝑋 with multiplicity at least 𝑟 .

Lemma 3.5. There is a constant 𝐶 such that the following holds.

Suppose two multisets 𝐴, 𝐵 supported on [𝑁 ] satisfy

| supp𝑟 (𝐴) | ≥ 𝐶
√︁
𝑁 /𝑟 ·

√︁
log(2𝑁 ) (9)

for some 𝑟 ≥ 1, and

Σ(𝐵) ≥ Σ(𝐴) − 𝑁 . (10)

Then, S∗ (𝐴) ∩ S∗ (𝐵) ≠ ∅.

Lemma 3.5 is partly inspired by [25, Lemma 3.2] which general-

ized their fine-grained proximity result (Lemma 3.1) from supp(𝐴)
to supp𝑟 (𝐴).10 We include a proof of Lemma 3.5 in the full version.

Using Lemma 3.5, we obtain the following structural lemma for

the rank partitioning. Recall the definition of 𝐼W1
-optimal partial

solutions from Definition 2.5.

Lemma 3.6 (Rank partitioning structural lemma). For a universal

constant 𝐶 , the partition 𝐽+
1
⊎ 𝐽 −

1
⊎ · · · ⊎ 𝐽+

𝑘
⊎ 𝐽 −

𝑘
⊆ 𝐼W1

from

Definition 3.4 satisfies the following properties for every 𝐼W1
-optimal

partial solution (𝐴′, 𝐵′):
(1) 𝐴′ ⊆ 𝐽+≤𝑘 and 𝐵′ ⊆ 𝐽 −≤𝑘 .
(2) For all 1 ≤ 𝑗 ≤ 𝑘 , |𝐴′ ∩ 𝐽+≤ 𝑗 | ≤ 𝑚 𝑗 and |𝐵′ ∩ 𝐽 −≤ 𝑗 | ≤ 𝑚 𝑗 ,

where

𝑚 𝑗 := 𝐶 · 2𝑗/2 ·
√︁
𝑤max log(2𝑤max). (11)

(3) For all 1 ≤ 𝑗 ≤ 𝑘 ,

|{𝑤 ∈ W1 : 𝐼{𝑤} ∩ 𝐽+𝑗−1 ⊆ 𝐴′ and 𝐼{𝑤} ∩ 𝐽+𝑗 ≠ ∅}| ≤ 𝑏 𝑗 ,

and similarly

|{𝑤 ∈ W1 : 𝐼{𝑤} ∩ 𝐽 −𝑗−1 ⊆ 𝐵′ and 𝐼{𝑤} ∩ 𝐽 −𝑗 ≠ ∅}| ≤ 𝑏 𝑗 ,

where

𝑏 𝑗 := 𝐶 · 2− 𝑗/2 ·
√︁
𝑤max log(2𝑤max), (12)

and 𝐽+
0
:= 𝐽 −

0
:= ∅.

We defer the proof of this lemma to the full version.

10
Their generalization of Lemma 3.1 is not applicable in our first-stage algorithm. Note

that Lemma 3.5 is incomparable to Lemma 3.1 even when 𝑟 = 1.

3.3 The First-Stage Algorithm via Hinted

Dynamic Programming

Based on our rank partitioning 𝐽+
1
⊎ 𝐽 −

1
⊎ · · · ⊎ 𝐽+

𝑘
⊎ 𝐽 −

𝑘
⊆ 𝐼W1

,

𝑘 = ⌈log
2
(2𝑤max + 1)⌉ (Definition 3.4) and its structural lemma

(Lemma 3.6), our first-stage algorithm uses dynamic programming

and runs in 𝑘 phases. At the beginning of the 𝑗-th phase (1 ≤ 𝑗 ≤ 𝑘),

we have a (𝐽+≤ 𝑗−1 ∪ 𝐽 −≤ 𝑗−1)-optimal DP table, and we first update

it with the “positive items” 𝐽+
𝑗
to obtain a (𝐽+≤ 𝑗 ∪ 𝐽 −≤ 𝑗−1)-optimal

DP table, and then update it with the “negative items” 𝐽 −
𝑗
to obtain

a (𝐽+≤ 𝑗 ∪ 𝐽 −≤ 𝑗 )-optimal DP table. We will adjust the size of the DP

table throughout the 𝑘 phases based on Item 2 of Lemma 3.6. This

is similar to the second-stage algorithm from Section 3.1, except

that in Section 3.1 the DP table is shrinking whereas here it will be

expanding.

To implement the DP efficiently, we crucially rely on Item 3 of

Lemma 3.6, which gives an upper bound on the “active support”

of the weights of items in every partial solution in the current DP

table. More specifically, consider an 𝐼W1
-optimal partial solution

(𝐴′, 𝐵′) and its restriction (𝐴′′, 𝐵′′) where 𝐴′′ = 𝐴′ ∩ 𝐽+≤ 𝑗−1, 𝐵
′′ =

𝐵′ ∩ 𝐽 −≤ 𝑗−1. Then Item 3 of Lemma 3.6 implies that the items in

𝐴′ \ 𝐴′′ (or 𝐵′ \ 𝐵′′) can only have at most 𝑏 𝑗 distinct weights.

This means that, for any partial solution (𝐴′′, 𝐵′′) in the DP table

at the end of phase 𝑗 − 1, in order to extend it to an 𝐼W1
-optimal

partial solution (𝐴′, 𝐵′) in future phases, we only need to update

it with items from these 𝑏 𝑗 weight classes determined by Item 3

of Lemma 3.6. This idea is called witness propagation, and was

originally introduced by Deng, Mao, and Zhong [31] in the context

of unbounded knapsack-type problems. Implementing this idea in

the more difficult 0-1 setting is a main technical contribution of

this paper.

In the rest of this section, we will introduce a few more defi-

nitions to help use formally describe our algorithm, and we will

abstract out a core subproblem called HintedKnapsackExtend
+

which captures the aforementioned idea of witness propagation.

Then we will show how to implement our first-stage algorithm

and prove Lemma 3.3, assuming HintedKnapsackExtend
+
can

be solved efficiently.

In the following definition, we augment each entry of the DP

table with hints, which contain the weight classes from which we

need to add items when we update this entry, as we just discussed.

Definition 3.7 (Hinted DP tables). A hinted DP table is a DP ta-

ble 𝑞 [ ] where each entry 𝑞 [𝑧] ≠ −∞ is annotated with two sets

𝑆+ [𝑧], 𝑆− [𝑧] ⊆ W1. We say the table has positive hint size 𝑏 if

|𝑆+ [𝑧] | ≤ 𝑏 for all 𝑧, and has negative hint size 𝑏 if |𝑆− [𝑧] | ≤ 𝑏 for

all 𝑧.

For an item subset 𝐽 ⊆ 𝐼W1
, we say a hinted DP table 𝑞 [ ] is

hinted-𝐽 -optimal, if 𝑞 [ ] is 𝐽 -valid (see Definition 2.6), and it has an

entry 𝑞 [𝑧] such that both of the following hold:

(1) There exists an 𝐼W1
-optimal partial solution (𝐴′, 𝐵′) such

that𝑊 (𝐴′ ∩ 𝐽 ) −𝑊 (𝐵′ ∩ 𝐽 ) = 𝑧 and 𝑃 (𝐴′ ∩ 𝐽 ) −𝑃 (𝐵′ ∩ 𝐽 ) =
𝑞 [𝑧].

(2) Every 𝐼W1
-optimal partial solution (𝐴′, 𝐵′) with𝑊 (𝐴′ ∩

𝐽 ) −𝑊 (𝐵′ ∩ 𝐽 ) = 𝑧 should satisfy 𝐴′ \ 𝐽 ⊆ 𝐼𝑆+ [𝑧 ] and
𝐵′ \ 𝐽 ⊆ 𝐼𝑆− [𝑧 ] .
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Note that if a hinted DP table is hinted-𝐽 -optimal, then in partic-

ular it is 𝐽 -optimal in the sense of Definition 2.6 (due to Item 1 of

Definition 3.7).

The following lemma summarizes each of the 𝑘 = ⌈log
2
(2𝑤max+

1)⌉ phases in our first-stage algorithm.

Lemma 3.8. Let 𝑘,𝑚 𝑗 , 𝑏 𝑗 be defined as in Lemma 3.6. Let 𝐿𝑗 :=

𝑚 𝑗 ·𝑤max. For every 1 ≤ 𝑗 ≤ 𝑘 , the following hold:

(1) Given a hinted-(𝐽+≤ 𝑗−1 ∪ 𝐽
−
≤ 𝑗−1)-optimal DP table of size 𝐿𝑗−1

with positive and negative hint size 𝑏 𝑗 , we can compute a

hinted-(𝐽+≤ 𝑗 ∪ 𝐽 −≤ 𝑗−1)-optimal DP table of size 𝐿𝑗 with pos-

itive hint size 𝑏 𝑗+1 and negative hint size 𝑏 𝑗 , in 𝑂 (𝐿𝑗𝑏 𝑗 ·
log

2 (𝐿𝑗𝑏 𝑗 ) + |𝐽+𝑗 |) time.

(2) Given a hinted-(𝐽+≤ 𝑗 ∪ 𝐽 −≤ 𝑗−1)-optimal DP table of size 𝐿𝑗

with positive hint size 𝑏 𝑗+1 and negative hint size 𝑏 𝑗 , we can
compute a hinted-(𝐽+≤ 𝑗 ∪ 𝐽

−
≤ 𝑗 )-optimal DP table of size 𝐿𝑗 with

positive and negative hint size 𝑏 𝑗+1, in 𝑂 (𝐿𝑗𝑏 𝑗 · log2 (𝐿𝑗𝑏 𝑗 ) +
|𝐽 −
𝑗
|) time.

Lemma 3.8 immediately implies our overall first-stage algorithm.

We defer the proof of Lemma 3.3 assuming Lemma 3.8 to the full

version.

It remains to prove Lemma 3.8. In the following, we will reduce

it to a core subproblem called HintedKnapsackExtend
+
, which

captures the task of updating a hinted size-𝐿 DP table with positive

hint size 𝑏 using “positive items” whose weights come from some

positive integer set𝑈 (here we can think of𝑈 =W1). Similarly to

the proof of the batch-update lemma (Lemma 2.7) based on SMAWK,

here we also use a function 𝑄𝑤 : Z≥0 → Z to represent the total

profit of taking the top-𝑥 items of weight𝑤 .

Problem 1 (HintedKnapsackExtend
+
). Let𝑈 ⊆ W1. For every

𝑤 ∈ 𝑈 , suppose𝑄𝑤 : Z≥0 → Z is a concave function with𝑄𝑤 (0) = 0

that can be evaluated in constant time. We are given a DP table

𝑞 [−𝐿 . . 𝐿] (where𝑞 [𝑖] ∈ Z∪{−∞}), annotated with 𝑆 [−𝐿 . . 𝐿] where
𝑆 [𝑖] ⊆ 𝑈 .

Consider the following optimization problem for each −𝐿 ≤ 𝑖 ≤ 𝐿:

find a solution vector 𝒙 [𝑖] ∈ Z𝑈≥0 that maximizes the total profit

𝑟 [𝑖] := 𝑞
[
𝑧 [𝑖]

]
+

∑︁
𝑤∈𝑈

𝑄𝑤 (𝑥 [𝑖]𝑤), (13)

where 𝑧 [𝑖] ∈ Z is uniquely determined by

𝑧 [𝑖] +
∑︁
𝑤∈𝑈

𝑤 · 𝑥 [𝑖]𝑤 = 𝑖 . (14)

The task is to solve this optimization problem for each −𝐿 ≤ 𝑖 ≤ 𝐿

with the following relaxation:

• If all maximizers (𝒙 [𝑖], 𝑧 [𝑖]) of Eq. (13) (subject to Eq. (14))
satisfy

supp(𝒙 [𝑖]) ⊆ 𝑆
[
𝑧 [𝑖]

]
, (15)

then we are required to correctly output a maximizer for 𝑖 .

• Otherwise, we are allowed to output a suboptimal solution for

𝑖 .

Remark 3.9. We give a few remarks to help get a better under-

standing of Problem 1:

(1) In Eq. (14), 𝑧 [𝑖] ≤ 𝑖 must hold, since 𝑤 ∈ 𝑈 ⊆ [𝑤max] is
always positive and 𝒙 [𝑖] is a non-negative vector.

(2) If we do not have the relaxation based on hints 𝑆 [𝑖], then
Problem 1 becomes a standard problem solvable in 𝑂 ( |𝑈 |𝐿)
time using SMAWK algorithm (basically, repeat the proof of

Lemma 2.7 for every𝑤 ∈ 𝑈 ; see also [5, 25, 44, 54]).

(3) Under this relaxation, without loss of generality, we can as-

sume the output of Problem 1 always satisfies supp(𝒙 [𝑖]) ⊆
𝑆
[
𝑧 [𝑖]

]
(Eq. (15)) for all −𝐿 ≤ 𝑖 ≤ 𝐿. (If we had to output

an 𝒙 [𝑖] that violates Eq. (15), then we must be in the “other-

wise” case for 𝑖 , and should be allowed to output anything).

In particular, if |𝑆 [𝑖] | ≤ 𝑏 for all −𝐿 ≤ 𝑖 ≤ 𝐿, then we can

assume the output 𝒙 [−𝐿 . . 𝐿] of Problem 1 has description

size 𝑂 (𝑏𝐿) words.
(4) Note that Problem 1 is different from (and easier than) the

task of maximizing Eq. (13) for every 𝑖 subject to Eq. (15).

The latter version would make a cleaner definition, but it is

a harder problem which we do not know how to solve.

The following Theorem 3.10 summarizes our algorithm for Prob-

lem 1, which will be given in Section 4.

Theorem3.10. HintedKnapsackExtend
+
(Problem 1) with |𝑆 [𝑖] | ≤

𝑏 for all−𝐿 ≤ 𝑖 ≤ 𝐿 can be solved deterministically in𝑂 (𝐿𝑏 log2 (𝐿𝑏))
time.

In the full version of the paper, we show how to prove Lemma 3.8

using Theorem 3.10.

4 ALGORITHM FOR

HintedKnapsackExtend
+

In this section we solve the HintedKnapsackExtend
+
problem

(Problem 1), proving Theorem 3.10. In Lemma 4.1, we solve the

special case where the hints are singleton sets. In the full version

of the paper, we provide several helper lemmas that allow us to

decompose an instance into multiple instances with smaller hint

sets, and then put the pieces together to solve the general case.

4.1 The Base Case with Singleton Hint Sets

The following lemma is the most interesting building block of our

algorithm for Problem 1.

Lemma 4.1. HintedKnapsackExtend
+
(Problem 1) with |𝑆 [𝑖] | ≤ 1

for all −𝐿 ≤ 𝑖 ≤ 𝐿 can be solved deterministically in 𝑂 (𝐿 log𝐿) time.

More precisely, the algorithm runs in 𝑂 (𝐿 + 𝐿1 log𝐿) time, where

𝐿1 = {−𝐿 ≤ 𝑖 ≤ 𝐿 : 𝑆 [𝑖] ≠ ∅}.
The pseudocode of our algorithm for Lemma 4.1 is given in Al-

gorithm 1. Here we first provide an overview. Algorithm 1 contains

two stages:

• In the first stage, we enumerate𝑤 ∈ [𝑤max] and 𝑐 (mod 𝑤),
and collect indices 𝑗 ≡ 𝑐 (mod 𝑤) such that𝑤 ∈ 𝑆 [ 𝑗]. Then
we try to extend from these collected indices 𝑗 by adding

integer multiples of𝑤 (which does not interfere with other

congruence classes modulo𝑤 ): using SMAWK algorithm [3],

for every 𝑖 ≡ 𝑐 (mod 𝑤), find 𝑗 among the collected indices

to maximize 𝑞 [ 𝑗] +𝑄𝑤 ( 𝑖− 𝑗𝑤 ). This is the same idea as in the

proof of the standard batch-update Lemma 2.7 (used in e.g.,

[5, 20, 44, 54]). However, in our scenario with small sets 𝑆 [ 𝑗],
the number of collected indices 𝑗 is usually sublinear in the

array size 𝐿, so in order to save time we need to let SMAWK
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Algorithm 1: Solving HintedKnapsackExtend
+
with

singleton hint sets

Input: 𝑞 [−𝐿 . . 𝐿] and 𝑆 [−𝐿 . . 𝐿], where
𝑆 [𝑖] ⊆ [𝑤max], |𝑆 [𝑖] | ≤ 1, 𝑞[𝑖] ∈ Z ∪ {−∞} for all 𝑖

Output: (𝒙 [−𝐿 . . 𝐿], 𝑧 [−𝐿 . . 𝐿], 𝑟 [−𝐿 . . 𝐿]) as a solution to

Problem 1

1 SMAWKAndScan(𝑞 [−𝐿 . . 𝐿], 𝑆 [−𝐿 . . 𝐿]) :
2 begin

/* Stage 1: use SMAWK to find all candidate

updates 𝑞 [ 𝑗] +𝑄𝑤 ( 𝑖− 𝑗𝑤 ) where 𝑤 ∈ 𝑆 [ 𝑗],
expressed as difference-𝑤 APs consisting
of indices 𝑖 */

3 Initialize P ← ∅
4 for𝑤 ∈ [𝑤max] and 𝑐 ∈ {0, 1, . . . ,𝑤 − 1} do
5 𝐽 := { 𝑗 : 𝑤 ∈ 𝑆 [ 𝑗] and 𝑗 ≡ 𝑐 (mod 𝑤),−𝐿 ≤ 𝑗 ≤ 𝐿}
6 𝐼 := {𝑖 : 𝑖 ≡ 𝑐 (mod 𝑤),−𝐿 ≤ 𝑖 ≤ 𝐿}
7 Run SMAWK on matrix 𝐴𝐼× 𝐽 defined as

𝐴[𝑖, 𝑗] := 𝑞 [ 𝑗] +𝑄𝑤

(
𝑖− 𝑗
𝑤

)
.

8 for 𝑗 ∈ 𝐽 do

9 Suppose SMAWK returned the AP 𝑃 𝑗 ⊆ 𝐼 of

difference𝑤 , such that for every 𝑖 ∈ 𝑃 𝑗 ,
𝑗 = argmax𝑗 ′∈ 𝐽 𝐴[𝑖, 𝑗 ′]

10 𝑃 𝑗 ← 𝑃 𝑗 ∩ {𝑖 ∈ Z : 𝑖 > 𝑗} // focus on

candidate updates where 𝑖− 𝑗
𝑤 is a

positive integer

11 Suppose 𝑃 𝑗 = {𝑐 + 𝑘𝑤, 𝑐 + (𝑘 + 1)𝑤, . . . , 𝑐 + ℓ𝑤},
and insert ( 𝑗 ; 𝑐,𝑤, 𝑘, ℓ) into P

/* Stage 2: combine all candidate updates by a
linear scan from left to right, extending
winning APs and discarding losing APs */

12 Initialize empty buckets 𝐵 [−𝐿], 𝐵 [−𝐿 + 1], . . . , 𝐵 [𝐿]
13 for ( 𝑗 ; 𝑐,𝑤, 𝑘, ℓ) ∈ P do

14 Insert ( 𝑗 ; 𝑐,𝑤, 𝑘, ℓ) into bucket 𝐵 [𝑐 + 𝑘𝑤]
// insert to the bucket indexed by the

beginning element of the AP

15 for 𝑖 ← −𝐿, . . . , 𝐿 do

16 𝑟 [𝑖] ← 𝑞 [𝑖], 𝑧 [𝑖] ← 𝑖, 𝒙 [𝑖] ← 0. // the trivial

solution for 𝑖

17 if 𝐵 [𝑖] ≠ ∅ then

18 Pick ( 𝑗 ; 𝑐,𝑤, 𝑘, ℓ) ∈ 𝐵 [𝑖] that maximizes

𝑞 [ 𝑗] +𝑄𝑤

(
𝑖− 𝑗
𝑤

)
19 if 𝑞 [ 𝑗] +𝑄𝑤

(
𝑖− 𝑗
𝑤

)
> 𝑟 [𝑖] then

20 𝑟 [𝑖] ← 𝑞 [ 𝑗] +𝑄𝑤

(
𝑖− 𝑗
𝑤

)
, 𝑧 [𝑖] ← 𝑗, 𝒙 [𝑖] ←

𝑖− 𝑗
𝑤 𝒆𝑤 . // solution for 𝑖

21 if 𝑖 +𝑤 ≤ 𝑐 + ℓ𝑤 then

22 Insert ( 𝑗 ; 𝑐,𝑤, 𝑘, ℓ) into bucket 𝐵 [𝑖 +𝑤]
// extend this winning AP by one
step, and all other APs in the
bucket 𝐵 [𝑖] are discarded

23 return (𝒙 [−𝐿 . . 𝐿], 𝑧 [−𝐿 . . 𝐿], 𝑟 [−𝐿 . . 𝐿])

return a compact output representation, described as several

arithmetic progressions (APs) with difference𝑤 , where each

AP contains the indices 𝑖 that have the same maximizer 𝑗 .

• The second stage is to combine all the APs found in the first

stage, and update them onto a single DP array. Ideally, we

would like to take the entry-wise maximum over all the APs,

that is, for each 𝑖 we would like to maximize 𝑞 [ 𝑗] +𝑄𝑤 ( 𝑖− 𝑗𝑤 )
over all APs containing 𝑖 , where𝑤 is the difference of the AP

and 𝑗 is the maximizer associated to that AP. Unfortunately,

the total length of these APs could be much larger than

the array size 𝐿, which would prevent us from getting an

𝑂 (𝐿) time algorithm. To overcome this challenge, the idea

here is to crucially use the relaxation in the definition of

Problem 1, so that we can skip a lot of computation based

on the concavity of 𝑄𝑤 (·). We perform a linear scan from

left to right, and along the way we discard many APs that

cannot contribute to any useful answers. In this way we can

get the time complexity down to near-linear.

Proof of Lemma 4.1. The algorithm is given in Algorithm 1.

Time complexity. We first analyze the time complexities of the

two stages of Algorithm 1.

• The first stage contains a for loop over 𝑤 ∈ [𝑤max] and
𝑐 ∈ {0, 1 . . . ,𝑤 − 1} (Line 4), but we actually only need to

execute the loop iterations such that the index set 𝐽 := { 𝑗 :
𝑤 ∈ 𝑆 [ 𝑗] and 𝑗 ≡ 𝑐 (mod 𝑤),−𝐿 ≤ 𝑗 ≤ 𝐿} (defined at

Line 5) is non-empty. Since |𝑆 [ 𝑗] | ≤ 1 for all 𝑗 , these sets 𝐽

over all (𝑤, 𝑐) form a partition of the size-𝐿1 set {−𝐿 ≤ 𝑗 ≤
𝐿 : 𝑆 [ 𝑗] ≠ ∅}, and can be prepared efficiently. Then, for each

of these sets 𝐽 , at Line 7 we run SMAWK algorithm [3] to

find all row maxima (with compact output representation) of

an 𝑂 (1 + 𝐿/𝑤) × |𝐽 | matrix in 𝑂 ( |𝐽 | log𝐿) time. The output

of SMAWK is represented as |𝐽 | intervals on the row indices

of this matrix, which correspond to |𝐽 | APs of difference𝑤 .

These |𝐽 | APs are then added into P. Thus, in the end of the

first stage, set P contains at most

∑
𝐽 |𝐽 | ≤ 𝐿1 ≤ 2𝐿 + 1 APs

(each AP only takes 𝑂 (1) words to describe), and the total

running time of this stage is 𝑂 (∑𝐽 |𝐽 | log𝐿) = 𝑂 (𝐿1 log𝐿).
• In the second stage, we initialize (2𝐿 + 1) buckets 𝐵 [−𝐿 . . 𝐿],
and first insert each AP from P into a bucket (Line 13). Then

we do a scan 𝑖 ← −𝐿, . . . , 𝐿 (Line 15), where for each 𝑖 we

examine all APs in the bucket 𝐵 [𝑖] at Line 18, and then

copy at most one winning AP from this bucket into another

bucket (Line 22). Hence, in total we only ever inserted at

most |P | + (2𝐿 + 1) = 𝑂 (𝐿) APs into the buckets. So the

second stage takes 𝑂 (𝐿) overall time.

Hence the total time complexity of Algorithm 1 is𝑂 (𝐿1 log𝐿+𝐿) ≤
𝑂 (𝐿 log𝐿).

Correctness. We prove that the return values (𝒙 [𝑖], 𝑧 [𝑖], 𝑟 [𝑖])
correctly solve Problem 1.

Fix any 𝑖 ∈ {−𝐿, . . . , 𝐿}, and let (𝒙∗ [𝑖], 𝑧∗ [𝑖], 𝑟∗ [𝑖]) be an max-

imizer of Eq. (13) (subject to Eq. (14)). If 𝒙∗ [𝑖] = 0, then it is the

trivial solution, which cannot be better than our solution, due to

Lines 16 and 19. So in the following we assume |supp(𝒙∗ [𝑖]) | ≥ 1,

which means 𝑖 > 𝑧∗ [𝑖]. If the support containment condition
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supp(𝒙∗ [𝑖]) ⊆ 𝑆
[
𝑧∗ [𝑖]

]
(Eq. (15)) is violated, then by definition

of Problem 1 we are not required to find a maximizer for 𝑖 . Hence,

we can assume supp(𝒙∗ [𝑖]) ⊆ 𝑆
[
𝑧∗ [𝑖]

]
holds. Since

��𝑆 [𝑧∗ [𝑖]] �� ≤
1 ≤ | supp(𝒙∗ [𝑖]) |, we assume supp(𝒙∗ [𝑖]) = 𝑆

[
𝑧∗ [𝑖]

]
= {𝑤∗}.

In the for loop iteration of the first stage where 𝑤 = 𝑤∗ and
𝑐 = 𝑖 mod 𝑤 , we have 𝑧∗ [𝑖] ∈ 𝐽 and 𝑖 ∈ 𝐼 . The input matrix

𝐴𝐼× 𝐽 to SMAWK encodes the objective values of extending from

𝑗 by adding multiples of 𝑤∗; in particular, 𝐴[𝑖, 𝑧∗ [𝑖]] equals our
optimal objective 𝑟∗ [𝑖] = 𝑞

[
𝑧∗ [𝑖]

]
+ 𝑄𝑤∗

(
𝑖−𝑧∗ [𝑖 ]

𝑤∗

)
. So SMAWK

correctly returns an AP 𝑃𝑧∗ [𝑖 ] = {𝑐 +𝑘𝑤∗, 𝑐 + (𝑘 +1)𝑤∗, . . . , 𝑐 +ℓ𝑤∗}
that contains 𝑖 (unless there is a tie 𝐴[𝑖, 𝑧∗ [𝑖]] = 𝐴[𝑖, 𝑗] for some

other 𝑗 ∈ 𝐽 , and 𝑖 ends up in the AP 𝑃 𝑗 , but in this case we could

have started the proof with (𝒙∗ [𝑖], 𝑧∗ [𝑖]) being this alternative

maximizer 𝑧∗ [𝑖] ← 𝑗 and 𝒙∗ [𝑖] ← 𝑖−𝑧∗ [𝑖 ]
𝑤∗ 𝒆𝑤∗ ). Since 𝑖 > 𝑧∗ [𝑖],

we know 𝑖 is not removed from 𝑃𝑧∗ [𝑖 ] at Line 10. This AP 𝑃𝑧∗ [𝑖 ]
containing 𝑖 is then added to P.

In the second stage, each AP in P starts in the bucket indexed

by the leftmost element of this AP (Line 13), and during the left-to-

right linear scan this AP may win over others in its current bucket

(at Line 18) and gets advanced to the bucket corresponding to its

next element in the AP (at Line 22), or it may lose at Line 18 and

be discarded. (Note that any AP can only appear in buckets whose

indices belong to this AP.) Our goal is to show that the AP 𝑃𝑧∗ [𝑖 ]
can survive the competitions and arrive in bucket 𝐵 [𝑖], so that it

can successfully update the answer for 𝑖 at Line 20.

Suppose for contradiction that 𝑃𝑧∗ [𝑖 ] lost to some other AP 𝑃 ′
𝑗 ′

at Line 18 when they were both in bucket 𝐵 [𝑖0] (for some 𝑖0 < 𝑖).

Suppose this AP 𝑃 ′
𝑗 ′ has common difference𝑤 ′, and corresponds to

the objective value𝑞 [ 𝑗 ′]+𝑄𝑤′
(
𝑖′− 𝑗 ′
𝑤′

)
for 𝑖′ ∈ 𝑃 ′

𝑗 ′ . Note that 𝑖0 ∈ 𝑃
′
𝑗 ′

satisfies 𝑖0 > 𝑗 ′ due to Line 10. Note that𝑤 ′ ≠ 𝑤∗ must hold, since

two APs produced in stage 1 with the same common difference

cannot intersect (because SMAWK returns disjoint intervals), and

hence cannot appear in the same bucket 𝐵 [𝑖0]. Now we consider

an alternative solution for index 𝑖 defined as

(𝒙′, 𝑗 ′) :=
( 𝑖0− 𝑗 ′

𝑤′ 𝒆𝑤′ + 𝑖−𝑖0
𝑤∗ 𝒆𝑤∗ , 𝑗

′) .
Note that 𝑗 ′ +∑𝑤∈[𝑤max ] 𝑤 · 𝑥

′
𝑤 = 𝑖 , and it has objective value

𝑞 [ 𝑗 ′] +
∑︁

𝑤∈[𝑤max ]
𝑄𝑤 (𝑥 ′𝑤)

= 𝑞 [ 𝑗 ′] +𝑄𝑤′
(
𝑖0− 𝑗 ′
𝑤′

)
+𝑄𝑤∗

(
𝑖−𝑖0
𝑤∗

)
≥ 𝑞

[
𝑧∗ [𝑖]

]
+𝑄𝑤∗

(
𝑖0−𝑧∗ [𝑖 ]

𝑤∗

)
+𝑄𝑤∗

(
𝑖−𝑖0
𝑤∗

)
(since 𝑃 𝑗 ′ wins over 𝑃𝑧∗ [𝑖 ] in bucket 𝐵 [𝑖0])

≥ 𝑞
[
𝑧∗ [𝑖]

]
+𝑄𝑤∗

(
𝑖0−𝑧∗ [𝑖 ]

𝑤∗ + 𝑖−𝑖0
𝑤∗

)
+ 0 (by concavity of 𝑄𝑤∗ (·))

= 𝑟∗ [𝑖] .

Now there are two cases:

• 𝑞 [ 𝑗 ′] +∑𝑤∈[𝑤max ] 𝑄𝑤 (𝑥 ′𝑤) > 𝑟∗ [𝑖].
This contradicts the assumption that 𝑟∗ [𝑖] is the optimal

objective value for index 𝑖 .

• 𝑞 [ 𝑗 ′] +∑𝑤∈[𝑤max ] 𝑄𝑤 (𝑥 ′𝑤) = 𝑟∗ [𝑖].
Then, (𝒙′, 𝑗 ′) is also a maximizer for index 𝑖 , but it has sup-

port size | supp(𝒙′) | = 2 due to 𝑖 > 𝑖0 > 𝑗 ′ and 𝑤 ′ ≠

𝑤∗, and hence violates the support containment condition

supp(𝒙′) ⊆ 𝑆 [ 𝑗 ′] (Eq. (15)). By definition of Problem 1, we

are not required to find a maximizer for index 𝑖 .

Hence, we have shown that the AP 𝑃𝑧∗ [𝑖 ] can arrive in bucket

𝐵 [𝑖]. This finishes the proof that Algorithm 1 correctly solves

HintedKnapsackExtend
+
for index 𝑖 . □
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