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ABSTRACT

The frequency distribution of the volume of water above a

given threshold discharge is developed. This is done using basic and

accessible information like the joint probability density function of

rainfall intensity and duration together with expressions, to be

jerived, relating the volume of interest to rainfall intensity and

duration. The resulting distribution function is in a closed analytical

Form containing only few climatological and physical parameters of a

catchment. This distribution function will be of great value in the

design of storage devices, flood control systems, and storm waters

treatment facilities in urban areas.
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Chapter 1

INTRODUCTION

1.1 Urban Storm Drainage Problems and Solutions

Environmental pollution and local flooding in urban areas,

due to the failure of urban storm drainage systems to handle storm

runoff, have become a major problem in many cities of the United States.

An urban drainage system may either be a combined (storm sewage and

municipal sewage) sewer system, a separated sewer system, or a combina-

tion of the two. In a combined sewer system, the sewage is normally

treated but in times of severe storms the discharge may exceed the

intake capacity of the sewage treatment plant so that part of the

sewage is discharged without treatment. This overflow sewage causes

environmental pollution problems. In a separated sewer system, the

municipal sewage has to be treated before discharging into receiving

waters, while the storm sewage, known to be an important pollutant by

itself, is usually discharged without going through any treatment. The

American Public Works Association (APWA) (1967) estimated that as of

1962, of the 125 million people served by sewer systems, approximately

43.2 percent were served partially or totally by combined sewer systems.

During the past few decades, increased urbanization has

substantially reduced the size of pervious surfaces in urban areas.

New impervious surfaces such as roadways and roofs, together with

developed commercial areas, may effectively increase the peak storm

discharge to such an extent that frequent failure of the existing

 9



drainage systems is not uncommon. This is particularly true in areas

served only by combined sewers due to the increase of both municipal and

storm sewage.

One of the solutions to the problem of environmental pollution

and local flooding caused by increased storm sewage is the reconstruc-—

tion of all the combined systems as separated systems. Municipal sewage

will then always be treated before releasing into receiving waters,

while storm sewage would hopefully not cause as many environmental

pollution problems as the combined sewage overflows.

In the United States, cities such as Washington, D. C., New

York, Philadelphia, Detroit, Milwaukee, Minneapolis and Chicago have

invested huge sums of money in the examination of this problem. The

consensus is that sewage separation is neither economically feasible

nor practical. Cywin and Rosenkranz (1971) estimated the cost of

reconstructing all the combined systems to separated systems in the

United States would amount to 48 billion dollars in 1967. Granted that

funds for reconstruction were available, it would still be doubtful

whether storm water alone could be safely discharged at all, to say

nothing of the construction nuisance and difficulties.

An alternate solution is the detention of part of the storm

runoff by surface storage, or subsurface storage, or both, for later

treatment. Provisions for storage can reduce peak runoff rates.

Storage facilities can also prevent local flooding. While some cities

are reconstructing a separate sewer system, others are constructing

detention tanks, basins and underground storage tunnels. Table 1.1



Table 1.1

SUMMARY OF STORAGE COSTS FOR VARIOUS CITIES?

(Field and Lager, 1975)

Location

(1)

Seattle, Wash.

Control and monitoring

system

Automated regulator station

Minneapolis-St. Paul, Minn.

Chippewa Falls, Wisc.

Storage
Treatment

Jamaica Bay, New York, N.Y.

Basin

Basin and sewer

Humboldt Avenue, Milwaukee,

Wisc.

Boston, Mass.

Cottage Farm stormwater

treatment station

Chicago, Ill

Storage basins

Collecting, tunnel, and

pumping®

Storage, Storage Cost,
in Millions Capital Cost, in Dollars

of Gallons in Dollars per Gallon

(2) (3) (4)

32.0

3,500,000

3,900,000
7,400,000
3,000,000

C 23

2.3 744,000
186.000

0.26

10.0

23.0

21,200,000
21,200,000

3,010,000

2.12

0.92

4.0 0.50

4
2

a J 6,200,000

568,000,000

755,000,000
1.323.000.000

4.74°

2,736.0 0.21

2,834.0
5.570.0

0.27

0.24

#ENR = 2,000

°Includes pumping station, chlorination facilities and outfall.

“Includes 120 miles (193.1 km) of tunnels.

14



summarizes the storage costs for various cities.

The main advantage of building storage devices to attenuate

Flood peaks lies in its reduced cost. Cywin and Rosenkranz (1971)

estimated that using storage devices and special wastewater treatment

plants, it may be possible to reduce the cost of controlling overflows

from 48 billion to 15 billion.

1.2 Distribution of the Overflow Volumes

In the construction of storage devices, some prior knowledge

of the distribution of the volumes of the combined sewage overflow is

necessary. If sufficient data of this overflow volume is available, an

annual exceedance series or an annual maximum series may be used to

describe its frequency distribution. Unfortunately, few historical data

of this sort exist, mainly because it requires the knowledge of the

entire hydrograph of a catchment while most streamflow gages record only

the peak discharge.

An alternative approach is to make use of the more readily

available historical rainfall data, together with some climatological

and physical parameters of the catchment, as the inputs to a deterministic

computer simulation model to generate a series of synthetic overflow

volumes. The overflow volume in this case is referred to as the volume

of water above a given threshold discharge (refer to Fig. 1.1). The

threshold discharge corresponds, for example, to either the intake

capacity of a sewage treatment plant or the intake capacity of a sewer

system. The synthetic overflow volumes are then ranked and analyzed to

| 5



Qy,: FLOW THRESHOLD

—

_

——

_

-

A

:
r Qth
L
oJ
 pypr

i

VTH

",

\ __RUNOFF HYDROGRAPH

NN
k.

he  —-—

TIME

FIGURE .1.1: VOLUME ABOVE A GIVEN THRESHOLD DISCHARGE



obtain the annual exceedance series. If historical rainfall data is

scarce, synthetic rainfall data may be generated by stochastic rainfall

models, using the statistical parameters of the historical rainfall data

as information for those stochastic models.

The main advantage of the simulation approach applied to

urban areas is the inclusion of the effect of urbanization in the analy-

sis of the overflow volume, which is reflected in the physical parameters

of the catchment such as the roughness coefficient , the percentage of

pervious surfaces, the infiltration rates, etc. (Bras and Perkins, 1975).

Fleming and Franz (1971), after studying eleven small water-

sheds (less than 20 square miles), concluded that the simulation approach

is the most reliable mean for estimating flood frequency when compared

to the rational method, the Potter's method and the method of regional

frequency analysis. Perkins (1970), Bras and Perkins (1975) and Leclerc

and Schaake (1972) have used the same approach with good results.

Leclerc and Schaake (1973) also derived the frequency distribution of

the volume of water above a given threshold discharge with the simulation

method.

So far, the simulation approach seems to have a very promising

future. More and more sophisticated models may be implemented and tested.

Computer developments have undoubtedly provided a powerful tool for the

hydrologist to unravel the 'black box' of hydrologic systems. But it

has one main drawback, computer simulation is very costly.

Of course, the best approach should be one which is economical

to use, easy to apply and with results comparable to the true



observations if historical data are available, or with results comparable

to those obtained by the simulation approach if historical data are

scarce. Such is the derived distribution technique (which will be fully

described in Chapter 2). Using this technique, a closed-form, physically-

based, analytical expression of the cumulative density function of the

volume of water above a given threshold discharge may be derived.

Eagleson (1972), for the first time, used such an approach

and derived a closed-form, analytical expression of the probability

density function of peak discharges. The final expression contains only

few climatic and physical parameters of the catchment. After comparing

his derived flood frequency expression with observations from three

natural catchments in Connecticut, he concluded that the agreement is

good. Leclerc and Schaake (1972 and 1973) confirmed Eagleson's analytical

results by simulation.

1.3 Objectives of This Work

The purpose of this work is to study the applicability of

derived distribution technique in urban storm drainage problems. The

theoretical physically-based distribution of the volume of water above

a given threshold discharge will be derived. The resulting distribution

function will be in a closed, analytical form with few hydrologic and

basin parameters. A closed-form expression is very important to the

general practitioner because it can provide a fast, easy, cheap and

of ficient mean to obtain the results without going through detailed,

expensive computer simulation exercises. This resulting distribution

| 8



function will be of great value in the design of storage devices, flood

control systems, and storm waters treatment facilities in urban areas.
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Chapter 2

OVERLAND FLOW MODEL

2.1 Derived Distribution Technique

The derived distribution technique is well established in

probability theory. It provides a tool to derive the density function

of a dependent variable from random variables of which the joint density

functions are known. The mechanics are as follows:

Fort:
-~

Let a random variable, x, be functionally related

Y a (sa }

to \ in

7

the

2)

If x has a probability density function given by £ (x), where

X is a possible value of x, then the probability that x is less than

some value, x_, is given by

 xX
o

Prob{x &lt; x_) = | £ (x) dx _ (2.2)

Due to the randomness of x, y is also a random variable. For

some monotonic, easily inverted functional relations, there is a one-to-

one correspondence between x and y. Making use of the fact that the

probability that y is between Y, and y, + dy_ is equal to the probability

xX is between x and x + dx» i.e.

 vy) dy =f (x) dx
0 x o

for y_ = g(x)

or bd ty)
20)



then it can be shown that

c { J! = f(x) .

jan -1

5] = £ (8 (y,))
dg” (vy)

dy
(2 3)

for some continuous, differentiable, monotonic functions as shown in

"igure 2.1, after Benjamin &amp; Cornell, 1970.

The cumulative probability of y is given by

Yo

Prob (y &lt; y,) = | £34) dy vo 4)

Consider the simple case of two random variables, X 5 Yoo

Assume z is functionally related to X,y, as

= h(x_, vy.) (5’

5

”

3)

and the density functions of X,y, are known

xX -3

(X\ oc’ y,)

QL

E(x) * £5,055)

Ely ®olve) = £50)

Ex Uol®y) ’ fe Fo

bn

y

if X5V_

if x ,
0 Y

independent

dependent

(2.6)

el,

Prob(z &lt; z) = | fy y) dxdy

where R, is the region in the space of x and vy, specified by z

(2.7)

h(x, y,) for which z &lt; zZ_

In general, if vy is a function of n random variables given by

21
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y = g(x, Xos + + x) Za3)

rhen

Prob(y &lt; y,) = J. . Fx args nox 10 XpseesX ) dx, dx, _— dx

(2 9)

where f (¢) is the joint density function of the given n random

XKsXgseesX
variables and R, is the region in the space of (x45 eesX) specified

= i &lt;

by v g(x XoseeesX ) for which y Ye

In this work only the case with two random variables (average

rainfall intensity and storm duration) is needed for the derivation of

the distribution of the water volume above a given threshold discharge.

For simplicity, the water volume above a given threshold

discharge, VTH, will be referred to as the flood-volume in this and

the following chapters.

The method used in deriving the flood-volume distribution is

shown in Figure 2.2.

2.2 Rainfall Model Chosen (Exponential Distributions)

A rainfall model is needed in order to derive the distribution

of the flood-volume. Rainfall has to be considered a stochastic process

for the derivation. Numerous distributions may be fitted to samples of

storm exterior variables such as the average rainfall intensity, storm

duration, storm total depth and time between storms. Eagleson, using

hourly rainfall data ( 546 storms) at Boston, Massachusetts, found out

23
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that the probability density functions of point rainfall intensity and

storm duration may be fitted closely by an exponential function (Eagleson,

1972) as shown in Figure 2.3, 2.4. For computational reasons, he further

approximated £(dft), the conditional probability density function of

the total storm depth, d, given the storm duration, ts by an exponential

function, which is a reasonable representation at large depths where

flood events are important. The use of an exponential function for

"£(dfe )! also implies the independence of point rainfall intensity and

point storm duration. These exponential distributions will be used in

this work as the stochastic rainfall models to derive the flood-volume

distribution.

The derivation of the joint density function of rainfall excess,

L &gt; and duration of rainfall excess, SI follows Eagleson's approach

(1972).

For point rainfall duration, ©,and average point rainfall

intensity, i

E(t.) = Ae

AT
I

f(d hsi) = Be Ho

(2.10)

(2.11)

where A, B are climatic parameters which are assumed constants for a

given catchment.

By definition,

i_ 2 d/e_ (. .. 2)
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where d = point total storm depth.

The conditional distribution of depth given duration is taken

19

F(djt) = (B/t)

From Equations (2.12) and

(2.13)

(2.13), it can be shown that i and

rare independent, as follows:

2Tron
. . d .

‘i &lt; i'|t)=Prob(—&lt;ile)
nn! r E., o'r

fie s 1

= Prob(d &lt; i! ele)

RE

© T fat.) dd

ile
8°,
L

-Ri’
0

1 0

B. .g
I

dd

(2.14)

which implies

-Bi
, _ 4d _ 0,

F(i le) = di _ (1 e ’

3
(&lt;- 15)

The above is identical to Equation (2.11), proving independence

of i and t
OO &gt;

In order to reduce the average point rainfall depth, d, to

the average areal rainfall depth, d,» the following correction is made

according to the U. S. Weather Bureau, as shown in Figure 2.5. The

7
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relationship is given by

a

2 = 1 - exp(-1.1 e274) + exp(-1.1 el/4 - 0.014) (2.16)

where A = area of catchments in square miles.

For urban areas where the area of the catchment is usually

small (of the order of few square miles), it may be assumed that the

runoff contributing area, As is equal to the total area, A. In large

basins, A is in fact a random variable taking values less than or equal

to A. For an example on the inclusion of this randomness of AL in the

derivation, the reader is referred to Eagleson (1972).

The average areal rainfall intensity, i, is by definition,

(2.17)

From Equation (2.12)

0 d o
(7.18)

In order to simplify the mathematical manipulations, t. in
d

fquation (2.16) is replaced by its expected value, 1/A, and ' = ' is

civen by its average value,

 4d

22 g=1- exp(-1.1 4 4 oexp(-1.1 AY 20.014) (2.19)

and Equation (2.18) becomes

i. =Ki
JD 0
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where K is a constant given the area of the catchment and

Bi /K
fou _ oS _ B C —

£1) E £(1_|A) =x e . 1. 0 (2.20)

Eagleson (1972) included infiltration effects as a spatially

averaged potential loss rate, ¢, subtracted from the average areal rain-

fall intensity for each storm period, i.e..

+

7

+ i
a

1

o

2 21)

where i, = areal average rainfall excess.

The density function of the rainfall excess, i, is given by

fi) = (IT &gt; 9) = £(1)/Prob(i

B =

Bo Ko

B =
-= i

Bo K © 43
0

OQ

|
B ,.

B K (119) _B
RS _ _B_K'e

“4 K

&gt;
- 0)

(2.22)

The joint density of depth and duration, from Equations (2.10)

and (2.13). io

F (4d. rr) = f(dlt) ¢ f(t)

8A exp[~- a +d = At]
{

(2.23)

nT



Using Equations (2.19) and (2.23) results in

~ 8d, o
ot) = Kt _ |

i (2 24)

The marginal probability density function of the rainfall

excess duration, t os is then

200

F (+
~

FIIRAUN t.) dd

| dt_ J. £(d,, t.) dd,
J r

00 Rd
BA oA[os ke SXPLm xp AR] dd)

 rr rr or
co 0 Rd

BA _A_Bl Fe exp[- 7% SS IN dt_
5 ot r r

Ba -

¢ At, -At
 = A e -F =

; (7 " 5)

h

From Equations (2.15), (2.21) and (2.25), it is concluded that

using this rainfall model implies the independence of rainfall excess,

is and its duration, t..

L
-

and k
r-

So finally the expression

] &amp;

{for the yvoint density function of

(i, c J) = £(i_, t_. [a

Fri |A) « £(t_)
Ye

BA7 exp|- At _ 8 i]
a K e

(2.26)
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The infiltration effect ¢ may be estimated as follows

(Eagleson, 1972):

Let n = the average annual number of rainfall excess events

3 the average annual number of independent rainfall

avents

P = the average annual point rainfall depth in inches

R = average annual runoff in inches

R, = average annual direct runoff in inches

Def ining

bo R/P (2.27)

and

b, = R_/R (2.28)

Then, on the average,

P  &amp;d 0, =n E[1 t ol (7-79)

And in approximation

By equating (2.29) and

Tl =] = E[1_ t|= P/O

2 20)

23
3 o. 2,

(2.30)

(2.31)

Aut.

1 cap a =e
h © °

\&lt;«".22)



Therefore,

£9
2 = 0 ,

1nd .

6 =-32nz (@, 0, (2 -:3)

Wood (1976) discusses a procedure to consider the infiltration

as a random variable.

Since for urban areas few records of the direct runoff, Ryo

exist and the infiltration effect for urban areas is estimated by a

different method in Chapter 3, no further discussion of the parameter

p is given. Nevertheless, the procedure is valuable for those studying

runoff in large river basins, a topic Chapter 4 will be addressing.

2.3 Runoff Model, the Kinematic Wave Approximations

The validity of the application of the kinematic wave equations

to overland flow and stream flow has been verified by numerous investi-

gators (Lighthill and Whitham, 1955; Wooding, 1966; Eagleson, 1970;

Harley, 1970; Bras, 1972; Leclerc and Schaake, 1973). The usefulness

of this application lies in the fact that the kinematic wave equations

require only few physical parameters of the catchment which may be ob-

tained from topographic and soil maps. Once these parameters are known.

the entire hydrograph for a specific input of rainfall intensity and

duration can be predicted with reliable results.

3h



Since the derivations of the kinematic wave equations are

readily available from many sources (Eagleson, 1970), only a very brief

account is given here.

The momentum equations for flow through a control volume which

ig

and

fixed in inertial space (from Daily &amp; Harleman, 1966) is given by

-&gt; &gt; =&gt; - 9 -&gt;

+ [[] B pd¥ = J| V(pV . dA) + aT [[] V(p d¥)
C¥ CS C¥

the conservation of mass equation

(2.34)

’ &gt; &gt; 9

| Fea|],ee
CS C¥

ii5)

-—&gt;

where F = sum of surface forces acting on the control volume

&gt;

 BR

+

= sum of all body forces per unit mass

= time

0» = mass density of water

¥ = volume

&gt;

V = absolute fluid velocity

—_&gt;
dA = directed area element, positive outward

C¥ = control volume

CS = control surface

Under the following assumptions,

1) Moderately wide rectangular channel (idealized overland

flow conditions),

Flow Depth (vy) &lt;1
Channel Bottom Width (b)



2) Small bottom slope, 6 = sinf = tan®

3) Velocity over a cross-section of the channel is uniform

and the momentum distribution factor Bf = 1

4) The free surface over the cross-section is horizontal

5) The pressure distribution is hydrostatic

Equation (2.34) is reduced to

2q T

se FT Vor t 8a; [i f + wi (1 + 7) 5; + 8b (2.36)

and Equation (2.35) becomes

2q
oy. dy Voy _LSe FT Var TY ax i f+ (2 57)-

where x = downstream direction (ft.)

i = rainfall intensity (ft./sec.)

f = infiltration rate (ft./sec.)

9; = lateral inflow to stream per unit stream channel width

(cfs/ft.)

I, = shear stress (LB/ft.2)

g = gravitational constant (EL. Jaac. 2)

V = velocity in the x-direction (ft./sec.)

The terms in Equation (2.36) represent respectively (from left

to right)the local acceleration, the convective acceleration, the

surface elevation effects, the momentum contribution due to lateral in-

flow and rainfall, the bottom and wall shear and the acceleration due

to bottom slope.
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Under an order of magnitude analysis (Eagleson, 1970),

considering the inflow, free surface slope and inertia terms as negli-

gible in comparison with those of bottom slope and friction, Equation

(2.36) is further reduced to

L (pg) v0 = vy y sin€ (2.38)

where Y = weight of water per unit volume.

Equation (2.37) is rewritten as

2q
dy , o(Vy) _ | TL

dt t=, T 3
(2.39)

where i, = i - f = rainfall excess.

For the overland flow case, lateral inflow, Ep is zero,

leading to a continuity equation of the form,

dy , 99_.
ya. + (2.40)

where q = Vy = flow per unit width of the overland flow channel

(cfs/ft.)

Define

2
Co Vv

(2.41)

where C_. = function of the Reynolds number and the relative surface

roughness.

Combining Equations (2.38) and (2.41),
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_(2y.y sing)?
| ea _ 2g 1/2; = |2 g1/2 1/2

£ o 7
vi

O
2/2 1/2 (2.42)

where 1 = gand S_ = sin = tan® = 6 and

[f
~

J

= chezy coefficient = |"E
al

“t

Ls assumed to be a constant, then

1
Te

17 ny.
ro

(2.43)

(2.44)

shen

2 gS 1/2

oA = cst’? NN —
0 C.

In general, including the effect of the possible variability

4 1 C..
«-

5
AY: (2.45)

Using Manning's equation, it can be shown that oa can also be

axpressed (for overland segments, turbulent flow condition) as

0 =
i ha 1/2

y

and m=2
3

(2 46)

where n = Manning's roughness coefficient (£t.1/0)

For laminar overland flow

Ce
4
R

IR



sinb
a = 8&amp;3 J and m= 3

where Vv = kinematic viscosity of water

Vy
R = Reynolds number = A

Crawford and Linsley (1966) in simulating overland flow,

considered both the laminar and the turbulent conditions. After some

research, they decided to adopt the equations for the turbulent condi-

tions

Lquat.on WA /_ 3}!

oy 99 _
5% T Bo Ty

and Equation (2.45)

q Rr

are referred to as the kinematic wave approximations for the overland

Flow case.

Solving (2.40) and (2.45) by the method of characteristics

(Eagleson, 1970), the following results,

dq _ .

dt 1, ¢

dq - 1

dx te

i,Ly -d

dy _ 3 Jc
4~7 a

(2.47)

(2.48)

(2.49)

(2.50)

4(



Equations (2.47) to (2.50) are valid along the path given by

the characteristic defined below,

dt -
(2.51)

For overland flow (see Figure 2.6) the boundary conditions

AY

3 &lt;
xX

X =

”
p

big Et =

0, t &gt;0

0

sn

\ 7 52)

The solution to Equations (2.47) through (2.51) yields the

following expressions applicable in two different cases (Eagleson, 1970)

Case 1: For the duration of rainfall excess, to greater than

he concentration time of the overland segment, t..

The concentration time, ts is defined as the time to the

maximum discharge of the overland segment and is given by

1 =] 1/m ——

| o

(2.53)

For t &lt; t &lt; © (see Figure 2.7)
—C——re——

The discharge per unit width of channel at x = L, qd;&gt; is given

by Equation (2.45),

q- yo
m 3/3 (2.54)

where Yi is the depth of water at x = L.

On the rising limb, Y; is given by

0)
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yp,=i.t 0&lt;t&lt;t &lt;t
 -— Tg—“ve

(2?oF 5)

At maximum discharge,

Vi

Liyl/m
—e5 t &gt;t &gt;t

re — — TC
(° 76)

On the receding limb, Yr is given implicitly by

* Porerd

&gt; oy Ji +m -t D1 t+
my Sy t. (2.57)

Case 2: For the duration of rainfall excess less than the

concentration time of the overland segment.

For t &lt; t (see Figure 2.8)
 —_— QO ——

Aga’.

m

Ve (2 58)

On the rising limb, y. is given by

For

¥ 0 J = N
aN

t
C

q, constant at less than its maximum value,

 yg. = 1T e Fra °* t t &lt;t &lt; ;

2“9

(2.60)

where (t, - to) is the time required for the initial disturbance to

travel from its position, x, at time, SI to x = L.

4s

s

(t = t_ )/m

t dis given by

(2.61)

A



and

On

 Lb

c aL
"Lr

with Yip = i, te

the receding limb, i is also given implicitly as

L 1

-1 . _

avh ly /i_+mt=t_):

(5 &lt;2)

(2.63)

These equations will be used to derive the expression of the

flood-volume as shown in the shaded regions of Figures 2.7 and 2.8.

2.4

will

Expression for the Volume of Water above a Given Threshold Discharge

(Flood Volume, VTH) for the Overland Flow Case

The analytical expression of the flood-volume for the

be derived as follows:

Case 1: t &lt; t &lt; © (Figure 2.7)

 em rt rere

The equations defining this hydrograph are given by (2.53)

through (2.57).

whe -IY

The flood-volume, from the figure. is

7 A x7
»

Vi = Qe, (By = £9)

given by

(2.64)

- 3)

Solving for t,, using Equations (2.54) and (2.55),

NA



=
1

On the receding

1/m
eh

1/m ,

y i
a

1imb (te_

0 &lt; r.

ill

~ t,

Cc

©), Equation (2.57) is

(2 76)A

rewritten as

- 8

= [—2— _ J
m m-1 i

ov e

2.37)

Since,

11h
m

= ay, (2.68)

.

11én

tb) 1/mv, = |[—

2 o
{ £43)o Su

Substituting Equation (2.69) in (2.67) yields

m(:

1/m
L _ Yn

/m 1-1/m 1/m .

Arty no, +

OC (2.70)

With expressions for tes t, available, the evaluation of Vv.

v, V. and v, follows:

ct c } m

© q(t) dt = a(i_ t)
L

t

In

a 1 mt+1
_ €e (HL - gH,

C

m+1)

dt

(2.71)

Le



With t. given by Equation (2.53) and ty by (2.66), then

1+41/m ,1/m 1+1/m
L i q

_____€ __th

(m+1) ot/™ (m1) al/™ i
(~— 2)

The maximum flow rate is

1
max

. m

=o(i t) =1L 1
e e

(2 73)

The second volume element is given by

- Upax Fra” t.) (2.74)

After combining Equations (2.73), (2.74) and (2.53),

Che

p1+1l/m g/m
q = Lit -

e re GL

third volume element is given by

(2.75)

)
-

-y

m
Av 4a (2.76)

a

Using Equation (2.67), differentiating both sides

At t =

A +

Eo» by Equation

[lm] L om _ 1 d
om a J mi y

(2 67)

(2.77)

LoL 1 Ly } enre m m—1 i

oy e

YY

7

Liyl/m

- [2 =i t= a
AR

VE2)



At t = ty» by Equation (2.69)

V5
th in
La

From the above, Equation (2.76) becomes,

ov 1-m L -m_ 1 d
| ¥ mo” mi y

)

wher»

J Ys

Uppy) L/m

in (2.79)

integrating,

Vy

1/m 1+1/m 1+1/m .1/m

Lon) Ldn Yn \ | m L te
m Lm n(mlyol/™ i mt+1 oL/m

(2.80)

The fourth volume component is expanded as

v, q,q (ts - t,)

L Lm Lm
th 1 th

Un L- 1 1/m (1+ o 1/m .

mc ol 1,

+
rh

.31)

Finally, combining Equations (2.64), (2.72), (2.75), (2.80)

and (2.81), factoring and cancelling terms, the flood-volume expression

turns out to be quite simple

1+1 1q /m Tq /m

for t
C

4

~o

-

= 0
(2,°2)&gt;

which results from a simplification of

d 7



Vp = Vp TV, FV = VY,

1+1/m .1/m
L i *

meres hiewn4,Eb4(LA~0)
LL/m m1 m+1 re e 9th

1+1/m | 1/m

Y%en  [_a 1 oo 1M11
1/m . m+1 m(mt+1) m 1/m m m

a 1, he - a

|

Case 2: t &lt; t (Figure 2.8)
 em com ere Ap echeeS

The equations defining this hydrograph are given by (2.58)

through (2.63).

The times at the threshold discharge, ty and t,, are again

siven as in Case 1 by Equations (2.66) and (2.70) but with the limits,

0&lt;t, &lt;t andt&lt;t,&lt;®,
re D 2

The first volume component,

t

 re n

oi t) dt
J A

“1
4 im 1+1/m

Ia m+1 Yh
t, 1/m

(m+1) (m+1) a i,

(z. 3)gr

The second volume element takes the form

TL”wo yi!

J

Eo 1
re m

ax ( t = C.

 LL
oi m= Tt£) 1 re

(2.84)

y £

 le ow
fi
&gt; 5)

AR



from Equations (2.61) and (2.62). And,

4
mm aN oi

m

t_} (" 75)Ze.

from Equation (2.59).

Substituting Equations (2.85) and (2.86) in (2.82) results in

7

Li t
e re o .m mt]
—_— = = 1 t

T m e re
(2.87)

The third volume, using the change of variable as shown in

Case 1, results in

{

3

o yr dt

C
re

_ 1/m

2” Gen’) &amp; Py oly L —-m _ 1 ] d
; yin a mi_-

V1"letre
1/m

L q
1-m th 1-m

Jdl-my —"th~~1-m ,

0) oL1/m FER LE, 6,

1+1/m
Ith

n(mtl) ol/™ i

.m ml
a 1 t

e Tr _
(2.88)

m(m+1)

The fourth volume component is expanded as

iJ
4 a. (t, -t

1/m 1+1/m

Dh og, 1 den
1/m m 1/m

my ~ 1

1
“

 nN
we +

ro
\«

y

1%
- J)

and the flood-volume expression, after combining (2.83), (2.87), (2.88)

and (2.89) is

19



Ve, = Vp FV, + V3 = V,

Li
m1 .m 1 1 1 e 1-m ,

tre © te 1 Tm + er] Lo! m ( m ) L 1,9]

£H/m
th 1 1 1

v GL/m i [- ml m(m+l) + (+ nl
e

L a” 1 1

 GD -

1+1/m 1/m

(Li - ESL for 0 &lt; t &lt; t

‘a a 4h 1/m . 1/m re c
y i o

2 (2.90)

which surprisingly is identical to the expression of Vin for Case 1.

Equations (2.82) and (2.90) define the regions of interest in

-he 1 t space.
Tre p

For to ~ t_. from Equation (2.53)

L ; 1m 1/m

—_c
o

This is shown as a dashed line in Figure 2.9.

And for t . S ts from Equations (2.82), (2.90)

1/m 1+1/m

1 fv A fn]
(L i - yy) th oH/m JL/m i

(2.91)

(2.52)

which is shown in Figure 2.9 for constant flood-volumes, Voi as a

function of t and 1 .
rao eo

In order to have non-zero Vins the following conditions must

be satisfied

~

I Ys =L1 for t
T &gt;

(2.93)
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therefore,

‘th
I.

for L
Te

C
 Cc

(2.94)

And

let
m

&lt; q, =qo(i t ) for
ax e re

t
re

—-

~
(? 15)+,

"Therefore

C
re
i 1/ 1rm + — for t

o i, re
C. (2.96)

Zero exceedance volumes then occur at

 1

for
“re

C (2.37)

rnd

re ol i
e

» for t
ro

Co \ 7 oY.7)

which are shown in Figure 2.9.

The shaded area in the figure defines regions of Vin &lt;

v..) . . With this region known, the derivation for the CDF of the
th’ given

flood-=volumes may proceed.

2.5 Expression for the Cumulative Density Function (CDF) of the Volume

of Water above a Given Threshold Discharge for the Overland Flow

Case

2.5.1 Exact solution

The joint probability density function of 1, and too is, from

J) lL



Equation (2.26),

: _ BA BB,

(i, tee) TK exgl- AE, K -.

The CDF of the flood-volume, Von is then, from Equation (2.7)

| £(i, t,) di
“Ten | = Jogi rey

9%

nT

a

where Ry (is to) is the shaded region in Figure 2.9 for which

less than a given value.

Equation (2.99) can be expanded (see Figure 2.9)

© “re,

Ven) = | £(1,, t..) d te d i + F., (0)

Yh la “re,

(2.929)

Vin is

(2.100)

wh=r2

{ -

-

re,

1
i

-h

1/m
Un

toe = 1/m

1 o i

1/m  1+1/m

Lo fv Lo %n Yen |
L i _ a) th om om i

Integrating Equation (2.100) over t_ yields

F._(V | -£ (e¥ - eh) di
V' th

. K ! _ Yn

‘+h a 3

+ F (0) (2.101)

whi.i =

592



- Cy Vin C3 ,

(C.i -q.) i, 4 Te
27e th

 Ww
ER i
5, 4 Te

for (C, i, - dy) &gt; 0 (see Figure 2.9) and where

|

72

1

4 FA; C, = F,L; C, = FaA al ’ 4 4 K

Fo, Fo» EF, are conversion factors to make units consistent.

Equation (2.101) is further expanded as

e W,.  [ u.,Vv | = = edi - = edi + F_(0)

th KJ n e £1 Stn e Vv
dep 1a L r o

Fy

J. + F (0) (2.102)

Closer examination of Equation (2.102) reveals the following

properties:

When Vin = 0, u = w, which implies Jy = Joe Therefore,

Kr = 13 1 =

vO] F, (0) , a finite impulse at V_, 0 (2.103)

Ra

When Voy &gt; ©, ug &gt; - ©, therefore Jy + 0 and by definition

(0) | = 1.

91,

Using Equation (2.102), then it is clear that

4 1) Jo!

Voy
0

(2.104)

Substituting Equation (2.104) in (2.102) results in
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— — &lt;

Ven 1 Jos 0 &lt; Von ©

qn

oO (2.105)

So it is clear that in order to obtain yen)| , the only

integral to be evaluated is Jos where Jy is given by Yen

~ 0

3
= ‘ edi
_ th ©

(2.1.06)

The above integral has no exact analytical solution but a very

gsood approximation can be obtained as will be shown in the following

sections.

I. =

T

2.5.2 Approximate solution

From Equation (2.101) and (2.106), the expression for J, is

#20 Cc, V C

exp [- i + T +g, io} ai, 3.107;
 Yn 2% "Yn te

T,

C, i, om 9p, = xX

- hor

(x + 41) /C, : d i, =
dx

C,

And Equation (2.107) becomes

-
T:

1

f=]
~

8 21 3
exp = [om + os + ax] dx

2

(2.108)

where
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C
= . = . = . ~~ 4

a; = CVs ay = dys ag = C365 a, c,

Define.

a a

I SI
Fx) = + x+a, tax

(2.109)

then, it is true that f(x) is bounded by

a a, + a

£ (x) = t+ a,x &lt; F(x) &lt;1 3 + a,x = f(x) (2.110)

as shown in Figure 2.10.

The minimum points of the functions are also denoted in the

Fic ura

Define

A XM - XL; A, = XU - XM; py = FM - FXL, p, = FXU - FM (2.111)

The minimum ovoint of f (x). by differentiation, is found to

NO

XI, = {a [=
/2

FXL = 2(a. a
rf.

/2
(2.112)

and that for f(x)

XU = (Ga. + ap/a 1? Fru = 20(ay + aa, 1? (2.113)

As for the minimum point of f(x). setting the first derivative

to zero yields

r x)

3

— 4

-

a

-—3ee—+a
2 /

(x + a,)

3 (2.114)
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which is a fourth degree polynomial equation. Since XM is bound by XL

and XU as shown in Figure 2.11, and f'(x) is a very smooth function with

f' (XL) = negative and f'(XU) = positive, a trial and error method would

be the best mean for solving the equation, with an initial estimate of

XM = (XL + XU)/2. Experiences show that in about three trials the value

of £'(x) may be obtained to within 0.01 of the true value

Knowing XM, then

ay a4
K = m—— eeeee

FM XM + XM + a,) + a,XM
(2.115)

By translation, the minimum points of f(x) and f, (x) can be

forced to coincide with that of f(x), leading to closer bounds of f(x)

as shown in Figure 2.12, with

c
41

(x) “Tx -A3"T a, (x - Ay) o)
Nl

(2.116)

and

a, + aq

E(x) = 33)Fa xt by) - 0 (2.117)

Using Equations (2.116) and (2.117), upper and lower bounds

on J, can be established,

Is

-a,a, (© —-f., (x) -a,a, (© =-f_,()

a,e Ae e 2 dx &gt; J, &gt; ae 472 | e 1 dx = JL (2.118)

A,

Extensive testing of Equation (2.118) with a wide range of

values for parameters oa, 8, A, L and det led to very good results ib

some ranges but bad in others. However, closer examination of the upper

approximation, JU, led to excellent results,
- dy

3



The upper approximation, JU, from Equations (2.118) and (2.117)

iq

a, Ll a, + aq
1,6 exp - 0 + a, (x + 85) ui 0, dx

9

 HP oe a, + a
27 P2 1" 93 |exp - et + 248 dz

A,
where z = x + A,. Equation (2.119) can be rewritten as

A
-a, a, +p 00 . 2

47272 { A! lz - el Jaz)
~ A

jU -: a,e

(2.119)

(2.120)

Integrating the first term inside brackets.

poo a, + aq
a EE =

| exp [ ” p= a,z] dz 2v(ay + az)/a, KR,[2/(ay pe as) al
(2.121)

where K, (*) = first order modified Bessel function of the second kind.

There is no exact closed-form expression for the second term

inside the bracket of Equation (2.120). However,

a, + a

f(z) = — 34 a,z (2.122)

has a minimum at

Z in (a, + aj)/a, (2.123)

which is greater than A,,since,from Equations (2.111) and (2.113)

A
3

XI] = VV

/ (a. + a,)/a, - XM

Therefore, A, &lt;2z , and since
2 min

(| &lt; As it is true that



a. + a
1 3

— az for 0 &lt; z A, (2.124)

Jsing the above then

A
2 a, + a

| exp - A34a dz
zZ 4

1

A, (a, + a,)
1 3

exp — — = — - dz (2.125)

Since JU overestimates Jy» neglecting a,z in the integral

slightly increases the value of ¢, which may counter-balance the effect

of overestimating Joe
1

Let z = (a, + a,)y, and u = 7 then

a. +a

there € = 3

4

oO -t1
e

’ ~— du

[a + a,) 2

(2.126)

The above can easily be transformed into an exponential

integral which is tabulated and available.

By letting u = €t, then

b
~

1 * gE

(a, + aj) L] 7 dt
a, + a 1

1 3

RE E,() (2.127)

© —xt

where E, (x) = Fog dt = exponential integral function of the second
r

1
yrder.
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Substituting Equation (2.126) in (2.127),

A
tag a; + ag

2 72
(2.128)

Combining Equations (2.120), (2.121), (2.125) and (2.128)

gives the final expression of JU as

kJ a ~~

-a,a,%0, —_— a.

 yy&gt; (ay az)/a, KR, [2v(a; + aja,’

Ay E,[(a, + ap) /,1} (2.129)

Finally, the expression for the cumulative density function

of the flood-volume is given by Equations (2.105) and (2.108),

EY = 1 - a

LV) |
91

/
-

-3a,a 00 a a
4159 1 3

exp - [— te tal dx

5

0 Ven
&lt;” 00 (2.130)

which is approximated by

 RF
17 en |

= 1 - a =

a -1

"a,3y+P,
[o/c] + aj)/a, KR, [2V (ay + ajla,l

A
 I "May + a,) 8,1)

(2.131)

Numerical integration of Equation (2.130) and the approximate

value of the CDF of flood-volume for a wide range of parameter values

have been compared and the agreement between the two is excellent, with

only a maximum error of about 4 hundredths when Vin approaches zero.

As Vin increases from zero, the error decreases rapidly and the approxi-

mation becomes exact in the limir.
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The range of parameter values tested is given below:

0.1 &lt;a &lt;10 fe 1/3 sec.” L; 0.5 &lt; B &lt; 70 hr. fa.

0.02 &lt; A &lt; 2 hr.”}; 50 &lt; L &lt; 1000 ft.;

1.76 = 30% « qq &lt; 3.71 x 107% cfs/ft.

which covers adequately the range of climatical and physical parameters

of an urban catchment.

Equations (2.130) and (2.131) are plotted in Figures 2.13,

2.14, 2.15, with chosen parameters as shown. The excellent agreement

between analytical approximation and numerical integration can be seen

all through the figures.

Figure 2.13 shows the effect of varying the threshold

discharge, Up while keeping all other parameters constant. As ex-

pected, the higher the threshold discharge, the higher the probability

of zero volume. Higher Up implies smaller flood-volume, or smaller

probability of exceedance, 1 =- Fy (Vi) Therefore, the CDF of larger

9 envelopes those of smaller ones.

Figure 2.14 represents the effect of varying the kinematic

wave parameter, 0. A larger a leads to faster response and smaller

concentration time. Therefore, higher o gives a higher flood-volume

(with Uh, fixed), which also implies a larger probability of exceedance,

1 - Fy (Vi) or in other words, a smaller CDF,

Lastly, the effect of varying the overland flow length, L, is

shown in Figure 2.15. A longer length leads to higher peak flows which

implies a larger probability of exceedance, 1 - Fo (Viyds or a smaller
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CDF. As it is also shown in the figure, the greater the length, the

smaller the probability of zero volume for a given Dep,

As it can be seen, the correctness of the expression of the

ODF of flood-volume is confirmed in the above figures. The goodness of

approximations is well-illustrated. The next chapter will demonstrate

how this expression may be applied in the design of flood control systems

in urban areas.
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Chapter 3

APPLICATION OF THE FLOOD-VOLUME DISTRIBUTIONS

TO AN URBAN CATCHMENT

3.1 Annual Exceedance Series of Flood-Volumes

The flood-volume distribution function derived in Chapter 2

cives a probabilistic statement of the occurrence of an event for all

times. Traditional engineering usage obtains extreme value distribu-

tions for floods from annual exceedance series. These are expressed in

function of the recurrence interval which is defined as the interval

during which an event of a specified magnitude will be equaled or

sxceeded once on the average. The recurrence interval is expressed in

years.

From Equation (2.131), the CDF of the flood-volume is given

19

a,8,tP) (= 2 _ o (a. +a Va, &gt; (a. +ada,FV) 1 a, 2 (ay + a,)/a, K,(2 (a; + aj)a,

Ax = + 3)
2? 72 A,

(2.131)

lhe exceedance probability of the flood-volume, Fo(*), is

 na
a

- (VTH) = Prob(V_. &gt; VTH) = 1 - F (VTH) (: 1)

Define, N = number of years of observations of an event

n = average number of observations per year

nN = total number of observations

~



An event may represent storm depth, annual yield or flood-volume, etc.

If the values (assumed independent) of observations of the event, flood-

volume, are arranged in decreasing order of magnitude with order number

m = 1 for the maximum value, m = nN for the minimum value, an ordered

series may be formed with expected probability of exceedance given by

m
3 = V &gt; V = em
: ; (VTH ) Prob ( tl TH ) N + 1 (2 2)

For an annual exceedance series, only the N highest values from the nN

values are to be considered. It is defined as

D Spry )
n

EProb Vey &gt; VIH) | =m_1
TN4+1OT

—— ¥

basis

(2 3)

where I. is the recurrence interval in years on an annual exceedance

basis. Dividing Equation (3.3) by Equation (3.2), where m is the same

in both series, results in

ET) aN+1 (1 rs)Fo (VIH ) N+ 1 Ts Fo (VTH_)
3. 1)

Since quite often N &gt;&gt; 1, then Equation (3.4) becomes

= a) oN _
To Fo (VTH_) N

NT

1 ~

T. =n Fo (VTH )
’ .

2, 5)
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The final expression of the annual exceedance series, after combining

Equations (2.131),(3.1) and (3.5), leads to

T.

—3,8,%0, —
. — 3 ’ - }

na,e 2G; + aj)/a, K, [2V(a, + ajla,

Ap Fad]
2 72 A,

773)Coal

3.2 Modeling an Urban Catchment (Lump Design)

3.2.1 Estimation of physical parameters of an urban catchment

An urban area may be ideally subdivided into a number of small

catchments. Each catchment is characterized by a set of parameters such

as length and width, slope of land, soil types, average infiltration

rate, etc. Some of these parameters may be obtained from a topographic

map, others might have to be estimated from collected data.

Of all the parameters to be estimated, the average infiltration

rate is one of the most susceptible to uncertainty. A constant temporal-

spatial average infiltration rate of an urban catchment composed of di-

verse soil types is extremely hard to estimate. Of course, such a con-

stant is nothing but a convenient notation employed to account for a

complex process which is not yet fully understood. In reality, such

a constant never exists. In order to generalize different urban catch-

ments, the average infiltration rate should be determined with little or

no measurements of rainfall or runoff available. In other words, the

average infiltration rate has to be estimated from the soil types and

che degree of imperviousness of an urban catchment. It is here proposed

a7



to assess the effect of infiltration by employing the runoff coefficient

in the Rational Method. Instead of modeling the rainfall excess rate,

io , by subtracting an average infiltration rate ¢ from the average

areal rainfall intensity, i, it is modeled as a percentage of the

average areal rainfall intensity. That is

J L

)

(3 7)

where C is the runoff coefficient in the Rational Method for estimating

the peak discharge of small urban catchments. The rational equation is

in which i = chosen uniform rainfall intensity of duration t

4 4 3)

t

A = area of catchment

C = runoff coefficient

Q, = peak discharge

E. = concentration time

The runoff coefficient, C, is assumed to be a constant. A

table for C is given in Appendix A. It ranges from 0.1 for a sandy soil

to 0.95 for central business areas.

A composite runoff coefficient based on the percentage of

different types of surface in an urban catchment is computed as:

" C, A,
ii

a

A

where C, = runoff coefficient for the surface A

(7 I)
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Since extreme events are important in the frequency analysis

of the flood-volume, the upper limits of C should always be used.

The catchment area is usually well-defined and obtainable from

a topographic map using a planimeter. However, the shape of the catch-

ment has to be modeled (Bras and Perkins, 1975) as rectangular block(s)

in order to apply the kinematic wave routing uniformly over each segment.

For a rectangular block,

A
~
=
=

“2 10)

where A = catchment area

L = overland flow length

 4 = stream flow length

[f the overland flow length is well-defined, L_ is computed as:

(3.11)

If the streamflow length is well defined, L is computed as

{

1

I)

(3.12)
a

-

The kinematic wave parameter, 0, is a function of Manning's

roughness coefficient and the average slope of the surface. The average

slope can be estimated from a contour map. The roughness coefficient is

a measure of roughness of surface on which the water flows. Standard

values of this coefficient may be found in handbooks of hydrology. The

higher the value of a, the faster the flow. Since it is the path of flow

that is important in determining the concentration time, it would be

~C



appropriate to compute a composite kinematic wave parameter averaged over

length (Bras and Perkins, 1975)

Loa. L.
Sy 1

¥

y L

(7-13)3

where 0, = kinematic wave parameter for the flow length, L.

An example will follow, illustrating the use of the urban

~atchment model.

3.2.2 Derived frequency curves of flood-volumes for Gray Haven

The chosen case study is Gray Haven, located seven miles east

of Baltimore City in Maryland (Tucker, 1969). The catchment has a total

area of 23.29 acres of which 52% of the area is impervious. It is an

homogeneous residential type area containing group houses on lots of

about 2000 to 3000 square feet.

A map of Gray Haven is shown in Figure 3.1, together with the

sewer line. Five types of overland flow segments are identified on the

map, namely: street, lawn, roof, backyard and alley. There are two

basic types of drainage modules of the catchment which are shown in Figure

3.2. Water from roofs, after flowing over a pervious grass surface of

approximately 40 feet, drains into alleys which feed triangular channels.

The lawns and streets drain to gutters. After water reaches the gutters

or channels, it all drains to the sewer, as shown on the map of Gray Haven.

The average overland flow length for each segment is shown in Figure

3.2, with segment(s) classified into four different types given by T,,

L, » To, and T,
70
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Figure 3.3 gives a detailed map of gutter and channel flows.

Table 3.1 gives values of relevant parameters (Leclerc and Schaake, 1973).

A detailed breakdown of the total area into segment types

(Leclerc and Schaake, 1973) shows:

Type

Street

Roof

Alley

Sidewalk

Lawn

Backyard

Area (acres)

3.433

4.476

2.238

1.980

5.193

5.968

The sidewalk is added in because in the prototype it occupies

a very narrow band of land in front of the lawn. Its inclusion allows

the preservation of the imperviousness ratio of 0.52.

The catchment was gauged by the Johns Hopkins University Storm

Drainage Research Project. Some synchronized rainfall and runoff data

from 1963 to 1966 are available from Tucker (1969).

Since the catchment has a well-defined streamflow length (sewer

line) and its area is more or less spread equally on both sides of the

storm sewer, it seems reasonable to model the catchment into two equal

rectangular blocks with (Bras and Perkins, 1975)

L
Cc

A
2L

a

Seah)

where L_ = length of main storm sewer

= equivalent length of overland flow



[60°CT

108 —oe

5
&gt; : 2306

A 0&amp;

&gt; 2 350C
T Be

a 480G
LY

74—

6 42. rae
542 520C

A
200G

| 6306G
= 630G

hm
| 7 =

| go eaoe

-

-

aN

&amp;

6806 T

——2 IT

Pll 600C "4 104
Ta

PIO '

8104&amp; 2 9A
To

P9
. glog +,

—=F 9A
Pg :

480C T,

- =F en
PT /

480a@ T
+7

PS 5206 i!
 ese

p&gt; 400C

+ 13
P4

4006
2 | 4A

J2 22.06 4
| - 4A

J
| s80%

pz wT

pP2 ‘
. joo0C Ti

J3
. 200G 6B

iP!

Note: C stands for channel
a uw \ gutier

1... Ta. ovedifferent types of overland flow segment

Figure 3.3 : Connectivity of the Gutters, Channels ond

Pipes for Gray Haven



Table 3.1

PARAMETERS OF THE DETAILED SEGMENTATION*

Tvpe

overland flow (street)

overland flow (lawn)

overland flow (roof)

overland flow (backyard)

overland flow (alley)

overland flow (alley)

gutter

pipe

triangular

triangular
pipe

gutter

gutter

junction

pipe

triangular

triangular

pipe

gutter

junction

gutter

pipe

triangular
triangular

pipe

gutter

gutter

gutter

gutter

junction
junction
gutter

gutter

pipe

triangular
pipe

gutter

triangular
gutter

junction

gutter

pipe

11

P11

LOA

LOB

P10

IA

IB

PO

P38

3A

3B

P7

26

25

13

2

“A

4B

L4A

L4B

71

9

L5

23
)

22

7

L6A

L6B

13

L

Pl

Total area = 23.29

*(Leclerc &amp; Schaake. 1973) 13

Length Slope Roughness

18.

42.

30.

40.

10.

20.

680.

120.

600.

160.

120

810.

230.

0

160.

480.

350.

120.

480.

0

520.

160.

400.

520.

170.

220.

530.

400.

200.

0.

0.

630.

380.

130.

640.

80.

250.

100.

200.

0.

640.

173.

0.04

0.05

0.05

0.05

0.05

0.05

0.02

0.15

0.50

0.15

0.50

0.15

0.15

0.02

0.014

0.02

0.02

0.014

0.02

0.02

0.01

0.01

0.01

0.01

0.01

0.01

0.014

0.02

0.02

0.02

0.020.01

0.01 0.02

0.014

0.02

0.02

0.014

0.02

0.02

0.02

0.02

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.02

0.02

0.014

0.02

0.014

0.02

0.02

0.02

0.01

0.01

0.01

0.01

0.01 0.02

Imperviousness ratio = 0.52



A = total area of catchment.

In urban areas, overland flow is dominant. The concentration

time for overland flow is usually much longer than that for streamflow,

where streamflow is taken as flow in storm sewers. Therefore, it is

further assumed that the flow, Q, at outlet of catchment, is equal to

the overland flow rate per unit width (q;) multiplied by the length of

streamflow channel, L_. That is,

B) )
q;

14

Ss

CE *5)

This is a conservative assumption because it slightly over-

estimates the true streamflow rate. It implies that once the overland

flow reaches the sewer, it will flow along the sewer to the outlet in

No time.

Under the assumption of Equation (3.15), it follows that,

A -_

Vo) (Vo) «2 L, (3.16)

~tid

(dp) = (@ep)e-2 Le (:.17)

where subscript c stands for overland flow, s stands for streamflow; and

Vine dQ. are given and explained in Chapter 2.

The runoff coefficient for each segment type is chosen as:
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Type

Street

Roof

Alley

Sidewalk

Lawn

Backvard

C,
—1

0.95

0.95

0.95

0.95

0.35

0.47

A, (acres)

3.433

4.476

2.238

1.980

5.193

5.968

The runoff coefficient for the backyard is based on the

assumption that 80% of the backyard is lawn and 20%, impervious area.

This is a reasonable assumption since in backyards, generally, there

are concrete pathways and other works. This assumption also serves

to increase the rainfall excess rate for conservative estimation of

the flood-=volume.

From the above data, a composite value of the runoff coeffi-

~ient for the catchment is, from Equation (3.9)

2 C, A;
C=—5 = 0.69

i

An average value of the kinematic wave parameter, 0, from Table

3.1, neglecting pipes and junctions, and from Figure 3.3, is computed as

(using Equations (2.46) and (3.13))

y

. 1/2

49 (5 y1/
+ o’ 1

11rd

Ql

2 a, L,
1 1 = 6,4771 fe. 3 sec.
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The streamflow length is given by the length of storm sewer

in Figure 3.1, i.e.,

and

L = 1243 rt.

the overland flow length, from (3.14), is

3

A

CI = 408 ft.
 qQ

The above representation of the catchment is simulated using

the analytical solutions to the kinematic wave equations (2.52 through

2.63) for several storms. Results are shown on Figures 3.4 to 3.7.

As it is expected, the simulated streamflow rate is generally higher than

the actual flow rate because of the assumption that once the overland

flow reaches the sewer, it will flow to the outlet in no time. This

assumption also implies that the concentration time (defined as time

to peak discharge) in the model is less than that of the actual catch-

ment. Lowering the value of the runoff coefficient may force the two

concentration times to meet, but then it will constantly underestimate

the peak discharges of extreme events which are most important in the

estimation of flood-volumes.

Since the area of the catchment is small (23.3 acres), the

response of the catchment is fast. For this reason, any high sharp peak

appearing in the rainfall event will produce a peak discharge which

cannot be followed by the kinematic wave routing using an average uni-

form rainfall intensity. This effect is shown in the storm of August 1,

19¢ ”
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For high uniform rainfall intensities, the simulated catchment

model matches the actual hydrograph reasonably well. Low rainfall inten-

sities lead to overestimation of the flood-volumes. Nevertheless, the

small volumes of water in such cases will have little effect on the

accuracy of the distribution of the extreme events of interest.

It is felt that the approximate catchment model used will

reasonably represent the order and frequency of the desired threshold

volumes leading to a good c.d.f. Considering the approximations, the

uniform rainfall intensity and the effortless fitting of parameters,

rhe analytical solution does fairly well.

The catchment was gauged by the Johns Hopkins University

Storm Drainage Research Project from 1959 to 1967. Only several years

of rainfall and runoff records are easily available from Tucker (1969).

In order to estimate the rainfall parameters, the rainfall data of

Baltimore City in Maryland, which is seven miles west of Gray Haven, is

used instead. Hourly rainfall data for the Custom House Gage, Baltimore,

Maryland, is obtainable from U. S. W. B. Publications. The data for

the period May 1948 to June 1970 were analyzed. Leclerc and Schaake

(1973) summarized the results as shown in Figure 3.8 and Table 3.2. The

parameters in the exponential distribution function of rainfall duration

and intensity are computed as:

A = 1/mean of rainfall duration

B = 1/mean of rainfall intensity

(3.18)

(3.19)

from Table 3.2 , the mean of rainfall duration is estimated to be 5.86

hours. (Using an equation similar to Equation 3.20)
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Table 3.2

MOMENTS OF STORM EXTERIOR PARAMETER DISTRIBUTIONS FOR BALTIMORE, MARYLAND

(Untransformed Data)

Month

Time

Between

Storms

(hrs.)

Ae=NE|

Storm

Duration

(hr.)

Storm

Depth

(in.)

Storm

Intensity

(in. /hr.)

Number of

Storms per

Month

—————— a—

C

Jan.

Feb.

Mar.

Apr.

May

Jun.

Jul,

Aug.

Sep.

Oct,

Nov.

Dec.

90.7

76.0

77.2

60.0

64.6

75.1

80.0

69.4

97.4

109.9

111.1

95.1

7.54

7.53

7.42

5.56

4.99

4.28

3.32

4.09

4.95

5.83

6.89

9.07

303

346

.394

.286

322

398

390

439

.409

.385

377

455

.040

046

.053

,052

.065

.093

,118

.107

.083

,066

055

,051

5.32

7.95

9.38

11.32

10.39

9.09

8.55

9.14

7.45

6.19

7.05

6.86



From Table 3.2, the mean of rainfall intensity is estimated

by the following:

i

L2

2 n, i,

i=1 JJ

2

LL. Nn,
i=1 i

{ 3.77 J)

where n, = average number of storms for month j

= gverage storm intensity for month j

The obtained resul:

i
7.056

1071.69
= 0.0694 "/hr.

The final step in deriving the flood-volume frequency curves requires

the incorporation of the infiltration effect into Equation (3.6).

Starting with:

and

4 i

_B3
r3y=Lek ©

(
4

J 7)

(2.20)

results in

_B
F(i) - Eo. KC "¢ »

ry 1)

By modeling the rainfall excess rate as a percentage of the

average areal rainfall intensity (3.7), the duration of rainfall excess

is simply the duration of the average areal rainfall intensity. There-

£, Te RS



=Atya
E(t) = £(e) = Ae (2.22)

The joint density function of rainfall excess and duration of rainfall

excess (assumed independent) now becomes

=
_ BA Bi

0 tre) = xc ©*¥Pl- 3g ie Atp.] (2.23)

Notice the only difference between (3.23) and (2.26) is the

replacement of 'K' in (2.26) by 'KC' to obtain (3.23). The change of

a constant by another constant does not affect the outcome of an inte-

gration. Thus, the final expression for the annual exceedance series

of the flood volume is the same as Equation (3.6) but with the parameter

K changed to KC. Equation (3.6) gives the recurrence interval for the

flood-volume per unit width of overland flow. It is necessary to trans-

form it into the flood-volume for the whole catchment

From Equations (3.16) and (3.17),

(Vine - Ven) o/2Lg

a.) = (q,4) 4/21

Equation (3.6) becomes

2. % na

I.
-—

i

"a, 4,%0,
{or + aj)/a, kK, [2V(a; + ajla,]

a4 + &gt;)

NE, Pe (3.24)

where now

3
i = FAQ) /(2L)

-~

~ .5)

QA



A,

a, = (a,,)./(2L)

(a,,), 1/m
= Foy AL | 2aL,_ J

a,
Fy©
RCL

Q

(3.26)

(3.27)

(3.28)

Selected parameter values for the case study are:

o = 6.477 te. 3000. K=1.0

L = 408 ft.
c

A = 0.1706/hr.

C = 0.69

F. = 2.78 x 107%

Fy =
12.0)

L = 1243 ft.
s

R = 14.41 hr./in.

n = 101.69 storms/year

-5
F, = 2,3 x 10

FE, 1 0

The results of Equation (3.24) are shown in Figure 3.9 together

with the more exact values given by Equation

-a,a, [® a a

Ll ~ 4-2 1 3
T. = nae | exp [= + —— + a,x] dx

-t oO -

(3.29)

The information on Figure 3.9 may be used for designing the capa-

city of water treatment plant and storage tank if storm sewage needs to

be treated. Tor example, if a recurrence interval of 25 years were

chosen, a water treatment plant with a maximum capacity of 5 cfs (3.23

MGD) would require a storage volume of 115,000 cubic feet,with a possible

failure of the whole system on the average once in 25 years.
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3.3 Conclusions

One of the main difficulties in judging the derived

distribution approach for flood-volumes is the extreme scarcity of

historical data adequate for comparisons. The determination of flood-

volumes requires an entire hydrograph for each storm. In urban areas,

continuous gaging records of runoff, even though some exist, are usually

very short. Using historical records of less than ten years, the

reliability of the comparison test is very much in doubt.

Another way of obtaining hydrograph data is by digital simula-

tion. Hourly rainfall data for each storm is used as an input to a

deterministic simulation model to reproduce an entire hydrograph so that

the flood-volume for each storm can be determined. Since rainfall

records are usually much longer than records of continuous discharge,

it would be reliable to use the simulation approach to obtain the annual

exceedance series of flood-volumes. But then, hundreds of storms have

to be analyzed and the simulation cost would be enormous. At present,

digital simulation seems to be the only mean by which an annual exceed-

ance series of flood-volume can be obtained for comparison.

Since the model used is physically based, with reasonable

parameters, there seems to be little doubt about the validity of this

approach to small urban catchments. While at present better means of

determining the distribution of flood-volumes are not available, the

analytical, closed-form expression for the annual exceedance series

of the flood-volumes will inevitably provide a fast, cheap, easy and

 09



reliable means for the practitioners to make decisions on flood control

measures in urban areas.
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Chapter 4

STREAMFLOW MODEL

4,1 Introduction

Previous chapters have dealt with overland flow which usually

governs urban areas. For large natural catchments in which streamflow

is dominant, the single overland flow model is no longer adequate. In

this chapter, a streamflow model will be considered. It consists of a

uniform stream channel at the junction of two identical, plane catch-

ments (Figure 4.1). The streamflow hydrograph may take many different

forms, depending on the relative magnitudes of the duration of rainfall

excess, overland concentration time and stream concentration times.

To solve the kinematic wave equations (4.1 and 4.2) for the

streamflow case, the method of characteristics is theoretically pre-

ferred over the alternate finite difference methods since the former

moves continuously along a characteristic curve in the space-time domain

while the latter can only move from intersection to intersection on a

finite difference grid in the same domain.

Few analytical solutions of the characteristic curves for the

streamflow case are discussed in literature, mainly due to the mathe-

matical difficulties encountered. Eagleson (1970) has presented a

detailed analytical solution of the characteristic curves for a small

stream for which t &lt;t .
re Cc

The main purpose of this chapter is to outline a procedure

01
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for obtaining the cumulative density function (CDF) of the flood-volumes

for the streamflow case. Some closed-form approximations to the analyt-

ical solutions of the kinematic wave equations in the streamflow case

are offered.

4.2 Some Properties of the Kinematic Wave Model

Under uniform rainfall excess of duration t od overland flow

response is one of the two cases, as seen in Chapter 2 (see Figure 4.2).

Case C.1l: t 2 t
reeeeEC,

The discharge is increasing during the period 0 &lt; t &lt; Et.

after which it will stay at its maximum for t_ &lt; t &lt;t__. At t = t
va

the discharge begins to decline.

Case C.2: t &lt; t
 1 eC

The discharge builds up during the period 0 &lt;t&lt; te after

which it will stay at its maximum for t &lt;t&lt;t_, where (t_ - t_) is
re — p P re

the time required for the initial disturbance to travel from its posi-

tion at time te to x = L.. At time Ly the discharge begins to decline.

For the streamflow hydrograph, there are three general cases

(Figure 4.3) to be considered, depending on the relative magnitudes of

Coa? tee tos and tye t, is the concentration time of the entire catch-

ment and is defined as the sum of the overland flow concentration time,

E_» and the streamflow concentration time, t

Case S.1: t_ 2 t, =t +t
—Yre——HF———Cc—=S

The discharge continues to build up until t = t , after which

it will stay at its maximum value up to t = t__. At t = ts the
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discharge begins to decline.

Case §.2: t &gt;t &lt;t
aCo

The discharge does not reach its maximum peak since te &lt; t,.

[t continues to grow beyond t = t__ for a short while, after which

recession begins.

Case S.3: t_ &lt; t
———————1gC

The discharge continues to grow beyond t = too but remains

small. Recession begins shortly after t =

4.3 Relative Magnitudes of Concentration Time Constants in Natural

Catchments

The equations representing the hydrographs of the streamflow

case are extremely complex. They may take many alternative forms de-

pending on the relative magnitudes of the time constants of the overland

and stream segments. Comparing relative magnitudes of certain time

constants and choosing the most probable events, it is possible to

reduce the number of possible solutions to only three, one for each

general hydrograph shape, (S.1, S.2, S.3) in Figure 4.3.

The derivation of the kinematic wave equations for the stream-

flow case is similar to those for the overland flow case, only that now

the continuity equation becomes (Eagleson, 1970):

IA IQ

Bt TER 2q,,
(:

’, i)

and the momentum equation becomes

ib



Mg
= 0 A

Q S S (‘ 2)

where Qq = stream discharge at X

1 = lateral inflow to stream along Xx

A = cross-sectional area of the stream channel at x

a, = kinematic wave parameter for streamflow case

m_ = 3/2, for natural stream channel, trapezoidal shape.

Solving Equations (4.1), (4.2) by the method of characteristics

(Harley, et.al., 1970) yields

Qs _ c
dt 91 Cq

da

ac C29

 _,

dx 9,
s

dA_
dx_ = 2q, / Cs

Equations (4.3) through (4.6) are valid only along the

(£.3)

(4.4)

(4.5)

(£5)

characteristics,

dx m -1

s _  _ al

Tr - Sg = Yg Og
(4.7)

These equations (4.2 to 4.7) define the shape of a streamflow

hydrograph.

There are three impor. a -ime constants to be considered:



ES

Ep ty toe t. is the overland concentration time as defined in Chapter

2. The remaining time constants are defined as follows:

=

[=
= time for the water to travel from x = (0 at t = t. to

xX, = L, under the condition that qq. is constant at its

maximum value throughout t &lt;t &lt; t,, given that Con &gt;

t +
c

* So » -

ty = time required for the water at xX, = 0, t = 0 to travel

to Los irrespective of whether 9. is constant or not.

Referring to Figure 4.4, it can be seen that depending on the

x

relative magnitudes of ty with respect to tos Es and SE different

expressions and shapes for the streamflow hydrograph may result since

whenever a characteristic curve starting at x, = 0, t = 0 (limiting

characteristic) crosses the lines t = t., t= t,o t= ty, t=¢t the

inflow to the stream channel, qq. changes. The above leads to different

equations for the characteristic curves.

All the possible paths leading to different hydrographs

(corresponding to the situations given in Figure 4.4) are shown on

Figure 4.5. Reduction of the number of paths is possible by identifying

the most probable events. Since the wave velocity, c.» is related to

the cross-sectional area, Als and the streamflow discharge, Q_, by

N

Noir

1x .

Ss 1/2 i/3
Tr © AL a OQ

Fort I 3/2 (4.8)

it follows that

r
~~

&gt;t \
’

loHY)
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For te &lt; too the kinematic wave equations also impose the

condition,

bo
for 0.35

-

~
re|

- Lk
(4.10)

Proof is shown below. Using Equations (2.61), (2.62), (2.73) and

m 5/3.

3 ,, * .

tre) 5 (it, - i,t.) 3 bon

Li
3 e
= [—————————-1it 1]

5 ait y2/3 e re
e re

ali t y&gt;!3

siti e
ai t ) er

 ee re

Dividing both sides by it

th” bre 3 bre te 5/3

ated fe [Ryt 5 | t t
c Cc re

tt -t e t

A plot of 2 ‘ Ee against S2 is shown in Figure 4.6, and
c

t_

(4.11)

it is found that, for t,. S

t =¢t
P re &lt;1

 TC
for 0.35

1

re &lt;

t
1

which leads to Equation (4.10).

The stream concentration time, t , is determined as follows:

For gq constant at its maximum value
1

1 ¢

] T, i
- a
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from Equation (2.73). From Equations (4.6) and (4.7),

dA_ _ 2qy _ 2L 1,

dx _ Cg 3/2 a A172
a Tg

Integrating,

Ax ,t) 1/2 4 L i Xs
A dA == + =£ dx

J 3 Ss 3 a s

A(o.t )=0 5S 0

NY

AG, 01? =
2L i( L. o 1/3 1/3
HES xX
= :

a

(4.12)

Substitution into Equation (4.7) yields

 5 3 23, [let ass
dt 2 ss 2s | ag *s

which upon integration results in

t +t
*L 2L 1 1/3 Cc S

s ~1/3 4, _3, i) | 45
-~ Ss 2 s a

Finally, from the above

2 1/3

L |
2

| 2L 1, o
ro —

-

3

hl( 13)

From Equation (2.53), the concentration time for the overland

segment is given by
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aE
[ omen

c 37° 12/3

for = 2
m, 3 (4.14)

Comparing the magnitudes of t_ and t_ leads to, using Equation

(4.13) and (4.14)

C
S —

rs " 0.7937
C

(110 i 0 1/15
Ss e C

. 14 oO
Cc s

(4 5)

The number of possible outcomes of the streamflow hydrograph

may be reduced by studying the average value of t/t, occurring in

nature. This has to be done by relating the ratio t/t, to the effec-

tive runoff contributing area A and the catchment area A. The runoff

area is the portion of the catchment area which produces direct runoff.

In Figure 4.1,

A =

A

LL
cs

LL! ¥
Q

¢: 5)» 5

(4.17)

Eagleson (1972), in deriving the distribution for peak stream

discharge, assumes that Al is a narrow band centered along the mainstream

with a triangular distribution given by

oF A J

A
2 Tr

A [1 = A S
0 &lt; A

ge

&lt; A
C

(4.1.3)

which is shown in Figure 4.7.

For geometrically similar natural catchments, the mean of the

ratio A 1.2 is approximately given by (Eagleson, 1970)

inA3
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fe 1
r 2 3

(4.19)

where A, = total catchment area

. = length of the mainstream.

Therefore

Li’ Lo= ant?

L' = = LY
Cc Z Lg

(4.20)

(4.21)

for a rectangular catchment (see Figure 4.1),

And
J

A A

re ei—————

 TN
(4.22)

Substituting the above expressions in Equation (4.15) leads

"9

Cs
— = 3.65

12 9 , 11/15

(a2 a e , _14/1510
{ a oY

(* a 7“3)

seg

o
Cy

it, | te? Aur ©
c c? o | - | Ps T @t *

(412 9 : ” or
oe Ne by Hs | |

10 . 2 ’

3 A CH :- ’ § - x5 dA
Tr

‘3Y
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E

t

=| = 5.12

t
C

1/15
i 03/3

e C

o 2/3
QQ

A2/15
c

(4.24)

where i, = inches/hr.

Al = square miles

a, = £3 1500

we
a = sec

S

The practical range of parameters reported in literature gives

che approximate limits:

0.1 &lt; a, &lt; 10 £el/3 ec

0.1 20 &lt;1 seg

0.01 &lt;i &lt; 6"/hr

Cc
} Ss . . }

From the above values, the average value of the ratio = is within the
c

limits"

} TTA

t

"2/15 _ a &lt; 106.62A
C

2/15

From this approximation, an important conclusion can be drawn,

t

S55 1
L,

A
ng

- ~

u &gt;&gt; t

C
(4.25)

for all practical catchment sizes.
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When Equation (4.25) is combined with Equation (4.9) , it is

reasonable to assume that

Pvobl tT

R

©

&gt;

wanasy
Eo

The inequality, t, - Lt
re

ji

t may be rewritten as (after

(4.26)

dividing throughout by t,)

re 1

te
1 +—

Ct

(7)ot

where t, = t + t
x r &lt;

Since the characteristic curves do not cross one another

(assuming constant rainfall) and using Equation (4.9) , the following

inequality holds,

%

Dividing throughout by t,.,

1
t

+5
t

Q

(4 18)

t t
: Ss ; 3

But, from Equation (4.25), = &gt;&gt; 1, or = &lt;&lt; 1, implying that the lower

* Cc s

limit of the ratio t/t, is much closer to unity than that of the ratio

to tx (see Equation (4.27)). From this, an additional assumption, which

is only slightly less valid than Equation (4.26), is (compare Equations

(427) and (428))
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HOT

* ~

Prob[t &gt;t |] = 1, when t = Gg
s re re

vo
t . it is true that

~
1 ’ &lt; 2t

(4.29)

Since t_ &gt;&gt; ts it would be most likely that

2t &gt; +. t

 YT tL. ¢ 9)ot

Combining Equations (4.9) , (4.10) and (4.30), it is also

reasonable to assume that

Problt_ + tl = ] (1 21)

Finally, using Equations (4.26), (4.29) and (4.31), Figure 4.5

is reduced to Figure 4.8, which represents only three possible stream-—

flow situations.

4.4 Defining Streamflow Hydrographs

In the last section, the most probable situations leading to

streamflow hydrographs were identified (Figure 4.8). In this section,

a qualitative analysis of those events will be followed.

The characteristic curves are defined by Equations (4.3)

through (4.7), and the hydrograph is defined by Equation (4.2). There

are only three cases to be considered, as shown in Figure 4.8.
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Case S.1: t &gt; t, =t_ +
mre —— re — *

t_

~

t &gt;t
Q CC

The characteristic curves and streamflow hydrograph are shown in

Figures 4.9 and 4.10, respectively. In Figure 4.9, since it is known

beforehand that € &gt; tos an initial disturbance started at xX, = 0 will

move along curve b reaching x (x, &lt; L)) at t = t_. It will continue

to move along curve b until it reaches the stream outlet, L_ at t = €

Notice that when curve b crosses the line t = ts qq. changes. When qq

changes, the characteristic curve also changes. Thus, the portion of

the curve b above or below t. will be represented by different equations.

The two equations will contain the variable Xs which can be eliminated

to form only one equation representing curve b. How this can be done

will be demonstrated in Section 4.6.

Somewhere along the stream, there must exist a position X15 at

which an initial disturbance starts and reaches L_ at t = t. This is

shown by curve a. Curve a envelopes a set of curves which start at Xx

at t = 0 with xq Sx &lt; Lg and end at L, with 0 &lt; t Stee The charac-

teristic curves do not cross each other. Since the equation of qa is

the same for all these curves and they all start at t = 0, they are all

represented by one equation. This equation defines Region I in Figures

4.9 and 4.10.

All the curves that are bounded by curves b and a cross t = t.

once and accordingly they can all be represented by the same equation.

This defines Region II.
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All the curves that are bounded by curve c and b also cross t = t.

once, at which the equation of qr, changes, but they all start at a time

t = t, in which 0 &lt; t &lt; t. Therefore, they are all represented by one

equation which is different than the one for Region II. This equation

defines Region III.

As can be seen from the figure, Regions IV, V, VI are all

represented by different equations. ty is defined as the time at which

a disturbance started at (x = 0, t = t ) reaches x =1L .
s re s Ss

The corresponding hydrograph is shown in Figure 4.10. It can be

seen that in order to describe the entire hydrograph, six equations are

needed, one for each region bounded by the dotted lines.

Case S.2: t &lt;t
C —~a

ct,

E&lt; Lt ~~ t
 qQ — Te

The characteristic curves and streamflow hydrograph are shown in

Figures 4.11 and 4.12, respectively. An initial disturbance starts at

(t = 0, x, = 0) will cross the lines t = t. and t = te before reaching

Lg as shown by curve c. Curve c is represented by three equations since

it crosses through two boundaries at which qq. changes. Elimination of

x and x reduces three equations to only one, where x and x are the

positions of the disturbance at t = t. and t = too? respectively.

Somewhere along the stream exist two positions, x, and Xs where

Xs &gt; X15 from which disturbances start at t = 0 and reach L, at t = t
~ r

and t = t oo respectively.

The regions are shown on the figures. Each region is represented
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by a different equation.

The peak discharge would most probably lie between t¥ and Ey

where the increasing flow from upstream balances the effect of decreas-

ing qq 2, is defined as the time at which a disturbance starting at

(x =0, t =t ) reachesx= L
s c s ~

Case S5.3: t «
irt———  “map— Te

t_

a
+a

~ L

P

The characteristic curves and streamflow hydrograph are shown

in Figures 4.13 and 4.14, respectively. With t &gt; tse an initial

disturbance starting at (t = 0, xX, = 0) will have to cross the lines

t = to and t = t, before reaching L.. Disturbances starting at xq and

X, at t = 0 will reach Lg at toe and Le respectively. In order to have

some idea of when the peak discharge would occur, an additional stream

concentration time, ty has to be investigated first.

Let tl = time for the water to travel from x = 0 at t = to

to x, = L_ for qq, constant at less than its maximum

value given that t &lt; I

From Equation (4.8), it is true that

1

t_ (42)

Using Equations (4.10), (4.25), (4.32), it may be concluded that
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Prob(t" &gt; t - &amp;t -—
s P _ 1 (4.33)

The above condition insures that the peak discharge occurs at

a time beyond te

There are altogether six regions. The peak discharge would

most likely occur between t¥ and Ee where the increasing flow from

upstream balances the effect of decreasing aq,

4.58 Procedure to Obtain the CDF of Flocod-Volumes for the Streamflow

Case

In order to obtain their CDF, flood-volume expressions must

be determined. A look at Figure 4.15 for Case S.1 will indicate how

complex the situation is for the streamflow case when compared to the

overland flow case. There are three segments on the rising limb. De-

pending on which segment 91, cuts across, £1 will be given by different
S

expressions. Since there are two segments on the receding limb, ty may

take two different forms. There are six possible expressions for the

flood-volume, Vin , depending on the position of the given threshold
s

2 &lt; _ ;

discharge, en &gt; where Yeh &lt; Qa 2LL1..

An examination of Case S.2 shows that it might have twelve

possible expressions for the flood-volume, which is the same number as

for Case S.3. If the equation for each segment of the hydrograph is

known, it may be possible to eliminate some of the unlikely combinations.

The flood-volume is obtained in a way similar to that of the

overland flow case in Chapter 2.
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Take a simple example as shown in Figure 4.15. As Ue, stands,
Q

the flood~volume is computed as follows:

a

“on | | Qrr1(e) de + Quinn ove Ey)
Yn ©

1.

-

I

- 7

Q(t) dt - dy, (t, - t,) (4.34)

“a

where Qr7 (1) = the discharge equation for segment III

y(t) = the discharge equation for segment V

After the flood-volume expression is obtained for each case

S.1, S.2, S.3, the CDF of Veh dy is obtained by
Q

= £(i, t ) di

Yn Pe

dt
re

(od-=)

where R, is the shaded region in Figure 4.16, in which all Vihg are less

than (Ven) given.

In the figure, the two dotted lines t = t and t = t,
re Cc re 3

separate three regions corresponding to three streamflow cases (s.1,

S.2, S.3). The flood-volume expression for Case S.l1 is given by

i, = F(t.) or more correctly by f(t oo is Ving» en) = 0.

Volumes for Cases S.2 and S.3 are given by £,0+) and £.0), respective-

lv.

4.6
*

Streamflow Hydrograph for Case S.1l: t &gt;t, =t +t ,t &gt;t
ee terrae rere red ceed rarer emer re — c s Ss c

The characteristic curves for this case are shown in Figure

4.17, which is essentially the same as Figure 4.9, except that more
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notations and dotted lines are added. The notations are defined as

follows:

tn the time at which a disturbance starts ar

C | 0

0. where

 kK = the distance along the stream where the characteristic

curve crosses the time when the equation of qr changes.

The numerals stand for both the regions and the characteristic curves

that end in those regions.

Since the streamflow hvdrograph is given as:

3 AL, t) = a A(L_, t
3/2

(4.36)

The cross-sectional area at L_ for all times must be evaluated.

A(L_, t) will be obtained for the regions in ascending order. Equations

(4.3) through (4.7) are reproduced here for convenience.

dita CdQ } 20,
dt

dA_
rralialis 1)

Ns _
dx qr,

S

dA

dx ~ 2q;/eg

dx
s _ _ 3 1/2

TC Co To Og Ag

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)
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Region I: 0 &lt; t &lt; t.

The characteristic curves in this region are enveloped by

curve a. From Equation (4.4), along curve I (dotted in Figure 4.17)

AL, ©)
A, =) dA =

J

A(x, 0) =0

20,:

J c

5/7
-

_5/3
dt

MY

_ 3.5/3 8/3
A(L_, t) = Z et t 0&lt;t&lt;t

-

(L717) al

®

Region II: t &lt; t &lt; t

 oe= 5

From Equation (4.4), along curve II, below t.

A(x y t ) t
Tw? Te Cc

dA = 2, i273 J 2/3 dt
, ce

Ax, 0)=0 0

A(x .
-T

+
+3

_ 3.5/3 8/3

ACx, t? = 7% %te te

From Equation (4.4), along curve II, above

AL , t)

[5

A(x,

dA = 2L i |
 Cc e

dt

-

t
C

(¢ nN"3)

Therefore,
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= . 3 .5/3 8/3 *

ACL, t) = 2L 1 (t -t) +o dT ot for t &lt;t&lt;t (439)

o » *

RegionIII: t, &lt;t&lt;t,

From Equation (4.4), along curve III, below t,

AO t.)

ACO, t )=0

aA = 20 1°73 |
 Cc e

¢ 5/3
dt

YY

_ 3 _ .5/3 ,8/3 8/3
A(x, t) =zo i” (7 -t"7) (£0)

From Equation (4.4), along curve III, above t _

AL

J

Ax.
L

-)

 Mr
J

dA = 2Li_|
ce

1

Therefore,

A(L_,
_ . 3 .5/3 8/3 _ 8/3

t) = 2L 1i_(t t.) + 7 Cd (t_ t ) (421)

The above equations both involve t's which can be eliminated.

te! will appear in all the regions from now on and eliminating t,)! will

be one of the most difficult operations in solving the hydrograph analyt-

ically. A least square fitting technique will be employed in such a

process. The following will show how this can be done.

From Equation (4.4), along curve III, below &amp;
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A(x, t!) =

AGEs t')
_ 3. 8/3 8/3

dA = 2 a i,(t - &amp; )

AO, t_)=0

(L272)

where 0 &lt; t &lt;t'&lt;t, 0&lt;x &lt;x.
o — — cC — 8 Ww

from Equation (4.7), along curve III, below t.

Xo Ee.
_ 3 v\11/?

J dx = 5 Og [ACx_, tt" 1]

i

Therefore.

 1

-—
ik“nN,

X

X

t

 Cc

V3 (a 13/3)? (18/3 _ (3/31/72 1!

nN

t

5/3.1/2 | © 4/3 t18/3 1/2
a (a i] ) t [1 - = ] dt

t
0

t 18/3

= where 0 &lt;

~

V3
A

Let

9/3 s/3.1/2 1/3] (So) [1 a - pt? 4
32 ag (@ i, ) te. t 15/8 y

c t, 8/3 y

=
oe

[et

Ne 1

7

“

J
3

where b = 93 (a 19734172 7/3
0 32 “sce

(443)
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1
t 17/3 1/2 t

I) 1-y_  d ©
“= 5 J t 18/3 15/8 » 0g 21 Gab)

Cc 0 y o

C

t

A plot of Z against 2 is shown in Figure 4.18. There seems

C

to be only one inflection point on the curve, therefore a third degree

polynomial should be expected to fit the curve closely. This fit is

also shown in the figure. The least squares fit is given by

Co 2
— =b, +b, Z +b, Z + h

NY

b b b

3 c 1 b w 2 "w 3 "w

o b b~

{ 5)

wher 2

b, = 0.9922

b, = -1.1235

by = 1.2577

(4.46)

b, = -0.8592

The next step is to eliminate x from Equation (4.45),

From Equation (4.4), along curve III, above t,

Ax t
i \

dA = 21 i | dt
CC

where t &lt; t' &lt; t_,

J

A(X» t )

Xx &lt;x &lt; L
Ww gq — 3

-

© 3
J

S
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Therefore,

t —_— 1 ! —

A(x, tt") 2L.1 (t t.) RA Ax, t.) (4.47)

where, from Equation (4.40)

A ’ tt)
8/3

ra12/3(23-83

Therefore,

oT

YR i= 7 E

A(x_, t') = c,t' + c,

cq = 2L 1,

_ 3 .5/3 8/3 8/3 :
ch = 7 01 (t, - t, ) 2Le1t

(4.8%)

(4.49)

From Equation (4.7), along curve III, above t,

t

“dx 32a [eer + Cc,
Ss 2s | 1 ?

&lt;

2
k -

7

[

Q,
_ __S 3/2x = [Cet + cy) / - (c t, + 33%

“NY

o

«= 1_- = [Cyt +c)? = (ege_ +c)? (4.50)

Substituting X in Equation (4.45), an implicit relationship

between t and t is obtained. as

f(t. t)=20
SEA

2 1)

i927



Using Equation (4.51), the expression for AL, t), (Equation (4.41))

is completely defined. Unfortunately, (4.51) cannot be expressed as

t, = f(t), therefore t, has to be solved by trial and error, given a

*

value t for which tg &lt;t &lt;t,. Then both the value of t and tare

substituted in (4.41) to obtain A(L_, t).

Region IV: t, &lt; t &lt; te

In this region, the hydrograph is rather simple because

Q (Ls t) is a constant at its maximum.

From (4.5),

Qg (Lg t) Lg
dq = 2L_i_ | dx _

Q(0, t )=0 0

Q (Ls t) = 2L L_ i, (4 52)«

Region V: t &lt; t&lt; t
ii re "= "h

In this region, gq, has to be expressed explicitly as a function

of t in order to carry on the integrations. q, is given by (for m

373)

~
 A

5/3
(4.53)

and

 J ov 3 yl +2 (t -t_)] (4.54)
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where vy = overland flow depth at xX, = L. for time t &gt; to

Equation (4.54) is written as

v

Let

2 ~Sa

n m_-1 Lt,
tmi(t-t )v = ——

&gt; we a.

y
. _ = 7

m i (t to) kq

Z m 4 L

(4.55)

(4.26)

hen (4.55) becomes

mm m -1 m ~1 Li,
7+ kk © Z = a&lt;&lt;

3?

Z (1 1 1, 1m _ k,
7 (t - t_.)

(4 57)

whi oe

TT —A—
m i (t - t.)

and (4.38)

Liyl/m
k = ce ¢ / m i

2 Qa, ce

Equation (4.55) is reduced to (4.57), a dimensionless form in

which the least square fitting technique may be employed.

[n Equation (4.57), let
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_ 1.3/5 _ _

A=2z2(1 + =) = ky/(t - ta) for m, = 5/3 (4.59)

An examination of the properties of A shows that when

and when

-

/ &gt;

i
A po 7 (1.3/5 -" 72/5

~ 3.1
1. A221 + z 2

= 7 b 3/8

(4.60)

(4.61)

An approximation of Equation (4.59) in the form Z = £(A) is

desired so v can be expressed explicitly as a function of t

a FON

YY

\

k,
mi (t - to) fle]

re

(4.62)

and

q; = ay? = function of t explicitly

y is important when (t = to) is small, because that is the

time when the recession just begins. When (t - t J is large, y

approaches zero and at this portion of the hydrograph, y has hardly

any contribution to the flood-volume. When (t - te) is small, Z is

large. Therefore, Equation (4.61) is chosen for further manipulation.

A plot of Z versus A for (4.59) and (4.61) is shown in Figure

19.
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In the figure, Z' is always smaller than Z. When Z is large,

the difference between Z and Z' is very small. When Z is small, some-

thing has to be added to Z' to correct the error.

et

7
~~

A + gM) {(" 73) dd

g()\) should be a rapidly decreasing function so that when Z is large,

g(A) &gt; 0 and when Z = 0, g(A) &gt; 3/5. An exponential function fulfills

all the requirements of g(A), so let

cA) = 3 oY? (4 24)

From Equations (4.63) and (4.64)

A = -fn[l +3 Z = MN] (4.25)

A plot of A against - nll +2 (Z - A)] for 0 &lt; Z &lt; 1 gives the best

value of the slope, Y = 1.77. For Z &gt; 1, the difference between Z'

and Z is small and g(A) is small too. Therefore, the equation

J =\=3 . 3 21.772 (v1, 19)

satisfies the entire range of A.

Converting back to its original symbols, Equation (4.66)

opecomes

yg =
Li 3/5 1.77 1_fo)&gt;! &gt;
==] - i (t - tee) i - EXP - ety | een

and

4
"y

r

¥

3/3

132
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Some of the graphs for y and q are shown in Figure 4.20,

lt 92 JA -

Since the purposes of this chapter are to lay out the

procedures for obtaining the flood-volume distribution for the stream-

“low case, and to demonstrate how the hydrographs may be solved analyt-

ically by using the least squares fitting technique, it is beyond the

scope of this work to solve the entire set of hydrographs. The rest

of the regions for Case S.1 (Regions V and VI) will remain to be solved

in future work.

4.7 Conclusions

The necessary procedures for obtaining the flood-volume

distribution for the streamflow case have been discussed in detail.

Methods for obtaining the hydrographs analytically have also been

demonstrated. There seems to be little doubt that analytical solution

for the flood-volume distribution can be derived, but only with

tremendous efforts.

The analytical solutions for the hydrographs, after they

have been derived should be compared to the hydrographs obtained by

numerical methods so as to test on the goodness of approximations.

The properties of these analytical solutions should also be studied,

so as to reduce the number of flood-volume expressions to a minimum.

Although the flood-volume distribution has not yet been

derived in this work, when done, it will undoubtedly be one of the most

useful tools in the design of flood control measures in large basins.
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Chapter 5

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

In this work, the applicability of the derived distribution

technique in urban storm drainage problems has been demonstrated. The

theoretical, physically-based distribution of the volume of water above

a given threshold discharge for the overland flow case is given in a

closed, analytical form with few hydrologic and catchment parameters.

Application of this distribution function to a small urban catchment,

Gray Haven, for flood-control design is shown in Chapter 3. The

simplicity of the results allows its general application to any small

urban catchment. The procedures for obtaining the flood-volume distribu-

tion for the streamflow case have also been outlined.

There seems to be little doubt about the validity of applying

the flood-volume distribution function to small urban catchments because

the expression is physically-based with catchment parameters computed

on a rational basis.

Suggested future work is well defined. It includes, for the

yverland flow model:

1) Using digital simulation to obtain the annual exceedance

series of the flood-volume for comparison for a number of

small urban catchments.

2) Developing standard procedures for applying this model

to large urban drainage systems.

For the streamflow model:

134



1) Solving the hydrographs analytically for cases te &gt; ta

2)

3)

t &lt; t &lt;t, and t &lt;
c= Xe ¥ re

Reducing the number of possible

to a minimum.

C_

flood-volume expressions

Deriving the flood~volume distributions of the streamflow

case for different regions of threshold discharges in

closed—-analytical forms.

Testing the validity of applying this model to large

basins by simulation.

The streamflow model, when completed, should also be applied

to large urban catchments to obtain results comparable to those of the

overland flow model, hopefully corroborating the validity of using the

overland flow model in those situations.

As a solution to the problems of environmental pollution and

local flooding caused by combined sewage overflows, the detention by

storage method is the best alternative yet conceived. The distribution

function of the overflow volumes derived in this work provides a mean

for designing the storage volume of interest. Increased urbanization

in cities with existing combined sewage overflow problems demands the

need for information of this storage volume. Thus, this work will be

of great value in solving the environmental pollution and local flooding

problems in those cities.
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APPENDIX A®

Description of Area

Business

Downtown

Neighborhood
Residential

Single-family
Multi-units, detached

Multi-units, attached

Residential (suburban)

Apartment
Industrial

Light
Heavy

Parks, Cemeteries

Playgrounds
Railroad yard

Unimproved

Character of Surface

Pavement

Asphaltic and Concrete

Brick

sandy soil

Flat, 2 percent

Average, 2 to 7 percent

Steep, / percent

heavy soil

Flat, 2 percent

Average, 2 to 7 percent

Steep, 7 percent

Lawns.

Runoff Coefficents

0.70 to 0.95

0.50 to 0.70

0.30 to 0.50

0.40 to 0.60

0.60 to 0.75

0.25 to 0.40

0.50 to 0.70

0.50 to 0.80

0.60 to 0.90

0.10 to 0.25

0.20 to 0.35

0.20 to 0.35

0.10 to 0.30

Runoff Coefficients

0.70 to 0.95

0.70 to 0.85

0.75 to 0.95

0.05 to 0.10

0.10 to 0.15

0.15 to 0.20

0.13 to 0.17

0.18 to 0.22

0.25 to 0.35

The coefficients in these two tabulations are applicable for

storms of 5- to 10-year frequencies. Less frequent, higher intensity

storms will require the use of higher coefficients because infiltration

and other losses have a proportionally smaller effect on runoff. The

coefficients are based on the assumption that the design storm does

not occur when the ground surface is frozen.

* (ASCE, 1969)
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