ARCHIVE

ECONOMIC-ENVIRONMENTAL-SECURITY TRANSFORM CURVES OF ELECTRIC POWER SYSTEM PRODUCTION SCHEDULES AND SIMULATIONS

J. Gruhl

Report #6 November 1972

ENERGY LABORATORY

The Energy Laboratory was established by the Massachusetts Institute of Technology as a Special Laboratory of the Institute for research on the complex societal and technological problems of the supply, demand and consumption of energy. Its full-time staff assists in focusing the diverse research at the Institute to permit undertaking of long term interdisciplinary projects of considerable magnitude. For any specific program, the relative roles of the Energy Laboratory, other special laboratories, academic departments and laboratories depend upon the technologies and issues involved. Because close coupling with the normal academic teaching and research activities of the Institute is an important feature of the Energy Laboratory, its principal activities arc conducted on the Institute's Cambridge Campus.

This study was done in association with the Electric Power Systems Engineering Laboratory and the Department of Civil Engineering (Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics and the Civil Engineering Systems Laboratory).

ABSTRACT

A quasi-optimal technique ('quasi' in that the technique discards unreasonable optimums), realized by a dynamically evolving mixed integer program, is used to develop regional electric power maintenance and production sample schedules, as well as unit commitment sample schedules. This sophisticated, yet computationally feasible, method is used to develop the bulk dispatch schedules required to meet electric power demands at various preset reliability levels while controlling the associated dollar and environmental impact consequences.

This report considers a hypothetical system of about twelve power plants situated close to one another on the same river system. The maintenance and unit commitment scheduling mechanisms are used to display the tradeoffs which exist between the economic costs, environmental consequences and reliability levels of all possible optimum schedules. These tradeoff, or transform, surfaces are generated from <u>actual schedules for system operation</u>.

Also generated is a sample system simulation. Three possible generation expansion plans are compared and their potential operating performances are displayed. These specifically hypothesized expansion plans were tested on two different possible future load demand curves. The results show that there is great value in the use of an accurate dollar and environmental impact simulator.

Hypothetical data has been used, but effort has been made to make this data as representative as pessible. The results of this project show that a great amount of flexibility is available to both the operations scheduler and the system expansion planner, and that the dollar costs, water and air pollution impacts cover a wide range of consequences. These results also show that itels probably very wasteful to operate or plan a system using any simple, singleminded measure of desirability as a decision making strategy.

Acknowledgements

The author would like to acknowledge the help of Prof. Fred C. Schweppe, M.I.T. Department of Electrical Engineering, who offered his insights and suggestions for the development of this material.

The help offered by Miss Nancy Huston is particularly appreciated, for her suggestions with respect to faster computation of this material and for her help in the lengthy process of reducing schedules to recognizable and meaningful representations of the processes and trends which took place. Table of Contents

	page
1. Introduction	• 4 • 5 • 12 • 13 • 14
2. Tradeoff Surfaces of Unit Commitment Schedules . 2.1 Description of the Sample System	. 16 . 16 . 18 . 19 . 29 . 29 . 38
 3. Transform Surfaces for Maintenance Schedules 3.1 Description of Sample System 3.2 Maintenance and Production Scheduling Results 3.2.1 Optimum Schedules 3.2.2 Transform Surface of All Optimum Schedules 	• 51 • 51 • 51 • 52 • 52
4. Transform Surfaces for Expansion Simulations 4.1 Description of Sample Expansions	• 59 • 61 • 66
5. Feasibility and Usefulness	. 72
Appendix A	. 74 ▲1-▲ 48
Appendix B	. 77
Appendix C	. 78 01 -011
Appendix D	. 80
Appendix E	. 81
Appendix F	. 82 F1-F88
Appendix G	. 88
References	. 89

1. <u>Introduction</u>

A great problem to develop from this industrial era is the dilemma between the increasing demands for energy and the increasing demands that environmental qualities not be degraded. As the electric power industry assumes an ever increasing commitment to resolve the energy supply problem it is subjected to escalating societal pressures to:

(1) generate reliably a sufficient amount of electricity to meet any demands,

(2) retain or decrease its price rates, and

(3) minimize the impact of its generation efforts upon the ecosphere.

The solution to this problem will take a long and unremitting effort from all sectors of society. In the long-term (30 years) program of action must be included, among many other things, efforts to develop more efficient means of power generation and more efficient power utilization.² There can be no doubt that to reverse the trend of environmental deterioration a tremendous technological effort will be required.

There is, however, another aspect of the solution to the 'electric power-environment' dilemma which should be closely coordinated with (and is definitely not meant to be a replacement for) the technological advances, but is essentially a separate effort. This is the development of methods

^{2.} A detailed documentation of the course of action required from technological improvements is contained in a report by Philip Sporn, reference (1).

to assure the best possible operation of an imperfect power generation system. That is, until facilities which are perfectly compatible with the ecosystem are producing all of our power there must be a method for assuring that the imperfect plants are utilized in the least damaging manner. This effort breaks essentially into two segments. First, the plants must be sited to take the best advantage of the site options available.³ Secondly, the operation of existing systems must be directed toward those objectives enumerated at the beginning of this section.

-5-

This optimum operation of existing systems is the overall project being undertaken in the author's Ph.D. thesis, of which this study is one portion.

1.1 Problem

For a more thorough description of the overall study of 'optimum operation of existing systems' of which this research effort is a part, the reader is directed to reference (4). However, a basic understanding of the interconnections involved can be gotten from figure 1.1-1 on the next page.

The annual optimum production and maintenance scheduler of figure 1.1-1 has been developed and is capable of generating optimum schedules for various dollar costs and environmental

^{3.} This is a problem receiving a great deal of research effort, see for example reference (2). The author's particular project is also to be used as a simulation technique for the evaluation of specifically hypothesized expansion alternatives, as explained in reference (3).

Hourly Dispatch

Figure 1.1-1 Block diagram representation of the overall system operation procedure .

impact inputs. A similar output can be gotten from the existing unit commitment scheduler in the lower portion

of figure 1.1-1.

In terms of input-output characteristics the schedule producing program can be described as follows:

GIVEN:

1. Generation characteristics Capabilities and limitations Δ. 1. Types of facilities • 11. Output capacities 111. Maintenance and refueling possibilities B. Performance 1. Dollar costs per megawatt ii. Costs of various maintenance and refueling schemes 111. Air and water emissions per megawatt 2. Transmission characteristics A. Capabilities and limitations B. Costs Weather model (probabilistic) 3. A. Air flow and temperature B. Water flow and temperature C. Upcoming weather patterns 4. Load model (probabilistic) A. Long range B. Short term forecasts 5. Interregional coordination

A. Power exchange contract possibilities (probabilistic) B. Maintenance and production schedules

RESULTS:

- 1. Creates a variety of optimum maintenance and refueling . schedules
- 2. Optimum unit commitment and hourly dispatch strategies
- 3. Performance in dollar costs, reliability and environmental impact

- 4. Shows system weaknesses, deficiencies and strengths
- 5. Makes power exchange contract decisions and coordinates system efforts with neighboring networks

This scheduler has the capability of handling a great variety of possible system components, including the wide range of plant types, sites and abatement possibilities including plants with the capability of changing fuel types and qualities.

The exact uses and purposes of these schedulers, as well as the documentation and proper referencing of the arguments involved, can be found in references (5) and (6). For all intents and purposes this report should be viewed as a continuation of those reports. For any extensive study of the computer programs given in the appendices the reader is directed to the glossaries of computer program nomenclature in references (5) and (6).

A quick overview of the solution technique can be gotten from figure 1.1-2. Very briefly this technique can be described in terms of the block diagram representation in figure 1.1-3.

Figure 1.1-3 Block diagram of scheduling solution technique

-8-

Figure 1.1-2 Flow chart of the dynamic evolving mixed integer program used in the scheduling process.

^{4.} Here terms such as indirectly coupled and firm or uncertain refer to closeness to the optimum supporting hyperplane, or the propensity to change, as measured by the solution to the dual problem.

In figure 1.1-3, the sequential decision block diagram, \underline{S}_1 , \underline{S}_2 , etc. represent the portion of the schedule treated at each step in the computation. Q_1 , Q_2 , etc. are the costs, economic or environmental, that are contributed to the total system performance by the decisions made in the respective steps. The \underline{I}_1 represent the new material to be considered at each step, and the \underline{F}_1 represent the forwarded decisions and scheduling information.

Obviously, a problem which requires some explanation at this point is the method for quantification of the environmental impact. Two reports have been written by the author on this topic, references (7) and (8), thus only a brief explanation will be offered in this report. Roughly,

Figure 1.1-4 Simplified general systematic representation of aquasphere impact

these quantifications of impacts take into account the amount of pollutant created and scale this quantity by

(1) the speed of pollutant dispersion under existing or predicted physical system

(2) the severity of predicted pollutant levels from other sources

and (3) the size of the population affected.

Consider, for example, the quantification of the aquatic impact which can be broken down into a sequence of problems as represented in figure 1.1-4 on the previous page. The portion of this aquatic quantification which is the most difficult to determine is the Biological Model, which is further broken down in figure 1.1-5 on the following page.

So, in general, the quantification of environmental impact may be viewed as the taking of a probability of impact and convolving it with a probability of population affected.⁵

With this kind of a scheduling mechanism available several questions of interest arise. What sort of economicenvironmental tradeoffs are available to a power system scheduler? What is the shape of these transform hyperplanes (i.e. tradeoff curves) and what does this shape indicate about strategies which should be pursued by a scheduler or a system expansion planner? What is the range of possible

^{5.} A possible simplified, but <u>relatively</u> meaningless, approach to the problem of environmental impact quantification could be to measure aquatic impact in terms of BTUs introduced into the water system and atmospheric impact as tons of SO₂ into the air.

Figure 1.1-5 Block diagram of biological model in the aquatic impact quantifier

scheduling alternatives available for a power system? Answering these questions is the purpose of this study.

1.2 <u>Historical Approaches</u>

Studies even remotely related to this type of work are extremely rare. One paper⁶ deals with the minute by minute dispatch of electric power using the usual λ , incremental

6. See reference (9).

cost, dispatch technique, however, substituting incremental tons of NO_x for the usual incremental dollar costs. This program is used for actual dispatching of power in the Los Angeles area where oxidizing pollutants, in particular NO_x , are a major health hazard.

Another paper⁷ uses a somewhat more sophisticated system incremental cost technique, dispatching to minimize the pollution concentration at one or more particular points around the system. These two techniques deal only with part of the air pollution problem and are concerned only with the minute by minute dispatch problem. The hour by hour unit commitment problem is currently performed only with a dollar minimization objective, and the weakh by week maintenance scheduling is not even that sophisticatedbeing a 'fill-in-the-blank' problem as it is currently set up by schedulers.

1.3 Results

The results of this project show that there is an unusually large range of possible economic-environmentalsecurity consequences available to the scheduler. The results of the unit commitment scheduling show that the dollar minimization currently used is probably an unwise criterien, with tremendous environmental gains available for incremental increases in dollar costs. Minimum environmental impact#strategies, on the other hand, are

7. See reference (10).

probably equally unwise methods for operating a system.

Maintenance scheduling 'fill-in-the-blank' techniques appear to be very wasteful in terms of dollar losses and environmental impact consequences.

The computation and use of economic-environmentalsecurity transform surfaces should be of interest to many people in addition to system schedulers and operators. The planning of system expansions should involve the careful placement and shaping of these surfaces by the inclusion of the appropriate system additions and abatement equipment. Environmentaly and economically concerned regulatory agencies could develop a better understanding of the complexities and alternatives involved in operating a particular system - and hopefully <u>some</u> of the hard constraints imposed upon the system could be reevaluated in light of their consequences in constricting the full potentials of the system for the preservation of the environment and/or the minimization of economic consequences.

Thus, it appears that this scheduling technique and its associated tradeoff surfaces can be of great use.

1.4 Assumptions and Reservations

Although an attempt was made to make it representative the data used in this report is, nevertheless, hypothetical. Although the shapes of the tradeoff surfaces and their ranges are likely to remain nearly the same when real data is used, there will certainly be enough variations to make the input

-14-

of real data a very worthwhile future project.

The nuclear-fessil-hydro strategies computed from the optimum schedules are meant only to serve as an indication of what trends took place in <u>this</u> **pestimular** scheduling problem - and are certainly not meant to be suggested strategies for any other system. Certainly each system will have its own characteristic tradeoff curves and strategies, with generalizations to be made very sparingly.

-15-

The following two chapters are primarily displays of data and results. No attempt is made to describe the workings of the scheduler used, this is contained in references (5) and (6), nor to elaborate or speculate on the material presented.

2.1 Description of the Sample System

There are eight active power plants in this system which are assumed to be located closely together, making a meaningful process of the combining of water or air pollution consequences from the various plants. This system is identical to that described in detail in reference (6), thus only a brief writeup will be given here.

The plants in the system include: plant 1, a relatively expensive (to operate) fossil fueled plant of 160 megawatts, with a moderately heavy air pollution factor (which varies of course as meteorological conditions change) and a cooling tower, thus, with very little thermal water pollution. Plant 2 is a 70 megawatt plant fueled with low sulfur content fossil fuel, making it slightly more expensive to operate but reducing its impact on the atmosphere. Plant 3 is a typical 120 megawatt fossil fueled unit. Plant 4 is an 80 megawatt gas turbine. Plant 5 is a 240 megawatt slightly cheaper fossil-fueled facility. Plant 6 is a 560 megawatt nuclear facility and 7 is a 100 megawatt hydroelectric

-16-

^{2.} Tradeoff Surfaces of Unit Commitment Schedules

station. Unit 8 is a pumped storage facility with 80% input efficiency, 83% output efficiency, 80 megawatts of storage capacity (maximum), and storage enough for the equivalent of 1000 megawatts hours of water power.

The nuclear, hydro and pumped hydre facilities have quotas for production and reservoir levels at the end of the week, with penalties associated with missing those targets.

The use of more than 400 megawatts of the large nuclear plant cues the need for added system spinning reserve requirements.

Emergency standby power support is available for purchase from an external source at a few prespecified times, otherwise all bulk interregional power transfers are assumed to have been previously settled (in the maintenance and production schedule) and the load demand curves have been adjusted in order to represent these transfers.

To take advantage of the decoupling of the different time intervals of the scheduling procedure, this problem was concerned only with the third step of a four step evolving process covering a week. The third step was concerned with hours 64 through 112 in the week, with step four, hours 120 - 168, being carried only in the linear mode of the scheduling process(this linear mode results in only about 1% error and thus does not make a great effect on the accuracy of the procedure). The time unit size in these third and fourth decision fields is eight hours. The exact data used for this system can be found in the program in Appendix A.

2.2 Demand and Spinning Reserve Requirements

The demand curve for the time interval of this problem is displayed in figure 2.2-1, showing the curves to be met for high, standard and low system reliability (load meeting probability) levels.

The spinning reserve requirement (exclusive of the previously mentioned additive attachments cued by the nuclear unit) was set to be constant⁸ at 305 megawatts,

8. It is possible, and in fact no more difficult, to use any amount of time variability in the spinning reserve requirement. 280 megawatts, and 255 megawatts for high, standard and low reliability levels, respectively.

Exact demand levels and spinning reserve requirements are listed in Appendix B.

2.3 <u>A Sample Schedule</u>

The following is an example of some of the most important information for one particular optimum schedule, the equal weighting of dollar costs, aquatic impacts and air impacts for a schedule meeting a standard reliability level.

The variables Q, QW, and QA represent the dollar, water and air costs of the schedule. QE, QV, and QB are the equal weightings of air and water, water and dollar, and dollars and air pollution, respectively. And QT is the equal weighting of all three consequences, which is the objective of this particular schedule.⁹ D072, for example, is the megawatt-hour demand over the eight hours begin**hing** at hour 72. SR072 is the associated spinning reserve requirement plus the demand requested at hour 72 and is also measured in megawatt-hours.

The dual activity associated with each demand level in the solution is the incremental cost of additional power that resulted in this particular schedule(cost here is dollars plus environmental units).

^{9.} The costs displayed in this program include costs above or below quota figures, for nuclear and hydro usage, and thus these fixed costs of those quotas should be added in: QD +240.700; QW + 414.300; and QA + 67.600.

The variables such as A1064 represent the on=1, or off=0, status of plant 1 over interval 64. J and K variables represent extents of loading of the plants at the times indicated. A8 and G8 represent depletions or additions to the pumped storage level, where 1.0 activity represents maximum effort over the interval. HLO64 is the level of the pumped storage facility at the 64th hour. The W's are indicators of the plants that have been started up in that particular time slot. ES represents the fractional use of the available emergency external support. OSN and USN, and OSH and USH represent the over and under usage of the nuclear and hydro weekly production quotas. For a more extensive description of the variables the reader is refered

NUMB ER	RCw	AT	•••ACTIVITY•••	SLACK ACTIVITY	LOWER LIMIT.	.UPPER LIMIT.	DUAL ACTIVITY
1	CD .	AS	301074.35938	301074.35938-	NONE	NONE	•
2	CW	3 S	735)1.19792	785)1.19792-	NONF	NONE	•
3	ČA.	0.5	219733.41667	219733.41667-	NCNE	NONE	•
4	<u>ae</u> -	BS	298534.01458	298534.61458-	NONF	NONE	•
5	CT	85	5993)8.97396	·5593)8.97396-	NONE	NONE	1.00000
6	3v	85	374575.55729	379575.55729-	N INE	NONE	•
7	96	85	523808.77604	520838.77604-	NONE	NONE	•
8	0064	εL	9520.03030	•	9520.00000	NONE	15.37500-
. 9	0072	LL	7960.30000	•	7966.03006	NONE	13.30000-
12	0)9)	εL	395 J. 303 JJ	•	3950.00000	NONE	13.30000-
11	C-188	LL	9280.30000	•	9280.00000.	NONE	14.72500-
12	0396	LL	7663.30000	•	7660.00000	NONE	13.30000-
13	0104	LL	4930.30000	•	· 4930.00000	NONE	13.30000-
14	0112	ιι	7200.30030	•	7296.03000	NONE	13.30000-
15	0121	LL	892J.))))))	•	8920.7)770	NONE	13.30000-
15	C128	LL	3250.00000	•	3286.03000	NONE	13.30000-
17	0136	LL	6900.70300	•	6930.03330	NONE	13.30000-
13	0144	LL	7320.30030	•	7320.03000	NONE	13.30000-
19	D152	LL	6430.30030	•	6430.00000	NONE .	13.30000-
2)	D16)	LL	933 3. 37333	•	9333.03030	NONE	15.05833-
21	D168	LL	8000.00000	•	8000+00000	NONE	13.30000-
22	52 064	ιĽ	11120.30000	•	11120.03000	NONE	8.00000-
23	SP 372	ВŚ	9883.33333	320.0000-	9560.07000	NONE	•
2 4	59080	BS	6360.)0000	810.00000-	5550.03000	NONE	•
25	\$3.338	LL	13883.33333	. •	10886.0)730	NUNE	8.00000-
25	50076	BS	9830.00030	540.0000-	9260.00000	NONE	• • • •
27	SR104	8 S	6920.0000	390.0000-	653C.0J000	NONE	•
23	SP 112	85	684 7. 100 10	40.03000-	8800.01000	NONE	•
29	59120	LL	10520.30000	•	10526-03060	NONE	8.00000-
33	SR 1 2 8	95	6300.30133	1480.0000-	4850.33777	NONE	•
31	59136	LL	8500.00000	•	8500.00000	N ONE	1.14687-
32	55144	£1.	8420.30000	•	8926.00000	NONE	2.34271-
33	Sº 152	<u> </u>	8 33 3. 30 33 3	•	8030.00000	NONE	1.15781-
34	SP 160	LL	10930.00000	•	10930.00000	NONE	8.00000-
35	SR163-	LL	9600. 10000	•	. 96.20•.32.200	NUNE	2.29710-
Pt on	170 2	3-1	Semple n	ortion of	ane ontimum	schedule	produced.

to reference (6).

Figure 2.3-1 Sample portion of one optimum schedule produced, minimizing dollar + air + water pollution for standard system reliability

-20-

MINAFR	COLUNN-	AT	ACT IVI TY	INPUT COST	LOWER LIMIT.	UPPER LIMIT.	.REDUCED COST.
36	NUTOT	EQ	5142 0.00000	•	51420.00000	51420.00000	13.30000
37	HYTOT	ĒQ	7700.00000	•	7700.03000	7700.00000	8.80000
38	PHTOT	EQ	167.30330	•	160.00000	160.00000	6.70000
	11054	. 50	1.00000	•	1.03000	1.00000	• '
277	A1030	E 0	1.30000		1.0)))0	1.00000	•
275	42 3356	ΕQ	1.0000	•	1.00000	1.00000	•
283	A+)16 ·	εQ	1.00000	• '	1.7)000	1.03000	.•
261	45356	ΕQ	1.00000	• •	1.00000	1.00000	•
202	46356	EQ	1.30000	•	1,01000	1.00000	184.00000-
283	67)96	ΕQ	1.)))))	•	100.02000	100.00000	12.11406-
284	H J56	ΕQ	100.00000	a240 00000	1001000000	1.00 000	2830.0000-
245	J1034	UL	1.00000	330.00000		1.00000	330.00000
250	410.54		1 00000	3528,00000		1.00000	1392.00000-
287	12.194	11	1.00000	112,00000	•	1.03000	112.00000
273	A2 304	11	•	2580.00000	. •	1.00000	120.00000
207	33634	11		9560.00000	•	1.00000	953.00000
245	a3364	ĒĒ	•	185.00000	•	1.00000	185.00000
292	14 344	ŪĒ	1.00000	3584.00000	•	1.00000	108.00000-
293	K- 104	85	. 13333	3690.0000	•	1.00000	150,00000
294	44334	ιι	•	150.00000	•	1.00.000	
295	J5 Ja4	85	1.00000	8420,00000	•	1.00000	4268,00000
255	×5 154	LL	. •	\$188.00000	•	1,00,000	402.00000
257	a 5 36 4	LL	.*	402.00000	•	1,00,000	83 30. 2000-
753	Jo 054	UL	I. 33300	1010 00000	•	1.00000	1019.00000
259	45)54		1.00000	1019-00000		1.00000	4997.00000-
3.00	37364		1.00000	184,00000	· •	1.00000	•
ال د	A/ 354	03	15625		•	1.00000	•
ئەنىڭ ۋەرى	01034				•	1.00000	4055.0000
	11 764	11			•	1000.00000	. 25333
105	A 3.004	BS.	.15625	119.00000	•	1.00000	•
1.10	FS)54	85	.22667	24) 30.00 303	•	1.00000	•
367	J1072	35	1.0000	8260.00000	•	1.00000	•
364	n1 072	a s	•	330.00000	•	1.00000	•
1] 9	32072	8 S	•	3568.00000	•	1.00000	112,00000
310	n2)12	ιι	•	112.00000	•	1.00000	502.00000
311	J3 372	- LL	•	2630. 1000	· · ·	1.00000	2212.00000
312	K3072		•	105 100000	•	1. 20030	185.00000
313	W3 J72	LL	•	3624.00000		1.00000	432.00000
314	J4 372		• . • •	3730, 12202	•	1.03330	538.00000
212	K+J72	11	•	150.00000	•	1.00000	150.00000
315	16 172	80	1,00000	8500.00000	•	1.00000	
310	K5372	Ĩ		9378.00000	•	1.00000	5122.00000
319	\$5372	ii	•	402.00000	•	1.00000	402.00000
323	J5 37 2	85	.85033	•	•	1.00000	1019,0000
321	#6072	LL	•	1019.00000	٠	1.00000	3420-00000-
322	J7 372	UL	1.00000		٠	1.00000	184.00000
. 323	N7)72	LL		184.00000	•	1.00000	781.26667
324	A9372	L	• . •. •.	• ···· • ·	• •	1.00000	2623.53333
325	G8372	E L	•	•		1000 00000	
326	5 HL072	8	S , •		• •	1.00000	119,00000
321	7 W8072	L.	L •	24000 00000	•	1.00000	24000.00000
328	5 65072		1,0000	7260-00000		1.00000	2291.00000-
223	J1080	8		330. 22000		1.00000	• • •
221	1 12030	8	S	3608.00000	•	1.00000	• •
532	w238C	. B	Š .	112.00000	•	1.0000	
37	1 13080	L	l	2690.00000	•	1.00000	562.00000
3 34	×3030	- L!	L •	9780.00000	•	1.00000	
2 3'	5 W3083	L	L .	185.0000	•	1.00000	492,00000
14 8	5 .14040	., L'	ել շորություն է հայր	3684.00000	· • •	1.13030	598.00000
11	7 64083	Ļ	L e	5 190.00000 1 KA AAAAA	•	1.00000	150.00000
311	B W4333	Ľ	L	8740.00000	•	1.00.000	4826.00000
3.49	4 J5040		6 6 1 .	9588. 13344	•	1.03300	5332.00000
541	j kojoj. I ulijoj.		• • 1 ·	402.00000	•	1.00000	402.00000
14	2 46.34.3		s .34750		•	1.03 502	•
,	3 460.10	· 1	L .	1019.00000	•	1.00000	548.00000
14	4 J7040	Ú	L 1.00000	•	•	1.00000	3420.00000-
3.4	5 W7 38 3	Ĺ	l. •	184.00000	•	1.00000	
34	6 A8030	ι	L .	•	•	1.00000	J 713.75555 2632 63333
34	7 61010	L	L .	•	•	1.0000	2923.33333

Figure 2.3-1 (continued) Sample pertion of one optimum schedule, showing nuclear, hydre, and pumped hydro weekly quotas and initial conditions, and part of the final schedule.

WINGER	.C TLU	MN A T	ACT IVI TY	INPUT COST	LOWER LT	MIT UPPER	LIMIT
349	HL 383	85^***	·····	•	- •	1000.0	0000
349	11039	LL 85	1 10100	6930 00000	•	1.0	3000 119.00000
351	¥1038	LL		330.00000	•	1.0	330.00000
352	J2033	ŪĽ	1.00000	3518.00000		1.0	0000 1194.00000-
3:3	8FC 5W	UL	1.30000	112.0000	•	1.0	0000 4213.00000-
354	J3088	11	ана на н а селото с	2580.00000	•	. 1.0	0000 224.00000
377	K3038		1 00000	9560.00000	• ,	1.0	
357	J4088	85	-66667	3534.00000	•	1.0	0000
358	K4 398	ιĭ	•	3660.00000	•	1.0	0000 126.00000
359	W4038	85	1.00000	150.00000	•	1.0	. 0000
363	J5088	UL	1.30000	8520.00000	•••••		
361	K5 388		1 00000	5468.00000 403.00000	•	1.0	0000 4756.00000
363	16.088		1.00000		•••	1.0	
364	W6098	BS	•	1019.00000	•	1.0	0000
365	J7088	UL	1.30000	•	•	1.0	4503.0000-
366	WT 388	BS		184.30000		1.0	
367	88088	BS	•	•	•	1.0	
366	HL028	85	•	•	•	1000-0	0000
370	W8C99	ιĩ		119.00000		1.0	0000 51.66667
371	ES 388	8 S	.14667	24330.33309	•	1.0	
372	J1096	UL	1.00000	7740.00000		1.0	0000 1244.00000-
373	W1096		1.0000	330.00000	•	. 1.0	330.00000
375	J2396	11	1.00000	112-00000	•	1.0	
376	J3 J96	ĩĩ	•	2590. 30000		1.0	0000 462.00000
377	K3096	. ii	• • •	9520,00000	•	1.0	0000 2072.00000
378	W3 396	LL	•	185. 30000	•	1.0	10000 185.00000
379	J4096		•	3554.00000	•	1.0	
381	N4090		•	150-00000	•	1.0	150.0000
382	J5096	BS	1.00000	8270.00000	•	1.0	
383	K5396	LL	•	9038-00000	. •	. 1.3	12000 4782.00000
384	W5 396	LL	•	402.00000	•	1.0	402.0000
385	J6096	85	•67500	1010 00000	•	1.0	
360	17096		1.00000	101 3:00 000	•	1.0	3420.0000-
389	W7096	I L	•	184.00000	•	1.0	13000 184.00000
389	69C6A	LL	•	•	•	1.0	900.26667
390	G3096	LL	. •	•	•	1.0	2623.53333
391	HL 196	85 86	•	119,0000	•	1.0	0000
393	J1104	85	1.0000	8230.03700	:	1.0	
394	W1104	LL	•	330.00000	•	1.0	0000 330.00000
395	J21J4	UL	1.0000	3518.00000	· •	1.0	12000 144.00000-
356	W21 34	95	•	112.03303	•	1.0	10000 502.00000
397	83104	11	• .	9600.00000	· · · · • • • • • • • • • •	1.0	2152.00000
399	W3104	ĩĩ		185.00000		1.0	185.0000
400	J4104	LL	•	3554.00000	•	1.0	860.0000
401	K4104	LL	•	3680.00000	an the second	· ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	986.0000
402	4104	LL	•	150.30000	•	1.0	
405	JJ104 K5104		•	8788.00000	••	1_0	
405	w5104	ĩĩ	•	402.00000	•	1.0	402.00000
4:6	J61)4	BS	.45250	•	•	1.3	• 000 •
407	+6104	LL.	.•	1019.00000	•	1.0	960.00000
+08	J7104	UL	1.30000	184 00000	•	1.0	17 JUU 3420, 39300-
410	W/1J4 A9194	11	•	184.00000	•	1.0	10,000 662,26667
411	G81 J4	LL		•		1.	2623.53333
412	HL 104	85	•	•	•	1000.0	
413	w81 J4	LL	•	119.00000	•	1.0	0000 119.00000
414	J1112	UL	1.00000	8520.00000	•	1.0	
415	WI112 12112	L L 111		3498,01000	• .	1. 1.	10000
417	J2112	LL	* T * 2 0 0 0 0	112.00000	•	1.0	112.0000
418	J3112	ū	•	2530.00000	•	1.0	922.5000
419	K3112	LL	•	9407. 17000	•	1.0	2472.50000
420	W3112	85	•	185.00000	•	1.0	
421	J4112 84117	LL	•	3484.J9JJJ 3630,00000	•	L• ' 1 _ (10000 1040-00000
422	W4112	85	•	150.00000	•	1.0	00000
424	J5112	BS	1.00000	7970.0000	•	1.0	
425	K5112	LL		8638.00000	•	1.0	0000 4382.00000
426	W3112	85	1.30000	402.03000	•	1.0	10000 -
761	AATTE	0.0	102000	•	•		• • • • •

Figure 2.3-1 (continued) Sample portion of one optimum schedule

$\begin{array}{c} 428\\ 429\\ 430\\ 431\\ 431\\ 435\\ 436\\ 437\\ 438\\ 436\\ 436\\ 436\\ 436\\ 436\\ 436\\ 436\\ 436$	W6112 J7112 W7112 A9112 G8112 HL112	LL UL LL LL	1.30000	1019.00000			1.03030 1.00000 1.00000	448.30030 3420.00000 20.00000
$\begin{array}{c} 429\\ 430\\ 431\\ 434\\ 432\\ 433\\ 434\\ 435\\ 436\\ 437\\438\\ 436\\ 437\\438\\ 436\\ 448\\ 446\\ 446\\ 446\\ 446\\ 446\\ 446\\ 44$	J7112 W7112 A8112 G8112 HL112	UL LL LL	1.30000	184.00000			1.00000	3420.00000-20.00000
430 431 432 433 434 435 436 437 438 439 440 441 442 444 444 445 445 451 455 455 455	W7112 A9112 G8112 HL112			184.00000		. <u>-</u>	1.00000	20.00000
+ 30 4 32 4 33 4 34 4 35 4 36 4 37 4 38 4 39 4 40 4 41 4 42 4 43 4 44 4 45 4 45 4 45 4 55 4 69 4 71 4 72 4 73 4 74 4 75 4 76 4 77 4 77	A9112 G8112 HL112		· · · · · · · · · ·	104.00000			1.00000	20.00000
$\begin{array}{c} 421\\ 432\\ 433\\ 434\\ 435\\ 436\\ 437\\ 438\\ 439\\ 440\\ 441\\ 442\\ 443\\ 4442\\ 4442\\ 4443\\ 4442\\ 4443\\ 445\\ 445\\ 445\\ 445\\ 455\\ 455\\ 45$	68112 HL112		•				$I = \alpha \alpha \alpha \alpha \alpha$	
4 22 4 33 4 34 4 35 4 36 4 36 4 37 4 38 4 39 4 40 4 42 4 43 4 44 4 45 4 45 4 45 4 45 4 45 4 45 4 55 4 55 4 55 4 55 4 55 4 55 4 55 4 55 4 60 4 65 4 65	G8112 HL112			•		•	1100000	781.26667
$\begin{array}{r} 4 33 \\ 4 34 \\ 4 35 \\ 4 35 \\ 4 36 \\ 4 37 \\ 4 38 \\ 4 40 \\ 4 41 \\ 4 42 \\ 4 40 \\ 4 41 \\ 4 42 \\ 4 44 \\ 4 45 \\ 4 44 \\ 4 45 \\ 4 45 \\ 4 45 \\ 4 55 \\ 5 \\ $	HL112		•	•			1.00000 _	2623.53333
$\begin{array}{r} 434 \\ 435 \\ 426 \\ 437 \\ 438 \\ 439 \\ 440 \\ 441 \\ 442 \\ 443 \\ 445 \\ 446 \\ 445 \\ 445 \\ 446 \\ 447 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 456 \\ 467 \\ 468 \\ 466 \\ 467 \\ 468 \\ 466 \\ 467 \\ 468 \\ 466 \\ 467 \\ 471 \\ 472 \\ 471 \\ 472 \\ 473 \\ 474 \\ 475 \\$	W0112	85	•	•			1000.00000	•
$\begin{array}{c} 435\\ 436\\ 437\\ 438\\ 439\\ 440\\ 441\\ 442\\ 443\\ 444\\ 445\\ 444\\ 445\\ 446\\ 447\\ 448\\ 446\\ 450\\ 451\\ 455\\ 456\\ 455\\ 456\\ 455\\ 456\\ 455\\ 456\\ 467\\ 468\\ 467\\ 468\\ 467\\ 468\\ 467\\ 468\\ 467\\ 471\\ 472\\ 473\\ 474\\ 475\\ 476\\ 476\\ 476\\ 476\\ 476\\ 476\\ 476\\ 476$		BS	-	119,00000			1.00000	
$\begin{array}{c} 436 \\ 437 \\ -438 \\ 439 \\ 440 \\ 441 \\ 442 \\ 444 \\ -445 \\ 444 \\ -445 \\ 444 \\ -445 \\ 444 \\ -445 \\ 445 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 455 \\ 456 \\ 461 \\ 462 \\ 463 \\ 465 \\ 465 \\ 467 \\ 468 \\ 467 \\ 468 \\ 467 \\ 471 \\ 472 \\ 473 \\ 474 \\ 475 \\ 475 \\ 476 \\ 475 \\ 475 \\ 476 \\ 475 \\ 476 \\ $	41120		1 1 20000		•		1.00000	· •••••
$\begin{array}{c} 4 36 \\ 4 37 \\ 4 38 \\ 4 39 \\ 4 40 \\ 4 41 \\ 4 42 \\ 4 43 \\ 4 44 \\ 4 45 \\ 4 45 \\ 4 45 \\ 4 45 \\ 4 45 \\ 4 51 \\ 4 51 \\ 4 52 \\ 4 53 \\ 4 55 \\ 4 55 \\ 4 55 \\ 4 55 \\ 4 55 \\ 4 55 \\ 4 55 \\ 4 55 \\ 4 56 \\ 4 57 \\ 4 58 \\ 4 55 \\ 4 56 \\ 4 57 \\ 4 58 \\ 4 56 \\ 4 61 \\ 4 63 \\ 4 64 \\ 4 65 \\ 4 67 \\ 4 68 \\ 4 69 \\ 4 70 \\ 4 71 \\ 4 72 \\ 4 73 \\ 4 74 \\ 4 75 \\ 5 76 \\ 4 $	ALLZU	UL	1.00000	8480.00000		•	1.00000	0310.00000
$\begin{array}{c} 437\\ -438\\ -439\\ -440\\ -441\\ -442\\ -443\\ -444\\ -445\\ -448\\ -446\\ -448\\ -446\\ -448\\ -450\\ -451\\ -455\\ -455\\ -455\\ -455\\ -455\\ -455\\ -455\\ -455\\ -456\\ -461\\ -463\\ -465\\ -465\\ -467\\ -468\\ -467\\ -468\\ -467\\ -471\\ -473\\ -471\\ -473\\ -475\\ $	J1123	UL	1.0000	8690.0000		•	1.09090	886.00000
438 439 440 441 442 444 444 445 444 445 445 452 455 455	W1120	BS	•	330.00000			1.00000	
$\begin{array}{c} 439\\ 440\\ 441\\ 442\\ 443\\ 444\\ 444\\ 445\\ 446\\ 446\\ 446\\ 446\\ 446$	42120	in in	1.00000	3941.00000			1.03303	3619.00000
439 441 442 444 444 445 444 445 445 445 455 455			1.00000	3991.00000		•		
401 441 4443 4443 4443 4443 4446 4448 4447 4448 4450 4551 4551 4556 4557 45567 4555 45567 4689 4667 4678 4667 4671 4772 4775 4774 4774 4774	JZ120	UL	1.00000	3538.00000		•	1.00000	718.00000-
$\begin{array}{c} 441\\ 442\\ 443\\ 444\\ 445\\ 444\\ 445\\ 446\\ 446\\ 446\\ 446$	W2120	85	•	112.00000		•	1.00000	•
-22 -2444 -444 -4445 -4445 -4445 -4445 -4445 -4445 -4445 -4445 -4445 -4445 -4445 -4445 -4445 -4455 -44	43123	611	1.0000	4051-01000			1.00/100	6636.00000
4423 4444 4445 4447 4448 4447 4448 4447 4448 4452 455 455 455 455 455 455 455 455 45	12120		1173000	3500 00000	•			
444 4445 4445 44467 4447 44467 44501 4551 45567 85501 44678 44678 4551 45567 85501 44678 4669 471273 4774 4775	33120			2340.00000	and the second	•	1.00000	462.00000
444 445 447 448 447 450 451 452 455 455 455 455 455 455 455 455 455	K3120	LL	•	9500.00000		•	1.00000	2052.00000
445 446 448 448 455 452 455 455 455 455 455 455 455 455	63123	85	1.00000	185.00000			1.00000	-
744787012345678501234566789011234574487	44120	111	1 00000	3421 00000		· · · · · · · · · · · · ·	1 00000	36.77 00000
4478 4478 4479 4522 4556 4552 4556 4556 4556 4556 4556		UL.	1.00000	3421.00000	•		1.00000	3677.00000
4449 4552345678560123456678901123456 4455578560123456678901123456	J412J	ιL	• • •	3484.07003	. •	• .	1.77779	292.00000
448 445 452 452 455 455 455 455 455 455 455	K4120	LL		3600.00000			1.00000	408.00000
	W4120	ac	1 00000	150 00000			1 00 00 0	
4501 4551 4551 4551 4554 4556 4556 4558 45567 45567 45567 45567 45601 45667 45667 4576 45667 4577 4576 4577 4577	44120				···- • •		1.00007	······ ···· · · · · · · · · · · · · ·
450 452 452 453 4556 4557 4558 4557 4558 4557 4558 4550 462 45567 4556 4560 4661 45667 4566 4669 4712 473 4754 4754 4754 4754 4754 4754 4754	A5123	UL	1.00000	1/500.00000		•	1.00000 .	10708.00000
451 452 455 455 455 455 455 455 455 455 455	J5120	85	1.00000	8030.00000	•		1.00000	•
1454 4556 4556 4557 4556 4557 4550 4457 4556 4457 4556 4457 4556 4457 4556 4457 4566 4457 4566 4477 123 457 4576 4771 234 56 4771 234 56 4576 4576 4576 4576 4576 4556 4556	85123	11		8130 11000		••••••••••••••••••••••••••••••••••••••	1, 39 119	
* 2 3 4 5 4 4 5 5 4 6 5 4 6 6 7 8 4 6 6 7 8 4 6 6 7 8 4 7 1 2 3 4 7 6 4 7 7 2 3 4 7 7 6 4 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 7 7	VEIDA		•		•	•	7.003330	
455 455 455 455 455 455 455 455 455 455	N3120	LL.		0100000	•	•	1.00000	
454 455 455 455 455 461 462 461 463 465 466 467 467 471 472 473 475	w5120	8 S	•	402.00000		•	1.00000	•
45578501 45578501 4667890 46678901 4668901 4771 4774 4774 4775	A6127	111	1.00000	490.0000			1.00000	33162.00000
477 457 457 458 450 461 462 461 462 465 466 466 470 471 473 473 473 475						•	1.00000	
456 458 459 460 461 462 463 465 465 466 467 467 467 470 471 473 475 475	J0120	05	• 4 2000	•		•	1.00000	•
457 458 450 461 462 463 465 465 465 467 469 471 472 473 475 475	W6120	8 S	•	1019.0000			1.00000	•
458 455 461 462 462 463 465 466 466 466 470 471 473 473 475	47120		1.00000	211.00000			1.00000	6283 00000
455 450 461 462 463 464 465 466 467 468 469 470 471 472 473 473 475 475	171 20		1 00000	211100000		•	1.00000	0203100000
455 460 461 462 463 464 465 466 467 469 470 470 471 472 473 473 474	JILZJ	0L	1.00000 .	•		•	1.03000	3420.00000
460 461 462 463 464 465 465 465 467 468 467 468 469 470 471 472 473 474 475 475	W7120	BS	•	184.00000			1.00000	•
461 462 463 464 465 466 467 469 470 471 472 473 474 475	AB120	11					1.00000	781.26667
401 463 465 465 467 469 467 470 470 471 473 473 474 475	00110	27	•	· •			1.00000	
422 463 464 465 466 467 469 471 472 473 473 475 475	00110		•	•		•	1-0330	2023.33333
463 464 465 466 467 469 470 470 470 471 472 473 474 475 475	HL 120	65	•	•		,	1000.00300	•
464 465 466 467 469 470 471 472 473 473 474 475 475	W8120	85		119,00000			1.00.000	_
484 465 466 467 469 470 470 471 472 473 474 475 475			• • • • • •			•		•
465 466 467 468 469 470 471 472 473 473 474 475 474	1.2151	6.0	+J2007	24 1 10.0 1000	4	•	1.00000	•
466 467 468 470 470 471 472 473 473 474 475	A1128	UL	1.00000	8327.00000		, ,	1.00000	747.00000
467 468 469 470 471 472 473 474 475 474	.11128	85	1.00000	8280-0000			1.00.00	
468 469 470 471 472 473 474 475 475	LU1120			120 02000	•		1 00/000	
468 469 470 471 472 473 473 474 475	WILZO	LL	•	330.00000	•	•	T-00000	330.00000
469 470 471 472 473 474 475 476	A2128	LL	•	4164.00000		,	1.00000	192.00000
470 471 472 473 474 475 476	.12128	BS		3588. 11100			1.00000	
471 472 473 474 475 476	12120		-	112 00000		-	1 00 000	112 00000
471 472 473 474 475 476	M2170		•	112.00000		•	1.00000	112.00000
472 473 474 475 476	A3128	LL	•	4317.00000			1.03330	940.00000
473 474 475 476	J3128	LL	•	2660.00000			1.00000	532.00000
474 475 475	83128			9640.00000			1.00000	2192.00000
414 415 476	112120		•	101000000				
415	W0123			102.10110		•	1.00000	185.00000
676	A4128	.85	•	3359.00000	-		1.00000	•
T 1 D	J4128	1.6	-	3474-00000			1-00 200	822.50000
177	K(130						1 00000	058 50000
411	N4120	LL	•	3010.00000		•	1.00000	950.50000
478	W4128	11	•	150.00000		,	1.00000	150.00000
4 70	45129	a C	c.	17423.00000			1.00000	•
414	17140	с 13 • •	•			-	1.00000	3871 00000
48.)	72155	ιι	•	00000	•	•	1.00000	2071-00000
4 9 1	85128	LL	•	8130.00000		•	1.00000	2811.00000
447	K512A	11	-	8778.00000			1.00000	4522.00000
	44. 1 3 4			402-00000			1.00.000	432-00111
485	W7123		· .•		· ·•		1 00000	
484	A6128	85	1.30000	208.00000		•	1.00000	•
485	J6128	85	.18000	•		•	1.00000	•
404	W/.120	11		1019.0000			1. 33 133	588.00000
	13130		1 20000	244 00000			1.00000	-
421	11120		1.0000	200.00000		•	1 00000	3490 30030
4 B U	J7128	UL	1.00000	•		•	1.00000	2450-00000
489	W7128	LL	•	184.00000		•	1.00000	186.00000
_ CA	44120	īī	• •	_			1.00000	781.26667
			•	•		•	1 00 000	24.23 63333
491	68128	L 1.	•	•		•	1.01100	2023.73333
492	HL 128	8 S	•	•		•	1000.00000	•
401	WR178	nc	-	119.00000			1.00000	•
473	44444		,	a 14 3 . 10 000		-	1 00 000	2220 00000
494	A1130	01.	1.00000	8105.00000		•	1.00000	2220.00000
495	J1136	B 5	1.0000	8210.00000		•	1.00000	
	W1134	RS		330.0000		•	1.0000	
	A 2 1 7 4		1	2103 00000			1 00000	640 36000
457	AZ1 30	· UL	1.00000	2195+00000		•	1-00000	240.22000
458	J2136	UL	1.00000	3548.00000	•	•	1.00000	708.00000
4 00	W2134	AC	1, 30000	112-10001			1,00000	-
477	M2130		1.00000	5 6 6 7 7 7 V J		•	1 00000	•
500	A3136	R 5	1.00000	4140.00000		•	1.00000	•
501	J3136	1.1		2620-0000		•	1. 33333	492.00000
501			• • • • • •	·· 0420 00000	• ••	• ••• •	1 00000	3183 00000
202	K2130	LL	. •	3020. 10000		•	1.00000	£102.00000
503	W3136	R S	1.00000	185.00000		•	1.00000	•
504	441 36	B S	.96875	2862. 12003			1.00000	•
204	14134	• •	,,	2604 00000		-	1,00000	312.00000
202	J4130	LL	· •	5504.00000		•	1.00000	112.00000
.506	K4136	LL	• •	3630.00000		•	1.0000	438.000000
507	W4136	8 S	.96875	150.00000	•	•	1.00000	•

NUMPER	CILUMN.	AT	ACT 1VITY	INPUT COST	LOWER LIMIT.	UPPER LIMIT.	.REDUCED COST.
508	A5136	85	•	17620.00000	•	1.00000	•
539	J5136		•	8023.33333	•	1.00000	2158.00000
510	ND130	n 5 I I	•	8020.00000	•	1.03000	4500 20020
512	W5136	BS	•	402.00000	•	1.00000	0240*00000
513.	A6136	υĒ	1.00000	430.00000		1,00000	3459.62500-
514	J6136	8.5	.84625	•	•	1.00000	
515	W6136	B S	•	1019.00000	•	1.00000	•
516	A7136	UL	1.00000	238.00000	•	1.0000	4279.5000-
517	J7136	85	1.30000		•	1.00000	•
510	W/130	05	•	184.00000	•	1.00000	
520	GS136	11	•	•	•	1.00000	/01.2000/
521	HL136	BS				1000.00000	2023.33333
522	w8136	85	•	119.00000,		1.00000	
523	A1144 .	UL	1.00000	7848.00000	•	1.00000	4504.66667-
524	J1144	R S	1.00000	7340.00000	•	1.0000	•
525	W1144	BS		330.00000	•	1.00000	
577	42144	UL	1.00000	3768.00000	· •	1.00000	735.91667-
528	J2144 W2144	11	1. 10010	112.00000	•	1.00000	668.00000-
529	A3144	UL.	1.0000	4207. 33 10 1	•	1.00000	1387.00000
530	J3144	LL.	•	2710.0000		1.00000	582.00000
531	K3144	ĨĨ.	•	9820.0000	•	1.0000	2372.00000
532	₩3144	LL	· •	185.00000	•	1.00000	153.00000
533	A4144	UL	1.00000	3193.00000	•	1.00000	284.33333-
534	J4144	LL		3554.0000		1.00000	362.00000
535	K4144		03175	150 10000	•	1.00000	488.00000
537	A5144	85	- 20833	17306.00000	•	1.00000	
538	J5144	85	.20833	8070.00000	•	1.00000	
539	95144	LĹ	•	8070.0000	•	1.00000	•
540	K5144	ει	•		• .	1.00000	4652.00000
541	W5144	n s	.20833	402.00000	•	1.00000	•
542	AG144	UL	1.0000	.544.00000	•	1.00000	, 9482.79167-
544	JO144	11	+00001	1 11 9. 12221	•	1.11107	1019.00000
545	A7144	ນັ້	1,00000	217.00000	•	1.00000	5257.16667-
540	J7144	85	1.00000	•	•	1.00007	•
547	w71+4	8 S	•	184.00000	•	1.00000	•
548	A8144	LL	•			1.00000	781.26667
549	63144		•	•	•	1.0000	2623.53333
	HE144	85		119,00000		1.00000	••••••••••••••••••••••••••••••••••••••
552	A1152	UL	1.00000	6856-00000 ''	1 1. 1. 1. 1. 18	TO / 1.00000	4860.00000-
553	J1152	HS	1.30000	7120.00000	B	1.00000	•
554	W1152	LL	•	330.00000		1.00000	330.00000
555	A2152	υĽ	1.00000	3 59 4. 00 000	•	1.00000	546.37500-
556	J2152	RS	1.00000	3668.00000	••••••••••••••••••••••••••••••••••••••	1.00000	
77/	W2152			112.0000	•	1.00000	112.00000
559	13152		1.00000	2760. 11000		1.00000	612.00000
560	K3152	ĩĩ		9910.00000		1.00000	2462.00000
561	W3152	BS	• • • • • • • • • • • • • • • • • • •	185.00000	•	1.00000	•
562	A4152	8 S	.23438	3019.00000		1.00000	·
563	J4152	LL	•	3524.00000	•	1.00000	332.00000
564	K4152			3660.00000		1.00000	468.03070
202	W4152		•	17520.00000	• .	1.00000	150.00000
567	42152	11	· ·····	8090-01000		1.00000	1714 00000
568	85152	ũ		8090.00000		1.00000	1714.00000
565	K5152	ΪĹ	••••••••••••••••••••••••••••••••••••••	8938.00000	•	1.00000	4682.00000
570	W5152	LL		402.00000		1.00000	402.00000
571	A6152	UL	1.00000	486.00000	•	1.00000	4469.43750-
572	J6152	85			. •	1.00000	- 1010 00000
5/5	W0172	LL 	1,20000	252,00000	•	1.00000	1017-00000
575	J7152	ບເ	1.00000		•	1.00000	3420-00000-
576	W7152	ns.	•	184.00000	•	1.00000	
577	A8152	LL	andersen in ander in in andersen in andersender. Ø	•	nggan anggan pinangan pinanga Bertakan pinangan pina	1.00000	781.26667
578	G8152	LL	•	• · · ·	•	1.00000	2623.53333
579	HL152	BS	•		•	1000.00000	•
283	W8122	85	•	114.00000	• .	1.00000	•.

Figure 2.3-1 (continued) Sample portion of one optimum schedule

NUMBER	.COLUMN.	A T	ACTIVITY	INPUT COST		UPPER LIMIT.	.REDUCED COST.
581	A1160	UL	1.00000	7157.00000		1.00000	11195 64647-
582	J116)	UL	1. 20000	7250.00000		1.00000	3502 0000/~
583	W1160	BS	•	330.00000		1.00000	3372.00000-
5 0 5	A2160	UL	1.00000	3717.00000	•	1. 22222	4377. 00000-
500	32160	UL	1.0000	3598.00000	•.	1.00000	1220.66667-
180	W/16J	85	•	112.00000	•	1.00000	
500	A310 J	UL.	1.0000	4357.00000	•	1.03000	6791.50000-
5.80	J310J		•	2700. 30000	•	1.00000	290.66667
543	~ 3100		•	986 0.00 000	•	1. 77729	1427.33333
591	A&100			185.00000	• .	1.00.000	39.50000
562	44160	00	1.00000	3502.00000	•	1.00000	3877.33333-
593	84141		•8(5)]	3614.01300	•	1.00000	•
554	Win 17. 1	с. п.с.	•	3750.00000	•	1.03000	. 136.00000
595	4510.0		•70502	150.33333	•	1.0000	•
556	15163	10	1.0000	1//37.03003	•	1.00000	13144.33333-
597	85161		1.0000	8170.00000	•	1.00000	•
554	K 5 1 /	11	•	8179.33333	•	1.00000	•
559	W5160	70	1 00000	8588.00000	•	1.00000	4169.33333
6.00	46160		1.00000	402.00005	•	1.0000	•
601	44160		1.00000	507.00000	•	1.00000	35596.00000-
602	W6161	11	1.00000	1010 00000	•	1.00000	7033.33333-
603	A7160	m	1,00000	1014-00000	•	1.0000	1019.00000
664	17163			304.00000	•	· 1.00000	6346.33333-
605	w7163	RS	1.70000	184 00000	•	1.0300)	4756.33333-
606	A3160	95	•	184.00000	• •	1.00000	•
607	G3160	11	•	•	•	1.03000	•
603	HL 160	35	•	•	•	1. 33933	3973.93333
609	#3160	35	•	110 00000	•	1000.00000	•
613	ES161	ßS	16333	24020 00000	•	1.00000	•
611	A1109	ີມ	1.0000	24000.00000	•	1.00000	•
612	J1163	85	1 10001	7160 23202	•	1.00000	6215.33333-
613	W1108	-Lí		330 00000	•	1.0000	•
614	A2158	111	1.0.000	3630.00000	•	1.03000	330.00000
615	J2168	Ŭ.	1.3.030	3588 33300	•	1.00000	742.45833-
616	W2168	95		112,0000	•	1.00000	668.00000-
617	A3168	UI	1,00000	4424 010000	•	1.00000	•
618	J3169	Ĩ.	1100000	3710 00000	•	1.0000	966.50000-
619	K3168	ιĩ	•	2710.00000 8900 00000	•	1.03000	582.00000
62)	W3169	1.5	•	4400.00000	•	1.00000	2452.00000
621	A4163	in T	1.00000	1034333333	•	1.00000	185.00000
622	14101	-û		3561-00000	•	1.03000	212.66667-
623	K4149	LL	•	3780 33000	•	1. 33 333	452.00000
624	W4163	ιĩ		150.00000	•	1.00000	588.00000
625	45168	8 5	56251	17567.31333	•	1.03000	150.00000
620	Jo168	85	-56250	8110 00000	•	1.00000	•
621	P5168	HS		8110.00000	•	1.03000	•
623	K5168	ιι		8788.00000	•	1.0000	
629	W5168	LL		602.00000	•	1.00000	4532.00000
630	A6168	.01	1,0000	449.33333	•	1.00000	402.00000
631	36168	85	.89500	449899999	•	1.0000	8333.64583-
632	W6168	RS		1019-0000	•	1.00000	•
633	47168	UI	1,00000	367 00000	•	1.93999	•
634	J7168	ŪĹ	1.30000	247800000	•	1.00000	1581.08333-
635	W7168	85		184.01010	•	1.00000	3420.00000-
636	A3168	LL.	•	104100550	•	1.00000	
637	G8168	LL			• • • •	1.00000	781.26667
638	HL 168	LL		•	•	1.77037	2623.53333
639	WA168	ιĩ		119,0000	•	1000.00000	5.16073
54)	ES168	LL	•	24000.00000	•	1.00000	119.00000
641	OSN	LŪ	•	15,10000	•	1.00000	17129.68750
642	USN.	85	2935.83333	13.30000-	•	50000.00000	1.80000
643	OSH	35	3500.00000	8.80000	in the second	1000 0000	• •
644	USH	ιι	•	5,20000-	•	7000.00000	
645	OSPH	LL	•	6.40000-	•	860 23202	
646	USPH	AS	160.00000	6.70000			• 300 00
					• .	100.00000	•

Figure 2.3-1 (continued) Sample portion of one optimum schedule, showing the status of nuclear and hydroelectric quotas for the end of the week.

NUMBER	.COLUMN.	AT	ACT IVITY	ANPUT COST.	INC. INT		
		·			COLUMN LINIIS	UFPER LIMII.	REDUCED COST.
649	ALU04		1.00000	8552.00000	•	1.0000	10628-00000-
640	A2 334	1.	1.00000	4052.00000	•	1.00000	4118.00000-
660	A3 J04 A6 56 6	11	1.00000	4300. 30000	•	1.00000	7070.00000-
6 5 0	A4004	1 V	1.39033	3380.00000	•	1.00000	4203.00000-
452	A3004		1.30000	17560.00000	•	1.00000	13580,00000-
683	03004	1.4	·	8420.00000	• .	1.00000	•
073	AG J04	1 V	1.00000	507.00000	•	1.00000	34729.00000-
074	A7064	. 17	1.00000		· · · ·	1.00000	6027-00000-
555	ALU72	1 1	1.30330	8480.00000	•	1.0000	284.00000-
4.57	A2 372	E9	•	4077.00000	•	•	85.00000
4.69	A3072	1.	1.00000	4199.00000	•	1.00000	1007.00000
660	AF072	1 1	1.00000	3342. 30990	•	1.33333	1214,20000
640	A5072	1 V	1.00000	17663.00000	•	1.00000	4883.00000
660	1.072	1 V		8500.00000	•	1.00000	
641	AT070	1 V	1.00000	, 471.00000	•	1.00000	•
662	A1072	1.4	1.00000	258.00000	•	1.00000	41.00000-
665	A1080		1.77202	7163.33333	•	1.00000	
664	A2030	1:4	• .	3647.00000	•	•	4406.00000-
605	A 1050	1 V	•	4281.00000	•	1.00000	
663	A4 J8 J	1.	• • • • • •	3421.0000	•	1.00000	1143.00000
667	ASUSU	1.4	•	17768.00000	•	1.00000	
007	12291	1.		_ 8740.00000	•	1. 33 333	4826.00000
009	A6 18 1	1 V	1.00000	389.00000	•	1.00000	159.00000-
670	A7030	IV .	1.00000	245.00000	•	1.00000	
671	A1038	IV	1.30333	7522.0000	•	1.0000	14736 00000-
672	A2088	11	1.00000	3689.00000		1-00000	
673	A3388	IV	1.00000	4032.0000		1.00000	~ A093,0000-
674	A4)99	IV	1.77772	3251. 33033	•	1.00000	4075 00000-
675	A5088	1 V	1.00000	17634.00000		1.00000	12366 00000-
676	85 388	IV	•	8520.00000		1,00000	12304+00000-
677	A5338	E V .	1.00000	547.00000		1.02000	3005 8 00000-
678	A7083	IV -	1.)0000	244.00000		1.03000	
679	41006	1 V	1.0000	8740.33399		1.00000	0209100000-
680	N2096	I۷	1.30000	3966.00000	-	1.00000	•
681	A3096	1 V	1.00000	4106.00000		1.00000	914 00000
682	A4 796	1 V	•	. 3377.00000		1.00000	914.00000
683	45096	IV	1.00000	17621-00000	-	1.00000	• • •
684	R5396 ·	1 V	•	8270.00000	•	1.00000	4611.00000
685	A6096	1 V	1.00000	544.00000	•	1.00000	•
686	A7096	1 V	1.00000	198.30000	•	1.00000	485.00000
687	A1134	IV	1.00000	7696.00000	•	1.00000	2.00000-
683	A2104	IV	1.00000	3674.00000	· · · · · · · · · · · · · · · · · · ·	1.00000	1098.00000-
689	431 74	IV	•	4201. 10200	•	1.00000	••••
450	A4134	I۷	•	3274.00000	•	1.0330	824.00000
651	A5104	1.4	•	16438.00000	•	1.00000	• • •
692	85134	IV	•	8070-00000	• •	1.00005	2826.00000
693	A6104	IV	1.00000	512.00000	•	1.00000	•
654	A7104	1 V	1.30303	324.22000	· ···· · •	1.00000	· · · · · · · · · · · · · · · · · · ·
655	41112	17	1.00000	8720.00000	•	1.00000	•
696	A2112	1 V	1.00000	3500,00000	•	1.00000	•.
697	A3112	IV	•	4233.00000	•	1.00000	•
658	A4112	IV	•	3332.00000	• •	1.00000	
699	A5112	١v	1.00000	17362.0000	•	1.00000	•
700.	85112	IVÍ	and a second	7970.00000	•	1.03000	4052.00000
701	A6112	IV	1.30000	448.00000	•	1.03000	•
732	A7112	I۷	1.00000	200.0000	•	1.00000	•
					•	1.00000	

÷

Figure 2.3-1 (continued) Sample portion of one optimum schedule, showing the values of the decision variables for which the third decision field was responsible.

			[]
NCDE	13	20	I I I I 23 I I I
FUNCTIONAL	1 595643.9740 1	1 16))989.9740 1	I I I I I I I I I I
1 F ST[M4T].)N 1	I I INTEGER I	I I INTEGER I	I INTEGER I I INTEGER I
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	I 1.0000 I 1.00000 I 1.00000 I 1.00000 I 1.00000 I 1.00000 I 1.00000	I 1. 3300 I 1. 3300 I 1. 3303 I 1. 3000 I 1. 3300 I 1. 3000 I 1. 3000 I 1. 3000 I 1. 3000 I 1. 0000 I 1. 0000 I 1. 0000 I 1. 3000 I 1. 3000	I I I
$\begin{bmatrix} & c \\ c$	I I.J))) I I.J))) I I.O))00 I I.O)00 I I.J))) I I.O)00 I I.J))) I I.O)00 I I.J)) I I.O)00 I I.J) I I.J)] I I.J) I I.J) I I.J) I I.J) I I.J)] I I.J]] I I.J)] I I.J]] I I.J]]] I I.J]]]] I I.J]]]] I I.J]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	I 1.3300 I 1.3000 I 1.3000 I 1.3000 I 1.0000 I 1.0000 I 1.0000 I 1.0000 I 1.3309 I 1.33	I 1. 7770 I 1. 0000 I 1. 0000 I 1. 0000 I 1. 1. 7770 I 1. 0000 I 1. 0000 I 1. 0000 I 1. 9070 I 1. 9070 I
<pre>l</pre>	1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 .0000 1 .0000 1 1.0000 1 1.0000 1 1.0000	I 1.0000 I 1.0000 I 1.0000 I I I I 1.0000 I 1.0000 I 1.0000 I 1.0000	1 1.0000 I 1.0000 I 1.0000 I 1.0000 I . I . I . I 1.0000 I 1.0000 I 1.0000 I 1.0000 I 1.0000

Figure 2.3-2 The three completed schedules obtained for the problem of minimizing dollar + water + air pollution levels for the system under standard reliability requirements, mode 23 is the best of these three schedules as indicated by the values of their respective cost functionals.

					1	1
		1	1		1	1 1
NUDE	24.0			1 7 1A D	1 14	
			1 9 1	1 17 F	1 10	
	[: 	f]	[[
			1	·	i	i i
FUNCTIONAL	1597301.4155	- 1407149-0469	1600621-0669	1 599791 . 2870	1599435.5191	1601137.2870 1
	1	1	1	1	1	1 1
]		[][
	r -		1	r i		i i
ESTIMATION	599312.	1 607606.	1 601058.	500945.	1 500883.	1 631291. 1
1	1	1	1 0010300	1	1	1 1
	[[I]!
	i		T	r	r r	i i
547= A1064	1.0000		1 1.0000	T 1.0000	I 1.0000	i 1.0000 i
648= A2064	1 1.2220	1.0000	1 1.0000	1.0000	1 1.0000	1 1.0000 1
649= A3064	1.2000	1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000 1
65C= A4364	1 1.00.00	1 1.0000	1 1, 2222	1 1.0000	1 1,0000	1 1.0000 1
651= A5 364	1 1.3030	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000 1
652= 85064	1 .	1 .	1	t .	1 .	1 . 1
653= 46064	1 1.0000	1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000
654= A7064	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000
655# A1072	1 1.0000	1.0300	1 1.0000	1 1.0302	1 1.0000	1 1.0000
657= A \$772	1 1.000	1 1.0000	1 .	1 1.0000	1 1.0000	1 1.0000
1 658= A4072	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1	1
659= A5072	1 1.0000	1	1 1.0000	1 1.0000	1 1.0000	1 1.0000
06 J= 85 372			1 .	1 .	1	
061= 16072	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000
662= A7372	1 1.0000	1 1.0000	1.0000	1 1.0000	1 1.0000	1 1.0000 1
663= A1030	1 1.0000	1 1.0000	1 1,0000	1 1.0000	1 1.0000	1 1,000
665= A3080	1 .		1 .	1	1	1
666= 14137		i i			i .	i . i
667= A5080	i			i	i I	i i i
663= 85390					1	1 . 1
665= A6113	1,0000	1.0000	1 1.0000	1 1.0000	1 1,0000	1 1.0000
67C= 47030	1.3000	1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000
671= A1 168	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000
672= 42388	I 1.0000	1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000
1 073= 43089	1.0000	1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000
c74= A4)38	1,111	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000
1 675= A5038	1 1.0000	1.0000	1 1.0000	T 1.0000	1 1.0000	1 1.0000
676= 85338		1	1 .	1 .	1	1
U 77= A6 383	1 1,000	1 1.0000	1 1,000	1 1.0000	1 1.0000	1 1.0000
678= A7058	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000
679= A1046	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000
1 683= A2096	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000
681= 43096	1 1.0000	1 1.0000	1 1.0000	1 .	1 1.0000	1
1 6E2= A4196	1 .	1 1.0000	1 1. 2022	1 1.0000	i .	1 1.0000
6 83= 450 76	1 1.0000	.3854	1 .3854	1 1.0000	1 1.0000	1 1.0000
0 E4= 35096	1 .	1 .	1 .	1 .	1	1
655= A6336	5 . 5 . 199	1 1.0000	1 1.0000	9486	9089	.9486
665= A7 196	1 1.00.00	1 1.0000	1 1.0000	1. 1.0000	1 1.0000	1 1.0000
687= A1104	1 1.0000	1.0000	1 1.0000	1 1.0000	1 1,0000	1 1,0000
688= A2174	1 1.0000	1,0000	1 1.0300	1 1.0000	1 1.0000	1 1.0000
689= A3104	1	1 .	1	1	1 .	
1 690= A4104	1 · · · · · · · ·	1 .	i i	1	1	1
1 651= A5134	1.	1	1	1	i .	1
692= 85104	1 .	1	i i	i i	i	i .
653= A6104	.9089	1 1.0000	1 1.0000	1 .9486	1 .9089	1 .9486
1 654= A7104	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000
695= 41112	1 1.0000	1.0000	1 1,0000	1 1.0000	1 1.0000	I 1.0000
656= A2112	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1. 1.0000
657= A3112	1 .	1 1.0000	1 1.0000	1	1 1,0000	1
1 658= A4112	I .	1 1.0000	1 1.0300	i i	1 1.0000	I I
699= A5112	1 1.3009	.1458	1 .1458	1 1.0000	1 .1458	1 1.0000
1 703= B5112	1 .	1	I .	I .	1	I A
701= A6112	1 .9906	1 1.0000	1 1.0000	1 .9906	1 1.0000	A099.
TC2= 47112	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000	1 1.0000
	1	1	I	I	1	1
	[[- [====================================

Figure 2.3-3 The remaining incomplete schedules still held for the system at the completion of the three complete schedules displayed in the previous figure.

1-

2.4 Unit Commitment Scheduling Results

The plots and graphs in this section will be more or less self-explanatory. All of this data is contained in Appendix D.

2.4.1 Varying Economic-Environmental Strategies

Figure 2.4.1-1 represents the dollar costs versus water pollution impacts of the minimum dollar QD, minimum water pollution QW, and minimum dollar + water pollution QV schedules. This line then represents the set of all possible consequences of optimum dollar-water pollution strategies. Although there are only three points to show the shape of this curve it is almost exactly defined using the added information available. In particular, it is known that the slope of this surve = 1 at the point QV, and the curve must be concave¹⁰ and contained within the projections of minimum dollar costs and minimum water pollution costs.

Each point in these curves is result of the best of three near optimum schedules. To see what kind of variability¹¹ does exist among these schedules and the degenerated linear optimum schedule see Appendix E. It <u>is</u> reasonable to

10. It is assumed that these curves are relatively smooth due to the great number of variables and the relative closeness of these schedules to the actual linear optimums, which can be proven to have a connected concave shape.

11. For an idea of the magnitude of this variability with respect to the plots presented, using the scale of figure 2.4.1-1 for example, the optimum linear solution and <u>all</u> of the computed schedules lie within $1/40^{\text{th}}$ of an inch of each other.

-29-

Figure 2.4.1-1 The tradeoff curve representing all possible optimum consequences of dollar and water pollution strategies at standard reliability.

assume that the points represented in these graphs are at the true optimum's positions One percentage difference in costs between the optimum linear schedules and the valid, integer schedules was about the maximum error. Thus, any large amount of work, particularly including simulations of hypothetical systems, could surely use pure linear programs if indeed this 1% error is about the magnitude which results for the particular system to be investigated.

Figure 2.4.1-2 displays the contribution of the various system components to these three schedules, the optimum dollar cost QD, water pollution minimum QW, and dollar + water pollution optimization QV.

Figure 2.4.1-3 represents the tradeoff curve for the minimum dollar QD, minimum dollar + air pollution + water pollution QT, and minimum air + water pollution QE schedules, and figure 2.4.1-4 shows this system component breakdown.

Figures 2.4.1-5 and 2.4.1-6 are the displays for the minimum dollar QD, minimum air pollution QA, and minimum dollar + air pollution QB schedules and strategies.

It is also possible to display these three transform curves, which have just been presented, all on one three dimensional plot, and this (using a little imagination) can be seen in figure 2.4.1-7. This surface should be visualized as a triangle which has been punched in, and which is actually quite flat on the bottom (making a strict dollar minimization, as is currently used, unwise).

-31-

Figure 2.4.1-2 Contributions of the various system components in actual optimum schedules (standard reliability).

Figure 2.4.1-3 The tradeoff curve representing all possible optimum consequences of dellar and air+water pollution strategies at standard reliability.

Figure 2.4.1-4 Contributions of the various system components in optimum schedules (standard reliability).

Figure 2.4.1-5 The tradeoff curve representing all pessible optimum consequences of dellar cost and air pellution strategies at standard reliability.

Figure 2.4.1-6 Contributions of the various system components in actual optimum schedules (standard reliability).

-36-

Figure 2.4.1-7 The transform surface associated with all optimum economic-environmental consequences (standard reliability)

2.4.2 Varying System Demand-Meeting Requirements

For each of the scheduling strategies explained in section 2.4.1, i.e. QD, QA, QW, QT, QE, QB, and QV it is also possible to parameterize the reliability requirements, that is, the load meeting probability, of the power system from low reliability, through standard reliability, to high reliability. These curves and bar graphs of system schedule consequences and system component contributions are contained in figures 2.4.2-1 through 2.4.2-10.

Here again it is possible, obviously, to take the entire transform surface of figure 2.4.1-7 and display the reliability parameterization as surfaces above (i.e. more costly for higher reliability requirements) and below (i.e. less costly for relaxed reliability requirements) that standard reliability tradeoff surface. This solid of all possible optimum consequences of economic-environmentalsecurity strategies is represented in figure 2.4.2-11.

These tradeoff curves show generally that there is a great deal of 'flexibility' in this system for adapting te different scheduling strategies. Here, an 'inflexible' or unbending system would have a tradeoff surface which was a flat plane through the minimum dollar, minimum air pollution, and minimum water pollution points, so in effect one could choose from among the various types of consequences of system operation, but one would have no variation in the combined total of the consequences. On the other hand

-38-

Figure 2.4.2-1 The three transform curves representing all possible consequences of optimum dollar-water pollution strategies at low, standard and high reliability levels.

-39-

Figure 2.4.2-2 Contributions of the system generation components to the schedules which minimize the dollar cost for various reliability levels

Figure 2.4.2-3 Contributions of system components to the schedules which minimize dollar + water pollution for various reliability levels

Figure 2.4.2-4 Contributions of system components in schedules optimizing water quality for various reliability levels.

-42-

Figure 2.4.2-5 The three transform curves representing all possible consequences of optimum dollar-environmental (i.e. air+water pollution) strategies at low, standard and high reliability levels.

-43-

Figure 2.4.2-6 Contributions of system components to the optimum schedules which minimized dollar + water + air pollution for various reliability levels

-44-

Figure 2.4.2-7 Contributions of system components to the schedules which minimize air + water pollution for various reliability levels

Figure 2.4.2-8 The three tradeoff curves representing all possible consequences of optimum dollar-air pollution strategies at lew, standard and high reliability levels.

-46-

Figure 2.4.2-9 Contributions of system components to schedules minimizing dollar + **air** pollution for various reliability levels

Figure 2.4.2-10 Contributions of the system components to the schedules which minimize air pollution for various reliability levels

-48-

\$

4

. 4

Figure 2.4.2-11 The solid tradeoff figure representing all possible optimum consequences of different economic-environmental-security strategies.

a one hundred percent 'flexibility' would allew operation at the 'ideal' point of simultaneously minimizing dellars, air and water pollution. This 100% flexible curve would be 'pushed in' so far that it would be like the cerner of a cube. The sample system studied shows a scheduling surface 'flexibility' of approximately 65%, i.e. rather a deep pocket in that surface. This characteristic means that minimizing dollars, air or water pellution alone or **avep** in probably not a wise criterion because large gains in the unconsidered consequences could be made for very slight increases in the undesirability of the measures used.

Note: The word 'reliability' has been used very loosely in this chapter. Strictly speaking a higher reliability requirement should increase the spinning reserve, but not the actual demand for power. In this chapter the power demand was increased also, and thus the cost of meeting this higher demand also shows up in the consequences. What is actually represented here is a measure of the flexibility of the system with respect to meeting demand changes, that is, the resultant consequences of meeting higher of lower demands for power. The purer consequence of changes in reliability levels can be getten by subtracting the incremental costs of the extra power multiplied by the amount of additional demand met.

3. Transform Surfaces for Maintenance Schedules

This sample system will be only briefly described. An exact system description can be found in reference (5) on page 102, and the exact data used is displayed in Appendix C.

3.1 Description of Sample System

This is a twelve power plant system scheduled over an entire 39 week period. The components of this system are fossil plants: plant 1 of 225 megawatts, plant 2 of 125 megawatts, plant 3 of 150 megawatts, and plant 4 of 350 megawatts. There are two nuclear facilities, plant 5 of 550 megawatts and plant 6 of 600 megawatts. Plants 8 and 9 are 100 megawatt hydro stations. Plant 7 is a 75 megawatt pumped storage facility. There are three gas turbines: plants10 and 12 both of 85 megawatts, and plant 11 of 100 megawatts.

There are a number of interregional power buy and sell contract decisions to be settled by the scheduler, and there are many opportunities set up for possible extended shutdowns of various facilities for dollar and/or environmental gains.

3.2 Maintenance and Production Scheduling Results

The following are the results of the economicenvironmental scheduling procedure. Exact data used for these graphs is contained in Appendix D.

-51-

The negative sign on some of the environmental axes results from the procedure of rewarding plants for being shut down, rather than the identical (complimentary) problem of penalizing the plants for operating.

3.2.1 Optimum Schedules

The schedules in figure 3.2.1-1 represent the seven optimum schedules which resulted from the maintenance scheduling mechanism. These displays do not, however, includedany of the weakly quotas, plant shutdowns or variable power sales which are also part of the maintenance and production schedule.¹²

3.2.2 Transform Surface of All Optimum Schedules

Figure 3.2.2-1 represents the dollar costs versus water pollution impacts of the minimum dollar QD, minimum water pollution QW, and minimum dollar + water pollution QV schedules. This line, then, represents the set of all possible consequences of optimum dollar-water pollution strategies. The point labelled X in these graphs represents the first feasible solution found by the computation process, and, thus, is a measure of the quality of a non-objective function 'fill-in-the-blank' scheduling technique such as is now used for the maintenance and production scheduling procedure.

-52-

^{12.} Persons interested in more detail from the optimum schedules may contact the author for a full set of data.

Unit	Week	QD	QV	QW	QE	qt	QB	QA
1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 3 4 1 6 1 6 8 10 10 6 8 10 10 6 8 10 10 6 8 10 10 6 8 10 10 6 8 10 10 6 8 10 10 6 8 10 10 6 8 10 10 6 8 10 10 6 8 10 12 14 16 18 20 22 24 22 24 22 24 27 29 33 37 30 33 36 27 33 35 35 35 35 35 35 35 35 35	0100011001000010011001010100100110001000100	010001100000000000000000000000000000000	010101100 0 100 00000000000000000000000	0100011000001010111001001010000100010000	010001100100001001100100101000100000000	0100011001000010011001000101011010000010000	0100011001001000100111001001010000100010000

Figure 3.2.1-1 Maintenance decisions made for optimum schedules with different quality measures, 1 = out for maintenance, 0 = not out, 1 = power interchange contract accepted, 0 = rejected.

-53-

Figure 3.2.2-1 The tradeoff curve representing all possible optimum consequences of dollar and water pollution maintenance strategies at a standard reliability level.

Figures 3.2.2-2 and 3 are the dollar-environmental and dollar-air pollution curves as were those described in section 2.4.2 for the similar cases which concerned the unit commitment problem. Again here X marks the position of the first feasible solution computed for this problem.¹³

Also in the case of these maintenance tradeoff curves it is possible to display these three transform curves on one three dimensional plot, and this is shown in figure 3.2.2-4.

13. Even this is an optimistic estimate of where the fill-in-the-blank technique would probably leave the schedule, because this point represents the first feasible continuous variable schedule, which means that there would be an additional cost for changing the moninteger decisions to valid integer values. That is, this represents the first feasible solution for the linear case, which is probably an optimistic estimate of the value for the integer case.

Figure 3.2.2-2 The tradeoff curve representing all possible optimum consequences of dollar and water+air pollution maintenance strategies at a standard reliability level.

Figure 3.2.2-3 The tradeoff curve representing all possible optimum consequences of dollar and air pollution maintenance strategies at a standard reliability level.

Figure 3.2.2-4 The transform surface associated with all optimum economic-environmental consequences of the maintenance and production schedule (standard reliability)

4. Transform Surfaces for Expansion Simulations

To meet expanding demands for power a great deal of planning is needed to determine exactly what new generation units will perform best when added to the power system. Either by intuition or by a manual or computerized screening program¹⁴ attractive expansion schemes can be found, but these large, generalized programs cannot be expected to yield any great amount of detail or accuracy. For this reason there are a number of simulators in use by utilities which predict more exactly the dollar costs associated with specifically hypothesized, attractive expansion possibilities. The use of those same scheduling mechanisms described in chapter 3 for producing this type of simulation, will be demonstrated in this section.

Historically simulators have been used which were basically just probabilistic methods of meeting annual loading curves projected for the year being studied.¹⁵ Using the assumption that the dollar costs of operating a unit are close to constant throughout the year, the loading triangle simulations remove time as a variable and work only with an ordered list of cheapest to most expensive power producing units and fill in a graph of capacity levels and the expected fraction of the year the load will exceed these levels.

15. See for an example reference (12).

-59-

^{14.} Such a computerized program, which also includes some environmental considerations important to power plant siting, can be found in reference (11).

However, introducing environmental impact measures generally¹⁶ will cause the operating consequences to be quite definitely time variable.over the course of the year.

One obvious possibility for including time varying environmental impacts involves the development of a probabilistic simulator by extending current methods to include time and environmental impacts as additional dimensions. Although the results of such a simulator would not show accurately the precise splicing together of various generation components, this type of mechanism would probably yield a quick overview of the system performance, and thus, could be a promising area for future research.

Creating actual schedules of operation for the hypothetical systems is another way of performing simulations which include environmental impacts and time varying consequences, and it is this more precise method which will be demonstrated in this chapter.

Of the two types of schedulers developed, the maintenance and productions scheduler can obviously and straightforwardly be used as a simulator. The shorter time ranged scheduler has less obvious possibilities, and thus, the sample system simulator used here will explore the potential of this unit commitment scheduler as a simulation tool.

-60-

^{16.} It is possible to use measures which are not time varying and the probabilistic methods would here still be valid. For example, the aquatic impact measure could be the water temperature standard which must be met, $\frac{1}{2}$ through say 6° C increases allowable, and the air pollution measure could be the percent sulfur content of the fuels allowable (4% to $\frac{1}{2}$ %).

4.1 Description of Sample Expansions

It is assumed that the maintenance and production scheduler has already simulated the long range performance of the hypothetical systems. The unit commitment simulation over the course of one week is now used as an aid to the comparison of the different systems' performances.

For this particular example to make this single week simulation a meaningful comparison mechanism it is assumed that the plants which are on maintenance in this particular week are common to the hypothetical systems to be studied. The remaining operating facilities which exist as a common base to which the different hypothetical expansions make additions include: plant 1. a relatively expensive (to operate) fossil fueled plant of 160 megawatts, with a moderately heavy air pollution factor (which varies, of course, as meteorological conditions change) and a cooling tower, thus, with very little thermal water pollution. Plant 2 is a 70 megawatt plant fueled with low sulfur content fossil fuel, making it slightly more expensive to operate but reducing its impact on the atmosphere. Plant 4 is an 80 megawatt gas turbine. And plant 7 is a 100 megawatt hydroelectric station.

The two expansion alternatives hypothesized involve the addition of four new fossil units, or the addition of two nuclear and two pumped hydro storage facilities.

The fossil addition alternative involves the hypothetical

-61-

use of: plant 3, a typical 120 megawatt fossil fueled unit, plant 5 a 240 megawatt slightly cheaper fossil-fueled facility, and plants 3A and 3B which are both 460 megawatt relatively cheaply operated fossil fueled plants. All of these fessil plants on the average show more air pellution impact but slightly less water pollution impact than the nuclear facilities.

The nuclear-pumped hydre combinations involve: plants 6 and 6Å, 560 megawatt nuclear plants with cheaper power, relatively more water pollution and little air impact when compared to the fossil plants, and plants 8 and 8Å, pumped hydre storage facilities capable of storing 80 megawatts of power per hour, with a total storage capacity of 1000 megawatt hours, 80% input efficiency, and 83% output efficiency.

The nuclear, hydre and pumped hydre facilities have quotas for production and reservoir levels at the end of the week, with penalties associated with missing these targets. Unlike the scheduling problem, where quota costs are fixed expenses, the dollar costs associated with these quotas is vitally important in yielding comparable total costs of various alternatives. The hydroelectric quota cost is \$5.2 per megawatt hour or \$64,000, the pumped hydre cost is \$5.35 per megawatt hour or \$1,712, and the nuclear quota cost is \$4.75 per megawatt hour or \$760,000 for the weekly total quota.

-62-

The use of more than 400 megawatts of the large nuclear facilities cues the need for added system spinning reserve requirements.

Emergency standby power support is available for purchase from an external source at a few prespecified times. Bulk power purchases may be ordered for a couple of time slots in the week, but otherwise, all bulk interregional power transfers are assumed to have been previously settled (in the maintenance and production simulation) and the lead demand curves have been adjusted in order to represent these transfers.

All of the simulations performed for this study used the scheduling mechanisms in the linear mode of operation for the purpose of increased computation speed. Although this linear mode introduces about a 1% error, this error is in the direction of decreasing the costs involved and is relatively predictable. Especially for the comparison of different systems where the errors in the different cases can be expected to be almost identical, it is felt that errors of this magnitude will not be relevant. to the

Measuring the capacity of the pumped storage facilities as 80 megawatts, which is the per hour energy input capability of the plant into the storage reservoir and the plant's per hour energy depletion when on full output, the total capacities of the fossil plan and the nuclear plan are equal, 1690 megawatts including portions of the old system which are held in common. Assuming 550 megawatts of the

-63-

old system as scheduled down for maintenance, and assuming a 7% growth rate in the domand for power, then the magnitude of this expansion is what would be required at approximately 12 years in the future.

To demonstrate more vividly the usefulness of a unit commitment simulator two different load curves are used for that week which is 12 years in the future. The first demand curve, called the swing curve, is based upon an equal projected growth from all sectors of electric power users. Thus, the swing curve is basically a 'scaled up' version of the existing demand curves, and this is represented

Figure 4.1-1 The lead demand curve which represents the equal growths of all electric user sectors, called the swing curve.

in figure 4.1-1. The second curve, called the averaged curve, involves (1) the change in the industrial use pattern reflecting the use of more '3 days on- 3 days off' work weeks, perhaps motivated in part by cheaper weekend power rates or taxes or disincentives for use of peak power¹⁷, (2) the introduction of more electric heating¹⁸ which would

Figure 4.1-2 The load demand surve which represents the unequal growth rates which might exist for different sectors of electric users, called the averaged surve.

17. See reference (13) for a lengthy description of possible electric rate and usage policy changes and how these might be reflected in growth patterns.

18. Much of the data for these demand curves was taken, from, or motivated by, the information in reference (14).

-65-

slightly fill in the valleys of the demand curve, and (3) the use of electric cars, which would be charged at night and would greatly fill the demand valleys.

Both the swing curve and the averaged curve have identical peaks, 1688 megawatts, and identical total energy requirements, 178,640 megawatt hours, and thus, for simulators using only total energy and peak measures these curves would appear identical. The exact systems data and the exact demand curves used in this system, along with the spinning reserve requirements, can be found in Appendix F.

4.2 Comparison of Expansion Possibilities

The definitions of QD, QW and QA as the minimum dellar, water and air pollution schedules, and the definitions of QV, QB, QE, and QT as the dollar plus water, dellar and air, air and water, and dellar plus air plus water strategies are unchanged from section 2.4.1.

Of immediate interest are the minimum dollar costs possible from the two expansion alternatives as they are forced to meet the swing demand curve and the averaged demand curve. These results are shown on the next page in figure 4.2-1, and show that a sizable, about 11%, error can be made from the choice of an expansion scheme with reference only to the demand in terms of total energy and peak power requirements.

An examination of these results suggests that some

-66-

Figure 4.2-1 Dollar cost comparisons of meeting two different future load curve possibilities with hypothetical systems using four new fossil fueled additions, or using two new nuclear plants combined with two pumped storage plants.

sort of mix between the all fossil alternative and the all nuclear-pumped hydro might yield the best economic performance, or at least be less vulnerable to changes in future lead shapes. A mixed system was created, including nuclear plant 6, pumped hydro plant 8, fossil plant 5 and fessil plant 34, all added to the same eriginal base system.¹⁹ A same standard reliability measure was used for all the studies, and the results are given in figures 4.2-2 and 4.2-3. The exact

^{19.} The overall capacity of this system was 60 megawatts higher than the capacities of the original systems. \mathcal{LP}_{200}

Figure 4.2-2 Performance surfaces associated with the swing load curve and the three expansion alternatives.

Figure 4.2-3 Performance surfaces for three different expansion alternatives all meeting the same averaged load demand curve

numerical results can be found in Appendix G.

Just a quick look at these performance surfaces shows that a mixed system affords a tremendous amount of additional flexibility, e.g. having available alternative configurations during intervals of relatively greater consequences from one aspect of system operation.

It would be adjuity itself to flatly preneunce that in this particular case a mix would be the 'best' expansion strategy. A thorough understanding of the measures of environmental impacts is necessary before such a decision can be made, and then it is still a question of which interest groups definition of best is used. An example of a case where the mixed system would be less desirable would be one in which the thermal impact to the aquatic community may be assessed as relatively harmless compared to the air pollution impacted upon the human environment. in which case the all nuclear-pumped hyrds system would be better. One of the most difficult tasks facing the planner is the prediction of future environmental standards and the effect these changes which will have on the types of system components, should be ordered. Using the likely assumption that the regulations of the future will more accurately reflect the actual impact to the environment, the type of simulation tool presented here would be an ideal planning tool, with sensitive areas being avoided and potentially high impacting configurations sidestepped.

Further complicating the expansion decision making

-70-
problem is the timing of plant additions. Other questions which must be considered when determining the desirability of any future system configuration include:

(1) what is the best system in the interim?

(2) will this plan lead to an attractive system 20 or 50 years from new?

(3) with the tremendous differences in the consequences of operation, what is the best order and timing for the introduction of the various facilities?

(4) how much flexibility is necessary with respect to the various load shape possibilities which might be 20 imposed upon the system in the future? and

(5) how will legislation concerning environmental standards change the shapes of these performance surfaces, and thus change the decisions concerning attractive expansion alternatives?

Thus, it can be seen that the entire expansion planning problem is not a static problem, but a problem which evolves through time and requires accurate load shape forecasts along the way and adequate attention to the sensitivity of system performance to changing environmental standards, construction and fuel costs, and fuel availabilities.

20. Reference (15) represents some of the work being done in the field of modelling the demand curve from models of the growth of the different sectors of power users.

5. Feasibility and Usefulness

The issue presented here is not whether or not the scheduling techniques are valid, this has been discussed in references (5) and (6), but whether or not these transform surfaces can be produced and whether or not they will be useful.

Apparently, the question of usefulness is answered by their existence. They <u>represent</u> the answers to the types of economic and reliability questions asked of schedulers, as well as the answers to environmental questions which could not previously be answered.

The feasibility of producing these surfaces breaks down to the questions of (1) cost of producing them, and (2) the ability to make meaningful quantifications of environmental impacts.

Quantification of environmental impacts, if it proves to be too difficult as described in references (7) and (8), can be degenerated to something such as "BTUs into the water" and "tons of pollutants into the air." Even though this would not reflect as accurately the true environmental consequences, it appears that the resultant transform surfaces would still deserve careful investigation because the degenerate measures are not altogether meaningless.

The question of cost of producing these surfaces is treated in references (5) and (6). Although the speed with which these schedules, and thus the surfaces of which they

-72-

are a part, can be computed makes the computation cost an unlikely barrier, even if this is a problem, a linear program degeneration of these schedulers would be useful. In most cases the error resultant from this method degeneration has resulted in errors of only about 1%. This would therefore be a valuable alternate method, and might be considered the primary method for rougher simulation work. Appendix A

The following is the program which was used to solve the unit commitment problem shown in chapter 2. /*MAIN TIME=20.LINES=8 //JOBLIB DD DSNAME=SYS2.MPSX.LOAD.DISP=(SHR.PASS) //OPTUCS01 EXEC MPSX //MPSCOMP.SYSIN DD *.DCB=(RECFM=FB.LRECL=80.BEKSIZE=2000) PROGRAM 8 45 æ 츟 THIS PROGRAM IS DESIGNED TO ¥ ¥ 1- REPRESENT THE THIRD EVOLVING STEP OF THE OPTIMUM UNIT 45 4 COMMITMENT SCHEDULER - OPIUCS WHICH IS TO EXPLORE THE 45 # VARIOUS SCHEDULING POSSIBILITIES FOR A HYPOTHETICAL 44 ELECTRIC POWER SYSTEM ÿ 45 2- OBTAIN UP TO 3 COMPLETE SCHEDULES WHICH WILL BE AT OR 45 45 VERY CLOSE TO THE OPTIMUM QUALITY FOR THE PRIORITIES AND ö TRADEOFFS CHOSEN FOR THAT PARTICULAR STRATEGY ö * 3- EXPLORE MANY DIFFERENT QUALITY MEASURES FROM MINIMUM ÷ * DOLLAR COST STRATEGIES TO MINIMUM ENVIRONMENTAL IMPACT 45 \$ STRATEGIES WHERE ENVIRONMENTAL IMPACTS ARE FURTHER . ¥ ö VARIED COMBINATIONS OF AQUATIC AN' ATMOSPHERIC IMPACTS ÷ 8 25 4- THEN STUDY THE MOVEMENT OF THIS TRANSFORM SURFACE AS 4 SYSTEM RELIABILITY REQUIREMENTS ARE EASED OR TIGHTENED ⇔ 45 * * * * * * * * * * * * * * * * * \$ * * * * * * * * * * * * ** ** ** ** 상 88 - 25 25 and the second second INITIAL/ MOVE (XDAIA, MODEL *) MOVE (XPBNAME + PB1 +) CONVERT SETUP('BOUND','BD') MUVE (XOEJ, WW!) was saura in the second MUVE (XRHS, MAT) OPTIMIZE SULUTION SAVE (INAME , UPTCI) INIMIX MIXSTART('MATRIX!) XMXDROP=2000000. CT=0MVADR (XDUPRINT + INT) MIXFLOW STUP MIXSAVE ("NAME ", " IREE 1 ") MIXSTATS (INUDESI) EXIT INT SOLUTION XMXDR0P=2000000. CT = CT + I

))
ê m
)

医丁基丁酸甘酸 化过去过量的过去式 经过过工艺会计会计合金 美外体 人名布	costs	d.	and	ts	t	n		em	r	1	31	80	r	-01	turn	1 เทมเพ	[1]	k
---------------------------------------	-------	----	-----	----	---	---	--	----	---	---	----	----	---	-----	------	---------	-----	---

Plant	Megawatt Minimum output	Average dollar cost, \$	Average aquasphere cost	Average atmosphere cost	Turn-on cost,\$
1	70	550	45	450	330
ż	30	200	100	100	112
3	30	150	150	230	185
4	20	300	50	45	150
5	120	600	250	1250	402

First segment of loading curves

Plant	Megawatt output of segment	Average dollar cost, \$	Average aquasphere cost	Average atmosphere cost	
1	90	450	65	500	
ż	40	225	125	100	
3	20	80	100	150	
4	30	30 0	75	65	
5	80	400	500	125	

Second segment of loading curves

Plant	Megawatt	Average	Average	Average
	output	dollar	quasphere	atmosphere
	of segment	cost, \$	cost	cost
3	70	400	330	500
4	30	300	75	65
5	40	150	750	180

-75-

Plant	Minimum megawatt output	Additional \$ cost above quota	Ext a	ent of mW dditional loading	Startup cost)
6 7	60 5	90 15		500 95	1019 184	-
<u>Pumped</u> Plant	<u>Hydre Stati</u> Pumping power	stics Input to storage	Outp st	ut from orage	Max. input to	Startup cost
	used, max. 96	per hour 80	per	hour, max. 80	54	<u> </u>
<u>Penalti</u>	<u>es for miss</u>	ing_quotas				
				Dollars	Water	Air
Underus Overuse Underus Oversto Underst	e of nuclea e of hydro brage in pun torage in pun torage in pun	r energy energy iped hydro r imped hydro r	es. res. uota	-4.1 7.6 -5.2 5.5 = 51,420	-7.9 1.1 -1.1 -1.1 1.1 megawatt	-1.3 0.1 -0.1 -0.1 0.1 hours
Pumped Total s Initial Initial	hydro reser storage caps lly all plan lly 100 megs	target quo rvoir target acity of res ats on excep awatt hours	ta = leve ervoi t pla in re	7,700 mea 1 = 160 m r = 1,000 nt 8 servoir	awatt hou legawatt l megawatt	urs hours hours
There a that en per mea These f	are six time mergency sta gawatt and i times are at	es during th andby power in quantitie t hours: 64,	e cou suppe s up 72,88	irse of th irt is ava to 3,000 3,120,160	ne schedul Milable at megawatti and 168.	ling t \$8 s.
Tł	nere are 48	pages of ad	ditic	onal data	available	e for
this pa	articular es	ample. Thi	s dat	a is in t	the form (of the
exact o	computer lis	ting of the	prog	gram used.	. The add	ditional
informa	ation contai	ined in this	list	ing invol	ves main	ly the
display	y of the tim	ne variation	s in	environme	ental con	sequences

Nucl	ear	and	Hydro	requi	rements	and	costs
-				a second s		and the second statement of the second se	

Appendix B

The	demand cur	ves for standa	rd and low r	eliability in
the unit	commitment	problem are(h	igh reliabil	ity is listed
in refer	ence (6)):	STANDARD		
MA	D064	10480•	an a grant	
MA	0072	8800.	080	4400 ●
MA	0088	10080.	0096	8160.
MA	D104	5440.	0112	8000.
MA	D120	9600.	0128	3400•
MA	D136	7600.	0144	8000.
MA	0152	7120.	0160	10280•
MA	D168	8960.		
		LOW	<i>.</i>	
MA	D064	4020·	0072	7540•
MA	D080	3790.	D088	8820•
MA	0096	7230.	0104	4660•
MA	0112	6920.	D120	8620•
MA	D128	3100.	D136	6540.
MA	D144	7050.	0152	6320.
MA	0160	8720.	0168	7750•
The	spinning r	reserve require	ments are:	HIGH
MA	SR064	12280.	SR072	10000•
MA	SR080	6200.	SRUBB	7240.
MA	SR096	9960.	SKIU4	11400-
MA	SR112	9800.	SRIZU	114000
MA	SR128	5200.	SKIJO	74UU+ 9020-
MA	SR144	9800.	SKIDZ	10760
MA	SR160	12080•	28108	TALAN
		and STA	NDARD	
MΔ	SR064	11120.	SR072	9560•
MA	SROBO	5550.	SR088	10880•
MΔ	SR096	9260.	SR104	6530•
MΔ	SR112	8800.	SR120	10520.
MΔ	SR128	4880.	SK136	8500.
MΔ	SR144	8920.	SR152	8030.
MA	SR160	10930.	SR168	9600•
		and LOV	reliedility.	0.0 - 0
MA	SR064	10420•	SR072	8940.
MA	SROBO	5190.	SR088	10220•
MA	SR046	8630.	SR104	0000.
MA	SR112	8320.	SR120	10020.
MA	5R128	4500.	SR136	/ 74 U ● 7700
MA	SR144	8450.	SR152	
MA	SR160	10350.	SR168	AT20.

Appendix C

The following is the program used in the solution of the maintenance and production scheduling problem of Ohapter 3. PRUGRAM * * * * * 4 4 THIS PROGRAM IS DESIGNED TO 4 1- SET UP THE MIXED INLEGER PROGRAM ASSOCIATED WITH THE COMPLETE OPTIMUM PRODUCTION SCHEDULE - OPPROS. * 华 2- SOLVE FUR THE OPTIMUM SCHEDULE IGNORING THE INTEGER 44 ø CONSTRAINT SETS 3- THEN OBTAIN UP TO J INTEGER SOLUTIONS , IF THEY EXIST, * 4 # 4 WITH DOLLAR PLUS ENVIRONMENTAL QUALITY MEASURES OF NOT MORE THAN THE QUALITY OF A HAND COMPUTED SCHEDULE * ø 쓭 USING SCHEDULING TECHNIQUES CURRENTLY IN COMMON USAGE 쓝 4- VARY THE DOLLAR COST AND ENVIRONMENTAL WEIGHTINGS 4 FOR THE EXPLORATION OF ALL POSSIBLE OPTIMUM SCHEDULES 4 4 # FOR A GIVEN LEVEL OF SYSTEM RELIABILITY 4 * * * * * * * * * INITIALZ MOVE (XDATA, MODEL !) MUVE (XPBNAME, PB1) CONVERT SEIUP (+BOUND + , +BU +) MUVE (XOBJ, QWI) MUVE (ARHS, MAT) OPTIMIZE SULUTION SAVE (INAME + OPTCI) INIMIX HIXSTART ('MATRIX') XMAUK0P=2000000. C[=0 MVAUR (XUOPRINT, INT) MIXFLUW STUP MIXSAVE (+ NAME + , + TREE 1 +) MIASIATS (INOUESI) EXIT SULUTION INT XWYDK05=5000000. C[=C[+1 IF (CT.EU. 3, STOP) CUNTINUE LT DC(0) PLINU

/*
//MPSEXEC.MATRIX2 UD UNIT=SYSUA,SPACE=(CYL,(5))
//MPSEXEC.MIXWURK UU UNIT=SYSUA,SPACE=(CYL,(5))
//MPSEXEC.SYSIM UU *,DCd=(REUTM=FB+LRECL=B0,BLKSIZE=2000)

The exact data used in this maintenance program is similar to that listed in the appendices of reference (5). For a precise listing, including the environmental impact data used, obtain Optional Appendix C, pages C1 to C11.

Appendix D

Contained here is the data which is a measure of the consequences of the various optimum schedules for the different unit commitment strategies, (from Chapter 2)

Standard Reliab.	Dollar Quality in dollars	A envi x10 ³ impac	quatic ronmental t units x10 ⁻	Atmospheric environmental impact units x10 ³
QW QE QA QV QT QB QD	795 810 784 550 542 535 503		390 468 585 430 493 606 622	411 272 227 401 287 259 332
Low Reliabili QW QE QA QV QT QB QD	ty 768 763 514 502 484 460		356 451 559 399 485 574 608	405 242 206 392 265 260 309
High Relizbilit QW QE QA QV QT QB QD	853 861 841 644 641 635 603		465 516 631 497 543 652 646	425 328 287 419 330 305 380
and for th	e different	maintenance	scheduling	strategies:
QW QT QA QE QB QD QV X	351.4 254.7 352.8 346.3 235.7 210.6 249.3 327.3		-534.8 -513.1 -480.8 -499.6 -444.1 -404.6 -511.7 -444.4	-329.7 -341.6 -386.1 -385.9 -353.1 -269.0 -307.3 -219.1

This is the tradeoff curve for the unit commitment dollar versus water pollution strategies at standard reliability. The • show the consequences of the valid integer schedules produced, and the © show the position of the optimum linearly degenerated scheduling mechanism.

Appendix F

```
The following is the computer program used to solve
   the simulation of the hypothetical system expansion alternatives
   of Chapter 4.
/*MAIN TIME=20.LINES=19
//JOBLIB DD DSNAME=SYS2.MPSX.LOAD.DISP=(SHR.PASS)
//OPTUCSUL EXEC MPSX
//MPSCCMP.SYSIN DD #,DCH=(RECFM=FH,LRECL=80,BLKSIZE=2000)
         PRUGRAM
        4
ö
    THIS PROGRAM IS DESIGNED TO
4
         1- REPRESENT THE SIMULATION OF THE OPERATION OF A UNIT
*
                                                                        뿉
           COMMITMENT SCHEDULER - OPTUCS WHICH IS TO EXPLORE THE
                                                                        4
4
           VARIOUS SCHEDULING PUSSIBILITIES FOR A HYPOTHEFICAL
                                                                        4
쓷
                                                                        ¥
           ELECTRIC POWER SYSTEM
4
         2- OBTAIN SIMULATIONS OF SYSTEM OPERATIONWHICH REPRESENT
                                                                        ¢
*
           VERY CLOSE TO THE OPTIMUM QUALITY FOR THE PRIORITIES AND
                                                                        #
4
           TRADEOFFS CHOSEN FOR THAT PARTICULAR STRATEGY
4
         3- EXPLORE MANY DIFFERENT QUALITY MEASURES FROM MINIMUM
                                                                        #
                                                                        ø
8
           DOLLAR COST STRATEGIES TO MINIMUM ENVIRONMENTAL IMPACT
           STRATEGIES WHERE ENVIRONMENTAL IMPACTS ARE FURTHER
4
           VARIED COMBINATIONS OF AQUATIC AND ATMOSPHERIC IMPACTS
                                                                        ¥
4
         4- THEN STUDY THE MOVEMENT OF THIS TRANSFORM SURFACE AS
                                                                        卷
           POSSIBLE FUTURE SYSTEM COMPONENTS ARE ADDED
æ
         INITIAL
         MUVE (XDATA, MODEL )
         MOVE (XPBNAME, *NAME *)
         CONVERT
         SETUP ( BOUND ... BUI)
         MOVE (XRHS, MAT)
         MOVE (YOB'1) (ODO1)
         OPTIMIZE
         SAVE ( INAME . , A. )
         SOLUTION
         RESTURE ( INAME I, AI)
         MUVE (KOBJ, "QDA")
         OPTIMIZE
         SAVE (INAME + + B+)
         SULUTION
         RESTURE ( INAME I, I'LI)
         MOVE (XOBJ + QAO+)
         OPTIMIZE
         SAVE ( 'NAME ', 'C')
         SOLUTION
```

```
RESTORE (INAMEI, ICI)
MOVE (XORT+ OVM+)
OPTIMIZE
SULUTION
MOVE (XORJ + GWO+)
OPTIMIZE
SAVE ( +NAME +, +E+)
SULUTION
WOVE (XOB) + QDW+)
OPTIMIZE
SAVE ( INAME ! . IFI)
SOLUTION
RESTORE ( +NAME +, +F+)
MOVE (XOBJ, ODAW)
OPTIMIZE
SOLUTION
EXIT
PEND
```

14

//MPSEXEC.SYSIN DD *.DCB=(RECFM=FB.LRECL=80.BLKSIZE=2000)

The demand for power at a certain hour, and the spinning reserve required at that hour are given in terms of the total megawatt hour requirement until the mext time unit in the program. Thus, the first 3 segments represent the total demand over one hour, the next 2 over 2 hours, the next 2 segments represent the total requirement for the next 4 hours, and finally 8 hour intervals are used. The spinning reserve requirement includes the demand requirement, so for a pure spinning reserve number a subtraction must be made. Given first is the swing curve case, then the averaged curve.

MA	D001	700.	D002	520.
MA	D003	390.	D004	1250.
MA	D006	2420.	D008	6560.
MA	D012	6400.	D016	12400.
MA	D024	3000.	D032	6700.
MA	D 040	7200.	D048	3100.
MA	D056	5100.	D064	6100.
MA	D072	3800.	D080	12200.
MA	Dv88	10000.	D096	3300.

-83-

	MΔ	D104	12800.	D112	12500.
	MΔ	D120	4100.	D128	13500.
	MΔ	0136	12400.	D144	3700.
	MA	0152	12000.	D160	11500.
	MΔ	D168	5000.		
	MA	SROOL	860.	SR002	600.
	MΔ	SR003	450	SR004	1330.
	MA	58006	2620	SR008	7250.
	MA	SR012	7100	SR016	13200.
	MA	SR024	3300	SR032	7350.
	MΔ	SR040	8000.	SR048	3500.
	MA	SR056	5600.		
	MΔ	SR064	6700.	SR072	4200.
	MA	SROAD	13400.	SR088	11000.
	MA	58096	3650	SR104	13500.
	MA	SR112	13200	SR120	4500.
	MA	SRI24	14000	SR136	13500.
	MA	SR144	4100	SR152	13000.
	MA	SR160	12600	SR168	5500.
			12000		
and	the	averaged land	demand and	aninning reserv	e case ist
	•				······································
	MA	DUUI	800.	D002	09U•
	MA	0003	050.	0004	2300+
	MA	0006	2500.	0008	5700.
	MA	0012	5200.	0016	10300.
	MA	D024	5800.	0032	10100.
	MA	0040	/300.	D048	5000 ·
	MA	D056	8000.	0064	1200.
	MA	D072	5200.	080	11000.
	MA	D088	8000.	D096	5600.
	AM	D104	11200.		0500.
	MA	0120	5400.	D128	13500.
	MA	0136	10200.	0144	2000
	MA	D152	10000.	0160	7900•
	MA	D168	5000.		25.20
	MA	SROOJ	800.	SR004	2530.
	MA	SROOL	960.	SR002	850.
	AM	SR006	2750.	SROOB	0250.
	MA	SR012	5720.	SR016	11400.
	MA	SRU24	6300.	SR032	11200.
	MA	SR040	8000.	SR048	5500.
	MA	SR056	8800.	SR064	1920.
	MA	SR072	5780.	5K080	12100.
	MA	SR088	8800.	5R096	0100.
	MA	SR104	12300.	SR112	9350.
	MA	SR120	5980.	SR128	14000.
	MA	SR136	11300.	SR144	0100.
	MA	SR152	11000.	SK160	8010.
	MA	SR168	5520.		

A brief summary of the data used to describe the system in the above program is presented below. Where there were time varying quantities, such as in the environmental impact numbers, the approximate average of the figures is given.

M	inimu	<u>m turn</u>	-on reav	iremen	ts and	l costs
---	-------	---------------	----------	--------	--------	---------

Plant	Minimum megawatt output	Average dollar cost, \$	Average aquas pher e cost	Average atmosphere cost	Startup cost,
1	7 Ó	564	48	495	330
2	30	314	100	100	112
3	30	170	160	225	185
3A	60	400	270	400	590
3B	60	400	270	400	590
4	20	325	50	45	150
5	120	600	250	900	402

First segment of loading curves

Plant	Megawatt output of segment	Average dollar cost, \$	Average aquasphere cost	Average atmosphere cost	
1	90	455	80	450	
2	40	221	125	100	
3	20	80	100	150	
3▲	400	2300	1800	2600	
3B	400	2300	1800	2600	
4	30	303	65	75	
5	80	390	500	125	

Second segment of loading curves

Plant	Megawatt	Average	Average	Average
	output	dollar	aquasphere	atmosphere
	of segment	cost, \$	cost	cost
3	70	3 90	325	500
4	30	315	65	75
5	40	161	320	1000

Nuclear	and hyd	re reau	irements	and costs
THO TOWL			TTOWOW ON	

Plant	Minimum megawatt output	Additional \$ cost above quota \$	Extent of additional mW leading	Startup cost	
6	360	32	200	8500	
7	5	15	95	184	

Pumped hydro statistics

Plant	Pumping power used, max.	Input to storage per hour	Output from storage per hour, max	Maximum input te . system	Startup cost
8	96	80	80	6 4	119
8 A	96	80	80	64	119

Dollars Water

Air

Penalties for missing quotas

Overuse of 6 nuclear energy	5.9	7.9	1.3
Underuse of 6 nuclear energy	-4.1	-7.9	-1.3
Overuse of 6A nuclear energy	5.9	7.9	1.3
Underuse of 6A nuclear energy	-4.1	-7.9	-1.3
Overuse of 7 hydre energy	7.6	1.1	0.1
Underuse of 7 hydro energy	-4.0	-1.1	-0.1
Overstorage in 8 pumped hydro res.	-5.2	-1.1	-0.1
Understorage in 8 pumped hydro res.	5.5	-1.1	-0.1
Overstorage in 8A pumped hydro res.	-5.2	-1.1	-0.1
Understorage in 8A pumped hydro res.	5.5	1.1	0.1

Nuclear energy usage of 6 target quota = 80,000 megawatt hours Nuclear energy usage of 6A target quota = 80,000 megawatt hours Hydro energy usage at 7 target quota = 14,000 megawatt hours Pumped hydro reservoir 8 target level = 160 megawatt hours Pumped hydro reservoir 8A target level = 160 megawatt hours Total storage capacity of reservoir 8 = 1,000 megawatt hours Total storage capacity of reservoir 8A = 1,000 megawatt hours Initially 205 megawatt hours stored in reservoir 8 Initially 205 megawatt hours stored in reservoir 8A Initially 211 plants on except plants 8 and 8A

There are fifteen times during the course of the scheduling when emergency standby support is available for purchase from external sources at a price of \$8 per megawatt and in quantities up to 3,000 megawatts per hour. These times are at hours: 8, 12, 16, 64, 72, 80, 88, 104, 112, 120, 128, 136, 152, 160 and 168.

Bulk	Dower	purchase	options	available

. .

Hour	Megawatts available	Dollar cost per megawatt
24	25	\$5.75
40	75	\$5.17
128	400	\$6.25

The amount of .00001 times the dollar cost of the various programs was added to the measure of desirability of the purely environmentally oriented strategies. This was done to insure that dollars were not spent without any cause. For example, power purchases had only dollar costs, and thus if dollars were not considered at all, it would be possible that the program would ask for power purchases that were not needed being irrelevant to the desirability measure used. These added dollar costs are not, however, reflected in the results presented (they have been withdrawn because they do not represent real environmental costs).

There are 88 pages of additional data available for this particular example. This data is in the form of the exact computer listing of the program used. The additional information contained in this listing involves primarily the display of the time variations in environmental consequences. This listing, called Optional Appendix F, and containing pages F1 through F88, is available upon request.

-87-

Appendix G

Contained here is the data which is displayed in Chapter 4. The points QD, QA, QW, QB, QV, QE and QT are strategies of desirability explained in section 4.2. The costs D, A and W represent the qualities of the particular optimum simulations in terms of dollar costs, atmospheric environmental impact units and aquatic environmental impact units, respectively.

Pls	in →	Fossil	Mixed Nuclear		o Fotàil	Mixed	Nuclear
Den	land→	Swing	Swing Swing		Avegaged	Averaged	Averaged
QD	D	1018880	9 78944	1070522	994709	931541	935102
	A	1184550	717642	284822	1210161	771416	255502
	W	703880	964 43 6	1245172	724663	992713	1286622
ġ a	D	1245360	1174320	1178442	1252720	1208171	1040622
	A	889340	481482	245262	890410	41936 8	213592
	W	580980	965736	1190742	573320	932740	1255702
QW	D	1155070	1231198	1294492	1154530	1264748	1181282
	A	980820	854108	356102	964850	909967	355052
	W	537020	651453	931602	526510	588345	925292
QB	D	1073030	1020155	1076402	1046480	987041	941812
	A	948210	514347	265042	958520	476151	235652
	W	601300	975 33 1	1218192	596630	953125	265902
QV	D	1059610	109 3 222	1186642	1043490	1084958	1046722
	A	1047090	853952	340932	1060170	889621	337682
	W	573100	718805	1001282	569080	668146	1015132
QE	D	1233940	1255238	1294492	1224530	1189480	1181282
	A	893810	575879	356102	889260	481393	355052
	W	564450	774253	931602	557430	831724	925292
QT	D	1117320	1041790	1141322	1122810	1019416	1000692
	A	920340	532559	305 112	904200	484359	291752
	W	568040	887348	1066712	557170	865819	1197432

References

- (1) Sporn, P., "Our environment options on the way into the future," <u>IEEE Spectrum</u>, volume 8, number 5, pages 49-58, May 1971.
- (2) White, D. C. (principle investigator), "Dynamics of energy systems, supplement - working papers," program of research by MIT School of Engineering, et al, December 1971.
- (3) National Academy of Engineering, Committee of Power Plant Siting, "Engineering for the resolution of the energyenvironment dilemma," NAE, Washington, D.C., 1972
- (4) Gruhl, J., "Minimizing cost and environmental impact of electric power system operation," (unpublished), Ph.D. thesis preliminary working paper, MIT Department of Electrical Engineering, 45 pages, March 1972.
- (5) Gruhl, J., "Electric generation production scheduling using a quasi-optimal sequential technique," Report 3, Energy Laboratory, M.I.T., Cambridge, Mass., April 1972.
- (6) Gruhl, J., "Electric power unit commitment scheduling using a dynamically evolving mixed integer program," Report 7, Energy Laboratory, M.I.T., Cambridge, Mass., January 1973.
- (7) Gruhl, J., "Quantification of aquatic environmental impact of electric power generation," Report 4, Energy Laboratory, M.I.T., Cambridge, Mass., May 1972.
- (8) Gruhl, J., "Quantification of atmospheric environmental impact of electric power generation," Report 5, Energy Laboratory, M.I.T., Cambridge, Mass., March 1973.
- (9) Gent, M. R. and Lamont, J. W., "Minimum emission dispatch," <u>IEEE Transactions</u>, volume PAS-90, number 6, pages 2650-2660, December 1971.
- (10) Sullivan, R. L., "Minimum pollution dispatching," Conference Paper, C 72 468-7, IEEE PAS Summer meeting, July 9-14, 1972.

- (11) Farrar, D. L. and Woodruff, F., "A model for the determination of optimal electric generating system expansion patterns," Master's thesis, Department of Civil Engineering and Slean School of Management, M. I. T., Cambridge, Massachusetts, February, 1973.
- (12) Sager, M. A. and Wood, A. J., "Power system production cost calculations - sample studies recognizing forced outages," I.E.E.E. Transactions, PAS-92, number 1, pages 154-158, January 1973.
- (13) Doctor, R. D., Anderson, K. P., et al, "California's electricity quandary: III. Slowing the growth rate," Rand Corporation Report R-1116-MSF/CSA, September 1972.
- (14) New England Energy Policy Staff, "The impact of electric home heating on New England power supply," Review Draft, Boston, Massachusetts, December 12, 1972.
- (15) Woodard, J., Baughman, M. and Schweppe, F., "Modeling of electric power demand growth," presented at Conference on Energy: Demand, Conservation and Institutional Problems, M.I.T., February 12, 1973, 25 pages.