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ABSTRAOT

A quasi-optimal technique ('quasi' in that the technique
discards unreasonable optimums), realized by a dynamically
evolving mixed integer program, is used to develop regional
electric power maintenance and production sample schedules,
as well as unit commitment sample schedules. This sophisticated,
yet computationally feasible, method is used to develop the
bulk dispatch schedules required to meet electric power
demands at various preset reliability levels while sontrolling
the associated dollar and environmental impast consequences.

This report considers a hypothetical system of about
twelve power plants situated close to one another on the
same river system. The maintenance and unit commitment
scheduling mechanisms are used to display the tradeoffs
which exist between the economic costs, environmental
consequences and reliability levels of all possible optimum
schedules. These tradeoff, or transform, surfaces are
generated from actul schedules for system oDeprtin.

Also generated is a sample system simulation. Three
possible generation expansion plans are compared and their
potential operating performances are displayed. These
specifically hypothesized expansion plans were tested on
two different possible future load demand curves. The
results show that there is great value in the use of an
accurate dollar and environmental impact simulator.

Hypothetical data has been used, but effort has been
made to make this data as representtive as possible. The
results of this project show that a great amount of flexibility
is available to both the operations scheduler and the system
expansion planner, and that the dollar costs, water and air
pollution impacts cover a wide range of consequences.
These results also show that It!idokebably very wasteful
to operate or plan a system using any simple, single-
minded measure of desirability as a decision making
strategy.
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1. Introduction

A great problem to develop from this industrial era

is the dilemma between the increasing demands for energy

and the increasing demands -that environmental qualities' not

be degraded. As the electric power industry assumes an ever

increasing commitmentifo resi-Y1ve the-energy supply problem

it is subjected to escalating societal pressures to:

(1) generate reliably a sufficient amount of electricity.

to meet any demands,

(2) retain or decrease its price rates, and

(3) minimize the impact of its generation efforts

upon the ecosphere.

The solution to this problem will take a long and unremitting

effort from all sectors of society. In the long-term (30

years) program of action must be included, among many other

things, efforts to develop more efficient means of power

generation and more efficient power utilization.2 There

can be no doubt that to reverse the trend of environmental

deterioration a tremendous technological effort will be required.

There is, however, another aspect of the solution to

the 'electric power-environment' dilemma which should be

closely coordinated with (and is definitely not meant to be

a replacement for) the technological advances, but is essentially

a separate effort. This is the development of methods

2. A detailed documentatioh'of the course of action required
from technological improvements is contained in a report by
Philip Sporn, reference (1).
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to assure the best possible operation of an imperfect power

generation system. That is, until facilities which are

perfectly ompatible with the ecosystem are producing all

of our power there must be a method for assuring that the

imperfect plants are utilized in the least damaging manner.

This effort breaks essentially into two segments. First,

the plants must be sited to take the best advantage of the

site options available. 3 Secondly, the operation of existing

systems must be directed toward those objectives enumerated

at the beginning of this section.

This optimum operation of existing systems is the overall

project being undertaken in the author's Ph.D. thesis, of

which this study is one portion.

1.1 Problem

For a more thorough description of the overall study

of 'optimum operation of existing systems' of which this

research effort is a part, the reader is directed to reference

(4). However, a basic understanding of the interconnections

involved can be gotten from figure 1.1-1 on the next page.

The annual optimum production and maintenance scheduler

of figure 1.1-1 has been developed and is capable of generating

optimum schedules for various dollar costs and environmental

3. This is a problem receiving a great deal of research effort,
see for example reference (2). The author's particular project
is also to be used as a simulation technique for the evaluation
of specifically hypothesized expansion alternatives, as
explained in reference (3).
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impact inputs. A similar output can be gotten from the
existing unit commitment scheduler in the lower portion
of figure 1.1-1.

In terms of input-output characteristics the schedule

producing program can be described as follows:

GIVEN:

1. Generation characteristics
A. Capabilities and limitations

1i Types of facilities
ii. Output capacities
ii. Maintenance and refueling possibilities

B. Performance
i. Dollar costs per megawatt
ii. ,Costs of various maintenance and refueling

scheme s
iii. Air and water emissions per megawatt

2. Transmission characteristics
A. Capabilities and limitations
B. Costs

3. Weather model (probabilistic)
A. Air flow and temperature
B. Water flow and temperature
0. Upcoming weather patterns

4. 'Load model (probabilistic)
A. Long range
B. Short term forecasts

5. Interregional coordination
A. Power exchange contract possibilities
B. Maintenance and production schedules

4i

(probabilistic)

RESULTS:

I. Creates a variety of optimum maintenance
schedules

and refueling.

2. Optimum unit commitment and hourly dispatch strategies

3. Performance in dollar costs, reliability and environmental
impact

iS- -

. . Y:

I
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4. Shows system weak;nesses, deficiencies and strengths

5. Makes power exchange contract decisions and coordinates
system efforts with neighboring networks

This scheduler has the capability of handling a great

variety of possible system components, including the wide

range of plant types, sites and abatement possibilities -

including plants with the capability of changing fuel types

and qualities.

The exact uses a purposes of these schedulers, as

well as the documentation and proper referencing of the

arguments involved, can be found in references (5) and (6).

Por all intents and purposes this report should be viewed

as a continuation of those reports. For any extensive

study of the computer programs given in the appendices

the reader is directed to the glossaries of computer program

nomenclature in references (5) and (6).

A quick overview of the solution technique can be

gotten from figure 1.1-2. Very briefly this tchnique can

be described in terms of the block diagram representation

in figure 1.1-3.

Q

Figure 1.1-3 Block diagram of scheduling solution technique
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In figure 1.1-3, the sequential decilioe block diagra,

1 S2, eto. represent the portion of the schedule treated

at each step in the computation. Q1 Q2 ' etc. are the costs,

economic or environmental, that are contributed to the

total system performance by the decisions made in the

respective steps. The Ii represent the new material to

be considered at each step, and the F, represent the forwarded

decisions and scheduling information.

Obviously, a problem which requires some explanation

at this point is the method for quantification of the

environmental impact. Two reports have been written by

the author on this topic, references (7) and (8), thus only

a brief explanatioa will be offered in this report. Roughly,

... ... ' ' Operating
Variables

; , I .

Environmental N
Forecas ts 

I. : I

.... ..,. R , .. ..... . I

, __ti

Figure 1.1-4 Simplified general systematic representation of
aquasphere impact

Aquasphere,
Ramifications

... hange of
Desirability
Assessment

t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

..- " . .
iJ
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these quantifications of impacts take into account the

amount of pollutant created and scale this quantity by

(1) the speed of pollutant dispersion under existing
or predicted physical system

(2) the severity of predicted pollutant levels from
other sources

and (3) the size of the population affected.

Consider, for example, the quantification of the

aquatic impact which can be broken down into a sequence

of problems as represented in figure 1.1-4 on the previous

page. The portion of this aquatic quantification which

is the most difficult to determine is the Biological

Model, which is further broken down in figure 1.1-5 on the

following page.

So, in general, the quantification of environmental

impact may be viewed as the taking of a probability of

impact and convolving it with a probability of population

affected .5

With this kind of a scheduling mechanism available

several questions of interest arise. What sort of economic-

environmental tradeoffs are available to a power system

scheduler? What is the shape of these transform hyperplanes

(i.e. tradeoff curves) and what does this shape indicate

about strategies which should be pursued by a scheduler or

a system expansion planner? What is the range of possible

5. A possible simplified, but relatively meaningless,
approach to the problem of environmental impact quantification
could be to measure aquatic impact in terms of BUs introduced
into the water system and atmospheric impact as tons of 02into the air.
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the

scheduling alternatives available for a power sgytem? Asweriag

these questions is the purpose of this study.

1.2 Historical Approaches

Studies even remotely related to this type of work are

extremely rare. One paper6 deals with the minute by minute

dispatch of electric power using the usual X, incremental

6. See reference (9).

I

. . .. I . .

I.II I

I ~ ~ . I 

. j

Ir



-13-

cost, dispatch technique, however substituting incremental

tons of NOX for the usual incremental dollar costs. This

program is used for actual dispatching of power in the

Los Angeles area where oxidizing pollutants, in particular

NOx, are a major health hazard.

Another paper 7 uses a somewhat more sophisticated

system incremental cost technique, dispatching to minimize

the pollution concentration at one or more particular

points around the system. These two techniques deal only

with part of the air pollution problem and are concerned

only with the minute by minute dispatch problem. The

hour by hour unit commitment problem is currently performed

only with a dollar minimization objective, and the wekLh

by week maintenance scheduling is not even that sophisticated-

being a 'fill-in-the-blank' problem as it is currently

set up by schedulers.

1.3 Results

The results of this project show that there is an

unusually large range of possible economic-environmental-

security consequences available to the scheduler. The

results of the unit commitment scheduling show that the

dollar minimization currently used is probably an unwise

criterien, with tremendous environmental gains available

for incremental increases in dollar costs. Minimum

environmental impact;strategies, on the other hand, are

7. See reference (10).



probably equally unwise methods for operating a system.

Maintenance cheduling 'fill-in-the-blank' tecnique

appear to be very wasteful in terms of dollar losses and

environmental impact consequences.

The computation and use of economic-environmental-

security transform surfaces should be of interest to many

people in addition to system schedulers and operators.

The planning of system expansions should involve the

careful placement and shaping of these surfaces by the

inclusion of the appropriate system additions and abatement

equipment. EnvironmentI[and economically concerned

regulatory agencies could develop a better understanding

of the complexities and alternatives involved in operating

a particular system - and hopefully gore of the hard

constraints imposed upon the system could be reevaluated

in light of their consequences in constricting the full
potentials of the system for the preservation of the

environment and/or the minimization of economic consequences.

Thus, it appears that this scheduli technique and its
associated tradeoff surfaces can be of great use.

1.4 Asullmotion. and Reservations1.4 ASj_

Although an attempt was made to make it iepresentative

the data used in this report is, nevertheless, hypothetical.

Although the shapes of the tradeoff surfaces and their ranges

are likely to remain nearly the same when real data i ued,

there will certainly be enough variations to make the input

-1 4-
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of real data a very worthwhile future projeot.

The nuolear-fosell-hydro strategies computed from the

optimum schedules are meant only to serve as an indioation

of what trends took place in h p artaular scheduling

problem - and are certainly not meant to be suggested

strategies for any other system. Oertainly each system

will have its own characteristic tradeoff curves ad
strategies, with generalizations to be made very sparingly.
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2. Tradeoff Surfaces of Unit Commitment Schedules

The following two chapters are primarily displays of

data and results. No attempt is made to describe the

workings of the scheduler used, this is contained in

references (5) and (6), nor to elaborate or speculate

on the material presented.

2.1 Descrivtion of the Sampl System

There are eight active power plants in this system

which are assumed to be located closely together, making

a meaningful process of the combining of water or air

pollution consequences from the various plants. This

system is identical to that described in detail in reference (6),
thus only a brief writeup will be given here.

The plants in the system include: plant 1, a relatively

expensive (to operate) fossil fueled plant of 160 megawatts,

with a moderately heavy air pollution factor (which varies of

course as meteorological conditions change) and a cooling

tower, thus, with very little thermal water pollution.

Plant 2 is a 70 megawatt plant fueled with low sulfur content

fossil fuel, making it slightly more expensive to operate

but reducing its impact on the atmosphere. Plant 3 is a

typical 120 megawatt fossil fueled unit. Plant 4 is an

80 megawatt gas turbine. Plant 5 is a 240 megawatt slightly

cheaper fossil-fueled facility. Plant 6 is a 560 megawatt

nuclear facility and 7 is a 100 megawatt hydroelectric
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station. Unit 8 is a pumped storage facility with 80%

input efficiency, 83% output efficiency, 80 megawatts of

storage apacity (maximum), ad storage enough for the

equivalent of 1000 megawatts hours of water power.

The nuclear, hydro and pumped hydro facilities have

quotas for production and reservoir levels at the end

of the week, with penalties associated with missing those

targets.

The use of more than 400 megawatts of the large

nuclear plant cues the need for added system spinning

reserve requirements.

Emergency standby power support is available for

purchase. from an external source at a few prespecified

times, otherwise all bulk interregional power transfers

are assumed to have been previously settled (in the maintenance

and production schedule) and the load demand curves have

been adjusted in order to represent these transfers.

To take advantage of the decoupling of the different

time intervals of the scheduling procedure, this problem

was concerned only with the third step of a four step

evolving process covering a week. The third step was

concerned with hours 64 through 112 in the week, with

step four, hours 120 - 168, being carried only in the

linear mode of the scheduling process(this linear mode

results in only about 1% error and thus does not make a

great effect on the accuracy of the procedure). The
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time unit size in these third and fourth deoision fields

is eight hours. The exact data used for this system can

be found in the program in Appendix A.

2.2 Demand and Sinning Reserve Reauirements

The demand curve for the time interval of this problem

is displayed in figure 2.2-1, showing the curves to be met

for high, standard and low system reliability (load meeting

probability) levels.
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Figure 2.2-1 Demand-to-be-met curves for various reliability
levels as used in the sample problem

The spinning reserve requirement (exclusive of the

previously mentioned additive attachments cued by the

nuclear unit) was set to be constant8 at 305 megawatts,
8. It is possible, and in fact no more difficult, to use
any amount of time variability in the spinning reserve requirement.
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280 megawatts, and 255 megawatts for high, standard ad

low reliabilty levels, respectively.
Exact demand levels and spinning reserve requirements

are listed in Appendix B.

2.3 A Sample Schedule

The following is an example of some of the most

important information for one particular optimum schedule,

the equal weighting of dollar costs, aquatic impacts and

air impacts for a schedule meeting a standard reliability

level.
The variables Q, QW, and QA represent the dollar, water

and air costs of the schedule. QE, QV, and QB are the

equal weightings of air and water, water and dollar, and

dollars and air pollution, respectively. And QT is the
equal weighting of all three consequences, which is the

objective of this particular schedule.9 D072, for example,

is the megawatt-hour demand over the eight hours begin*Ag

at hour 72. SR072 is the associated spinning reserve

requirement plus the demand requested at hour 72 and is also

measured in megawatt-hours.

The dual activity associated with each demand level in

the solution is the incremental cost of additional power that

resulted in this particular schedule(cost here is dollars
plus environmental units).

9. 'The costs displayed in this program include costs above
or below quota figures, for nuclear and hydro usage, and thus
these fixed costs of those quotas should be added in:
QD +240,700 ; QW + 414,300 ; and QA + 67,600.
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The variables such as A.1064 represent the on=l, or

off=O, status of plant 1 over interval 64. J and variables

represent extents of loading of the plants at the times

indicated. A8 and G8 represent depletions or additions to

the pumped storage level, where 1.0 activity represents

maximum effort over the interval. HLU64 is the level of the

pumped storage facility at the 64th hour. The W's are

indicators of the plants that have been started up in that

particular time slot. E represents the fractional use of

the available emergency external support. 0SN and USN, and

OSH and USH represent the over and under usage of the

nuclear and hydro weekly production quotas. For a more

extensive description of the variables the reader is refered

to reference
NU4E0 ... Ow. . A T

I C, RS
2 CW S
3 CA nS
4 QE RS
5 CT RS
6 4V BS
7 QS S
8 0064 LL
9 0072 LL

1] r)J9) LL
11 CL.$8 LL
12 1)0396 L L
13 0104 LL
14 0112 LL
I5 u121 LL
1s C129 LL
17 0)136 LL
1i 3145 LL
19 Cl52 LL
2) D16) LL
21 D168 LL
7? So064 LL
23 S )72 qS
2i 59080 RS
25 S-318 LL
2 S'3 ) I6 AS
27 SR104 RS
2'. 5 112 S 
29 S9120 LL
33 S'128 S5
3L Sq136 I.L
32 S 144 LI.
33 SO 152 LL
34 S '160 LL
35 qR 13. LL

Figure 2.3-1
minimizing d,
reliability

(6).
... ACTIVITY... SLACK ACTIVItY .. LOWER LIMIT. .. UPPER LIMIT. .DUAL ACTIVITY
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321 I f: J64

jg5 ,1Oo4
; rS )4
31 t JlJ72
) .1 . :172

31) ,?)12
.311 i31.']IL J3 t
312 K3072
3 13I .J72
J1 J!; 72?
315 K.3J72

31 J5.)72
31 m. K5]72
319 ;5J372
i32 Jb)72
321 63072
322 J7372
323 w7)72
324 A.9372
325 J8072
326 4.07Z
327 WRO72
32d FS072
329 JO180
33) W11R)
321 J201C
'12 .1'3BC
311 J330U
3 34 %3330

'3'i W3 ):1
It 3 .14 '10
Sit K4 01,

.4' KS Jq]

,41 J0, .L
444 J704)
'/ 45 Wl )3
,46 AA )"3
347 G"3'13

AT
EQ

EO

EO
EQEO
EQ

E0
EQ

IJL
LL
IIJL
LL
LL
LL
LL
UL
RS
LL

S
LL
LL
IIL
l. L
UL

S
R S
LL
LL
, S
aS
.S
nS
AS
LL
LL
LL
LL
LL
LL

aS
L
LL
aS
LL
UL
LL
LL
LL
85
ILLL

UL

RS

LI.
LL
LL
LL
LL
LL
LL
LL
LL
RS
IL
UL

.. ACTIVITY...
51420 . 00000
7700.OC000

16. )33)0
1.0'0000
1. }0-}')
1.3 000
1.06030
1. 0000
1.30000
1. )13)

100.00000
1.300000

1.00000

1.30b00
. )3333

1.30000

1. ) )3300

1:.0000.0

.15625

.15625

.22667
1.3JU40OO0

1.00000

.850)3_

1.30000

.INPUT COST.. .. LOWER. LMIT.

82
3

35
1

25
95
1

35
36

L
84
S1

4

10

24
8;

31

21
q(

3
3

8
9

1

24
1:00000 '

. ....... . . .....

I 3

'...... _....,

*·· ..... I

5 1420.0')000
7700. 0.)000

160.0000
1.0'000
1.0)330
1.00000
1.)000
1.00000
1.03000
1.)0030

40.00000
30.00000
28.00000
12. )30'03
80.00000
60.3000
85.00000
584. 03000
.190.') 0 ·
.50.00000
420.00000
.88.00000
402.00000

019.00000

L84.33303

L19:00000
l30.00300
260.00000
330.00000
568.03000
112.00000
630. )J)00
660.00000
185. 0000
624.00000
730. )33')1
150.00000
500. 00000
378.00000
402.00000

019:00000

184.00000

tt9.000 *

P000.00000
.24 0. 00000
330. ) )0 .

1608.00000
112.00030 

4690.00000
780.00000
185. 33))

1364.00000 .
3790.00000
150.0000
74 C.O03 000
45802. 000 
402.00000

.34750 _
1019.00000

1.00000
184.30000

LL
LLLL

.. UPPER LIMIT. .REIUCED COST.
... 51420.00000 .-- n.10000

7700.00000 5.60000
160.00000 ' 6.70000--

1. 00000
'1.00000
1.33000
1.03000
1.00000
1.00000
1.00000

100.0000
1.0) )30
1.00 000
1. 00000
1.03o00
1.00000
1.3333
1.00)00
1. 00000
1.0330
1.00000
1.00300
1.00030
1. 00000
1.33)00
1. 00 000
1. 00000
1.00000
1.00000
1. 3)0301

oo000.00000ooo

1.000001. 0000
1. 0000

1.00000
1.00000
1.3 O00
1.00000
1. 30)jo

1. Oooo0000
1.03)00

1.000001.00000
1. 0000
1. 00000
1.0 300
1.00000
1. 0000
1.00000
1.00000
1.0)000

100i . 00000
1.03330
1.00000
1. 01)000
1.00000
1.00000
1.3)000
1.00000
1.00000
1. 00000
1.000001.0o300

1.00000
1.0)300
1.00000
1. 0)o30
1.0000
1. 00000
1.00000
1. 00000
1.300

184. 00000-
12.11406-

2830.33030-
330.00000

1392.00000-
112.00000
120.00000
950.000}0
185.00000
106.00000-

150:00000

4268.00000
402.00000

83)3. 033')-
1019.00000
4997.00000-

4055.3)309
.25333

112.00000
502.00000

2212.00000
185.000 30
432.00000
538.00000
150.00000

5122.00000
402.00000

1019.00000
3420.00000-

184.00000
78.1.26667

2623.53333

119.00000
24000.00000
2291.00000-

562.00000
2332.00000

185.00000
492.00000
598.00000
150.00000

4826.00000
5332.00000

402.00000

548.00000
3420.00000-

65.00000
713.93333

2623.53333

Pigure 2.3-1 (continued) ample portion of one optimum schedule,
showing nuclear, hydro, and pumped hydro weekly quotas and
initial conditions, and part of the final schedule.
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lt q C R I lLUN . AT .. AC
349 ML 39} S34 0 )9 _ . . .......
j4' w83, 8J LL
35J J103 A S
3'1 W13AI LL
3'2 J20d3 UL
3'3 W2)i8 UL
1:4 J 018 I L
355 K3038 LL
356 W3)8 UL
357 J4088 BS
358 K4398 LL
359 W4088 BS
363 J50R8 UL
3eL K5 )88 LL
362 W5088 BS
33 J6O88 RS
364 W60O8 BS
365 J10E8 UL
3t6 Wr7)88 RS
367 A9O98 BS
36t G830 LL
369 HLOQ8 OS
37C wdC9q LL
371 ES)88 RS
372 J1096 UL
373 W1096 LL
374 J2396 UL
375 W2396 LL
3176 J3)96 LL
377 K3096 LL
378 W3396 LL
379 34096 LL
383 K4096 LL
381 W4)96 LL
382 J5096 RS
383 K5096 LL
3e4 W5396 LL
3F5 J6096 BS
3E6 W6396 LL
3.87 J7096 UL
389 W7096 L
389 A8096 LL
35C GJq96 LL
391 HL )96 1S
392 W396 BS
393 J1104 RS
394 W1104 LL
395 J2134 UL
3Sb W21)4 OS
397 J3104 t.1.
358 K3104 LL
399 W3104 LL
400 34104 Lt
401 K4134 LL
402 .4134 LL
403 J5104 ARS
4)4 K5104 LL
405 w5104 LL
4i6 J61)4 RS
4C?7 6104 LL
·.C8 J7104 UL
4:;, W7134 LL
413 A9134 LL
411 G81)4 LL
412 H 104 BS
413 w8134 LL
414 J1112 UL
415 WL112 LL
416 J2112 UL
417 42112 LL
418 J3112 LL
419 K3112 LL
420 W3112 RS
421 J4112 LL
422 K4112 LL
423 W4112 RS
424 J5112 BS
425 K5112 LL
426 i3112 OS
427 J6112 :S

.TIVITY... .. INPUT COST.. _ .LOwEP

119.00000
1)03) 683 .3)3)

* 3000000
1.00000 3518.00000
1. 33JJ3 112.03000

· 2580.00000
9560.00000

1.00000 185.o0000
.66667 3534.00000

3660.030)3
1.00000 150.00000
1.30000 8520.00000

46 8.00000
1.o00000 402.00000 ......
1. )330

1.30000
1019.00000

184. )3000

119.00000
.14667 24330.33300

1.00000 7740.00000.... 330.00000
1.30000 3508.00000

112.00000
2590. )3000
9520.00000

1I5. 0000
3554.00000
368C. 00000

150.00000
1.00000 8270.00000

9038.33013
402.00000

.67500
1019.00000

1.00000
184.3300

11900000ooo
1.)30)0) . .8230.3)))I0

330.00000
1: )0000 3518.00000

112.03303
2630.00000
9630.09000

185.0000
·. 3554.00000

3680.'30000
150.J0000

807C. 00000
8 88.00000
402.00000

.45250
1019.00000

1.30000
184.00000

1:00000

13 )0000

1.32030

1.30000
.62000

119.00000
8520.00000'

330.00000
3498.032)03

112.00000
2530.00000
9402. )3000

185.00000
3484.J0 33)
3630.00000

150.00000
7.. 70.33130
8638.00000
402.030')0

LlIMIT. ..UPPER LIMI1T*_.REDUCED.COST.
T-D 0O. 0 000

1.0J000 119.00000
1. 3) 33a
1.00000 330.00000
1.00000 1194.00000-
1.00000 4213.00000-
1.00000 224.00000
1. 0) ))0 '.1314.000
1.00000 904.00000-
1.00000
1.000'0 126.00000
1.00000
1.0)30 .
1.00000 4756.00000
1.00000
1.0]330
1.00000
1.00000 4503.00000-
1.00000 ...... ...
1.00000
1OO)O 3717.93333

1000.000ooo .
1.00000 51.66667
1.00000
1.00000 . 1244.00000-
1.0 300 330.00030
1.00000 86.00000-
1.00000 112.00000
1.00000 462.00000
1.00000 20TZ OUOUU
1.00000 185.00000
1.00000 986.50000
1.03000 1112.50090
1.00000 150.00000
1.00000
1. 3000 4782.00000
1.00000 402.0000
1.030 .
1.00000 1019.00000
1.00000 3420.00000-
1.03000 184.00000
1.00000 900.26667
1.00000 2623.53333

1000.00000
1.00000
1. 3 )3 00
1.0000 330.00000
1.00000 144.00000-
1.03000
1.00000 502:00000
1.03 )0 2152.00300
1.00000 185.00000
1.00000 .' 860.00000

: v.....t : 1.00000 986.00000
1.00000 ' 150.00000
1. 3)0 )
1.00000 4532.00000
1.00000 402.00000
1. 33) )00
1.00000 960.00000
1. 0)00 3420.10003-
1.00000 164.00000
1.00300 662.26667
1.3 )300 2623.53333

1000.00000
1.00000 119.03000
i.00000 114.00000-
1.00000 330.00000
1. 32)03 562. 303 3-
1.00000 112.00000
1.03000 922.50000
1.00000 2472.50000
1.300000
1.0 100 894.0:003
1.00000 1040.00000
1.00030
1.00000
1.03000 4382:00000
1.0)330
L.00000

Figure 2.3-1 (continued) Sample portion of one optimum schedule

.·
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NUIMBER .COLUMN. AT r . .,ACT VIfYl *j PUtCOST.. .. O0WP LE MI. L ... ,RE.CEO .CqST..

428 W6112 LL 01..00000 ' 1.030)0 .... 448.0030
429 J7112 UL 1.30000 . .. 1.00000 3420.00000-
430 W7112 LL ........ 184.00000 . - 1.00000........ 20.00000
431 A8112 LL . 1.00000 781.26667432 .G8112 LL ...... .. _.__ . ... ·. .... 1.00000 ..... 23.53333_
433 HL112 13 . . . 1000.030))
434 w8112
435 AZ120
436 J1123
437 WI120
438 A2120 
439 J212'
440 W2120
441 A3123
44Z J3120
443 K3120
444 k312) 
445 A4120
446 J4123
447 K4120
448 W4120
449 A5123
450 J5120
451 8512}
4!2 K5120
4.3 W5120
454 A612.
455 J6120
456 W6120
457 A7120
468 J7123
45'; W712)
460 £A120
461 (;8 !0
4L2 HL 120
463 W8120
464 fS12 )
465 A112R
466 J31128
467 Wl 128
468 A2128
469 J2128
470 W2128
471 A3128
472 J312e
473 K3128
474 'W3. l8
415 £4128
476 J4128
477 K4128
478 W4 128
4179 A5t128
4A.) J%12d
4 01 n1%41
482 K512A
481 W'.IZ 2
4E4 Ah12l
415 J6128
4q6 W61Zl
487 A718n
4tl J'128R
489 w7128l
,qo Ad12i!
491 ;8 I28
492 14L 128
493 w8128
4q4 Allh
49 1136
456 W1136
497 A2146
498 J2'136
499 W2136
500 A3136
501 J3136
502 K3136
503 W3136
504 A4136
505 J4136

.506 K4136
5C? W4136

Pigure 2,

Bs
UL
1
BS
UL

asULLSUL

LL
S 

UL
LL
LL

S _
UL

LL
LL
8S
UL
DS

aS
JL

UL
RS
ILL
LL

BSas

UL
n Sos
LL

RS
LL
LL
LL
LLI L
1.L
OS
LL
LL
LL

LL
LL
ILLI
LL

RSns
LL
AS
UL
LL
LL
Ll

itI.

1S
UL

Bs
RS
LL
LL
BS
OS
LL
LL
RS

.3-1 (cc

1.00000 - 8
1.3330 8

1.00000 2
1.00000 3

1.33000 4

1:.0000 _

1.00000 3
* . 3
* 3

1.00000. .
1.00000 17
1.0000 8

1.o0000
.9 5000

:oooo0000
1.00000

:.2667 24
1.00000 e
1.0000 8

· 18030~ 3

_.·)OO 4

. 9 2

. 3
3

! . .. ..
.18000

I .1:0000
1.)o000

1.0030) I
1. )0000 

1.00000 3
1.00000 3
1.)30003
1.00000 4

1.ooo00000
.06815 

.96875
ontiLued)

119.00000 · 1.00000
1980. 00000 . 1.00000 8378:00000-
3690.33003 . 1.00000 886.00000-
330.00000 . 1.00000
1941.00000 _ . __ 1.0))0 __3619. 00330-
1538.00000 . 1.00000 718.00000-
112.0000000 1.00000
4051.0)033 * 1.00300 6636b.00000-
2590.00000 . . .. .. 1.00000-.- 462.00000
9500.00000 * 1.0033) 2052.0000
185.00000 _ .... .. ..... . 1 .00000__
421.00000 · 1.00 00 36'77. 00000-
1484.02003 . 1.)3))0 292.033130
3600.00000 1.00000 408.00000
150.00000 .. 10000 .
500.03000 1·.00000 10708.00000-
1030.00000 : . .00000.. .
1 30. ) )))3 1. '30 )
1738.00000 . 1.00000 4482:00000
402.00000 1.00000
490.00000 · 1.00000 33162.00000-

·. 1.00000
.3)19.33))30 .. 1.3 )00
211.00000 - 1.00000 6283:00000-

1.00000 3420.0000-
184.00000. 1.0000

* · 1.00000 781.26667
· · 1. 03)30 2623.53333

1000.0000
119:00000 , 1.00300 
k) 0.03300 . 1.00000
1327.00000 . . 1.00000 747:00000-
1280.3 )) . 1.0))00
330.00000 . 1.00000 330:00000
,164.00000 1.0000 ... 192.00000
3588. )330) . 1.00000
112.00000 . 1.00000 112.00000
4317.00000 . 1.03)0 940.00310
2660.00000 . 1.00000 532.00000
9640.00000 1.00000 2192.00000
185.33))30 . 1.00000 185.00000
359.00000 . 1.00000
3474.00000 ,. 1.030 ) 822:50330
1610.00000 . 1.00000 958.50000
150.00000 . 1.00000 150.00000
42 300000 1 1.00000
1130.00000 . 1.0OO00 3871.00000
1130.0)300 · 1.33330 3871.00000
1877800000 · 1.00000 4522.00000
402.00000 . 1.30)0 _.. 432.000))
588.00000 . 1.00000

1.00000
L019.3o30 . 1. 33 )33 588.033oo
266.00000 · 1.00000

1.00003 3420.0)333-
184.00000 1.00000 .8600000

1.00000 781.26667
1. .0 1)0) 2623.53333

OO0.00000
119.00000 . 1.00000
)62.0 000 · 1.00000 2220.00000-

1210.00000 1.00000 
330.0000 . 1J 3))
1182.00000 . 100000 540.25000-
13548.00000 . 1.00000 708.00000-
112.0320) . 1.00000

4140.00000 1.00000
!620.33)00 1.33))) 492.0030
9630. 3000 1.00000 2182.00000
185.00000 . 1.00000

1862. )330 . 1.00000
3504.00000 1.00000 312.00000
1630.00000 · 1.3)3'J0 438. 003)
150.00000 1.00000
Bmple portiona of one optimum sedule



J14tiE .CILUAN. AT ... ACTIVITY. .·INPUT COST.. · ·.LnWER LIMIT. · IPPER Llr IMIT. I
5C8 A5136 Bs . -6O0 0 . .. 1.00000
5I J5136 LL 8020. 3)))) 1.0000
510 B5136 RS · 8020.00000 · 1.0000
511 K5136 LL · 8688·33000 · 1.03303
512 W51'6 BS 402.00000 , 1.00000
513 A6136 UL 1.00000 430.30000 . 1.00000
514 J6136 aS .84625 · · 0.3'300
515 W6136 ns 10L9:00000 . 1.00000
516 A7136 UIL 1.00000 238.0000 · o)30oo
517 J7136 IsS 1. 30000 1.00000
s51t WT7136 s 184.0000oooon 1.00000
510 Aq136 LL . . .1.)33
520 Gb136 LI . . . 1.03000
521 HL1136 Rs · · 1000000
522 W8136 aS . 119.00000, · 1.00000
523 A1144 UL 1.00000 7848.00000 1.0000
524 J1144 RS 1. )0030 7343.0)00.) 1.3'33
525 w1144 BS 330.00000 · 1.00000
526 A214 UL 1.30000 3768.00000 , 1.00000
527 J2144 UL 1.)00') 3588.00000 , 1.30000
528 W2144 LL 1L20000 1.00000
529 A3144 UL 1.3)03 420733 )0) , . '130)
530 J3144 LL- . 2710.0000 0 1.00000
531 K3144 LL · 9820.)3003 1.0}093
532 ,v3144 LL . 18500000 1.00000
533 A4144 UL 1.00000 3193.00000 · 1.00000
534 J4144 LL 3554.))030 · 1.00300
535 K14144 LL 3680.00000 · 1.00000
536 W4144 RS .03125 150. )')9 .·. ) )3
537 A5144 BS · .20833 17306.00000 1.00000
538 J5144 RS .20833 8C70,30000 1.00000
539 q5144 LL 83703 )) 9 , 1.0000
543 K5144 LL 8908.00000 , 1.00000
541 W5144 ns .20833 402.00000 · .,)30
542 A614 UL 1.,0000 .544.00000 1 .00000
543 J61e4 n5 .86667 . 1.0o000
544 W6144 LL 1)19.) 1 } 1.))03
545 A7144 UL 1.00000 217.0000 1.00000
540 Jt14 R7.1. 1.Cooo · · 1.00001
547 w71,o 135 , 184.00000 1.0000
54 1 L ·4..· ... 1.0000
549 G144 LL , 1.3)009
5 50.L144 8s . -· _ 1oo000..00000
51 W8144 RS 119.00000 . .00000...
S~Z...1152 UL Z;,O _1.30000 _6851R.ppOO ._.j . . ... ,'/' 1·00000
55J JtL52 K5 1.30000 7120.00000 1.00000
554 w1152 LL 330, )303 . , 1.0)300)
555 A2152 UL .1.00000 3594.00000 1.00000
556 J2152 RS 1.00000 3668.00000 . 1.00000 
557 Z152 LL 112.0)000 1.00000
558 A3152 S 1.00000 4264.00000 .. 1.00000 .
559 J3152 LL . 2740. ))00 .0 1.0303')3
560 K3152 L L *9910.00000 · . 1.00000
561 W3152 BS 185.00000 , 1.00000
562 A4152 RS .23438 3019.]3000 1.00000
563 J4152 LL 3524.00000 1.00000
5.4 K4152 LL , 3660.00000 1. 003)03
565 w4152 -L 150.00000 , 1.0000
566 65152 . S 17529.00000 1.00000
567 J5152 LL 8090.03300 , 1.03000
568 85152 LL 8090.00000 , 1.00000
565 K5152 LL 6 8938.00000 , 1.00)00
573 w5152 LL 402.00000 1.00000
571 A6152 . UL 4.1;6'60-" 486. 00000 . ... 1.oo00000o
572 J6152 aS .75813 .· 1.0000
573 W6152 LL 1019:00000 , 1.00000
57. A71S? (IL 1:30000 252.00000 , 1.309I)
515 37152 UL 1.00000 . L.00000
516 w7152 n ..... 184.00000 .1.00000.
577 48152 LI. · · 1.00,333
578 08152 LL . . . .1.00000. .
579 H152 BS , . 1000.0000
51) w8152 AS . 119.00000 · 1.00000

EDUCED COST.

2158.00000

6590:.0030

3459:62500-

4279.5300-

781.26667
2623.53333

4504.66667-

735.914T7-
668.00000-
112.00000

1367T.0000-
582.00000

2372.00000
153.00000
284.33333-
362.00000
488.00000

4652.00000

9482. 79167-

1019.:0000
5257.16667-

781.26667
2623.53333

4860.00000-

330.00000
546.37500-

112.00000

612.00000
2462.00000

332.00000
468.03000
150.00000

1714.00000
1714. 00000
4682.0103
402.00000

4469.43750-

1019:00000
854.250)0-

3420.00000-

781.26667
2623.53333

Figure 2.3-1 (continued) Sample portion of one optimum schedule
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NIM4RFR .COLUMN. AT ... AI

581 A1160 UL
5,2 Jll t,) UL
583 W 160 I ;
5b4 A2163 1JL
5F5 J216) UL
';86 tWIt.3 '1S
',FI A3lo) UL
5SH J316;) LL
5 ' 316 LL
5't0 WlbO LL

') .41c0 UL
5 2 J.1 {, J 31 S
*')) K,41')J LI.

S'j . tv , 3 t

bS17 14,3) I L

5 q W 'J 60 S11
6:3 A6 60 UL
601 Jt.lbo UL
602 W6163 LL
603 A7160 UL
,:,4 J' 71; U L
6C5 7116) RS
6C6 A3160 9S'
6C7 G 160 LL
603 . H160 9S
6Cq W3163 t S
61; ESt1] aS
6 1L Allo9 L;L
612 J116 35
613 Wllo. LL
614 A2158 UL
615 Jd16R UL
616 W2168 BS
617 A31s,8 UL
6 I J11691 LL
619 K3168 LL
b2) W.319a

I L
621 A4161 It{
62:. J4.t,1 I l
, 71 K4luq LL

b64 w 41+. LL
625 4A51obn 
620 Jlbd 11 3
bitl r%10),. Hq;
623 K5161 l. 
629 W5163 LL
h30 A bld .JI.
631 J6lbR RS
632 W6168 RS
633 A7168 UL
634 J7163 UL
635 w7168 RS
636 Aql 6 LLt.
637 G8168 LL
638 HL 168 LL
639 WRIS8 LL
S4 ) ES I6 LL
641 CSN LL
642 US. s8 29
643 OSl1 ; 35
644 USH LL
645 OSPH LL
646 USP4 RS 1,

CTIVITY... .. INPUT COST..

1.3001
1. )'}30

1.-03 )'

l. )039(

1. :1)00
.8 75)

.7t,56b2

I. :)OOU(

1 .03090
1.0000

_1:.00000
1 )000

.16333
1.0000
1. )033)

1.03000
1. )030

1:.0000

1.:(1000

.5625:)

.56250

1. )0300
.89500

1;'00000
1.3 0000

35.83333
00.30000

60:.30000

0 7157.00003
3 7250. 0000

330. 00000
3 3717.3;)3)3
3 3598.00000

112.0000()
0 435 7. OO)0O0

2700. J0000
983 ).3)) ),))

185.00000
) 3502.00030

3614. ) ))
3750.0000)
{,50. ) )))

7737.0J.)0(1
nl 70. JOO00
H 17'). ) ) ))

;8 i. 00 000
402.000)o3
507. 0000

1019.33)0
304.00000

184.00000

119.00000
24000.00000

6600.30000
7140.33J33
330.30000

3620.00000
3588. 3) )03

112.00000
4424.3 ) ')3)
2710.00000
9900.00300

185. J3 J)
3 01 3 (000
3644.0000.)
3780. 00000

150. 00000
1756 7.3 J) )J
810. 00 00
8110.0000
878 8.03000O
402.0000
449.3333

tOL9.0000
247. 00000

184:3303)

119.00000
24300.0 30'3

15.10000
.13.30000-

8.8 0000
5. 20000-
6.40133-
6.70000

.. IOWEP LIMIT. .. UPPFR LIMIT. .REOUCEO COST.

1.00000 11185.66667-
1.00000 3592. 00000-
1.00000
1. ))33) 4377. ')31)30-
1.00000 1220.66667-
1. )0000
I.0J00 6791. 50000-
1. il 00 290.666667
1. ) )) 1427.33333
1.00 ?00 39.50000
1. D0;)00 . 3877.33333-

1. ) ))3
1.0 ) 000 13144.33333-
1.0)000
1.0000
L.00000 4169.33333
1. ))')))
1.00000 35596.00000-
1.0000 7033.33333-
1.0))0 1019.00000
1.00000 6346.33333-
1.0)00) 4756.33333-
1.00000
1.0)000
1. )33133 3973:93333

1000.00003
1.00000
1.00000
1.30000 6215:33333-
1. ))3 )
1.00000 330.00000
1.00000 742.45833-
1.00000 668.00000-
1.00000
1. )3)) 966.50))3..
1.03000 582.00000
1.00033 2452.00000
1.00000 185.00000
1.0)3000 212.66667-
1. } ) )')) 452.03133
1.00300 588.00000
1.0300J 150.00000
1.30000
1.0300
1.) )3)
1.00000 45 32:00000
1. 0000 402.00000
1.)) 33 8333.64583-
1.00000

1.00000 1581:08333-
1.00000 3420.00000-
1.00000
1.00000 781:26667
1.33033) 2623.53333

1000.00000 5.16073
1.00000 119.00000
1.00000 17129.68750

50000.00000 1.80000
5 )3) . )33) 
7000.00000
7000.00000 3.60090
840.3 )3] .30000
160.00000

Figure 2.3-1 (continued) Sample portion of one optimum schedule,showing the status of nuclear and hydroelectric quotas for
the end of the week.
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NIU"HER CnLUMN. AT ... ACTIVITY.... : .. INtPUT COST..

iV 1'.00000 4052. 00000
I V _ .0000 -.OOOO 40s2.0000
IV L.00000 4300.3 OOO
IV 1.)0030 3380.0031)
IV 1.30000 17560.00000
1V . 8420.00000
IV 1.00000 537.0 00
IV 1. 10000_ 452.00000
IV 1.30 0 - 8480.00000
EO . . 4077.00000
IV 1.00000 4199.00000
TV 1.30000 3342. )00)0
IV 1.00000 17663.00000
IV . _. 8500. 00000
IV 1.00000 . 471.00000
IV 1.00000 258.00000
IV 1.00)03 7163.3))33
F Q . 3647.00000
IV 4281.00000
IV . 321.3)01
IV . 1 o68.00000
TV .874o. 00000
IV 1.00000 389.00000
IV . l.00000 . 245.00000
IV 1.OJ3o3 7522.3)300
IV 1.00000 3689.00000
IV 1.00000 432.3 o000
TV 10 3251.3300)
IV 1.00000 17634.00000
IV . 8520.00000
IV 1.00000 547.00000
TV . 130000 244.00000
IV 1. )OOo 840.3) 30)
IV 1.30000 3566.00000
IV 1.00000 4106.00000
IV . . 3377.030).
IV 1.00000 17621.00000
V .21700.0000

IV 1.00000 944.00000
IV 1.00000 198.30000
IV 1.00000 7696.00000
IV 1.00000 - 3674.00000
IV . 4201.)3'033
IV . 3274.00000
1V . 16438.00000
IV 8070.00000
IV 1.00000 512.00000
IV 1.3030). 324.3)00.)
IV 1.00000 8720.00000
IV 1.00000 3500.00000
IV . 4233.00000
IV . 3332.00000
IV . _.1:.00003 _ 17362.300)
IV . . 7570.J0000
IV 1.30000 448.00000
IV 1. )00 200.3)303

..LOWER LIT. .. UPPER LIMIT. .REOUCEO COST.

1.33 301)
1.00000
1.00000
1.03333
1.00000
1. 00000
1.00000
1.00000
1.0)30)

1.0000000'
1.33 3
1.00000
1.000)3
1.00000
1.03000
1. 333)

1.00000
1.00000
1.00000
1. 3a 33
1.00000
1.0000
1.')) 333
1.0000
1. 0000
1.0000
1.00000
1. )))30
1.030000
1.03000
1.0 )0)
1.00000
1. 00000
1.00000
1.00000
1.00000
1.00000
1.03 30)
1.00000
1.00000
1.))30
1.00000
1.0000)
1.00000
1.00000
1.0)030
1.00000
1.00000
1.00000
1.00000
1. OJ 3')O
1. 000
1.00000
1.00000

I

1062. 00~0-
411.. 00000-
7070.00000-
420). 30030-

13580. 00000-

34729. 00000-
6027.00000-
284. 0003-
85.00000

1007. 00000
1214.00000
4883.00000

41.00000-

4406.00000-

1143:00000

4826. 00033
159.00000-

14736. 00003-

6093.00000-
4075.00000-

12364.00000-

3905 8.00000-
6209. 00000-

914.00000

461.Ld000

485:00000
2.000)0-

1098.00000-

824:00000

2826:00000

4052.0000

Pigure 2.3-1 (continued) Sample portion of one optimum schedule,showing the values of the decision variables for which thethird decision field was responsible.

t41 AJb4
648 A2 )4
649 A3J64
650 A4064
o5SI A6564
652 05064
653 A6364
654 A7064
655 A137Z
o56 A2)72
657 A3072
658 64172
,65I A5072
660 P5072
661 .b372
b66 A7072
693 61080
664 A20O0
665 A580
666 A4 38

667 A53OO
66q R508,.
669 A6)8)
670 'A7080
671. A1088
672 A208R
673 A3.318
674 A+)qq
675 A5088
o76 85388
677 A1168
678 A7083
679 A1306
6eO A006
6e1 A3096
682 A4)96
683 A5096
614 85396
615 A6096
686 A7096
6E7 A11)4
693 A2104
6e49 £31)4
t$0 A4134
6SI 65104
652 851)4
653 A6104
654 A7104
695 A1112
696 62112
657 A3112
6b8 A4112
699 A5112
700. 85112
7C1 A6112
72 A7112
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I FU:NCT IAL 159q643.974C 16')989.9740 1599308.9740 I
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I FSTIMATI. l I INTEG'R I INTEGER I INTEGCP I
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I. I I I I
I 647- 1)364 I 1.0000 1 1.3300 1. 0000 I
I e. q S.' .4 1 1.3)) 1 1. ))03 I 1.0)30 
I o49- A'334 1 1.0030 1 1.3000 I 1.0000 I
I c',, 4, 0,.4 1 1.0030 I 1. )))0 I 1. ).3 I
I S,1- ' 5J,4 1 1.0 '0 I 1.0000 1.0000 I
I (52- ;15J64 I . I I .
I , 3- o< ,)6,4 1 1. )) I 1. ))0o) 1 1. o00') 1
I o 4. A 7.)4 I 1.0300 I l.0300 I 1.0000 I
i b5'- A!372 I I. O 1. 10030 1.3)'03 1
1 657- A3)?2 I I. 00OO I I.0300 I 1.0000 I
I ',53- A4072 1.0030 I I 1.0000 I
I , 5,7s. s)2 I 1. )oC) I 1.:))0 1 1.0230 I
I *t )- 1t5'72 1 * I 
l tIs '.L)2 1 1.0333 1 10000 100 1.030 1
I /,.2- A7372 t I.00)0 I 1.)300 I 1.0000 1
I 6te3- AJJJ '1 1.o3300 1.3300 1 ' 1.0000 I
I e - 3) I . ! , I · I
I 666' a43: . I · I . I
I #,67 A3S5 I * 1 ' I * I
I bt.- R5033 I . I . I
I to,, t. i3 1 1.0000 1.0)00 . 1.0000 1
I 67- hA7)i) I .); �)' I 1.))) 1 1.0)10 I
1 6 71- I j 1 I 1.0300 I 1.0300 I 1.0000 I
I o7Z- f.'~ I 1.33 J0 1 1.a300 1 1.9)00 I
I 71- -3C 13 I 1.0030 I 1. 000 I 1.0000 I
I J74 ,'.034 I 1.000 1 1.0300 1 1.0000 1
I b75- A; P8 I 1.10)') 1 10..30 I I.0O') I
I 676. J ,'jg I i I . I
I rt7. f )Iq I 1.3)00 1 .0000 1 1.030 1
I o(73 .A7R I 1.00 0 1 1.0000 1 1.0000 1
I ht7l- 4Al I 1.0,100 1 1.0300 I 1.3000 1
I beI' A2)06 ) 1 1.)00 1 1. ),)0 
1 681' 6)b ! I I 1.0000 1
I ..2-. :4))b 1 i.JJ3o I 1.0000 1 *
I .EI - 5.jC,, I 1.01)00 1 1.3J000 1.0000 1
I be4- "5 )96 I I I I
I fES- A6)q6 I :1.)))) 1 1:)J)O I' 1. 3')0 
I 6E6- A7J96 I 1.0000 1 1.0000 I 1.0000 I
I 687- A113,4 I 1.0O100 .1 ..Q000o0 _ 1.0000 1
I 6e88 A2t)4 1 1. 30 )0 1 1.3JO 1 1.0000 I
I o89s 43104 I . I
I 693- A4104 I , I . I . I
I 651- A5134 I _ . __ __ I I
I bS2- A5104 I I I
I uq3- A614? I 1 ) 1 .')o20 1 _o_1.0qPQ~k
I 6S4- A7134 I 1.0000 t1 1.000 I 1.0000 I
I 6q5" A1112 I 1.0030 1 1.0000 I 1.0000 I
I 66- A?112 I 1.00)0 I 1.0000 1 1.0000 I
I bS7 A3112 I 1 . I .
I 3 illt . * I . I * I
I a;i- A51,2 I . 1 0030 I, _ 1.00 0__ .1o0000 I
i 700- 85112 1 I I * I
I :I- 6 112 1 1.3000 I 1.0000 1 1.0000 1
1 702- A7112 I 1.3000 I 1.0000 1 1.0000 1
1 1 I ., I, I

Pigure 2.3-2 The three completed schedules obtained for the
problem of minimizing dollar + water + air pollution levels
for the system under standard reliability requirements, node
23 is the best of these three schedules as indioated by the
values of their respective cost funotioals.
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Figure 2.3-3 The remaiiIg incomplete schedules stillheld or the system at the completion f the three complete
schedules displayed in the previous figure.



2.4 Unit Gommitment Schedulin Results

The plots and graphs in this section will be more or

less self-explanatory. All of this data is contained in

Appendix D.

2.4.1 VaryinK Economio-Environmental Strategies

Figure 2.4.1-1 represents the dollar costs versus

water pollution impacts of the minimum dollar QD, minimum

water pollution QW, and minimum dollar + water pollution QV

schedules. This line then represents the set of all

possible consequences of optimum dollar-water pollution

strategies. Although there are only three points to show

the shape of this curve it is almost exactly defined

using the added information available. In particular,

it is known that the slope of this urve = 1 at the point

QV, and the curve must be concave1 0 and contained withii,,

the projections of minimum dollar costs and minimum water

pollution costs.

Each point in these curves is result of the best of

three near optimum schedules. To see what kind of variability11

does exist among these schedules and the degenerated linear

optimum schedule see Appendix E,. It 1& reasonable to

10. It is assumed that these curves are relatively smooth
due to the great number of variables and the relative
closeness of these schedules to the actual linear optimums,
which can be proven to have a connected concave shape.

11. For an idea of the magnitude of this variability with
respect to the plots presented, using the scale of figure 2.4.1-1
for example, the optimum linear soigtion and all of the
computed schedules lie within 1/40 of an inch of each other.
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Pigure 2.4.1-1 The tradeoff curve representing all possible
optimum consequences of dollar and water pollution trategies
at standard reliability.
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assume that the points represented in these graphs are at

the true optimum's positions One percentage difference

in costs between the optimum linear schedules and the

valid, integer schedules was about the maximum error.

Thus, any large amount of work, particularly including

simulations of hypothetical systems, could surely use

pure linear programs if indeed this 1% error is about the

magnitude which results for the particular system to be

investigated.

Figure 2.4.1-2 displays the contribution of the various

system components to these three schedules, the optimum dollar

cost QD, water pollution minimum Q, and dollar + water

pollution optimization QV.

Figure 2.4.1-3 represents the tradeoff curve for the

minimum dollar QD, minimum dollar + air pollution * water
pollution QT, and minimum air + water pollution QE schedules,

and figure 2.4.1-4 shows this system component breakdown.

Figures 2.4.1-5 and 2.4.1-6 are the displays for the

minimum dollar QD, minimum air pollution Q, and minimum

dollar + air pollution QB schedules and strategies.

It is also possible to display these three transform

curves, which have Just been presented, all on one three

dimensional plot, and this (using a little imagination)

can be seen in figure 2.4.1-7. This surface should be

visualized as a triangle which has been punched in, and

which is actually quite flat on the bottom (aking a strict

dollar minimization, as is currently used, unwise).
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Figure 2.4.1-2 Contributions of the various system components
in actual optimum schedules (standard reliability).
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Figure 2.4.1-3 the tradeff ourve representing all possible
optimum conequenoes of deollar and air+ater pollution
strategies at standard reliability.
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Figure 2.4.1-4 Contributions of the various system components
in optimum schedules (standard reliability).
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Figure 2.4.1-5 The tradeoff ourve representing all possible
optimum consequences of dollar cost and air pollution
strategies at tandard reliability.
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Figure 2.4.1-6 Contributions of the various system components
In actual optimum schedules (standard reliability).

Low_
Sulf.

Gas 
Turb.

Hydro
.... . ..

Fossil

Nuclear

- - ^ 1%

.

q

l

__--



Dollars xrio

750

650

-.0A " mm,"If. 1, "I"" 1. 

.1

7 - : ` .

500

tal

)3

.mpa¢ l 3
units 10

Figure 2.4.1-7 The transform surface. associated with all
optinua eoonomic-environmental consequences (tandard reliability)

b

I

m 

r



-38-

2.4.2 Varing Syste DAd-Me*tisA Rn*aurgnemr

For each of the scheduling strategies explaiued in

section 2.4.1, i.e. QD, QA, QV, QT, Q, QB, and QV it is

also possible to parameterize the reliability requirements,

that is, the load meeting probability, of the power system

from low reliability, through standard reliability, to

high reliability. These curves and bar graphs of system

schedule consequences and system component contributions

are contained in figures 2.4.2-1 through 2.4.2-10.

Rere again it is possible, obviously, to take the

entire transform surface of figure 2.4.1-7 and display

the reliability parameterization as surfaces above (i.e.

more costly for higher reliability requirements) and below

(i.e. less costly for relaxed reliability requirements)

that standard reliability tradeoff surface. This solid

of all possible optimum consequences of economic-environmental-

security strategies is represented in figure 2.4.2-11.

These tradeoff curves show generally that there is

a great deal of 'flexibility' in thLs; ssgtem for adaptiag te

different scheduling strategies. Here, an 'inflexible' or

unbending system would have a tradeoff surface which was a

flat plane through the minimum dollar, minimum air pollution,

and minimum water pollution points, so in effect one could

ohoese from among the various types of consequences of

system operation, but one would have no variation in the

combined total of the consequences. On the other hand
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Figure 2.4.2-1 The three transform curves representing all
possible consequences of optimum dollar-water pollution
strategies at low, standard and high rliability levels.
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Figure 2.4.2-2 Oontributions of the system generatiom
components to the schedules which minimize the dollar cost
for various reliability levels
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Figure 2.4.2-3 Contributions of system components to the
schedules which minimize dollar + water pollution for
various reliability levels
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Pigure 2.4.2-4 Oontributions of system components in schedules
optimizing water quality for various reliability levels.
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Figure 2.4.2-5 The three transform ourves representing all
possible consequences of optimum dollar-environmental (i.e.
air+water pollution) strategies at lowr, standard and high
reliability levels.
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Figure 2.4.2-7 Oontributions of system components to the
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the schedules which minimize air pollution for various
reliability levels

4

external
purchases

Hydro

Gas Turb.
Low Sulf,

Fossil

Nuclear

external
purchases

Hydro

Gas Turb.
Low Sulf.

Fossil

Nuclear

external
purchase,

Hydro

Ga

Fosil

Nuclear



-49-Dollars (103)

* 750

6 $50

:10,

tal
3

L4A V J%. I

Figure 2.4.2-11 The solid tradepff figure representing all
possible optimum consequences of different economic-environmental-
security strategies.

4

10



a one hundred percent 'flexibility' would allow operation

at the 'ideal' point of simultaneously minimizing dollars,

air and water pollution. This 100% flexible curve would

be 'pushed in' so far that it would be like the corner of

a cube. The sample system studied shows a scheduling

surface 'flexibility' of approximately 65%, i.e. rather

a deep pocket in that surface. This characteristic means

that minimizing dollars, air or water pollution alone or

&Te:api pairs is probably not a wise criterion because

large gains in the unconsidered consequences could be

made for very slight increases in the undesirability of

the measures used.

Note: The word 'reliability' has been used very loosely
in this chapter. Strictly speaking a higher reliability
requirement should increase the spinning reserve, but not
the actual demand for power. In this chapter the power
demand was increased also, and thus the cost of meeting
this higher demand also shows up in the consequences.
What is actually represented here is a measure of the
flexibility of the system with respect to meeting demand
ohanges, that is, the resultant consequences of meeting
higher of lower demands for power. The purer consequence

changes in reliability levels can be gotten by subtracting
*e incremental costs of the extra power multiplied by the

amount of additional demand met.
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3. Transform Surfaces for Maintenance Schedules

This sample system will be only briefly described.

An exact system description can be found in reference (5)

on page 102, and the exact data used is displayed in

Appendix .

3.1 Description of Sample system

This is a twelve power plant system scheduled over

an ntire 39 week period. The components of this system

are fossil plants: plant 1 of 225 megawatts, plant 2 of

125 megawatts, plant 3 of 150 megawatts, and plant 4 of

350 megawatts. There are two nuclear facilities, plant

5 of 550 megawatts and plant 6 of 600 megawatts. Plants

8 and 9 are 100 megawatt hydro stations. Plant 7 is a

75 megawatt pumped storage facility. There are three

gas turbines: plantsl0 and 12 both of 85 megawatts, and

plant 11 of 100 megawatts.

There are a number of interregional power buy and

sell contract decisions to be settled by the scheduler,

and there are many opportunities set up for possible

extended shutdowns of various facilities for dollar and/or

environmental gains.

3.2 Maintenance and Production Schedulin Results

The following are the results of the economic-

environmental scheduling procedure. Exact data used for

these graphs is contained in Appendix D.
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The negative sign on some of the environmental axes

results from the procedure of rewarding plants for being

shut down, rather than the identical (oomplimentary)

problem of penalizing the plants for operating.

3.2.1 Optimum Schedules

The schedules in figure 3.2.1-1 represent the seven

optimum schedules which resulted from the maintenance

scheduling mechanism. These displays do not, however,

includedany of the Wealtly quotas, plant shutdowns or

variable power sales which are also part of the maintenance

and production schedule.1 2

3.2.2 Transform Surface of All Optimum Schedules

Figure 3.2.2-1 represents the dollar costs versus

water pollution impacts of the minimum dollar QD, minimum

water pollution QW, and minimum dollar + water pollution QV

schedules. This line, then,represents the set of all

possible consequences of optimum dollar-water pollution

strategies. The point labelled X in these graphs represents

the first feasible solution found by the computation process,

and, thus, is a measure of the quality of a non-objective

function 'fill-in-the-blank' scheduling technique such

as is now used for the maintenance and production scheduling

procedure.

12. Persons interested in more detail from the optimum
schedules may contact the author for a full set of data.
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Unit Week

1 1

1 2

1 3

8 4
4 1
4 6
Buy contst, 6
2 6
2 8
2 10
Seil 10
7 6
7 8
7 10
11 8
11 10
11 12
11 14
11 16
Buy 14
Buy 16
5 16
5 18
5 20
6 20
6 22
6 24
10 22
10 24
9 24
9 27.
Sell 24
3 22
3 27
3 3D
3 33
Sell 27
ell 30

4 27
4 30
4 33
4 36
12 27
12 30
12 33
12 36

QD QV QE QT QB

0 0 O O O O O
1 1 1 1 1 1 1
0 0 0 0 0 0 0O O o O O O O0 0 1 0 0 0 0
O O O O O O O
1 1 1 1 1 1 1

1 1 1 1 1
O O O O O O O
0 0 O 0 0 0
1 0 1 0 1 1 1
O O O O O O O
O O O O O O O
1 0 9 I 1 1 1
O 0 0 0 0 0 0
O O O O O O O
O O O O O O O
O O O O O 0 1
1 1 1 1 1 1 0
0 O O O O 0 0
0 0 1 1 0 0 1
1 1 1 1 1
11 1 1 1 1 1
O O O O O O O
O O O O O O O
1 1 1 1 1 1 1
O O O O O O O
0 0 0 0 0 0 0
1 1 1 1 1 0 1
0 0 0 0 0 1 0
1 1 1 1 1 0 I
0 0 0 0 0 1 O
1 0 0 0 0 1 0
O O O O O O O
0 1 1 0 1 1 0
1 0 0 1 0 0 1
O O O O O O O
0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 1 0 0 1
0 1 1 0 1 1 0
.0 0 0 0 0 0 0
o o 0 0 0 0 0
0 1 1 0 1 0 0
1 0 0 0 0 0 0
O O O 1 0 0 1
O O O O 0 1 0

FPigure 3.2.1-1 Maintenance decisions made for optimum schedules
with different quality measures, 1 = out for maintenance, 0 =not out, 1 = power interchange contract accepted, 0 = re3ected.
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Figure 3.2.2-1 The tradeoff curve representing all possible
optimum consequences of dollar and water pollution maintenance
strategies at a standard reliability level.
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Pigures 3.2.2-2 and 3 are the dollar-environmental

and dollar-air pollution curves as were those described

in section 2.4.2 for the similar cases which concerned the

unit commitment problem. Again here X marks the position

of the first feasible solution computed for this problem.13

Also in the case of these maintenance tradeoff curves

it is possible to display these three transform curves on

one three dimensional plot, and this is shown in figure

3.2.2-4.

13. Even this is an optimistic estimate of where the
fill-in-the-blank technique would probably leave the
schedule, because this point represents the first feasible
continuous variable schedule,which means that there would
be an additional cost for changing the noninteger decisions
to valid integer values. That is, this represents the
first feasible solution for the linear ase, which is
probably an optimistic estimate of the value for the
integer case.
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Figure 3.2.2-2 The tradeoff curve representing all possible
optimum consequences of dollar and water+air pollution
maintenance strategies at a standard reliability level.
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Figure 3.2.2-3 The tradeoff curve representing all possible
optimum consequences of dollar and air pollution maintenance
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4. TrLnsform Srfaces for Exanhion Simulation.

To meet expanding demands for power a great deal

of planning is needed to determine exactly what new

generation units will perform best when added to the power

system. Either by intuition or by a manual or computerized

screening program14 attractive expansion schemes can be

found, but these large, generalized programs cannot be

expected to yield any great amount of detail or accuracy.

For this reason there are a number of simulators in use

by utilities which predict more exactly the dollar costs

associated with specifically hypothesized, attractive

expansion possibilities. The use of those same scheduling

mechanisms described in chapter 3 for producing this type

of simulation,will be demonstrated in this section.

Historically simulators have been used which were

basically ust probabiltio methods of meeting annual loading

curves projected for the year being studied.1 5 Using the

assumption that the dollar costs of operating a unit are

close to constant throughout the year, the loading triangle

simulations remove time as a variable and work only with an

ordered list of cheapest to most expensive power producing

units and fill in a graph of capacity level, and the expected

fraction of the year the load will exceed these levels.

14. Such a computerized program, which also includes some
environmental considerations important to power plant siting,
san be found in reference (11).

15. See for an example reference (12).
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However, introducing environmental impact measures geuerally16

will cause the operating consequences to be quite definitely

time variable.over the course of the year.

One obvious possibility for including time varying

environmental impacts involves the development of a probabil-

istic simulator by extending current methods to include

time and environmental impacts as additional dimensions.

Although the results of such a simulator would not show

accurately the precise splicing together of various generation

components, this type of mechanism would probably yield

a quick overview of the system performance, and thus, could

be a promising area for future research.

Oreating actual schedules of operation for the

hypothetical systems is another way of performing simulations

which include environmental impacts and time varying

consequences, and it is this more precise method which will

be demonstrated in this chapter.

Of the two types of schedulers developed, the maintenance

and productions scheduler can obviously and straightforwardly

be used as a simulator. The shorter time ranged scheduler

has less obvious possibilities, and thus, the sample system

simulator used here will explore the potential of this unit

commitment scheduler as a simulation tool.

16. It is possible to use measures which are not time
varying and the probabilistic methods would here still be
valid. For example, the aquatic impact measure could be the
water temperature standard which must be met, t* through say
60 a increases allowable, and the air pollution measure could
be the percent sulfur content of the fuels allowable (4% to *%).



-61 -

4.1 Description of Sample Expansions

It is assumed that the maintenance and production

scheduler has already simulated the long range performance

of the hypothetical systems. The unit commitment simulatSon

over the course of one week is now used as an aid to the

comparison of the different systems' performances.

For this particular example to make this single week

simulation a meaningful comparison mechanism it is assumed

that the plants which are on maintenance in this particular

week are common to the hypothetical systems to be studied.

The remaining operating facilities which exist as a common

base to which the different hypothetical expansions make

additions include: plant 1, a relatively expensive (to

operate) fossil fueled plant of 160 megawatts, with a moderately

heavy air pollution factor (which varies, of course, as

meteorological conditions change) and a cooling tower,

thus, with very little thermal water pollution. Plant 2

is a 70 megawatt plant fueled with low sulfur content fossil

fuel, making it slightly more expensive to operate but

reducing its impact on the atmosphere. Plant 4 is an 80

megawatt gas turbine. And plant 7 is a 100 megawatt hydro-

electrio tation.

The two expansion alternatives hypothesized involve

the addition of four new fossil units, or the addition of

two nuclear and two pumped hydro storage facilities.

The fossil addition alternative involves the hypothetical
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use of: plant 3, a typical 120 megawatt fossil fueled unit,

plant 5 a 240 megawatt slightly cheaper fossil-fueled

facility, and plants 3 and 3B which are both 460 megawatt

relatively cheaply perated fossill fueled plants. All of

these fossill plants on the average how more air pollution

impact but slightly less water pollution impact than the

nuclear facilities.

The nuclear-pumped hydro combinations involve:

plants 6 and 6, 560 megawatt nuclear plants with cheaper

power, relatively more water pollution and little air impact

when compared'to the fossil plante, and plants 8 and 8A,

pumped hydro storage facilities capable of storing 80

megawatts of power per hour, with a total storage capacity

of 1000 megawatt hours, 80% input efficieny, and 83% output

efficiency.

The nuclear, hydro and pumped hydro facilities have

quotas for production and reservoir levels at the end of

the week, with penalties associated with missing those

targets. Unlike the scheduling problem, where quota costs

are fixed expenses, the dollar costs asociated with these

quotas is vitally important in yielding comparable total

costs of various alternatives. The hydroelectric quota

cost is #5.2 per megawatt hour or 64,000, the pumped hydro

cost i $5.35 per megawatt hour or 1,712, and the nuclear

quota cost is 4.75 per megawatt hour or 760,000 for the

weekly total quota.
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The use of more than 400 megawatts of the large

nuclear facilities cues the need for added system spinning

reserve requirements.

Emergency standby power support is available for

purchase from an external souroe at a few prespecified

times. Bulk power purchases may be ordered for a eouple

of time slots in the week, but otherwise, all bulk inter-

regional power transfers are assumed to have been previously

settled (in the maintenanee and production simulation) and

the lead demand curves have been adJusted in order to

represent these transfers.

All of the simulations performed for this study used

the scheduling mechanisms in the linear meo of operation

for the purpose of increased computation speed. Although

this linear mode introduces about a 1% error, this error

is in the direction of decreasing the oosts involved and

is relatively predictable. Especially for the comparison

of different systems-rwhere the errors in the different cases

can be expected to be almost identical, it is felt that

errors of this magnitude will not be relevan.t th

Measuring the capacity of the pumped storage facilities

as 80 megawatts, which is the per hour energy input apability

of the plant into the storage reservoir and the plant's

per hour energy depletion when on full output, the total

capacities of the fossil plan and the nuclear plan are

equal, 1690 megawatts including portions of the old system

which are held in common. AssuOing 550 megawatts of the
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old ystem as scheduled down for maintenanee, and assuming

a 7% growth rate in the demand for power, then the magnitude

of this expansion what would be required at approximately

12 years in the future.

To demonstrate more vividly the usefulness of a unit

commitment simulator two different load curves are used

for that week which is 12 years in the future. The first

demand curve, called the owing eurve, is baed upon an

equal proJeeted growth from all sectors of electric power

users. Thus, the wing curve is basically a 'scaled up'

version of the existing demand ourves, and this is represented

Megawatts
Demanded

Bun. Xe. Tes. d. . Thur.

Total Energy = 178,640 aegawals hours
Hours

Pigure 4.1-1
equal growths
curve .

The lead demand urve which represents the
of all electric user sectors, called the owing

150

100

50



in -figure 4.1-1. The seoond curve, called the averaged

curve, nlavolve (1) the hange in the industrial use pattera

refleoting the use of more '3 days o- 3 ays off' work

weeks, perhaps motivated in part by cheaper weekend power

rates or taxes or disiaeentives for use of peak power1 7

(2) the introduction of more eleotric heatiyg 1 8 rhieh would

Megawatts
Demanded

150

100t

50

-I

0 24 48 72 96 120 144 168

Figure 4.1-2 The load demand eurve which represents the
unequal growth rates which might exist for different sectors
of electric users, called the averaged ourve.

17. See reference (13) for a lengthy desoription of possible
electrio rate and usage policy changes and how these might
be reflected in growth patterns.

18. Much of the data for these demand urves was takea,feum, or
motivated by, the information in reference (14).
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slightly fill in the valleys of the demand urve, ad

(3) the use of eleetrio ears, whieh would be harged at

night and would greatly fill the demad valleys.

Beth the swing urve and the averaged curve 3ave

identieal peaks, 1688 megawatts, ad identieal ttal energy

requirements, 178,640 megawatt hours, amd thus, for

simulators using only total energy and peak measures these

ourves would appear identical. The exat ystems data

and the exact demand urves used in this system, along

with the spinning reserve requirements, ean be found a

Appendix .

4.2 ComDarisen of Expansion Possibilities

The definitions of QD, Q and Q as the minimum dollar,

water and air pollution schedules, and the definitions of

QV, QB, QE, and QT as the dollar plus water, dollar and air,

air and water, and dollar plus air plus water strategies

are usehanged from seeties 2.4.1.

Of immediate interest are the minimum dollar eests

possible from the two expansion alternatives as they are

forced to meet the wing demand ourve and the averaged demand

curve. These results are shown on the next page in

figure 4.2-1, and show that a sizable, about 11%, errer

can be made from the choice of an expansioen scheme with

reference only to the demand in terms of total energy and

peak power requirements.

An examination of these results suggests that some
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141 m mldl m IbMV a.w a-.
Pump. .

8wing Averaged
Load Oie i ' COurve

Figure 4.2-1 Dollar cost omparioms of meeting two different
future load urve possibilities with hypothetieal systems
using four new fossil fueled additions, or using two new
nuelear plants ombined with two pumped storage plants.

sort of mix between the all fossil alternative and the all

nuolear-pumped hydre might yield the best economic performauee,

or at least be lss vulnerable to ehanges in future load

shapes. A mixed system was created, inoluding nuclear plant 6,

pumped hydro plant 8, fossil plant 5 and fossil plant 3,

all added to the same original base system.19 A s ame standard

reliability measure was used for all the studies, and the

results are given in figures 4.2-2 and 4.2-3. The exaet

19. The overall eapaeity of this system was 60 megawatts higher
than the oapaeities of the original ystems .;r l

0
- .1i



-68-

Mixed

Dollars x 03

QV. QB

lydre

Q

,Q

QB
QD

1200

J 250,
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umserieal results can be fund in Appendix G.

Just a quick look at ti;soe performanee surfaeee shows

that a mixed system affords a tremendous amount of additional

flexibility, e.g. having available alternative *onfigurations

during intervals of relatively greater eensequeoees from

one aspeet of system peration.

It would be alivit ity elf t flatly pronouene that

in this particular ease a mix would be the 'best' expanesio

strategy. A thorough understanding of the measures of

evironmental impact is neeeessary before such a deeisio

eam be made, and then it is still a question of whieh iterest

groups definition of best is used. A example of a ase

where the mixed system would be less desirable would be one

in whioh the thermal impact to the aquatie ommuity may be

assessed as relatively harmless compared to the air pollution

impacted upon the hman environment, in which case the all

nuelear-pumped hyrdo system would be better. One of the

most difficult tasks facing the planner is the prediction of

future environmental standards and the effect these changes
which

will have on the types of system componentsishould be ordered.

Using the likely asumption that the regulations of the

future will more aeourately reflect the aetual impact to

the environment, the type of simulation tool presented here

would be an ideal planning tool, with ensitive areas being

avoided and potentially high impacting oeenfigurations sidestepped.

Further eeomplieating the expansion decisie making
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problem is the timing of plant aditions. Other questions

which must be onsidered when determining the desirability

of any future system onfiguration inolud:o

1) what i the best ystem in the interims
2) will this plan lead to an attraotive system20

or 50 years from now
(3) with the tremendous differenoes in the onsequenoes

of operation, what is the best order and timing for the
introduction of the various fasilitieg?

(4) hew mueh flexibility is neessary with respeot to
the various load shape possibilities which might be 20
imposed upon the system in the future? and

(5) how will legislation onoerning environmetal
standards change the shapes of these performanee surfaces,
and thus change the deisions oncerning attraetive
expansion alternatives?

Thus, it an be seen that the entire expansion planning

problem is not a static problem, but a problem which evolves

through time and requires aeourate load shape foreeasts

along the way and adequate attention to the sensitivity of

system performance to ohanging environmental standards,

construction and fuel costs, and fuel availabilities.

20. Reference (15) represents some of the work being done in the field

of modelling the demand curve from models of the growth of the different
sectors of power users.



5. Feasibilit and Usefulness

The issue presented here is not whether or not the

scheduling techniques are valid, this has been discussed

in references (5) and (6), but whether or not these transform

surfaces can be produced and whether or not they will be

useful.

Apparently, the question of usefulness is answered

by their existence. They revresent the answers to the

types of economic and reliability questions asked of schedulers,

as well as the answers to environmental questions which could

not previously be answered.

The feasibility of producing these surfaces breaks

down to the questions of (1) cost of producing them, and

(2) the ability to make meaningful quantifications of

environmental impacts.

Quantification of environmental impacts, if it proves to

be too difficult as described in references (7) and (8), can

be degenerated to something such as BTUs into the water"

and Wtons of pollutants into the air.!' Even though this

would not reflect as accurately the true environmental
consequences, it appears that the resultant transform

surfaces would still deserve careful investigation because

the degenerate measures are not altogether meaningless.

The question of cost of producing these surfaces is

treated in references (5) and (6). Although the speed with

which these schedules, and thus the surfaces of which they

-72-



are a part, can be computed makes the computation cost

an unlikely barrier, even if this is a problem, a linear

program degeneration of these schedulers would be useful.

In most cases the error resultant from this method degeneration

has resulted in errors of only about 1%. This would therefore

be a valuable alternate method, and might be considered

the primary method for rougher simulation work.
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Appendix A

The following is the program which was used to solve

the unit commitment problem shown in chapter 2.
/*MAIN TIME=?O, LINLES=
//JOBLIb UD DSNAML=:YS.MPSA.LOADDIJP; (H PASS)
//OPTUCSO1 EXEC MSX
//MPSCUMP.SYSIN UD *DCb=(kECFM=FLLCL=u bLKSiZL=OU00)

PNOGRAM

* THIS PROGRAM IS DLSIbNEU T *
* 1- REPRESENT THt lTIRU LVOLVIN STEr OF THE OTIMUM UNIT *

COMMITMENT SCbLDULLe - OPIUCS wHICH IS TO LAPLORE THE *
* VARIOUS SCrEDULIN(b PSSIHILiTIEb OR A YPOTHETICAL *

ELECTKRIL PUOwr SYS[tL.. *
2- OBTAIN UP T COMPLETE CtDULEs WHICH wILL HE AT OR *

VERY CLOUt. TO THe. UTIMUM QUALITY FOH THE PIURITIt.S ANO *
* 1RADEOtF-S COSEN F'OR 1MAT PAHTICU~ 4N STHATEbY *

3- EXPLOHL MANY UIFFENENtr UALITY MtASURES FRUOM MINIMUM *
DOLLAR COST STNAE(ILEb TO MINIMUM tNVIRONMLITAL IMPACT *

* ST#H~TRATlb iEb Writ.RE... ENVittNM.tU.AL .. ,.it-ALITS A. tO.dTHEH *
* VAHIEb CMbINATIUNS OF AQUATIC AN', ATMOSPnmEIC IMPACTS *
* 4- THEN TUUY THt MOVEMENT F THIS I ANSFOM SbURFACE AS *

SYSTEM HLL1AHILITY EuUIR-MEbmTS At EASELu OU TI(HTLNED *

INITIAL/
MOVE(ADAIA 'MOUL)L')
hUVE (XPbNAML, P1, )
CONVERT
StTUP ( 'OUND' 'dD')
MOVE (XOb., t 'W .). 

MUVE(XMHS, 'MA )
OPTIMIZE
SOLUTION
bAVE ( NAME ', 'OPTC' )
IN I MIX
MIASTART ( 'MAl'kA! .
AMXDROP= 000000(
CT=O
MVAD)R ( XDUPNl I l, INT)
MIXFLOW

STOP MIXSAVE('NAME l ' I Ht I e)

MIASTATS( 'IUULS ' )
tA IT

INT SOLUT I O0
XMXD(OP= 0 U0.()

CT =CT+1
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IF (CT.E.(jeSTOP)
CUNTINUE

DC (0)

PE Nl)

//MPSExC.MATRIX DLU UNIT=SYSDASPICE=(CYLq (b))
//MPSEA CMIXWORK L U UNJ T=YSLASPAt..(CYL. (W.))
//MPSEXLC.SYSIN UL) *,DCb=(HECFM=FHLHEL= Lt!,bLKSIZE=eUO )

A brief summary of the data used to describe the system

in the above program i contained below.

Minimum turn-on reuirements and coats
Megawatt Average Average Average

Plant Minimum dollar aquasphere atmosphere. Turn-oe
output cost, cost oeast *oat,

....... ~~~~~~~ , Ii Ii il i 

1

2
3
4
5

70
30
30
20

120

550
200
150
300
600

45
100
150
50

250

450
100
230
45

1250

330
112
185
150
402

First segment of loadini curves
Megawatt Average Average Average

Plant output dollar aquasphere atmosphere
of segment cost, $ cost coat

1

2
3
4
5

90
40
20
30
80

450
225

80
300
400

65
125
100
75
500

500
100
150
65
125

Second Remet of loading curves

Megawatt Average
output dollar

of segment cost, 

70
30
40

400
300
150

Average Average
quasphere atmosphere

cost cost

330
75

750

500
65

180

*

Cl.

Plant

3
4
5

- --
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'Nuclear and Hiydro requirements and costs
Plant Minimum Additional Extent of mW Startup

megawatt $ oost additional cost
output above quota $ leading

6 60 90 500 1019
7 5 15 95 184

Pumped vydro Statistics
Pumping Input to Output from Max. Startup

Plant power storage storage input to cost
used, max. per hour per hour,max. system

8 96 80 80 64 119

Penalties for missing Quotas
Dollars Water Air

Overuse of nuclear energy 5,9 7*9 1.3
Underuse of nuclear energy -4.1 -7.9 -1.3
Overuse of hydro energy 76 1.1 0.1
Underuse of hydro energy -4.0 -1.1 -0.1
Overstorage in pumped hydro res. -5.2 -1.1 -0.1
Understorage in pumped hydro res. 5.5 1.1 0.1

Nuclear energy usage target quota = 51,420 megawatt hours
Hydro energy usage target quota = 7,700 megawatt hours
Pumped hydro reservoir target level = 160 megawatt hours
Total storage capacity of reservoir = 1,000 megawatt hours
Initially all plants on except plant 8
Initially 100 megawatt hours in reservoir

There are six times during the course of the scheduling
that emergency standby power support is available at #8
per mgawatt and in quantities u to 3,000 megawatts.
These times are at hours: 64,72,88,120,160 and 168.

There are 48 pages of additional data available for

this particular example. This data is in the form of the

exact computer listing of the program used. The additional

information contained in this listing involves mainly the

display of the time variations in environmental onsequences.

This listing, called pages Al to A48, is available upon request.



The demand curves for standard and alow reliability in

the unit comuitment problem are(high reliability is listed

__Ina eference (6 I
MA D064

MA 0072
MA 0088
MA D104

MA 012
MA D136
MA U15e
MA 0168

MA
MA
MA
MA
MA
MA
MA

D064
D080
)09b
0112
D128
0144
016u

I04O0.

IOUdO.
5440.

b600.
76UO.
1120.
9b .

LOO.

3790.
7230 .
b920.
3100.
7050
d 9!D .

The spinning
MA 5R064
MA SRObO
MA SR096
MA 5R112
MA SR128
MA SR144
MA SI60O

reserve requirements ares
12280. Sk072
6200. SH088
9960. SR104
9800, SR120
5200. 5136
98U0. SH152

12080. 5H168

10600.
11880.

7240.
11400.

9400.
8920

10760.

SThIDRD
SH072
SH088
5R104
SH120
SH136
SN152
SR168

aid L01W reliahilitv.
SR072
SR088
SH104
SR120
SN136
SH152
SH168

u080
1096

012o
0144
016U

0088
0104

)130
0152
U113d

4400.

8000.
4400.
8000.

10fO.

7540.
d820 

4bbO.
8b20.
bb4U.
6320.
77 0.

MA
MA
MA
MA
MA
MA
MA

SR064
S8OdO
SRF096
SR112
SR128
SR 144
SRl60

*idi

11120.
5550 .
9260 
8800.
4880 .
8920.

10930.

9560.
10880.
6530.
10520.
8500 .
8030.
9600.

MA

MA

MA

MA

MA

MA

MA

SROb4
SH080
SR096
SRI 1

SR144
bR160bO

10420.
5190.
8630.
83g0.
4500.
8450.

10350.

8940 
10220.

6060.
10020.
7940.
7720.
9150 
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ADvendix 0

The following is the program used in the solutioe

of the maintenance and production scheduling problem of

Ohapter 3.
PkUGKAM

* THIS PRO(RAM 1S DEIGNEU TO *

1- Ei UP rHE MIAXE INILGE PROGRAM ASSOCIATED WITH THE *

,* COMPLLTT UPTIMUM PRJUUCiION SCHEDULE - PPROS. 
* 2- SOLVE FUR TE UDPTI1-UM CHEDULE IGNORING THE INTEGER *
* CONSTHAINT EIb
,* 3- THEN OtlTAIN P TO ITEGER SOLJTIONS IF THEY EXIST, 

e WlWI H UOLLAH PLUS ENVIR1iOlNMNTAL QUALITY MEASURLS OF NOT #
UE THAN iiE UUALIIY OF A HAND COMPUTED SCHEDULE -

e USIN SLOEULIN6 ECt1NIQUUES CURRENTLY IN COMMON USAGE *

* 4- VARY Tt JOLLAr COJi AND ENVIRONMENTAL WEIGHTINGS *
e FUOi THE XAPLOkATION UF ALL POSSIBLE OPTIMUM SCHEDULES

FOR A GIVEN LEVEL Or SY[EM RELIABILITY *

INIIlALL
MUVE (AUAD[A IM 'MOEL )
MUVE(APBNAME P8I1 )

sb i UP ( OUND I do )
MU VE(AOtbJ mtw )
MUVE (ARtW 'MA')
OPi iZiL
~OLULIJN
SAVE ( 'NAM' , 'OPI ' )
INIMIA
IX4ASIAR[ 'MATRIA')

AMAUDKUP=2iU 0U.

MVAUk (XUOPKIN tINT)
M&AF'LUW

.TUP MIAbAVEt ( iAME 'IHREEI r )
MIA I AT( 'NOUES )

INT ULU l UN
XMArHU =2UPZUU0U) 0
cr =+I
IF (C1 .Eu. J, aIUP)

iT D(i)
PL,U
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//*,~LAL X.cC.i ̂ Z,4N U DJIu , i ~YA ~JA , DZACE- (CYL (53))
//4t. ~LC o ir'! Ov " ~ !)C d: { ~'~ c , t'"i L' L KIC L--- 0 ~ 'dL ': l / E =-'r'O O )

The exact data used in this maintenance program is

similar to that listed in the appendices of reference (5).

For a precise listing, including the environmental impact

daita used, obtain Optional Appendix C, pages C1 to Cl1.
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Appendix D

Contained. here is the data which is a measure of the

consequence, of te v trious ontimnul schedules for the

different mlni.t co;ar:itm:lrfint str:,. te .ies , (from h':?.tter 2)

Doll01.r
Stand-.rd Quality
,eliab. in dollars

QE
QA

QV
QT
QB
QD

103

795
810
784
550
542
535
503

Aquatic
enlvironmental 

imlnact units x10'

390
468
585
430
493
606
622

tmnosoheric
environmental
impact units x103

411
272
227
401
287
259
332

Low
Reliability
QW

QE
QA
QV
QT
QB
QD

High
Reliability
QW
QE
QA

QV
QT
QB

QD

and for the different maintenance

QW
QT
QA

QE
QB

QD
QV

x

351.4
254.7
352.8
346.3
235.7
210.6
249.3
327.3

scheduling trategies:

-534.8
-513.1
-480.8
-499.6
-444.1
-404.6
-511.7
-444.4

-329.7
-341.6
-386.1
-385.9
-353.1
-269.0
-307.3
-219.1

768

763
514
502
484
460

356
451
559
399
485
574
608

405
242
206
392
265
260
309

853
861
841
644
641
635
603

465
516
631
497
543
652
646

425
328
287
419
330
305
380
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APndixz

Dollars xI03

QV
times 10
magnifioation

time 10
t I magifioation

Ltion

envireamental
impaot

units x 03

This is the tradeoff urve for the unit commitment

dollar versus water pollution strategies at standard

reliability. The * show the onsequenoes of the valid

integer sohedules produced, and the show the position

of the optimum linearly degenerated scheduliag meehanism.
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ADDendix F

The following is the computer program used to solve

the simulation of the hypothetical system expansion alternatives

of Chapter 4.
/*MAIN T IME=20,LINES19
//JO4LI DL) UiSNAME=SYS2.MPSA.L OAU, DISP= (SHRPAS:s)
//OPTruCSU EEC MPSx
//MPSCCMP.:,:YSIN DO *, )(.d= ( EL M=F B 9 LrRECL=80 BLKS I ZE=20UO )

PR) OG AMr,

* THIS POGAM I DSIUNEL TJ
I- REPRESENT THE 51PULATIUN OF THE OPERATION OF A UNIT *
COMMITIMNT SCHEDULE - PTUCS WHICH IS TO EXPLORE THE *

· VARIOUS CHEDULINg ,JJSSI3ILITIES FOR A HYPOTHE[ICAL *
CELECTRIC POWER SYSTCM *

· 2- OTAIN IMULATIONS UF YSTEM OPERATIONWHICH REPRESENT *
· VERY CLOSE ro THE Ol IMUM (JUALITY FOR THE PRIORITIES AND *
* THADUEOFFS CHO(E.N FO< THAT PARTICULAR STRATEGY *

3- EAPLR£ MANY DIFFEt.LNT UJALITY MEASURES FRUM MINIMUM *
OLLAR OSr STRATEGILS 10 MINIMUM ENVIRUNMENTAL IMPACT *
1NRA''TEGILS UWHEE ENVIROJMENTAL IMPACTS ARE FURTHER *
VARIED COMtINATIOIS F AUUATIC AND ATMOSPHERIC IMPACTS *

· 4- THEN STUDY THE MCVLMEN[ OF THIS TRANSFORM SURFACE AS *
· POSSIHLE FUTURE YSILM CO1PONENTS ARE ADED *

INITALZ
OVE (ADATA' 'uODEL')

MOVE ( XPNA4Et, ';IAME')
CO,-4VERT
SL'UP( 'HOUND', 'lU')
MOVE (ARHS M A ' )
iOVE (().J, ' (uo')
OPI l'I ZE
s)AVE ( 'NAME', ' A')
~sOLU I I N

RE)TURE ( 'NAME ' 9 'A')
HOVE (08J' 'IJUA' )
OP rIMIZE
SAVE ( 'NAME' '' )
SULU I I ON
RESTURE ( AME , ' ')
MOVE (XBJ, ' QA)AO'
OP I MIZE
:AVE ('NAME', 'C')
SOLUO [ION
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RELTORE ( ,NAME 'C O)
MUVE (XObJ, 'AW )
OP IMIZE
:0LUT ION
MOVE (XOtJ, 'QwO )
OPirIMIZE
SAVE ('NAME ' ')
SULUTION
RZTORE ( NAME ' * E )
MWVE (XO8j9 'UOw' )
OPT IMIZE
SAVE( 'NAME', F )
bOLUf ION
RLITORE ('NAME', mF )
HOVE (XO6J, 'QOAW )
OPIIMIZE
SoLUT ION
EXiT
PLd)

/MPSEXEC.SYSIN 0 D) * DC= (fEcF-=FLRECL=8O .BLKSIZE=200 00)

The demand for power at a certaik hour, and the spinning

reserve required at that hour are given in terms of the

total megawatt hour requirement until the next time unit

in the program. Thus, the first 3 segments represent the

total demand over one hour, the next 2 over 2 hours, the

next 2 segments represent the total requirement for the next

4 hours, and finally 8 hour intervalg are used. The spinning

reserve requirement includes the demand requirement, so for

a pure spinnihg reserve number a subtraction must be made.

Given first is the swing curve ease, then the averaged curve,

MA 0001 700. 0002 520.
MA 0003 390. 0004 1250,
A 0006 2420 0008 6560.
MA 0012 6400. 0016 12400.
MA 0024 3000. 0032 6700 
MA 0040 7200. 0048 3100.
MA 0056 5100. D064 6100.
MA 0072 3800 . 0080 12200.
MA D0088 10000. 0096 3300.



0112 12500.
D128 13500.
0144 3700.
0160 11500.

SR002
SR004
SR008
SR016
SR032
SR048

SR072
SR088
SR104
SR120
SR136
SR 152
SR168

600.
1330.
7250.
13200.
7350.
3500.

4200.
11000.
13500,.
4500.
13500.
13000.
5500.

and the averaged lead demand and
MA
MA
MA
MA
MA
MA
MA

MA
MA
4A
MA

MA

MA

4A
MA
MA
MA

MA
4A
MA
MA
MA

MA
MA

MA
MA
4A

MA

0003

D026DO 2
DU024

DO40
0056
0072
D088
0104
0120
D136
D0152

D168
SROO3
SR001
SHOOb
SRO12
SR024
SR04U
SRO50
SR072
SN08d
SR10'4
SR12)
SR136
SR152
SR 1 6

8dO0.

650.
2500.
5d00.
bd00.
7300.
8000.
5200.
8000.

11200.
5400.

10200.
10000.
5000.

800.
960 

2750.
5720.
6300.
8000 
8800 .
5780.
8800.

12300.
980 .

11300.
11000 

520 .

spilaixg reserve oase is:
0002 690.
0004 2300.
0008 5700.
0016 10300.
D032 10100.
0048 5000.
D064 7200.
D080 11000.
Do96 5600.
D112 8500.
0128 13500.
0144 5600.
0160 7900.

SR004 2530.
SR002 850.
SROO08 6250.
SR016 11400.
5R032 11200.
SR048 5500.
SR064 7920.
SR08O 12100.
SR096 6160.
SR112 9350.
SR128 14000.
S144 6100.
SR160 8610.
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MA
MA

MA
MA
HA

HA

MA
MA

MA
MA
MA

MA
MA
MA
MA

MA
MA
MA
MA

0120
L136
0152
0168
SR001
SRO03
SR0O6
SRO12
SR024
SR040
sR056
SR064
SR080
SR096
SR112
SR12 d
SR 144
SR 160

12800.
4100.

12400.
12000.
5000.

860.
450.

2620.
7100,
3300.
8000.
5600,
6700.

13400,
3650,

13200.
14000

4100.
12600 



A brief summary of the data used to describe the system

in the above program is presented below. Where there were

time varying quantities, such as in the environmental impaet

numbers, the approximate average of the figures is given.

Minimum turn-on reauirements and costs
Minimum
megawatt
output
70
30
30
60
60
20
120

Average Average
dollar aquasikwee
cost, $ cost

564
314
170
400
400
325
600

48
100
160
270
270

50
250

Average
atmosphere

cost
495
100
225
400
400

45
900

First seament of loadin curves
Megawatt Average

output dollar
of segment cost, 

90
40
20

400
400
30
80

455
221
80

2300
2300
303
390

Ave rge
aquasphere

cost

80
125
100

1800
1800

65
500

Average
atmosphere

cost

450
100
150

2600
2600

75
125

Seood1 segment of loadin: curves
Megawatt
output

of segment

70
30
40

Average Average Average
dollar aquasphere atmosphere
cost, cost cost

390
315
161

325
65
320

500
75

1000

Plant

1

2
3
3A
3B
4
5

Startu

330
112
185
590
590
150
402

Plant

1

2
3
3A
3B
4
5

Plant

3
4
5

- --

- --
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Nuclear and hdro reauirements and costs
Minimum Additional Extent of

Plant megawatt $ cost additional Startup
outptt above quota $ mW leading cost

6 360 32 200 8500
6A 360 32 200 8500
7 5 15 95 184

Pumped hdro statistics
Pumping Input to Output from Maximum

Plant power storage storage input t Startup
used, max. per hour per hour, max. system cost

8 96. 80 80 64 119
8A 96 80 80 64 119

Penalties for misinz auotas
Dollars ater Air

Overuse of 6 nuolear energy 5.9 7.9 1.3
Underuse of 6 nuclear energy -4.1 -7.9 -1.3
Overuse of 6A nuclear energy 5.9 7.9 1.3
Underuse of 6A nuclear energy -4.1 -7.9 -1.3
Overuse of 7 hydro energy 7.6 1.1 0.1
Underuse of 7 hydro energy -4.0 -1.1 -0.1
Overstorage in 8 pumped hydro res. -5.2 -1.1 -0.1
Understorage in 8 pumped hydro res. 5.5 -1.1 -0.1
Overstorage in 8A pumped hydro res. -5.2 -1.1 -0.1
Understorage in 8 pumped hydro res. 5.5 1.1 0.1

Nuclear energy usage of 6 target quota = 80,000 megawatt hours
Nuclear energy usage of 6A target quota = 80,000 megawatt hours
Hydro energy usage at 7 target quota 14,000 megawatt hours
Pumped hydro reservoir 8 target level = 160 megawatt hours
Pumped hydro reservoir 8A target level = 160 megawatt hours
Total storage capacity of reservoir 8 = 1,000 megawatt hours
Total storage capaeity of reservoir 8A = 1,000 megawatt hours
Initially 205 megawatt hours stored in reservoir 8
Initially 205 megawatt hours stored in reservoir 8A
Initially all plants on exoept plants 8 and 8A

There are fifteen times during the oourse of the scheduling
when emergency standby support is available for prohase from
external sources at a price of 8 per megawatt and in quantities
up to 3,000 megawatts per hour. These times are at hours:
8 12, 16 64, 72, 80, 88, 104, 112, 120, 128, 136, 152,
1 0 and 18.
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Bulk Dower Durhase otions available

Megawatts Dollar cost
Hour available per megawatt

24 25 5.75
40 75 5.17
128 400 625

The amount of .00001 times the dollar cost of the various
programs was added to the measure of desirability of the
purely environmentally oriented strategies. This was done
to insure that dollars were not spent without any cause.
For example, power purchases had only dollar costs, and thus
if dollars were not considered at all, it would be possible
that the program would ask for power purchases that were not
needed being irrelevant to the desirability measure used.
These added dollar costs are not, however, reflected in the
results presented (they have been withdrawn because they do
not represent real environmental costs).

There are 88 pages of additional data available for

this particular example. This data is in the form of the

exact computer listing of the program used. The additional

information contained in this listing involves primarily

the display of the time variations in environmental

consequences. This listing, called Optional Appendix P,

and containing pages P1 through P88, is available upon

request.
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Contained here is the data which is displayed in
Chapter 4. The points D, QA, QW, QB, QV, QE uid QT are

strategies of desirability explained in section 4.2. The
costs D, A and W represent the qualities of the particular
optimum simulations in terms of dollar costs, atmospheric
environmental impacot units and aquatic environmental impact

units, respectively.
Plan -_ Possil Mixed Nuclear o'lil Mixed Nuoledr
DemandS. n Swing Sw ing Swi.g .Jegaied Averaged Averaged

QD D 1018880 978944 1070522 994709 931541 935102
A 1184550 717642 284822 1210161 771416 255502
W 703880 964436 1245172 724663 992713 128622

4A D 1245360 1174320 1178442 1252720 1208171 1040622
A 889340 481482 245262 890410 419364 213592
W 580980 965736 1190742 573320 932740 1255702

QW D 1155070 1231198 1294492 1154530 1264748 1181282
A 980820 854108 356102 964850 909967 355052
W 537020 651453 931602 526510 588345 925292'

QB D 1073030 1020155 1076402 1046480 987041 941812
A 948210 514347 265042 958520 476151 235652
W 601300 975331 1218192 596630 953125 265902

QV D 1059610 1093222 1186642 1043490 1084958 1046722
A 1047090 853952 340932 1060170 889621 337682
W 573100 718805 1001282 569080 668146 1015132

QE D 1233940 1255238 1294492 1224530 1189480 1181282
A 893810 575879 356102 889260 481393 355052
W 564450 774253 931602 557430 831724 925292

QT D 1117320 1041790 1141322 1122810 1019416 1000692
A 920340 532559 904112 904200 484359 291752
V¥ 568040 887348 1066712 557170 865819 1197432
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