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ABSTRAOT

A quasi-optimal technique ('quasi' in that the
technique discards unreasonable optimums), realized by a
dynamically evolving mixed integer program, is used to
develop regional electric power unit commitment schedules
for a one week time span. This sophisticated, yet
computationally feasible, method is used to develop the hourly
bulk dispatch schedules required to meet electric power
demands at a given reliability level while controlling the
associated dollar costs and environmental impacts.

The electric power system considered is a power
exchange pool of closely coupled generation facilities
supplying a region approximately the size of New England.
Associated with a tradeoff between a given cost of
production and the relevant ecological factors, an optimum
generation schedule is formulated which considers fossil,
nuclear, hydroelectric, gas turbine and pumped storage
generation facilities; power demands, reliabilities,
operating constraints, startup and shutdown factors,
geographic considerations, as well as various contracts
such as interregional power exchanges, interruptible loads,
gas contracts and nuclear fuel optimum batch utilization.

A prerequisite of the model was that it be flexible
enough for use in the evaluation of the optimum system
performance associated with hypothesized expansion patterns.
Another requirement was that the effects of changed
scheduling factors could be predicted, and if necessary
corrected with a minimal computational effort.

A discussion of other existing and potential solution
techniques is included, with an example of the proposed
solution technique used as a scheduler. Although the
inputs are precisely defined, this paper does not deal with
the explicit fabrication of inputs to the model, such as e.g.
river flow prediction or load forecasting. Rather, it is
meant as a method of incorporating those inputs into the
optimum operation scheduling process.
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1. Introduction

A great problem to develop from this industrial era

is the dilemma of the increasing demands for energy

and the increasing demands that environmental qualities not

be degraded. As the electric power industry assumes an ever

increasing commitment to resolve the energy supply problem

it is subjected to escalating societal pressures to:

(1) generate reliably a sufficient amount of electricity

to meet any demands,

(2) retain or decrease its price rates, and

(3) minimize the impact of its generation efforts

upon the ecosphere.

The solution to this problem will take a long and unremitting

effort from all sectors of society. In the long-term (30

years) program of action must be included, among many other

things, efforts to develop more efficient means of power

generation arid more efficient power utilization.1 There

can be no doubt that to reverse the trend of environmental

deterioration a tremendous technological effort will be required.

There is, however, another aspect of the solution to

the 'electric power-environment' dilemma which should be

closely coordinated with (and is definitely not meant to be

a replacement for) the technological advances, but is essentially

a separate effort. This is the development of methods

1. A detailed documentation of the course of action required
from technological improvements is contained in a report by
Philip Sporn, reference (1).
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to assure the best possible operation of an imperfect power

generation system. That is, until facilities which are

perfectly compatible with the ecosystem are producing all

of our power there must be a method for insuring that the

imperfect plants are utilized in the least damaging manner.

This effort breaks essentially into two segments. First,

the plants must be sited to take the best advantage of the

site options available. 2 Secondly, the operation of existing

systems must be directed toward those objectives enumerated

in the beginning of this section.

This optimum operation of existing systems is the overall

project being undertaken in the author's Ph.D. thesis, of

which this study is one portion.

1.1 Problem

For a more thorough description of the part this research

effort will assume i the overall study of 'optimum operation

of existing systems' the reader is directed to reference (4).

However, a basic understanding of the interconnections involved

can be gotten from figure 1.1-land the descriptive outline in

table 1.1-1.

Briefly, the problem undertaken in this study is the

development of a scheduling and/or simulation tool which

prepares, out to an indefinitely far horizon, hourly production

2. This is a problem receiving a great deal of research effort,
see for example reference (2). The author's particular project
is also to be used as a simulation technique for the evaluation
of specifically hypothesized expansion alternatives, as
explained in reference (3).
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Figure 1.1-1 Block diagram representation of the overall system
operation procedure --
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1. Generation characteristics
A. Capabilities and limitations

1. Types of facilities
ii. Output capacities
iii. Maintenance and refueling possibilities

B. Performance
1. Dollar coats per megawatt
1ii. Costo of various maintenance and refueling

schemes
111. Air and water emissions per megawatt

2, Tranmission characteristics
A. Capabilities and limitations
B. Costs

3. Weather model (probabilistic)
A. Air flow and temperature
B. Water flow and temperature
0. Upcoming weather patterns

4. load model (probabilistic)
A. Long rnge
. Short term forecasts

5. Interregional coordination
A. Power exchango contract possibllltios
B. Maintenance and production schedules

ZSUL, TS -

1. Creates a variety of optimum maintenance
schedules

(probabilistic)

and refueling

2. Optlmum unit commitment and hourly dispatch strategies

3. Perform-ance in dollar costs, reliability and environmental
impact

4. Shows system weaknesses, deficiencies and strengths

5. Yakes power exchange ontract decisions and coordinates
system efforts with neighboring networks

USES 0P PROGRAI,:

i. Oreates maintenance, production and hourly dispatch
schedules

2. Simulates and evaluates performance of hypothesized
.system expansion configurations including generation
and/or transmission additions

3. Evaluates tradeoffs available between dollar coats,
reliability and environmental mpact

4. Evaluates the possible dollar cost and environmental
impact effects o proposed additions to the system

'such as pollution abatement equipment

5. In the .licensing f new facilities (with commissions
or in court problems):
A. yields realistic pollution figures rather than

worst casc figures
B. puts utility in position of defending its choice

from among the alternatives, rather than
defending Its choice on its own grounds alone

6. Yields intangible benefits which result from being
able to assure the public and the governmcnsal agencies
that the system could not be operating in a better
manner

Table 1.1-1 Input-output summary of the overall systemopro poeue incudn prga uses.*

I I

operation procedure Includng program uses.
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schedules for a regional electric power pool. These schedules

are to be schemes which optimize the multiple-objective

function including reliability, dollar and environmental

considerations. "Optimize" is actually not a correct choice

of words in that schedules which may perhaps be the exact

optimum may in fact be very undesirable. For example, the

mathematical optimum might depend for its slight edge over

other schedules upon some very tenuous, unwaverable procedure

over a long span of time. Thus, the need developed for the

use of the term 'quasi-optimal,' that is, 'in-a-sense optimal:

for, what is really sought is a reasonable schedule (or sim-

ulation), respecting the vagaries of the future by offering

a number of alternative schemes from each point.

One final consideration must be mentioned. Due to the

number of ever changing factors which affect the generation

schedule it would be very desirable to have a scheduling

scheme which would be minimally disrupted by changes of the

input factors. To achieve minimal disruption it would be

necessary to decide without computational efforts:

(1) which future changing factors will be outside

of the concern of the current schedule, and what point

in the future they must be included,

(2) which factors will cause only slight schedule

variations, and which scheduling decisions and parameters

are most sensitive to these changes, and

(3) which future factors will require recomputation
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of the schedule, and at what point in time must that

recomputation start, and if possible stop, 3 to insure

the total inclusion of the changing factor's sphere

of influence.

This then is a short encapsulation of all the demands

which are made upon an ideal generation schedule, and thus,

represent the goal for this particular research effort.

1.2 Historical Approaches

With the operation and maintenance costs accounting

for between 5 and 10% of the utility's expenditures, the

economic advantages of optimum production scheduling have

long been recognized. Methods for the effective coordination

of reserve requirements, forced outage probabilities and

the millions of dollars worth of maintenance and fuel have

been steadily increasing in complexity.

The problem of hour by hour scheduling out to a week

horizon is greatly dependent upon the weekly production

quotas and maintenance schedules which come from schedulers

with longer time spans. Since the unit commitment problem

and maintenance and production schedulers are so closely

coupled, it is instructive to examine the different methods

3. In generating a new schedule due to changing factors it
would be desirable to be able to determine at what point in
the future (if a point exists) the scheduling process has
settled back to the pattern of the old schedule so computation
can be stopped.

4. See,for example, reference (5).
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of attacking this similar scheduling problem.

Despite the fact that large amounts of money are

spent on maintenance, for example, a utility with 200.0

megawatts of capacity spends in the vicinity of $6.6 million
annually for maintenance,5 there has been compartively

little effort put forth for the sophisticated optimization
of the scheduling of this maintenance.

Very early scheduling efforts, when only a few power

plants were considered, consisted of plotting the amount

of capacity which could be spared to maintenance and then

iteratively scheduling the largest facility in the largest

space available. The technique worked well for small systems,

using a minimum amount of clerical help, and had the advantage

of more or less assuring that the largest facility would

not be squeezed out of its slot by small changes in demand.

But, there is no economic consideration in this technique,

that is to say, leveling the oversupply is not necessarily

consistent with any system performance measure except possibly

maximum system reliability. And even at leveling the over-

supply, this scheduling technique is not necessarily the

optimum procedure.

5. See reference (6)

6. Oonsider, for a trivial example of the non-optimality
of this procedure, the very simple system with plants of
capacities 4, 3, and 2 to be fit into slots of 5 and 4.
This algorithm would place the largest facility, 4, in the
largest slot, 5, and would thus fail.
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During the World War II hyperintensive energy using

period new problems in the maintenance and production scheduling

became evident, as explained in a 1942 lectrical orld article7

by Philip Sporn:

"The object of any program of co-ordination of major
unit outage is to maintain the maximum margin feasible
between demand on a system and load capability of the
various plants serving the system. For an individual
system this means careful study and evaluation of the
shapes of the annual load and capability curves. The
latter involves taking into account not only seasonal
variations in hydro capability but seasonal variations
in steam-plant capability. However, in wartime, with
rapidly growing loads, three other factors have to be
·taken into consideration. These are the rate of growth
of new load, because such growth can overbalance the
seasonal trend factor; the rate of bringing in new
capacity on the systemA and the broad integrated,
regional-area picture.

Since World War II, little research has been done on

the maintenance scheduling problem. Receiving much more

attention has been the problem of simulating power system

financial operations over the course of the year in a
8

general probabilistic manner. Some of the more sophist-

icated of these simulators recognize the need for having

or creating a maintenance schedule to show the exact

splicing together of the different generation facilities.

One of these simulators uses a static linear program,9

but unfortunately it is not directly adaptable to maintenance

scheduling, being directed more toward system security

7. Excerpt from reference (7).

8. See references (8) through (15).

9. ontained in reference (16).
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precautions. There is a production cost program1 0

which describes a possible modification for use as a

maintenance scheduler. The program uses a dynamic

programming technique, and for large systems (gives

a production cost example using six power plants) suggests

incorporation of the method of successive approximations

to keep down the number of variables.

Of the maintenance programs developed as such there

is none1 2 which includes measures of dollar costs. In

fact before 1972 there weren't any automatic scheduling

mechanisms although the need for such a program had

long been growing. Even among the few automated schedulers

available today none is good enough to be popular

and the problem has become so complex that what develops,

as one regional exchange staff officer has told me, is a

"horror show."

To demonstrate how little this field has progressed,

consider what is done today by the regional power pool NEPEX,

New England Power Exchange. They have been a pioneer in the

use of sophisticated computation equipment for the purpose

10. See reference (12)

11. See reference (17) or reference (18).

12. The author's own counterpart to this study, ref. (19),
does include dollar costs, as well as environmental impacts.

13. Reference (20) in 1970 outlined the need for a good
scheduling algorithm, using a static or dynamic technique,
whichever would resolve the problem.
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of system operation,14 and they are responsible for, among

other things, the coordination of the maintenance of 25

hydroelectric plants, and some 150 fossil and nuclear fueled

generating stations. So,in this case, both the computational

ability and the need exist for a viable scheduling technique.

However, their maintenance schedule comes from staff members

sitting in monthly, sometimes weekly, meetings studying forms

on plant maintenance needs, which they have received from

the superintendents of production in charge of the individual

plants.

Within the last year, outside of the author's technique

(reference 19), three automatic scheduling devises have

appeared in the technical literature. These techniques

utilize information on maximum and minimum times for

maintenance, maintenance crew availability, relative

importances of outages,'must run' geographic considerations,

forced outages,l5 and pool coordination of maintenance

schedules,.with no consideration for costs, environment,

hydroelectric power, pumped hydro or nuclear plants,

reservoir levels, or cycling capabilities of the configur-

ations. Since none of these schedulers uses any dollar

cost or environmental measures of desirability, they

14. See reference (21)

15. Basically included by the derating of the capacity of
plants, at least this has been shown to perform as well as
any other method, see reference (22)
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search instead within desirable limits of system security.

A comparison of these techniques is made in reference (22)

and with the use of an example comes to the general

conclusion that they are about equally good in levelizing

risk although they use different security measures.

Reference (23) figures the effective capacities, after

derating for forced outage, and proceeds to fit in the

largest facility first, as previously described in the

very early scheduling efforts. 6 Reference (24) goes about

filling in the scheduling slots in a slightly different

manner. First the crews are ranked with those serving the

most capacity considered first. The units maintained by

a single crew are then ranked from largest to smallest.

Now with this priority list, a branch and bound search is

made considering units in the order that those units

are ranked, see figure 1.2-1 on the next page. The third

of these recent maintenance schedulers, described in

reference (22), uses a slightly more complicated priority

listing, but uses about the same fill-in-the-valley method

once it has the priority list. A search is made for the

unit which, when scheduled out in its optimal position,

leaves the highest risk factor for the system. Thus, this

like the other techniques, is ust another measure of

16. A nearly identical technique uses the 'capacity times
duration of outage' to figure the total shutdown energy
as its measure of the'toughness of fit' for setting up the
priority for filling plants into the schedule.
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WEEK 1

/UNIT 1U

/IN \OUT

WEEK 1 WEEK 1
UNIT 2 UNIT 2

IN \OUT IN OUT

WEEK 1 WEEK-1 WEEK 1 WEEK 1
UNIT 3 UNIT 3 UNIT 3 UNIT 3

Figure 1.2-1 Branch and bound search teghnique used for
maintenance scheduling in reference (24)1'i

'toughness of fitting' a unit into the schedule.

The scheduling mechanism offered in the author's

previous paper, reference (19), does not require a priority

list instead it considers all plants simultaneously with
a sophisticated static technique which operates within.

a security constraint using a dollar cost and/or environ-

mental impact measure of desirability. This method

considers cycling and base loaded potentials and computes

figures such as end-of-week reservoir storage quotas,

hydroelectric production quotas, nuclear fuel consumption

quotas, and buy and sell decisions on bulk power contracts.

Because this technique yields these end-of-week quotas

it fills needs usually relegated to special purpose

17. From reference (24).

- _ ' -__ J __
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computer programs. For example, there is no need for

a separate nuclear fuel relegation computation,l8 or for

separate computations of the weekly reservoir levels

at which to be aimed.19 It must be considered that these

separate special purpose programs cannot be perfectly

spliced into a maintenance schedule, unless numerous

iterations are performed between these separate procedures

until they are in exact accord. Thus, a single program

which incorporates these other problems must be considered

to have an immediate advantage.

Especially since World ar II, nearly every optimiz-

ation technique available has been tried on the unit

commitment problem, where every hundredth of a percent

improvement in scheduling can mean lierallythousands of

dollars in savings. Nearly all of the successful unit

commitment solution techniques have relied upon the

extension of the incremental cost scheduling methods used

in minute to minute economic dispatch.2 0 Other dynamic solution

21
approaches, such as dynamic programming, work well until

a large number of plants must be considered. Dynamic approaches

with probabilistic load meeting requirements have also been

18. Such as is in reference (25) or reference (26).

19. Such as is presented in (27), (28) or (29).

20. See references (7) and (30) through (33).

21. This opinion is contained in reference (34).
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considered. 22 A limited amount of research in the use of

the maximum principle is available in print, and, at least

for the economic operation of hydroelectric plants seems

to enjoy the advantage of greater accuracy than is available

with dynamic programming.23 However, outside of other

24weaknesses24 that these techniques have, they may give

rise (as do many dynamic techniques) to unstable or

unrealizable solutions and may require tremendously

complex solutions, such as two point boundary value

problems or conjugate gradient searches for optimization

of Hamiltonians, see figure 1.2-2.

Figure 1.2-2 Computational procedure for the solutio 5of
the unit commitment problem via the Maximum Principle 5

22. See refs. (35), (37), (38),or (28) with method in (36).
23. Refer to references (39) through (44).

24. See reference (45) or (46).

25. Excerpt from reference (47).

JRFACE
HER
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Static techniques also have been developed, with

varying success, for solving the unit commitment problem.

Over a daily interval, use of an interruptible gas

supply has been considered.26 Integer programming27 and

mixed integer program3.ntg 2 8 have been attempted for the

solution to this problem, but because of the dynamic program-

ming nature required to consider probabilistic demand curves

and the more or less continuous nature of many of the variables,

these techniques fall prey2 9 to the same dimensionality and

magnitude problems that plague the dynamic programming

techniques. Other techniques that have been tried are

gradient search 30 and minimum norm contraction mappings,3 1

but neither approach appears to be promising for use over

longer than daily time spans with large systems, that is,

in a large week-long unit commitment problem.

However, to start at the beginning historically,

the first realization that the unit commitment problem,

with its particular startup and shutdown costs, should

use a technique different from the usual incremental

26. See reference (48).

27. This application was done in reference (49).

28. See reference (50).

29. See reference (51), page 321 for an authority for,
and explanation of this opinion.

30, See references (52), (53) and (54).

31. See reference (100).



cost technique, was in 1959, reference (55).32 Previously,

using a straight incremental cost computation, when a

plant dropped to 10% to 25% of its rated maximum capacity

it was dropped entirely from the system, because this

was considered to be the point at which the fixed operating

costs were making it too expensive to operate this plant.

The first unit commitment scheduler, as the load was

decreasing, would determine the shutdown of generators

based on the considerations:

1 minimum down time
2 startup cost

and 3) plant efficiencies.

According to these considerations

the scheduler would build up a strict priority of shutdown

"rule" for different seasons," i.e. different daily

load shapes, by considering whether or not it would be

possible to.restart the next most inefficient plant by

the time the load again reached its present level, see

figure 1.2-3 on the following page. Then it would compute

whether or not the startup cost would wipe out this potential

savings. This particular technique did not consider any

possibility of spinning reserve requirements, hydroelectric

or nuclear power, pumped hydro or gas turbines taking up

slack, nonlinear loading curves, or a difference between

startup and shutdown priorities, so other schemes

followed.

32. Another that followed soon after was ref. (56), 1960.
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Figure 1.2-3 First unit commitment 'shutdown' rule
involved turning off specified plants when certain demand
levels were reached, reference (55).

Slightly more accuracy is obtained from a later work,

reference (48) in 1965, in that spinning reserve, possible

limitations of fuels (in particular gas), multiple daily

shutdown possibilities (by defining unit commitment 'day'

from peak to peak), and different startup and shutdown

orders are possible. This method still, however, requires

a priority of unit removal, and the removal of those uits

is ust made so as to not violate the daily load forecast

demands, see figures 1.2-4 and 1.2-5 on the following page.

As more and more features were incorporated into the

unit commitment problem, solution techniques were not

capable of handling all of the complexity. Many techniques

which then came into general usage were heuristic approaches

which completely subdivided the problem into separate

efforts for pumped hydro scheduling, hydro scheduling, etc.,
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Figure 1.2-4 Graph showing the removal of units n a
priority system so that the load can be followed3

(-I-
4
4

a

4

5I
2a

3

6

TIME

figure 1.2-5 Definition of a unit commitme;3 'day' for
use in the case of multiple daily shutdowns

and after these productions had been deducted from the

load-to-be-met, fossil fueled thermal power was added in

quantities Just sufficient to meet the system security
constraints, see figures 1.2-6 and 1.2-7. Although these

are relatively crude methods for the inclusion of hydro

and pumped hydro, they were much better than not considering

these aspects at all.

33. From reference (48), page 420.
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the scheduling problem with provision for ne minute and
five minute spinning reserve requirements3
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34. Prom reference (58), pa,e 1380.
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The latest dynamic techniques, while they can deal

with complex, nonlinear conditions, and probabilistic

methods, nevertheless require discretization of the

operating states, fake incremental costs for pumped hydro,

hydro, and nuclear power, 35 and must search over a good

portion of all possible ways of operating the system over

a week, OR they must seek their optimum in a function

space. For handling specific parts of the unit commitment

problem these techniques can be workable. Thus, the

method of attack they usually employ is to section out

the hydro or pumped hydro aspect of the problem, either

requiring a pseudo-incremental cost for water,36 or

computing such an incremental cost and iterating between

the hydro or pumped hydro and thermal parts of the problem

until the incremental costs match, 37 see figure 1.2-9

on the following page for a pumped hydro - fossil

incremental cost comparison.

These hydro and pumped hydro incremental cost

arguments have been extended to the monthly planning of

water power usage so weekly quotas could be developed for

35. Unless they meet quotas such as is presented in a
production scheduler, like reference (19) has, and even then
this would tremendously increase the number of discrete
variables and thus astronomically increase the total
number of possible operating combinations for the whole week.

36. As in reference (59).

37. See reference (30), or (60) and (61).
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Figure 1.2-9 Comparison of fossil fuel and pumped
hydro incremental costs88

unit commitment schedules. Here, typically, 3 9 the hydro

power is planned to shave off the extreme peaks, and

the pumped hydro is then used to levelize the remaining

demand for power, see figures 1.2-10 and 1.2-11.
.~~~~- · .
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Figure 1.2-10 Incremental cost technique for monthly
placement of hydro energy utilization, assuming this to
be the cheapest form of power °

38. From reference (62), page 27, although this particular
curve was meant to be a dispatching tool.

39. See, for example, reference (29).

40. Prom reference (29), page 28.
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Al area = pump storage generation energy
A2 area = pumping energy = Al/EFF

Figure 1.2-11 Monthly placement of pumped storage eergy
utilization after hydro has been removed from scheme41

The reason for the heavy concentration of effort

on the optimization of hydro power is the large amounts

of money which can be saved by proper treatment of this

particular problem. Refer to figure 1.2-12 to see the

tremendous difference in operating procedure that can

result from a detailed optimization of hydroelectric

power usage.

There are a number of dynamic solution techniques

which avoid the problem of requiring pseudo-incremental

water costs. Some of these techniques, such as the

Maximum Principle in reference (64), can even treat

the problem of delays of water from one reservoir to

another on the same water system.42 This hydraulic

delayed coupling can be a significant factor at some

41. From reference (29), page 28.

42. Although (65) offers a less difficult solution
technique than that proposed in reference (64).

i
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Figure 1.2-12 Comparison of an actual operation schedule
and a hydro-thermal optimized schedule4 3

sites,44 particularly where small streams are the water

carrier, but apparently this is not frequently a large

enough problem to warrant the use of the numerical

complexity involved in functional analysis on a large

system (especially considering that this problem can be

modelled in a linear programming framework).

Another more recently developed dynamic technique

using incremental costs sections off the system reliability

problem, rather than the hydro aspect, as the angle from

43. From reference (63), page 47.

44. See reference (66).
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which to attack the unit commitment problem. Figures

1.2-13 and 1.2-14 show a method45 which removes each

plant, one at a time, for as long as it can be kept

out of the system without violating the contraint on

the security measure, and finds the one plant which

realizes the most savings. It then removes this plant

and starts again to find the next plant to take out.

For a large system,the number of examples which must be

260

240(

220(

200(

180C

160U)oISO'

1401

1204

100O

3 PM 6 PM 9 PM 12 MID 3 AM 6 AM 9 AM 12 N 3 PM

HOUR OF DAY

Figure 1.2-13 Demonstration of the iterative method of
plant removal using a security constraint46

45. See reference (67), also used in (68) and (69) with
the technique described in (70).

46. From reference (67), page 1387.
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·' .. . HOUR OF DAY

Figure 1.2-14 Oomparison of strict unit pririty method
to the security function constrained method mr

considered can be substantial, and nevertheless, none

of these fill-in-the-valley one at a time programs can

select the best schedule, or even an acceptable schedule;

except by chance.4 8

A number of nonlinear solutions to the unit commit-

ment problem have been proposed,4 9 but these perform

much better in on-line dispatch tasks, and involve

47. From reference (67), page 1387.

48. See footnote 6. on page 16 for a proof of non-
optimality and non-viability of these techniques.

49. See references (33) anu references (71) through (78).
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too much computation for large (100 plant), week long,

unit commitment problems. A nonlinear method50 which

goes so far as to include startup and shutdown rates,

uses local linearizations to solve the nonlinear formulation,

see figure 1.2-15

!= onst.

A 1... orking point

A2 . . . partial optintim after
the first iteration

I A3.3.. partial opt.imum after|- 'I g - - - 3 .L. - - A
' Z-il. ,'- LC SeCoUIR1(I LLOerau

1. An 2. r.n PI
Figure 1.2-15 Method of optimum seeking using local
linearizations of the nonlinear objective function5 1

Unfortunately, there is no proper provision for

shutting down plants (this could be alleviated by the

addition of integer variables) because this technique

uses an unclear rule for shutting down plants, called

"costly generation," which fall below minimum output

requirements.

The static techniques, of which this study is one,

appear to show the most promise for fast, accurate

solutions to large unit commitment problems. Static

studies previous to this current project were, unfortunately

50. See reference (79).

51. From reference (79), page 18.
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forced into the use of pseudo-incremental costs or

pseudo-limitations for the use of water (or nuclear)

power. The first static technique, reference (49),

severely restricted itself by using pure integer program-

ming. Thus, there was no room for any continuous variables.

The display of typical incremental costs for individual

power generating units is given in figure 1.2-16.

UNIT NO I
3.0 ~3. 0 1 ----o12 ---

' 2.8 --Y 2t UNIT NO 2

-: 22

I . Y22t
• 2.3

:. 1-M- I 

0 20 30 50 80 120
OUTPUT -MEGAWATT S

Figure 1.2-16 Incremental costs of power plants in
integer mode formulation5 2

The integer solution technique, the tableau method, is

very slow and cumbersome, involving rotations about

each non-integer coefficient in the solution space.

A mixed integer formulation, in reference (50),

does allow for continuous variables, and uses the much

faster branch and bound solution method, but runs into

dimensionality problems. There is no algorithm presented

in that paper which facilitates the cutting up of large,

week-long problems into reasonably sized chunks. Also,

a discretization of the probability load curve, see

52. From reference (49), page 730.
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Figure 1.2-17 Discrete breakdown of the probabil stic
load forecasts for use in a mixed integer programD3

figure 1.2-17, forces the solution to be computed for

Pyery combination of load probabilities, an astronomical

number, e.g. five discrete load probability levels for

each of the 168 hours of a week would lead to 5168

(more than a googol) different demand curves which must

be scheduled. A very good mixed integer formulation is

contained in reference (80).54 Unfortunately, since

the time intervals that are considered are slightly

more in the dispatch area (minute to minute) than in the

unit commitment (hourly), transmission effects are

included (10 nodes). The complexity added by this

inclusion forces a breaking up of the problem into

53. From reference (50), page 1969.

54. This technique is more fully described in reference (81),
originally from (82), with a corresponding dispatch
technique described in (83), and the splicing together of
these different hierarchies described in reference (84).

I



separate thermal and hydroelectric studies with an

eventual splicing. The mixed integer formulation is

thus reduced to the task of computing incremental costs

(using the dual variables) and thus is very similar to

the early simple incremental cost techniques. There

are a number of other weaknesses; pumped hydro cannot

be considered, hydro is used only to "levelize" thermal

outputs i.e. peak shave, no hydro network transmission

is considered, each time interval is considered separately

and then spliced to the others, there is no provision

for bulk power purchases, and individual plant loading

curves can only have one, linear, incremental cost

segment.55

Moving now from the unit commitment problem to

the dispatch problem, there are such a number56 of these

minute by minute dispatch techniques that if it is

desirable to find a method which splices together well

with the unit commitment technique, then it can be found.

For example, there are several static programming dispatch

methods.57

55. It appears that this inaccurate linear loading
curve requirement would introduce more error than could
possibly be gained in the consideration of transmission
losses.
56. Some include references (85) through (92).

57. Some are reference (54), references (93) through
(99), although (99) is more of a fuel management trans-
portation and consumption model.
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Only two of all of these dispatch methods (and no

unit commitment or maintenance methods) include any

consideration whatsoever for the environment. The first

of these two to appear, reference (101) in December 1971,

uses nothing more than an incremental cost dispatch,

where instead of dollar costs it uses tons of nitrogen

oxides which go up the stacks. So, replacing the dollar

versus megawatt loading curve, is a tons of N0 versus

'megawatt curve, see figure 1.2-18. Slightly more realistic

than this is the study hypothesized in reference (102),

July 1972. This technique uses wind directions and

Gaussian dispersion models to predict the superimposed

.30 

° 1I .20

o I I z I ' ' ' / I , . '0
100 200 :300

NET MEG'!ATTS

E DWP TEST DATA

0 APCD DATA

Figure 1.2-18 Tons of NO versus megawatt loading curve
for a power plant, DWP is a Los Ang les county government
test, APOD a U. S. government testao

58. From reference (101), page 2653.
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Figure 1.2-19 Hypothetical representation of pollution
sources and points at which concentrations are to be
predicted

concentrations at one or two points from all power

generation pollution sources, see figure 1.2-19.

Otherwise, the solution technique is identical to

existing dispatch mechanisms, using incremental pollution

concentrations at selected points rather than incremental

dollar costs.

So, in summary, there exists no unit commitment

scheduling techniques which can handle week-long problems

with optimal or near-optimal results. The dynamic

techniques require crude discretization of individual

plant output levels, and then still must search over

enormous numbers of possible solutions, even for a single

59. From reference (102), page 2.
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day of scheduling. Static techniques also fall prey to

the huge number of possibilities which exist over the

course of the operating week, and if they do not use

some integer variables, then they also require excessive

simplification of such problems as minimum power outputs.

Obviously, both techniques fail in that they cannot

make firm decisions as they proceed through a week, or

even a day. Heuristic techniques made specifically to

cut the problem down into separate components, and

usually smaller time horizons, can not approach optimality

without tremendous numbers of adjustments back and

forth between these separately considered - but obviously

coupled - portions of the overall problem. So what

is needed is a technique which can step along, making

firm decisions as it proceeds, while keeping week-long

problems in mind (e.g. weekly quotas or pumped hydro

cycles), and which can consider all the intercoupled

aspects of the problem simultaneously, e.g. thermal

power outputs, hydro outputs, nuclear outputs, reservoir

levels, pumped hydro usage, and overall system security

requirements.

This unsolved problem is further complicated by the

pressing environmental issues. A. H. Aymond, head of the

Edison Electric Institute has pointed out that "the days

are gone when a utilityman could sit confident that power
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is an undebatable blessing, accepted without argument or

discussion by the people. "60 Thus, what is required

now is a sophisticated technique which includes both

economic and environmental performance measures,

1.3 Results

The results of this research project include:

(1) a modelling of all the components of the scheduling

problem,

(2) a solution technique which reaches the desired

quasi-optimal schedule and requires minimum readjust-

ment for changed input factors, and

(3) a computer program realization of the solution

technique, with a sample problem.61

1.3.1 4odel Descrirtion

The model for the generation scheduling problem is set

in a linear framework. Although this format is somewhat

constricting upon some of the nonlinear scheduling factors,

for the most part the nonlinearities approach linear functions

before the scheduling decisions are made.

The forecasted demand to be met by the schedule is assumed

known, and the necessary reserve requirements are included

in the demand which must be met. Adjustments to the demand-

60. Excerpt from reference (103), page 52.
61. For the comparison of the quasi-optimum technique to
the optimum see reference (19).
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to-be-met curve are made for fixed and flexible interregional

power exchange contracts, probabilistic emergency support

and interruptible loads. The solution technique makes decisions

about which contracts to honor, and extent to which variable

contracts should be subscribed, as well as indications of

when oversupplies of power are available for bulk interregional

sale possibilities. Contract possibilities are enumerated

even at times when the region has no oversupply.of power,

with the final schedule yielding a list of all the intervals

and the cost of.producing more power in those intervals.

Also, the cost of meeting extra unexpected demands is produced

for each interval, pointing out the times when it might be

prudent to overestimate the reserve requirements.

The capabilities of the generating system in the

model are time-varying to account for the weekly variations

in output capabilities. Capacities of the plants are

derated to the extent that they incur forced outages,

or to the extent that they are debilitated during repair

of support equipment. Each generating facility is fit

with a piecewise linear loading curve, including provisions

for minimum operating capacities. Rather than having a

loading curve, the pumped hydro plants are operated

under input pumping efficiency and output efficiency

models with appropriate constraints on water usage,

reservoir levels and output capacities. Quotas are obtained
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from the maintenance and production scheduler (reference

(19) ) for the weekly targets of nuclear fuel consumption,

hydro reservoir usage, gas contract limited energies,

and pumped hydro reservoir level targets for the end

of the week. Penalties or rewards are available for

deviations from these target levels.

A nonlinear startup cost is used to accurately

predict restart charges based upon down times, and

provisions are made for minimum down times, and startup

rates. A single measure of spinning reserve is presented,

although it is ust as easy to introduce a second

measure, e.g. one minute and five minute reserves

(that is, spinning reserves available with that much

advanced notice).

Geographic constraints, viz. 'must run' plants

or minimum capacity requirements within a sector, as ell

as a certain amount of transmission limitation and

losses, can also be modelled.

The time intervals vary in size over the span of

time covered by the scheduler. As less information is

known about the future, this changing size interval

(from one hour long to eight hours long) insures that

equal weightings are attached to equal amounts of inform-

ation. This scheme is also used to reduce the number

of variables which must be considered.
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The quality measure of the simulation is measured in

both dollar costs and ecological impact consequences, and

the use of the presented solution techniques results in the

determination of all possible optimum pairings of $ to ipactS

ranging from the minimum cost end to the minimum possible

ecological impact for a given reliability level, (for more

of the very specific scheduling and simulation studies

performed with this scheduler refer to reference (104) ).

1.3.2 Method of Solution

The method for the solution of the proposed model is

a dynamically evolving decision process which uses mixed

integer programming to make current decisions and linear

programs to keep the future system within its restrictions

(but not forcing decisions for the future system). This

is then a quasi-optimal sequential process which requires

operator participation at each iteration (about six hours

covered per iteration).

A decision field is defined which includes all decisions

within a time span (about six hours ) as well as those outside

the span which are directly or importantly coupled to the

current decision-making process. Those firmly determined

decisions within one field are fixed, and the process passes

to the next field (which overlaps the previous field slightly

in time).



-47-
Select economic- environmental-
security constraints and/or
tradeoffs to explore first

.. .
.~-

Change
economic
environ-
mental
security
constraints
and / or
tradeoffs
until all
cases of
interest
have been
inve st-
igated

Adjoin directly
or indirectly
coupled decision
variables to 1st
decision field

Solve for all
decisions in 1t
field and fix
those which ar2
firmly decided 2

YES

< z iz
Truncate
off the
schedule
for the
far past
and add
n n any
previously
unstudied
portion of
the future
schedule
which is
currently
rclevant

Figure 1. 3.2 Flow chart of the dynamic evolving mixed integer
program used in the scheduling process.
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When used as a scheduling tool it is only necessary

to proceed far enough in the sequence to fix the current

decisions, usually only two or three iterations. As a simulation

tool., the model must be iterated over the entire time span

in question, but has the advantage of computation time required

being linearly (not exponentially) dependent upon the span

of time considered.

Recomputation of a schedule due to changing factors

requires a minimal computational effort. The dual solution

to both the mixed integer and linear programs presents a

sensitivity measure of the decisions to various changing

input parameters (such as changes in forecasted demands,

river levels, or new or bought capacities becoming unavailable).

When it is determined that a recomputation is required, the

solution to the decision fields previous to the disturbance

can be salvaged intact, and if it happens that the perturbation

has a short-lived effect, the old solution can be reclaimed

for some of the future decision fields.

A solution to a small (eight power plants over one

week) sample problem is presented. This demonstration

system is meant only for giving an initial feel for the

capabilities of the scheduler. A test of the validity

of this quasi-optimal technique has already been performed

in reference (19). The extensive use of this mechanism

as a simulator and a scheduler on numerous sample problems
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is presented in reference (104). The tools required for

the manufacture of the input data, such as load forecasters

and river flow predictors, are available from other

sources, with the quantification of the environmental

impact to the air and water being presented in references

(105) and (106). Thus, this paper is meant primarily as

a detailed description of the modelling of the scheduling

mechanism itself.

1.3.3 Comnutational easibility

Because this problem has been set up in a form for which

the integer decisions are all bivalent, the computer time,

and thus costs, are small. Besides the fact that with the

pseudo-Boolean constraints all integer solutions are on the

corners (the linear programming simplex method seeks ut only

corners) of the space of feasible solutions, the problem

setup has a distinct mutual exclusivity, ie. 'multiple choice,'

characteristic which decreases to a small fraction the time

required per integer decision.

Almost every computation facility has available the

linear and mixed integer functions used in the solution

technique presented in this project.63 If, however, the

facility to be used does not have sufficient capability

there are a number of simplifications, in the form of

63. It would be possible to create a fairly good schedule
without the mixed integer subroutine, i.e. with the linear
and dual solutions alone, see reference (104) page 81.



-50-

approximations, which can be made, e.g. the decision

fields could be cut in size.

1.4 Presuppositions

The most widespread assumption of this approach is

the assumed linearity of the problem form, or to be more

precise, the piecewise linearity and integer form.

Fortunately, however, most of these approximations, if

they prove to be too inaccurate,can ust be modelled with

further segments added to the piecewise linear model.

Exceptions, such as the synergistic ecological

effects of operating two plants in close proximity, can be

dealt with t a certain extent by overestimating the costs

of each plant operating alone, and preserving the linear

pattern. In general, the solutionsof nonlinear problems

with the dimensionality considered here, are either not comput-

ationally feasible or are prohibitively time consuming procedures.

One nonlinear possibility, however, for future considerations

in this research area, would involve a linear problem setup

with a nonlinear objective function64

In the problem modelling process there have been many

assumptions and approximations. For example, the reserve

64. It is highly unlikely that attempts at problems which
are either not quadratic or are inseparable would be fruitful.
The most likely candidates for nonlinear objective functions
would be those which were convex in nature, although even
convex functions are fairly time consuming for linear programs
to handle, let alone mixed integer programs.
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requirement is assumed to be a function of the load and not

of the plants in use at that particular time (which would

have caused.a nonlinearity). Similar linearity assumptions

are explained throughout Chapter 2 as they are introduced

into the model.

There is in this project no attempt to level the

oversupply of power, that is, above and beyond the demand

plus reserve requirements. If the reserve is not felt to

be adequate it can be pushed up (until it is at a level where

there is no feasible schedule in which case the C-optimal

solution is found), and in this way any particular desire

for leveling the oversupply can be met. Any intervals for

which there is particular concern can be granted extra added

reserve allotments.

Forced outages have been averaged in as percentage plant

capacity deratings65instead of being treated probabilistically.

No attempt has been made to refine the time intervals

down beyond one hour. Further refinements are possible,

though, within the framework of the model.

Of course, the piecewise linearization of the plant's

loading curves is an approximation to the actual nonlinear

curve, but considering that most techniques can use only

a single linear loading curve, this represents an improve-

ment over many existing schemes. Piecewise linearization

65. There is some evidence which supports the contention
that this adds negligible inaccuracies, see reference (22).
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of the variable head effects on reservoir power productions

is also an improvement over the linear schemes which

have proved to be acceptable.66 A transmission loss

model is described, but has not been developed fully

because of the negligible67 addition in accuracy to

a unit commitment scheduler that modelling of transmission

incorporates, namely that the small improvement is

lost compared to the load prediction inaccuracies at

this time scale.
There are a number of future studies which could

be carried out to refine this particular research

project. Examples of some of these studies are the

study of the possibilities for and effects of the

inclusion of a more probabilistically oriented security

assessment model, or the clarification and further

definition of the precise role played by the dual

space, so as to hopefully allow its inclusion in the

rigid, mechanical algorithm, if this is deemed desirable.
Of course, one obvious need for further work in this

area involves the development of a minute by minute

dispatch technique which includes environmental as well

as economic assessments of operating consequences.

Without such a dispatch scheduler tuned to the same

66. See, for example, reference (27).

67. This contention is contained in reference (79) on
page 4.
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eoonomic-environmental-security objectives as are aimed

at in the unit commitment scheduler, much of the gain

predicted by the unit commitment mechanism will be

lost.
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2. Model

In formulating the model for this scheduling problem

it is not possible, and in fact not as instructive, to remain

completely impartial to the theoretical and computational

feasibilities of the various setup's solutions. The fact

that abstract formulations do shed light upon the variety

of possible solution techniques is granted, and for this

reason is discussed in section 3.1. However, when aiming

at a clear portrayal of the problem, it is best wherever

possible to deal with physical or visualizable quantities.

Inevitably implied in such a detailed problem formulation

is a solution technique. And that this problem setup seems

conducive to a dynamically evolving mixed integer program

should not be viewed as a contrival intended to make this

seem like the 'obvious' technique, but should be considered

a foresight to the results of the survey of possible

optimization methods.

2.1 System Requirements

A logical first step in the formulation of a system

model is a detailed study of the requirements imposed upon

that system from external sources. For this problem, these

exogenous demands are in the form of minimum constraints

upon the output, such as meeting all requests for energy

with good quality (i.e. constant voltage), reliable electricity,

and in the form of a minimization of the inputs, that is
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payments from customers and usage of the environment.

By incorporating within the system, endogenously, the

predicted demand levels and the fixed reliability requirements,

it is possible to measure the 'performance' of the system

in terms of its decision making alternatives alone. Section

2.5 on performance levels deals with the collection and weighting

of the various input terms, and the remainder of this section

deals with the endogenous incorporation of the butput' demands.

2.1.1 Power Demands

Power demands will be defined as encompassing any

demands made on the power pool which are definitely

obligatory. All non-binding contracts between regions

and any interruptible loads will therefore not be

included here. Refinements which are to be made of

the 'power demanded' before it can be used directly in

this model are outlined in section 2.4.2. Section

2.1.1 of reference (19) gives a detailed description

of the 'power demand' components, and thus this will

not be repeated here.

Although the means are available, the forecasting

of the probabilistic power demand curves is not within

the scope of this study, and thus the load forecast will

be considered as an input. It is, however, important to

have knowledge of the factors which contribute to the

load forecast. For example, techniques are available
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which incorporate within the load forecasts the weather

68factors which might be of importance. This weather

information is necessarily included in the prediction

of environmental factors as well, thus any parameterization

of weather factors to gain insight into the weather

sensitivity of any particular schedule must show

simultaneous changes in the environmental impact factors

as well as the power demand.

2.1.2 Reliability Reauirements

The term 'reliability' is fully described in section

2.1.2 of reference (19). Briefly, it should here be

noted that for this unit commitment problem the reliability

measure will be satisfied by meeting a pre-forecasted

demand-to-be-met level computed from the probabilistic

demand curve. For example, the demand-to-be-met level

could be the'expected power level plus four standard

deviations of the power demand level. If a then computed

schedule does not meet a certain security standard, the

demand-to-be-met can be increased - either in the intervals

of the security problems or over the entire schedule.

Reliability levels are further affected by the

amount of spinning reserve required of the system, these

spinning reserve requirements are described in section

2.4.2.

68. Such a forecaster is documented in reference (107).
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2.2 System Canabilities

From section 2.4.2 can be obtained a number of megawatts

P(k) which represents the power level in the kt h interval

which must be supplied by the system in order to realize

the prespecified reliability level (thus P(k) includes

reserve requirements).

If PAi(k) represents the capacity of the ith plant

in the kth interyal (derated to average in the effects

of its forced outage rate, if necessary), and if

O if the plant i is not operating
during interval k

UPi(k) = 22-1
otherwise, between
0 and 1, denoting the fractional

portion of the plant in use

then for the system capacity

in the kth interval to at least meet the demand level

Ei [PA (k) UPi ()] P(k) 22-2
all 

2.2.1 Capacity Levels

Derating of capacity levels due to reserve requirements

is explained in section 2.4.2. There will, however, be

additional times when it will be necessary to derate the

maximum capacity ratings for generating units, for example,

derating may result from the scheduled maintenance of

generator support equipment. For the most part, however,



capacity levels are relatively unchanging and can

be treated in the ways described in the following sections.

2.2.1.1 Fossil Fueled Units

Fossil fueled units can be described by their own

particular capacity, or loading, curve.

Oost, Q

40

O2

2

01

aI

4

off Power, PA. of: i : r.
-0 PP P P P4PO P1 2 3 P4

Figure 2.2.1.1-1 Piecewise linearization of a megawatt
power versus cost loading curve for a fossil plant

First, it should be noted that the 'cost' in figure

2.2.1.1-1 may be either in dollar or some sort of

environmental impact units. Secondly, there may be

some power demand made by the facility even in the 'off'

mode, thus P may be negative. And, there is likely

to be a cost associated with the plant being in the

'off' position, thus, 00 may be greater than zero.

These costs, however, may be assumed to be fixed, for

- j
I

i
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they are not affected by the scheduling procedure.

It is the quantities C1-00 and P 1 -Po which will be the

important quantities in any decisions concerning plant

operation.

For fossil fueled units using gas supplies there

is the possibility of gas usage contracts either limiting

the supply of gas and/or outlining a variety of fuel costs

for various amounts of daily or weekly usage. An example

of a dollar cost-gas usage curve over a time period

(such as a week) is represented in figure 2.2.1.1-2.

Cost

tal Gas
nsumed

c 10
lower quota upper
limit limit

Figure 2.2.1.1-2 Dollar cost-gas usage curve which might
be represented in a gas supply contract.

2.2.1.2 Nuclear Energy Relegation

Assuming that weekly nuclear energy usage quotas

have been computed by a maintenance and production



69scheduler, the unit commitment scheduler is responsible

for determining the hour by hour usage strategy for

this nuclear fuel so as meet these weekly quotas.

However, for there to be a meaningful coupling between

the unit commitment scheduler and the maintenance and

production scheduler it is essential that the unit

commitment scheduler not be totally constricted to a

particular nuclear fuel weekly quota. Instead, within

the unit commitment scheduler should be a mechanism which

represents the appropriate penalties for not hitting the

exact weekly quotas. Such a mechanism might be of the

Oost

e equals
hemental cost
Luclear fuel
represented in
L solution to the
.uction scheduler

Nuclear
Energy
Usage

lower quota upper
limit limit

Figure 2.2.1.2 Penalty function representation for
consideration of discrepancies between fuel usage and quotas.

69. For example, a scheduler such as is described in
reference (19).

. j I
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same form as the gas contract quota diagram, see figure

2.2.1.2.

Also to be considered in the scheduling of nuclear

reactors are certain costs contingent only upon the on

or off mode of reactor operation, or costs which may

be dependent upon the entent of operation, but these

costs are easily modelled in the linear - integer format.

It will be mentioned here, and not again in the

hydroelectric section, that there may be consequential

energy losses associated with the startup of facilities.

In fossil fueled plants this can be considered as a pure

dollar loss (assuming there is no inventory of fuel),

but for facilities which must meet a weekly fuel quota

these startup energy losses must also be included in the

total weekly fuel usage.

2.2.1.3 HYdroelectric Capabilities

Because the maintenance and production scheduler

yields hydroelectric quota; in addition to the nuclear

quotas, the same requirements apply here as are described

in section 2.2.1.2, including the end-of-week disposition

allowance penalties or rewards (like those displayed

in figure 2.2.1.2.) The comments on operation costs

are also applicable here.

Equations for the treatment of reservoir pondage

accounting, including water inflows, spillage, and other
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reservoir requirements are given in section 2.2.1.3
of reference (19), and,thus, will not be repeated here.

A problem inherent to hydroelectric unit commitment

is the possibility of reservoir levels being close

enough to upper or lower limits so as to require monitoring

of the level during the scheduling process. This can be

easily handled, however, by setting upper and lower

bounds on the value of the reservoir level.

A more difficult problem peculiar to the hydroelectric

situation is the effect of water pressure on the efficiency

of power production. This effect, usually called the

effect of variable head sizes, can be piecewise linearized

if it is considered to be of significant importance.

This can be accomplished by, in effect, defining different

reservoirs associated with different sections of the

head. The hydroelectric facility will then automatically

deplete the higher, more efficient levels first. Oare

must be taken to preserve the proper loading order for

the inflowing water. The only way this can be done,

without the use of integer variables (in the same manner

as the fossil fueled plant loading orders), is by assuming

a knowledge of the approximate levels of the reservoir

beforehand, and then inflowing into the proper stages.70

70. This level approximation may not be a difficult task,
especially in large reservoirs, because reservoir levels are
known for the beginning and end of the week. Of course, if
levels are known accurately then efficiencies can be changed.
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2.2.1.4 Pumped Storage Constraints

The equations required for keeping track of a pumped

storage facility are presented in section 2.2.1.4 of

reference (19), so here they will only be quickly

reviewed.

Assuming HL(t) is the water level for hour t,

then the pondage accounting equations are

GH(t) - PA(t) + (inflows) - (spillage)

+ HL(t-1) = H(t) 2214-1

where GH(t) is the amount

of water pumped into the facility and PA(t) the amount

drawn out for generating. Of course there are also

physical limitations to each facility, such as

- L(t) L6 T 2214-2

where T is the total storage

capacity f the unit.
The quantity PA(t) will then be put toward the

total system production in interval t after it has

been appropriately disproportioned for conversion

losses. Likewise, GH(t) will be drawn out of the system's

power production and must also be adjusted for conversion

losses.

2.3 Startup Costs

In general, there is a cost associated with turning
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on a particular facility which will vary with the amount

of time that that plant has been shut down. This cost

is directly related to the cooling rate of the boilers,

which is exponential in shape, see figure 2.3-1.

,-…c ____ …60 T…M_

Figure 2. 1 Starting costs as a function of previous
down time/1

Figure 2.3-2 represents a piecewise linear approximation

to one of these startup cost curves (and since the smallest

step size of the unit commitment scheduler is one hour,

such a piecewise linearization is in effect an exact

representation).

Cost

r
8

.q

0
vals of down

.. --- -.~. of- -.-- -, .V
·0 1 2 3 

Figure 2.3-2 Piecewise linear curve of startup cost
versus previous plant down time

71. From reference (48), page 417.
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As mentioned in section 2.2.1.2 there may be a

substantial energy cost in a plant startup procedure,

and for facilities meeting weekly energy quotas this

loss must be accounted.

2.4 Inputs

The main thrust of this project is directed at the

alignment of the input material and the ptimal attack of

the problem. So, for the most part, inputs to this simulation

will be considered given. For a somewhat broader description

of what the collection of input data will entail, or what

the relevant influencing factors might be, consult reference

(4). There s, however, a certain amount of input shaping

which must be accomplished before this simulation can use

that input. Because of this, input modifications will be

presented to the extent that their shaping is peculiar to

this analysis.

2.4.1 System Udates

As described in reference (19), section 2.4.1, system

updates must include all the changes that take place

within the system, from the start of the scheduling

procedure through to the end of the unit commitment

horizon. Unpredictable changes, of course, must be

included as soon as they are known, if the scheduler

is to properly model the network.
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2.4.2 Power Demand Ad ustments - Reserve Ruirement s

The problems of properly handling fixed and flexible

interregional contracts and interruptible loads are

discussed in reference (19) section 2.4.2.2, and that

material will nor be repeated here.

Emergency support from neighboring power networks

can be modelled as power plants within the system in

question, but this will probably not be available in

all intervals and undoubtedly it will be expensive

enough to make its use infrequent. It may be necessary

to define an additional pseudo-cost associated with this

emergency support, if the unit commitment scheduler

appears to be relying too heavily upon this support.

This, however, is a question which must be handled after

the measures of reliability and the costs of various

schedules have been examined.

It may also be necessary to scale down the number

of megawatts available from a facility, for example

units representing more than 10% of total system capacity,

for the system to realize the additional risk inherent

in operating that plant (or alternatively, to make

additional demands on the amount of spinning reserve

which must be kept available when this plant is operating).

Other than this derating (or linear spinning reserve

addition), in order to preserve the linearity of the



model, it is necessary not to use any nonlinear spinning

reserve requirement formulas, such as making the spinning

reserve requirement equal to 1I times the largest unit

which happens to be operating in any particular interval.

The reserve requirements of a system can be met

by totaling, at each interval, the unused portions of

those plants which are already on. Define

1 if plant i is 91 in interval t
~~~~Ai(t ) -=~ 5242-1
0 O if plant i is of in interval t

and

o £ J(t) L 1 242-2

such that Ji(t) represents
the fractional usage of the plant's power over and

above its minimum output in the 'on' mode. That is,

considering the loading curve represented in figure

2.4,2-1,
Oost

U.
1

Power

P0 IP 1 megawatts

Figure 2.4.2-1 Loading curve of simplest type of plant
showing spinning reserve capability

j

Iwo
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then the power output of this plant is

PO Ai(t) + (P1 - P0) * Jit) 242-3

and this plant's contribution

to the system's spinning reserve capability at time

t will be

(P1 - P ) (Ji(t) - 1 + Ai(t) ) 242-4

Of course, depending upon the type of generator being

modelled, this spinning reserve capability from one

facility may have to be pper bounded because of startup

rate limitations (for example, no more than 15 megawatts

can be added to the 3 minute reserve capability and

25 megawatts.to the 5 minute reserve capability if the

particular plant has a 5 megawatt per minute maximum

rate for increasing capacity).

When considering the total spinning reserve available

at time t (assuming no rate of change constraints),

where P(t) is the total power demand at time t, the

following formula can be used,

[all li(t)· A(t)] - P(t) = SR(t) 242-5

where SR(t) is the spinning

reserve at time t, and Pi(t) is the maximum power

output of plant i. This equation is now true for systems

with plants that have loading curves more complicated

than that represented in figure 2.4.2-1, as long as
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Ai(t) is the on-off variable for plant i.

A post-optimal analysis of the resulting schedule

effects due to changes in the reserve levels (and likewise

the demand levels) will be helpful in the evaluation

of the sensitivity of the schedules with respect to

various reliability measures. Exactly what the spinning

reserve requirements should be must be computed to

suit the particular needs of a system. Reference (16)

uses forced outage rates, tie load levels, and load

duration curves to compute (for a typical 2700 megawatt

system) expected cost values and loss of energies

associated with changes in spinning reserve requirements.

Obviously, there is a tradeoff involved between cost

and reliability, see figures 2.4.2-2 and 2.4.2-3.

5 
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Figure 2.4.2-2 Increases in expected costs with changes
in spinning reserve requirements7 2

72. This figure and the computations upon which it was
based are contained in reference (16), page 157.
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Figure 2.4.2-3. Expected energy not supplied for different
spinning reserve requirements ( in a 1.8 million megawatt-
hour schedule)73

2.5 Performance Index

Por the most part, section 2.5 of reference (19)

contains this material, thus, it will not be included

again here. Only costs which are new to this unit

commitment scheduler will be discussed here.

2.5.1 OeratIng Costs

Unlike the convention used in the maintenance

scheduler of reference (19), all 74 the contributions

73. From reference (16), page 157.

74. Except in the case of possible rewards for non-use
of hydroelectric or nuclear energies which can then
be carried on into the next week to defray operating
expenses at those times.
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to the performance index will be in the form of penalties. 7 5

Thus, the costs here will include the dollar costs

incurred in operation, such as those shown in the loading

curve, figure 2.2.1.1-1, and in the startup cost curves,

see figure 2.3-2.

Gas quota costs such as those in figure 2.2.1.1-2

are described in reference (19), section 2.5.1. or

the most part, the fixed costs associated with hitting

a quota will have no bearing on the scheduling mechanism,

and may thus be omitted from the scheduler. Underusage

and overusage penalty costs will play a definite role

and should obviously be included.

2.5.2 Transmission Costs

As is usually done in the unit commitment problem

the transmission costs will not be exactly represented.

The reason these costs are usually left out of the unit

commitment scheduler is that the inaccuracies in load

forecasts for times this far into the future more than

overshadow any small amounts of accuracy transmission

considerations would add. 76

In cases such as far removed facilities, such as

75. That is, there will be no rewards for extent of
non-use - as was appropriate for the scheduler which
Just chooses one interval in which it alleviates the
environment of system operating consequences.

76. For this opinion see reference (79), page 4.
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offshore nuclear reactors, the inevitable transmission

costs, of course, should be included directly within

the cost of producing that power. For systems with

unusual network configurations, creating for example

'must run' situations, it may be worthwhile to areally

discretize the power demands and groups of generators.7 7

The complexity involved in including transmission

losses exactly in any formulation results from the

quadratic form in which they must be represented.

If it is deemed essential, there are at least two possible

methods of including these transmission losses in this

scheduling formulation

(1)'the quadratic form can be approximated
by a piecewise linearization of the quadratic
loss shape, see figure 2.5.2

tor of all
)ration and
and vels

- +

Figure 2.5.2 Piecewise linear representation of a
quadratic function

77. These methods are described in reference (19) sections
2.3.3 and 2.5.4; this method is used in reference t81).
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(2) the transmission losses can be computed
and compared for each of the otherwise attractive
schedules, after those schedules have been computed.

Which method should be used, and in fact whether

or not it is worthwhile even to consider transmission

losses, is a question which must be answered by close

examination and knowledge of the particular network

under study.

2.5.3 Ecological Impact Units

The quantification of the environmental impacts

to the ecosphere due to electric generation is a topic

which has prompted several research efforts.78

Reaching a common denominator for all the environ-

mental impacts is a task which might hopefully be

avoided. Ideally the minimization of the various

environmental ramifications can be kept as separate,

i.e. multiple, objectives of a scheduler. It is,

unfortunately, necessary to do some temporary collecting

of different impacts into a single quantification

for the purpose of decision making.

First, it is necessary to have a knowledge of the

environmental impacts of the various possible schedules,

in particular, the major ecological impacts. An outline

78. Some efforts have already been made in the direction
of reducing impacts upon the environment to single, or
multiple vector, quantities, see references (105) and
(106).
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Figure 2.5.3-1 Simplified general systematic representation
of method for coputing aquasphere impacts from electric
power generation(3

of a plan of attack developed in reference (106) for

such a study is presented in figure 2.5.3-1 with a

more detailed display of the biological model in figure

2.5.3-2.

Once the aquatic and atmospheric environmental

impacts have been calculated and quantified, they can be

included as measures of desirability in the scheduler's

decision making process by making the various environ-

mental ramifications contingent upon the operating

79. From reference (106).
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Pigure 2.5.3-2 Detail of biological model portion of
the general schematic for corputing aquaspheric impacts
of electric power generation

variables which effect them. The question now arises

as to how these various environmental performance measures,

qei , relate to the dollar operating performance measure

qd. In order to generate the spread of all possible

optimum pairings of dollar and environmental impacts

80. From reference (106).
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it will be necessary to explore all possible ecolo-

economic indices, 0 - ei oDo, which relate the relative

weightings of dollars and environmental impacts in the

desirability, or quality, measure used by the scheduler,

Q = qd + £ ' qel 253-1

where Q is the total combined

desirability of the particular schedules.

It is obviously not intended that these e I should

be fixed, or even operator regulated. Despite the

additional computation required, it will be necessary

to perform a number of studies corresponding to Various

values of i so that an array can be shown of the possible

operating consequences of various schedules. Consider,

for example, the effect of this type of parameterization

of e in figure 2.5.3-3. Clearly, here three points,

water impact only, water plus dollar costs equally weighted,

and dollar costs only, with the corresponding slopes

known for these points, slopes of oo, 1 and O respectively,

plus the knowledge of the inward curvature of the curve,

yield a very good idea of its exact shape, and thus,

all possible tradeoffs between these two measures of

desirability. With the addition of other measures of

desirability, for example air impacts or specific impact

problems which can be singled out, the shape of this
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Figure 2.5.3-3 The tradeoff curve representing all
possible optimum consequences of dollar and water pollution
strategies, QWf is the minimum water pollution strategy,
QD the minimum cost consequences, and QV their equal
weighting.

surface of all possible tradeoffs will be extended to

new dimensions (for some examples see reference (104) ).

And for changes in reliability levels these transform

curves will make more or less concentric shiftings,

see figure 2.5.3-4.

Many other possibilities for post-optimal studies

are discussed in reference (19), section 3.3.

81. From reference (104), page 30.
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Figure 2.5.3-4 The solid tradeoff curve representing
all possible dollar, water pollution impact, air pollution
impact, and reliability combinations, QW is the minimum
water pollution edge, QA the minimum air impact edge, and
QD the minimum ollar costs associated with various levels
of reliability. 2

2.6 Time Considerations

In a manner like that described in reference (19),

section 2.6, the time intervals of this scheduler were

chosen to telescope from one hour units for times close

82. From reference (104), page 49.

:
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at hand, to eight hours long for intervals a week in the

future. This variable interval size insures rapid

computation, detailed information about close-at-hand

times, and concentrates the computational effort on

intervals when more detailed and more certain decision

making information is available.

Rewards and penalties for the week-end disposition

of the system, e.g. hydro reservoir levels at the

termination of the model period, have been covered in

the previous sections on system capabilities.

An additional time consideration is the recognition

of the minimum down time requirements for certain

facilities. These minimum down times are necessitated

by slow startup rates and physical limitations, particularly

on highly tuned, primarily base loaded, generating

plants. To determine whether or not a particular

facility has a load following speed which is slow enough

to require inclusion in the-unit commitment problem,

a plot of its response characteristics can be made,

such as is shown on the following page in figure 2.6.

The modelling of this factor in terms of system equations

is discussed in the section on the necessary adaptations

of the system equations required to prepare this problem

for the solution technique chosen, section 3.2.
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Figure 2.6 Power plant response rate characteristics
plotted to demonstrate the scheduling h erarchies which
must take this rate into consideration

83. From reference (108), page 455.
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3. Solution Techniue

The detailed account of the dynamically evolving

mixed integer programming technique which is used for

the solution of this scheduling problem is described

in reference (19) chapter 3. Thus, the optimization

technique will not be redescribed at this point. This

chapter will deal primarily with the adaptation of the

problem modelled in chapter 2 to the optimization

technique proposed.

3.1 Possible Optimization Aroaches

There are, of course, some advantages to a number

of different 'possible approaches to the solution of

this scheduling problem.

Dynamic solution techniques have the advantage

of being able to deal more directly with probabilistic

system problems, as well as being able to thrive upon

complicated sequences of dependent procedures. However,

for the problem presented by a 100 power plant system,

and its inherent high dimensionality, the dynamic solution

approaches require computation times which grow exponent-

ially with the system sizes.

Linear static solution techniques must also be

excluded from consideration due to the scope of this

problem's size, and its nonlinear nature. And nonlinear

static formulations are not solvable in reasonable
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amounts of computation time,for this type of broad,

static overview of the entire scheduling space.

Thus, a combination of the dynamic and the static

techniques is chosen for the solution method. Several

static overviews of small, digestible portions of the.

schedule are coupled by the dynamic process represented

in figure 3.1.

Q

Figure 3.1 Sequential decision process using a dynamically
evolving series of static overviews with input material I n
brought in at the appropriate stages, quality measures Qn
collected at each step, and coupling information fed
forward n

A more exact description of this technique can be found

in reference (19), section 3;2.

3.2 Adaptatidn of the Model

The model developed in chapter 2 for this unit

commitment problem will here be changed to fit into

the format required by the chosen solution technique.

Define as D(t) the demand for power in interval

t, where this demand has been chosen from the power



demand probability distribution so as to cover power

needs with a probability consistent with the security,

i.e. reliability, measure imposed upon the system.

Therefore, the summation of the power production from

all of the units at time t must equal or exceed D(t).

To model the power production from each of the

units, define An(t) as the on=l, off=O mode of the

nth unit at time t. Let Jn(t) be the fractional portion

of the first segment on the loading curve used by unit

n in time t. Thug for a most simply described facility

with ust an on-off indicator and a linear loading

factor, the power generated in interval t would be

represented by;

Oost

02

01

Power
I ,

P1 P2

Figure 3.2-1 Loading curve for simple, single segment
representation of a power plant
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P1 An(t) + (P 2 - P 1) n(t) 32-1

where

An(t) - Jn(t) X 0 32-2

An(t) = 0 , 1 32-3

0 - Jn(t) ' 1 32-4

and where P 1 is the minimum

possible power output, P2 being the maximum output

level.

Suppose now that the loading curve of plant n

has two segments, and breaks upward. Then the output

power will be

P ' An(t) .+ (P2 P1) Jn(t) + (P 3 - P2 ) Kn(t) 32-5

where Kn(t) is now the fractional

portion of the second segment of the loading curve

which is used, P2 is now the power output at the breakpoint

and P3 is the maximum output. Here,

2 An(t) - Jn(t) - Kn(t) X 0 32-6

An(t) = 0 , 1 32-7

o - Jn(t) 1 32-8

o Kn (t) _ 1 32-9

If the loading curve has two segments, but happens

to break downward, then the order of loading will not

automatically be proper, because the scheduler will

try to use the cheaper power first. Thus, another

binary variable Bn(t) will be required to indicate that
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the system is operating on the second segment of the

loading curve, and the equations which result are, for

the power output:

PI ' n(t) + (P2 P1) Jn(t) + (P2 - P ) Bn(t)

+ (P3 - P2 ) n(t') 32-10

where in equations given the

name Mn(t)

An(t) - Jn(t) - Bn(t) .- O

and in equations given the

name nWt)

Bn(t) - n(t) O

32-11

32-12

where

0 Jn(t) 1

Oost

o3

O2

An(t) = o, 1

Bn(t) = 0 , 1
and 0 - Kn(t) 1

pI P2 P3

Figure 3.2-2 Loading curve for two segment, downward
breaking loading curve of pwer plant

32-13

32-14

32-15

Power 
n m n ! ] i_

..

i
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Additional segments to the loading curves are

similarly constructed, each requiring new binary variables

unless the additional segment is incrementally more
expensive than the previous segments.

The consequences, dollar and environmental, of

operating at any given point on the loading curve are

thenobtained by a collection of costs similar to the

collection of output power levels. For example, in the

last instance, with 01 as the minimum operating cost,
02 as the cost at the breakpoint, and 03 as the cost

of full production, the total cost of operation from
plant n in time t is:

01.An(t) + (02-01 )Jn(t) + (02-01 )Bn(t)

+ ( 3-02 )In(t) 32-16

For the computation of startup costs, it is

advantageous to define a dummy variable Wn(t) in a

'logic equation which will be named Ln(t) as follows:
An(t - An(t-1) - Wn(t) 0 32-17

o o Wn(t) 1 32-18

There will then be a dollar and environmental

consequence for the startup of a facility, and thus

W will take on the value 1 only when it absolutely

has to, that is, when both An(t) = 1 and An(t-1) = 0,

ie. when the unit has ust been turned on.

To model the time-varying startup cost represented
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in figure 2.3-2, and again here:

Cost

r
a

A
,vils of down
I-Ci ' e.+'r .', "+V Fr

0 1 2 3
Figure 3.2-3 Piecewise linear curve of startup cost
versus previous plant down time

using the dummy variable Wn(t), the startup cost at

time t from unit n is:

r*Wn(t) - (s-q)An(t-2) - (r-s)An(t-3)

+ (r-s)Wn(t-2) 32.

and this equation will hold

as long as (r-s) is less than q,84 but this is obviously

85a reasonable assumption.

For those plants which have a slow startup rate,

there are a number of modelling alternatives. One

possibility is to make after-the-fact feasibility checks

of minimum down time requirements. Another modelling

-19

84. Otherwise the Wn variable will not be a valid
indicator of system startup, as it will have more to
gain from a false indication.

85. If this were not the case then it would mean that
the plant would cool down more during the third hour
after it had been turned off, than in the first hour.

*t

- -

I
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method involves the definition of a dummy variable,

say En(t), where, for example, if the minimum down time

is four intervals long:

i En(t) - An(t) 0 32-20

0 En(t) 4 32-21

En(t) - En(t-1) - Wn(t) 0 32-22

and then En(t) would reflect

the cost of maintaining a plant in the partially operative

mode. The expense associated with En(t) would force

this variable to zero in non-operative intervals, and

then the upper limit of 'one' on the Wn's would pace

the plant startup to take the allotted time span.

This type of modelling preserves the on-off binary

variable An(t), which is an important consideration,

because An(t) serves a number of other purposes in the

modelling.

One of these additional uses for An(t) is in the

spinning reserve requirement. equations SR(t). In the

simplest formulation, as described in section 2.4.2,

the spinning reserve potential of a system is the summation

over all n of the An(t) times the maximum power output

of each n minus the power demanded at time t. Since

it is also possible to purchase external emergency

support power, ES(t), at some times, this would then

have to be added directly into the SR(t) equation, and
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86be reflected in the dollar cost of the schedules.

The collection of energy usages from limited sources,

and the penalties or rewards for over or underusage

of allotted quotas uses the following terminology.

The summation of the amount of energy used from any of

these sources, minus the overuse beyond the quota,

plus the underuse of the quota, must then equal the

quota. For nuclear, hydro and pumped hydro, the overuses

are designated OSN, OSH, OSPH respectively, and the

underuses are termed USN, USH, USPH respectively in

the quota equations NUTOT, HYTOT, and PHTOT respectively.

These quantities of underusages and overusages are then

available for penalizing or rewarding in the cost

functional.
The terminology of the pumped hydro accounting

equations Xt), as described in section 2.2.1.4, [.$

Gn(t) - An(t) + HL(t-1) - HL(t) 0 32-23

where Gn(t) is the pumped input

into the reservoir, An(t) is the outtake and HL(t) is

the hydro level at time t (assuming no inflow or spillage).

Gn(t) depletes the power available from the system at time

t and in the power demand equation D(t) Gn(t) is scaled

up to reflect the input inefficiency of the facility.

86. The use of emergency support probably should not be
added to the environmental impact consequences, since no
ecological consequences take place in the scheduler's region.
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An(t) enhances D(t) and is scaled down to reflect hydro

generating inefficiencies of the facility.

The consequences of various operating variables

contribute to the equations which measure the desirability

of the schedules: equations Q, QA and QW, that is, the

dollar costs, air impact consequences, and water impact

consequences (plus whatever other measures are wanted).

For quick access, rows representing some mixtures of

these various consequences were also defined, QB as the

equally weighted combination of Q and QA, QV as Q plus

QW, QE as QA plus QW, thus QE is the total environmental

impact combined measure. In addition, a QT was defined

as Q plus Q'plus QW, i.e. the equal weighting of all

three variables.

Such a combination of variables in separate rows

is not really necessary. For example, define a row

named Q as zero equals all dollar consequences of the

schedule minus a new variable QX. Now QX will be forced

to be equal to the dollar cost of the schedule, and can

be manipulated as any other variable. For example, if

QX and QWX are likewise computed for air and water

impact totals, then a new objective function can be

formed of

a . QX + b · QX + o · QWX 32-24

where a, b, and c are the
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weightings to be associated with the various consequences,

and their parameterizations will yield a display of all

possible measures of desirability.

It is likewise also possible to section out particular

power generation consequences for constraining and/or

penalizing. For example, the S02 concentration at a

given time ( or S02 total production over some specific

time span) that affects a particular city could be

collected separately and forced, as above, to equal

some amount QS02, which now can be manipulated. For

example, with the predicted external concentration (or

production) from background sources, say S02X, could

then be to compute

QS02 + S02X 32-25

which would then be the predicted

total S02 level, and that could now be constrained to

be less than a certain dangerous amount, or it could

be penalized in a manner appropriate to its impact.

As an example of a penalty function which might

be appropriate, consider the example given where QS02

is the S02 impacting87 upon an area over the course of

a day as a result of a particular power plant's production

schedule. Let S02X be the total impact from external,

background sources. Suppose that figure 3.2-4 represents

87. See reference (105) for a more exact description of
how such an impact measure can be defined.



-92-

600

Relative
,wart-~i+. no

Figure 3.2-4 Amounts of SO impacting the environment
scaled (nonlinearlyeato reflect the escalating nature
of its consequences

the relative impacts to the environment of the various

levels of S02. Now let QS02X be the relative extent

of the consequences from the external, background sources

alone, as computed from S02X and the graph of relative

consequences in figure 3.2-4. Then define S02A, S02B,

and S020 by the following bounds and equation:

0 S02A ' 400 32-26

0 h S02B = 200 32-27

0 i- S020 - 200 32-28

S02X + QS02 - 200 - 802A - S02B - S020 - 0 32-29

88. This curve represents an absolute constraint of the S02
level at the level 1000.

.t
v
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So now the change in consequences from SO2 production

caused by power generation in the schedule being investi-

gated is

AQS02 = *S02A + S02B + 2S020 - QS02X 32-30

Thus, from this simple example, it can be seen that

the environmental consequences of various schedules can be

examined for any type and/or combination of pollutants,

at any point in time and/or collected over time spans,

and at any particular place in the region and/or over

areas of the region. These consequences can be viewed

in terms of total amounts of pollutant, levels of polluant,

and/or in terms of some impact measure.
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4. A'lication to a Sample Regional Scheduling Problem

Contained in reference (19), chapter 4, is a description

of the type of computer program used, a discussion of

the techniques and subroutines available for solving

this problem, arguments concerning the validity of the

quasi-optimal programming technique, various dual space

aids to the scheduling operator, and a survey of post-

optimal study opportunities. Thus, these will not be

repeated here, with only a description of the sample

system and some of the scheduling results being presented

in this chapter.

4.1 Description of the Sample System

Although it would have been no more difficult to

have introduced any amount of time variability into this

sample system, for this first trial pass the system

was kept more or less time invariant, with only demand

for power changing significantly with time. Modifications

both in the performance of the system and in the time

variation of system characteristics for this unit

commitment scheduling technique can be found in reference

(104). The few system changes and time variations which

are tested in this simple sample scheduling example

will be described as they were made in the course of

running the various examples.

Obviously, there is no unique method for formulating
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any particular feature of the scheduling mechanism.

The adaptations presented here are merely suggestions,

and any modelling of a real system should be done to

accurately describe, and perhaps take advantage of,

any particular peculiarities of that system. In adapting

any special feature into the model one must be certain

to recognize the needs for

(1) accuracy of representation

(2) resultant speed of computation

and (3) ease of inputting information into the new
format.

There are eight power plants which are currently

operating (some plants are obviously out for maintenance

in this system, but these do not enter into the formulation)

in this system over the week of concern. A detailed

description of the environmental consequences of different

plant operations is given here in this system description,

although in this simple example only the dollar consequences

will take part in the determination of the desirability

of the various schedules. The environmental consequences

do, however, play a big role in the further extensive

testing of this system which can be found in reference

(104).

Plant 1 of this system is a relatively expensive to

operate unit, about 6. per megawatt hour, fossil fueled

plant of 160 megawatts capacity, with a moderately heavy
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air pollution factor, about 6 air pollution environmental
impact units per megawatt hour. Because of a cooling

tower the water impact is out to .75 units per megawatt

hour. The exact loading curve has a 70 megawatt on-off

variable with 90 additional megawatts available at costs

of $282 and $455 respectively for full use of these

variables. The startup of the facility takes one hour

and costs $330.

Facility 2 has 70 megawatts of maximum capability,

uses low sulfur content fuel and has sulfur precipitators,

thus has on the average about 3.3 water units and 3.1

air units per megawatt hour. The actual loading curve

includes 30 megawatts of on-off capability plus 40

megawatts of variable loading at costs of $157 and $221,

respectively. The startup cost is 112.

Plant 3 is 120 megawatts and has air and water

impacts of 7.2 and 4.7 units, respectively. Its loading

curve has two segments, 30 megawatts on-off for $85,

20 megawatts of variable loading for 80 if used fully,

then 70 megawatts of variable loading for $390 if used

fully. Startup costs 185.

Plant 4 is an 80 megawatt total combination of a

group of gas turbines with 2.7 water units and 22 air

units per megawatt hour. Its loading curve has 20

megawatts on-off at $100, 30 megawatts at $178 per hour,
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then 30 megawatts at 190 per hour. Its startup cost

is $150.

Plant 5 is a 240 megawatt base loaded type of highly

tuned fossil fueled plant with 120 megawatts on-off at

$210 per hour, then 80 megawatts for $390 per hour, and

40 megawatts for 161 per hour. Plant 5 costs 402 to

start up, and has water and air indices of 5.9 and 6.6

per megawatt hour, respectively.

The nuclear plant, number 6, has 560 megawatts of

capacity divided into 60 megawatts on-off and 500

megawatts of additional variable power. Over the course

of the week the goal set by the maintenance and production

scheduler is to use 84,000 megawatt hours of nuclear

power, and penalties are set at 8.6 per megawatt hour

for overuse, 2.0 for underuse. The air and water

indices are about 1.3 and 7.9 units per megawatt hour

respectively. The startup cost is $1019.

A hydroelectric facility is plant number 7, with

100 megawatts potential, 5 on-off and 95 variable, and

a goal for the week of 16,800 megawatt hours. The penalty

for overuse of water power energy is 7.6 per megawatt

hour and there is a $1.1 per megawatt hour reward for

any water energy used less than the quota which can then

be saved for later weeks. The startup cost is $184 and

the air and water indices are .1 and 1.1 respectively,

per megawatt hour.
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The pumped storage facility, number 8, has 80

megawatt hours of storage potential and of water usage

potential, with storing capacity of 1000 megawatt hours.

The input efficiency is 83.4% and the output efficiency

80.0%. Plant 8's startup cost is $119.

The initial conditions of the system include the

pumped hydro facility with 205 megawatt hours worth of

stored water, and all plants are on except plants 4

and 8.

The time intervals in the schedule progress by

one hour increments until hour four, then in increments

of two hours, two hours, four hours, four hours, and

finally, eight hour intervals for the rest of the week.

The first interval is 8:00 pm on a Tuesday.

The megawatt hours of power required of the system

(average values are given for those intervals longer

than one hour) are: 1230, 1205, 1100, 990, 780, 740,

1200, 1310, 1250, 760, 1400, 1260, 800, 1310, 1100,

550, 1265, 1020, 680, 1000, 1200, 425, 950, 1000, 890,

1285, and 1120 megawatts.

There is an opportunity to buy 200 megawatts of

power starting at hour 24, for eight hours, at a cost

of 1150 per hour.

There are limits on the amount of underextending

and overextending that can be done to the weekly energy
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quotas. The nuclear quota cannot be overused by more

than 5000 megawatt hours or underused by more than

6200 megawatt hours. The hydro over and under usage

limits are 2000 and 1200 megawatt hours respectively.

The ideal quota for the pumped hydro reservoir is to

leave 160 megawatt hours of storage at the end of the

week, with 5.5 penalty for each megawatt hour less

than this amount stored, and $5.2 reward for every

megawatt hour more than this which is stored.

4.2 Examples of Uit 0ommitment Schedules

The schedules created for this section were directed

toward the examination of the quasi-optimal programming

technique and its effectiveness in producing unit

commitment schedules. A greater variety of scheduling

strategies, as well as a demonstration of the use of

this mechanism as a simulator, including in both cases

some air and water environmental objectives, is presented

in reference (104).

The first scheduling attempted was that of the

system described in the previous section. The first

evolving decision field was confined to the first two

time periods of the week, with the entire remainder of

the week being carried in the linear scheduling mode.

The most important result to come of this sample run

was the demonstration of the fact that the scheduler
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tends toward integer values for the integer variables,

even when it is in the linear mode. In fact, for this
example, through hour 64, all integer variables assumed

integer values. That is, even in the linear, continuous

program optimal solution, the first 112 integer variables

in the schedule assumed integer values.

This closeness of the linear, continuous solution

to the integer solution is more than a coincidence, it

is a characteristic of this particular scheduling

mechanism. igure 4.2-1 shows further evidence of the

closeness of the iteger and the optimal continuous

solutions, closeness plotted on the graph of the resulting

consequences of the schedules (using the same example

as is givenlin figure 2.5.3-3 of this paper). There

are several reasons for this fortunate behavior of the

scheduling mechanism:

(1) The startup costs associated with the changes

in the plant on-off variable tend to make it desirable

for a plant to either turn full on and stay on,

or turn off, because moving this variable around

costs money. Thus, this integer on-off variable

tends to remain either full on or full off even in

the linear program degeneration of the actual

scheduling process.

(2) The loading logic equation 32-2 forces the

plant to turn full on for full use of the incremental
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envlronme ntal
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Figure 4.2-1 The representation of the closeness of
the actual valid schedules (represented by * ) to the
optimal continuous degeneration of the scheduling problem
(represented by X ) as seen the their respective measures
of scheduling consequences (see figure 2.5.3-3 or see
Appendix E of reference (104) for the original source)

loading variable Jn(t).

(3) At any one particular time, those plants which

are operating are largely chosen from a consideration

of which are cheapest to operate. Thus, generally,

even in the linear scheduling mode there is only

one plant which may be in an indecisive partially

loaded, i.e. partially on, position. This more or

less assures the full on operation of cheaper plants

and full off operation of plants with greater
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consequences. Thus, this is an additional motive

for the scheduling mechanism to force many on-off

integers to 0 or 1 positions.

(4) The spinning reserve requirements, when used,

measure the power producing potential of the system

in terms of the on-off variables. This then provides

an additional impetus for the scheduling program

to move a fractional on-off status up to a full

on position so as to realize the additional credit

this gives to the spinning reserve available to

the system.

(5) From a mathematical point of view, since the

integers are binary, there are no integer solutions

which are hidden within the polytope of all feasible

solutions. That is, all possible integer solutions

are on corners of the polytope, and are thus likely

to represent the optimal value of the objective

function (since corners are sought out by the

supporting hyperplane which represents the maximum

value of the objective function).

As an example of the kind of results that are contained

in this first schedule, the nuclear facility, plant 6,

was scheduled 'on' over the entire first 56 hours.

It was not, however, fully loaded over that span. The

values of J6(i) through J6(54), the fraction of the loading

curve used, were: 1, 1, 1, .84, .42, .34, 1, 1, 1, .38,
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1, 1, and .46. An abbreviated sample of some of the

rest of the results of this schedule is given in figure

4.2-2 (the notation used is the same as that used in the

equations in section 3.2 and in the rest of chapters 2

and 3. A summary of the notation can be found in the

glossary of symbols).
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Figure 4.2-2a Row activity in the schedule for the first
decision field, quality of schedule in $ Q, demands over
intervals in total megawatt hours D(t) with dual activity
representing the incremental cost of power in those
intervals, and activity of Mn(t) equations (see equation
32-11).
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Figure 4.2-2b More row activity from schedule for first
decision field, including activities of some Mn(t) equations
and from some Ln(t) equations, the startup logic equations,
see equation 32-17.
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Figure 4.2-2c Column activity from schedule for first
decision field, including at various times, 000, 001 and
002, the on-off variables An(ttt), extents of incremental
loadiAegs Jn(ttt) and Kn(ttt), hydro reservoir levels (pumped)
HL(ttt), extent of pumping hydro storage Gn(ttt), and
startup variables Wn(ttt) for various plants n.

In the second evolving step, the values of the

decision variables chosen for the first 56 hours of the

schedule were fixed. A few new initial conditions were

set to reflect the new position the system had been left

in, e.g. the pumped hydro level at 100 megawatt hours,
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and some of the weekend quotas were adjusted to reflect

the usages in the previous portion of the schedule,

e.g. 28,580 megawatt hours of the nuclear total and

6,300 megawatt hours of the hydro total were used in the

first 56 hours of the week, so they were deducted from

the weekly quotas to establish new target figures.

After the quotas were adjusted and new initial

conditions established, the next three time intervals

were set up as the second evolving step decision field,

again with the rest of the week carried in the linear

mode. Three valid integer schedules resulted from the

computational search before the optimum was established,

and the integer portions of these schedules are given

in figure 4.2-3.

From these few sample schedules it can be seen that

the size of the decision field should not be dictated

by how large a number of decisions can be handled by

the program, but instead by how small a block can be

sectioned out and still preserve the integrity of the

process. For, by concentrating on small blocks, the

greater number of alternative schedules produced yields

a greater amount of information about near-optimal

interchangeability of decision variables for use in

the event of unexpected outages, and this is gotten

for a small amount of computation time. For example,

if only three schedules are computed for one whole day



-107-

II

I.. ' FUNCT'IONAL'
I

I I I
I1196149.0984 196191.7650 1196175.5972 1
I I I II …--------- 1----- --I----...I II-------------

I
I ESTIMATrON
I

653= A'1064
654= A2064
655= 43064
656= A4064
657= A5064
658= B 5064
659 = A6064
660= , 7064
661= A1072
662= A2072
663= A3072
664- A4072
665= A5 072
666= B5072
667= 46072
668= A7072
669= A1080
670= A2080
671= A3080
672= A4080
673= A5080
674= B5080
675= A6080
676= A7080

I I I
I INTEGER I INTEGER I INTEGER'
I

I
I
I
I

I
I
I

I

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

I

I

I

1.0000
1.000o

1.0000
1.0000
1 .0000

1.0000
1.0000

1.OCO0

1.'000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
19000
100000
1.0000
1 .0000
1.0000
1.0000
1.0000

I

I

I
I
I

I

.I

I

I.

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I
I

I

II,
I

I

I
I
I

I

I

I

I
I
I
I
I:

I
I
I

1 .0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1 0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1. 0000

1.0000
1. 0000
1.0000
1.0000
1.0000
1.00001.0000

I

!
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I
I

I

I

1.0000
1 .0000
1.0000
1.0000
1.0000
1.0000
1. 0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1. 000
1 .0000

I
I

I
I

I

I

I

I

I

I
I

I

I

I

I

I

I

I

I

I

I

I
I
I

I

I

I

I- … --. . .---.-- I -l--------

Figure 4.2-3 Alternative schedules for the second decision
field, list of integer decision variables for these
alternative and their respective dollar costs
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these schedules together would yield, in effect, 27

alternative daily scheduling possibilities

To demonstrate the expense that would be involved

in computing schedules for large systems, a 112 integer

decision field was entered for scheduling. This problem

was simply the entire completion of the scheduling

problem described in section 4.1, that is, from time

64 to time 168. The resultant schedules, and some of

89
the partially completed schedules, are given in figure

4.2-4. The completed all-integer, valid schedules

cost about 3 apiece to generate for this example.

At this point in the testing of the scheduling

mechanism, a revision of the system was enacted.

The resulting program is summarized in Appendix A, and

listed exactly in Optional Appendix A. (The cards which

were changed from the previously described program are

summarized in Appendix B, and listed in Optional Appendix

B if there is any desire to reconstruct either program

exactly). This change was made to be certain that the

low costs of the integer on-off variables, An(t), were

not a primary factor in the closeness of the linear

program schedules to the integer schedules, nor a reason

for the quickness of the computation procedure (as it

89. The system was told to stop after computing six
complete, valid, integer schedules, and was then told to
print all pending partial schedules.
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Figure 4.2-4a First portion of the completed integer
valued schedules for the integer decisions of the third
decision field
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Figure 4.2-4b Continuation of integer values of the integer
decision variables for the third decision field, these are
the completed valid schedules
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IA I A I I I
! 56b. o04 I L.Joo 1 t1.0000 a I.COOC I 1.0000 t 1.0000 1 .1.0000 I
K 566" A20c* I 1.0JJu I 1.0000 I 1.0000 1 1.0000 .I 1.0000 I 1COo I

567- A3004 I 1.uJj I l.CCOO I 1.0000 I 1.0000 I 1.0000 I 1.0000 1
1 568m h40c4 1 .iUJJJ I 1.0030 1 1.OCOC 1' 1.0000 1 1.0000 I 1.0000 1

569- £50o4 I 1. uUOu I 1.00)0 I 1.0000 I 1.0000 I 1.0000 I 1.0000 I
570. e5304 I A.U.OJU I 1.0030 I 1.OCOC I 1.0000 I 1.0000 I 1.0000 I

1 571 A6064 I L.OWuO 1 1.0000 I 1.00O00 I 1.0000 I 1.0000 I 1.0000 I
i 572- 71004 I L.UUJU I 1.CCOO A 1.COOC 1 1.0000 I 1.0000 I 1.0000 I
K 573- Al M I .iIuJu I L.00.10 1 1.COO I 1.00O0 I 1. 0000 I 1.0cOo I
K 575- A3C? I L. Jooj I 1.0000 A 1.0000 1 1.0000 1 1.0000 I 1.0000 I
I 576- A4072 A I .JJJ 1-. 1.C000 A 1.0000 1. 0000 I 1.0000 I 1.0)00 I

577- A50/ I t.ouuUO I 1.0000 1.0000 1 1.0000 I 1.0000 K 1.0000 I
1 578. 85C7 I L.J3J A 1.0000 A 1.0oOC I 1.0000 I 1.0000 I 1.0000 I
I 57q- A6C7- I /.uuJJ 1 1.0000 I 1.0000 I 1.0000 I 1.0000 I 1.C000 I
I ,80- A7072 I 1t.UUo. I .5500 I 1.0000 1 1.0000 I 1.000 1 .8625 1
£ 581- AlOoO I L.UOJU I 1.00J30 I 1.0000 I 1.0000 I 1.0000 I 1.0000 I

583- A3)cO I L u0Ju I 1.0000 I 1.0000 1 1.0000 I 1.0000 I 1.000 CO0 I
584u 40bu I 1.OOJU I 1.00JO3 I 1.CCOC I 1.0000 I 1.0000 I 1.0000 I

I 5E5- A50Ob I 1 A.jdO I 1.0000 I 1.0000 I 1.0000 I 1.0000 I 1.COO0 I
K 56$b- 50.0 I .Uu3,o I 1.OCOC L 1.0000 I 1.0000 1 1.0000 I 1.0000 I
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6C6- A2104o I I I I . I * I I

I 6C7- A3IU,, I L:UJUJ I 1.0000 A t.COoC I 1OOO0 I 1,0000 I 1.0000 I
I 600- A410o4 I .0JU I .cooo0000 I 1.0000 1.000o 0 I 1.0000 .6562 
K 609- 50IU4 I .Jj Idd A 1 1.000 0 1.0000 I 1.0000 I 1.0000 I
1 610- 85104 K L.0o00 A 1.0000 L 1.0000 1 1.0000 1 1.0000 I 1.0000 I

K 611. A6 lu A L .. h# L 1.0000 A L.COOC I 1.0000 'I 1.0000 I 1.0000 1
K 612. A71t.,4 A I 1.0000 A 1.OOC K 1.0000 I 1.0000 I 1.0000 I
1 613- A1112 I t. oo I 1.0000 I 1.0000 I 1.0000 I 1.0000 I 1.0000 I
I 614. AZIL4 AI I I*II I 
A 6 315- A6 oA I uou I 1 t .0000 1000 10000 I 1.0000 K 1.0000 1
K 616. AMtZ I IUU.J A 1.0000 A 1.CCOC I 1.0000 I 1.0000 K .6562 K
K 617- All0 I L.0;Uu A 1.0000 I 1.0000 I 1.0000 I 1.0000 1 1·.COOC I
I 6-. PA104 I t.JjU A 1.C00 A 1.000C 1 1.0000 I. 1.0000 I 1.000 I
I 9- AetIs I L.JJJu A 1.0CO A 1.0000 K 1.0000 I 1.0000 I 1.0000 I
K 620- A7tl2 I . 00U I 1.0000 A 1.0000 K 1.0000 I 1.0000 I 1.0000 I

Figure 4.2-4c Some of the partially completed schedules,
integer variables in the third decision field
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Figure 4.2-4d ontinuation of the display of the integer
variables for some of the partially completed schedules
in the third decision field
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turned out it was actually not a factor). Thus, in

this example the on-off prices were set much higher

(as can be seen in the comparison of Appendices and B).

Here the decision field was chosen to go from the

time of 64 hours to 96 hours. The resultant schedules

are given in figure 4.2-5. The price of computation
-I . -- .I--I ------- -------I------------- -------------

I . I ! I I I I I
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I . I I
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Pigure 4 .2-5a Display of the integer variables for the
completed schedules of the revised problem with their
respective costs, partially completed schedules are
displayed on the following page

I NODE

I I
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I --- - ------------- --- l---I -I----- -.... ! ----
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I----------- T---------I--------I---I
I I I I I I
1 637= A1064 I 1.3 30 1 1.0,)00 1 1.))3) 1 1.)) 1
1 639= A2064 l.O0000 1 1.0300 1 1.0030 i 1.0J0.) I
I 639- A3164 1 1. 3)) 1 1..)))O I 1.030 1 1.)))) I

-' 643= A4364 I- - 1.3000 I-' 1.0300 I 1.0000 I 1.033 I
1 641- A5064 I 1.3C30 I 1.0030 I 1.0003 1 1.3303 
I 642= 65364 I 1.3000 I 1. OCC I 1.3))) 1 1.)))2 I
1 643= A6364 1 1.3300 1 1.000 1 .0003 I l.VJo0 I
1 644= A7 )4 1 1.330 I 1.)))0 I 1.0000 I 1.))J) t
1 645, 1.1072 .1 1.0030 I 1.0300 * I 1.030) 1
1 647- A3072 I 1.0300 I-- 1.0300 I 1.0003 O 1.033 I
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1 652- £7072 1 1. 0.)0 1 1.0000 1 1.0300 I . I
I 653 A13O .0" _ I _ .... "'I . I
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1 659 A628) I .S821 1.3) 00 1.000 I 1.0OJJ 1
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I 661: A1088 1 1.0000 1 .5625 I 1.))0 I 1.0300 1
1 662. A2098 I 1.00, I 1.0)CO 1 .5714 1 .5714 I
1 663- A3G38 i 1.0000 1 l.O.)0 I 1.))) I 1.))) I
I 664= A.)ba8 I 1.0)O -1 1.0)) I * .50330 .5JO0 I
I 665= A5.u8 I 1.0)00 1 1.0000 I 1.0003 1 1.3000 1

-'- 666- 50 I-- 1'. 30000 --r - 1.0300 -- 1.0003 1 1.0J3 I
1 667- A6088. I .821 1 1. OOCO I 1.0)03 1 1.0300 1

-I 668- A708a I 1.0000 I 1.0000 I 1.)3)) I 1.)))) I
I 66 A11 )q6 I . I I .
I 670= A2096 I I . I I
1 611= A30'96 1 1.0003 1 1.000 1 1.000 1 1. 30o 1

1 -672- A4396----1 -- .- .- r. --. --- I. I .
I 673= A5J'J6 I 1.0000 1 1.0)00 I 1.J).) 1 1.0))) 1
I .614= R8596 - I 1.3C.O0 I 1.0300 I 1.0303 I 1.0300 1
1 675= A6096 I 1.000 I .03O0 I. 1.0O0 1 .UJU I
-" 676- A7096 .T 1.0000 ' 1.0)00 I 1.0))) I 1.0030 I

Figure 4.2-5b Values for the integer variables of partially
completed schedules for the revised scheduling problem

did not change, nor did the magnitude of the variance

of the linear schedule from either of the integer

formulations (the first and the revised) increase

significantly.

Figure 4.2-6 displays the best computed schedule with

the primal and dual activities of its rows and variables.

The names used for these rows and variables are the same

as those described in section 3.2 and listed in the
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glossary of symbols. The interpretation of the dual

variables is described in detail in reference (19), the

maintenance and production scheduling counterpart to

this document.

Additional schedules, simulations and interpretations

of results, as well as examples of the use of spinning

reserve requirements and effects of changes in reliability

measures, can be found in reference (104).

... ROW.. AT ... ACTIVITY... SLACK ACTIVITY .. LOWER LIMIT. .. UPPERLIMIT. .DUAL ACTIVITY

Q
0364
rn072 .....
D)8)
0388
0006
01:14
D0112

* 0120
0128
C136
0144
0152
0160
Dl bS '-

HYTO T
P14TOT
?1064

RS 257260.63542 257260.63542- NINE
LL 10480.00000 . 10480.0J000
LL '380.00000 · 88OC.03000
LL 443J. ))] 44)0.0))33
LL 10080.00000 · 10080.00000
LL 8160.000 8160.33 . 8 000
LL 54 43. 00000 544 0.00 000
LL 8000.00000 . 8000.00000
LL 96)3. ) )). -) ) 96003.)))
LL 3400.330000 . 340C.00000
LL 7&O.JJOJO 7600.0300
L L 8 )) . ) )330 . 8000.00000
LL 71iO.30JO . -- 712C.03000
LL 10280. )0)0 102983. ))O ))
LL 891 0.0003 .- 8960.00000
EO 51420. 0000 . 51420.03000
EQ 77)3. )J)]) - . - 77)0.,))))
EQ 160.00000 · 160.00000
LL

M1372 LL .

M 1083 -- L .
M1n08 LL ,
M1096 LL
M 104 LL .
M1112 LL 
M1120 LL
M1128 L .

1136 LL . .
1144 LL

NUNE
NONE
NONE
NONE
NONE
N ONE
NONE
N ONE
NONE
NONE
N ONE
N ONE
N ONE
NONE
NONE

5142 0. 0)000
7730.333J0
160.00000

NONE
NONE
NONE --
NONE
NONE
NONE
NONE
NO NE
NONE
NONE
NONF

n1152 - . .. NONE
M l160 LL . . NONE

ll 3 LL ·· N']NF
M2 )64 -L L - . -NONE
P2072 LL . . . NONE
M23O0 LL . NONE
M20S8 L NONE
M2396 LL . .NE . E
N2 134 LL . . NONE
M42112 -- LL . . - NONE

I1 ZO0 L L NONE
£41 LL . - . ' ..... - NONE

I ~1 I,, L . NONEY.' i ; LL · NONE
M2144 LL . - . NONE
142152 t L - . NONE
M 2160 LL -- .- NONE

Figure 4.2-6a Row activity of best schedule for the
revised problem, Q row is quality of schedule, D(ttt)
the demand at time ttt, NUTOT, HYTOT and PHTOT the nuclear,
hydro and pumped hydro quotas, Mn(ttt) the logic equation
(see equation 32-11)

I

1.30)))
6.33333-
5.57143-
5.57143-
7.34531-
5.73393-
5.57143-
5.73643-
7. 35781-
5.57143-
5.78393-
5.98768-
5.57143-
7.39)63-
-604688-
5.57143
5.48643
5.72656-

920. ))))-
371.42857-
371.42R57-

1648.6253')-
488.42857-
886.00000-
490.22857-

1306.99643-
9)5. 3 )O )-
524.42857-

1194.90000-

1681.2500o-
713.753) )-
258.66667-
14.85714-
14.85714-

582.50000-
957.85714-
816.35714-
67.65714-

645.125)3-
L246.85114-

82.8571%-
750.95714-

14.85714-
475.25000-
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...ROi.. AT -·.ACTIVITY... SLACK ACTIVITY .. LOWER LIMIT· .,UPPER LIMIT. .DUAL ACTIVITY

M 21 6 R L L· · ". N',IN E 167.00000-
13064 LL . NONE -- 373.33333-
M3072 LL NONE 
M3083 - 8 . 0 NONE

"3088 LL · NONE 535.253)-
M3396 LL · · NONE . 91.00003-
N3104 8S . NONE
M3112 '-- LL ...--- NONE ... 92.40000-
M3120 LL o NONE 537.25000-
'3128 BS .50000 .50000- · NONE
N3136 .LL ..... NONE .119.00000-
n3144 OS . NONE
M3152 B BS . . .NONE
M3160 5 . NONE
M3168 LL NONE 18.87500-
M4364 R S .66667 6667 NONE
M4072 S . . _ NONE
44080 BS NONE
44308 LL · _ ·.... . ...NONE . 242.87500-

M4096 BS NONE
144104 B · NONE 
M4112 .. . -- NONE
K4 120 LL NONE 341.87500-
M4128 BS * NONE
M4136 LL ... . . NONE 103.28571-
M4144 LL · NONE 312.48571-
M44152 BS . NONE
-16 L. . .* NONE 349. 7500--

14168 LL . ,' . NONE 27. 25)3')-
N5064 .L L . NONE 738.66667-
NS5072 LL . NONE 494.85714-
N583 .LL .- . NONE .. 494.85714-
N5089 LL . . NONE 1062.50000-

-N5096 L L . . NONE 546.85714-
N5104 LL · _ NONE 494.857t14-
15112 BS . NONE
N5123 LL ·.. ._ NONE 1066:50000-
N5128 .LL · NONE - 4 94. 85714-
N5136 LL · . . NONE 562.8571.4-
N1 4 LL . . NONE
N5152 LL . NONE 494.85714-
N5160 LL · NONE 1377.0930)-
N5168 LL . NONE
M5064 L .. NONE 1672.0000-
M5)72 LL - . NONE 940.57143-
1s5080 ' . . * NONE' 94.5743
M50e L. NONE 2643.5)33))-
M5396 LL .- NONE 1096.57143-
M5104 LI · · NONE 940.57143-
M5112 L .... NUNE . 551.31429-
15120 LL · NONE 2655.50000-
14M5128a -CL . NONE 90.57143-
M5136 LL NONE 581.71429-
N5144 .. LL . .. NONE ... 712.1l429-
M5152 LL . NONE 940.57143-
15160 LL . NONE 2687.00000-
M5168 .L . .-- NONE 753.33)3)-
M6064 LL NONE 1001.28571-
'46072 OS ....16000-' 6 " . '-- ....... NONE
M6)3) RS .7403 .74000- NONE
'M6088- L . NONE '261. 143Z
16096 LL.. NONE 653. 0 3')-16106 BS -... : .48000 ...4. 8000;-- . .. .. NONE
46112 LL NONE 660.00000-

:.61) S -- . NONE
MM6128 BS .92000 .92000- NONE
M°66 .L1 -- -- L NONE --- 8 5 3 0 1) 3-
M6144 BS · NONE
M6152 BS :-. .52500 ' 52500- . NONE

Pigure 4.2-6b Continuation of row activity of best schedule
for the revised problem, Mn(ttt) is the logic equation for
insuring proper loading order, as is Nn(ttt), and Ln(ttt)
is the startup logic equation
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I.ROM.w AT ... ACTIVITY... SLACK ACTITVITY ..LCWF LMIT. .. UPPER LnIMIT. .OUAL CTIVITY

46160 BS WI NONE 418.Z2381-- ~~~~~. . * ~~~~~~~~ ~ ~ ~ ~NO NE 873.57143-14706'. IL - *0 N~~~~~~~~~~~~~~HIu ~ .NONE' Ln7372'"'~ L- L-~'--- o · ... , ... NONE .. . 64.60000-
N7080 LL NONE 64.60000-
M7080 " 'L ..... .. . NONE ... 353.64464-
H7096 L · ·' · NONE 88 10000-
17104 .. L -' - . -. NONE .. 136.60000-
7112 L . · · NONE 190.00000-

'q712O LL · · "NONE '3-20. 14464-
14t12 LL · · NONE 78.6' 0-
M4736 ' LL · · ' NONE . 226.10000-
PT 7144 L L· .. NONE 380.95000-
1* L4 LL · · ·. . NONE ... 64.60000-
147163 LL .. _ NONE 227.83214-
·M71S9 LL ·. ........... NONE '---438.58214-
L164 aS · NONE
L13? BS . NJNE
L1080 R5 1.)1300- 1.000 NJNE
L1088 ... UL . -" .. .. NONE. . 330.00000 -
L1096 RS 1.00000- 1.00000 NINE
"LI1)4 --U L ' . ' NONE . 3300000011Z1 U . ._ N ON E .. 330.00000
LlL ..1112 UL . .. ONE .. . ..---' ....2T. 37143 
L1128 BS 1.00000- 1.00000 NONE .
L1136 . UL' . NONE .. .... 33000000
LI.L44 UL . . NONE' - 330.00'3o
Lt 52---L NONE 330.00000 '
L1160 U - . NONE . 330.0000o
L1168 .BS .375 NONE ---I~~~~'
L2064 OS NONE .-L20721-12--'0 $---1,100000- 1'3'000H E ' ......
L2090 UL · NCNE *112.00000

L 0' 8--UL ':i)NE ... ' 112.00030
LZ)396 BS ·. NONE .
L2104 -- UL · · NONE 112.00000
L2112 UL · · NONE 112.0000
L2120 .UL .. . NONE . 112.00000
LZ 1 8 U1 · NONE 112. 300
12136 U. 1 NONE 112.00000
L 144 U N INE . .00000
L21 I UL . NONE 11 2.3) '0o
t12160 UL · NCNE · 11.0oo00
1268 as . 1.00000- 1.00000 NINE
L364 .RS NONE .
L3072 UL .___ * NONE · ___ ' 185.00000
L3390 UL .. UNONE . 136.14286
L3008 UL NGNEL3088 as . NONE- _ _ _ _ _ _ _ _ _ _ _

L3096-U L · 'NONE · 185.3330000
L31)4 UL 0 NONE ... . . . . _ 185.03222
L1112 UL · · NONE . · 58.857 L4
L31ZO -IS . · NNE
13128 U . ....NONE . · 185.00000
L3136 U · · NONE 1 54.85714
13144 -- L 0· N3NE . 185. ) )
13152 L. .U NCNE .. . 185.00000
13160 RS . NINE 
L3168 UJL · . NONE 185.0000
L4064 S NONE
L4072 aS 1.00000- 1.00000 NNE,

""L'4J 8 ---- UL ., ·. NINE .......... · L50.0000)"
L'J886 U L NINE 150.00000·48)96 ' '8s ..: . 'o-000:- o.00000 - NONE 
L4 104 UL ' NONE 150.00000
L4112 UL . NONE 50 ))
L4120 UL NONE .150.30300
'L41 S .250..8 .2000 o' - NONE

L411 U · · NONE · 150.00000
L414 UL . . - NINE ....... 50.00000L4136 UL T-_'NjNE150.00000
L4152 RS N NINE 
L41b3 UL' ' ' NNE .. 5000000

Pigure 4.2-6c Continuation of the row aotivity of the best
schedule for the revised problem, Ln(ttt) is the startup
logic equation
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·, ROW.. AT ... ACTIVITY... SLACK ACTIVITY .. LOWER LIMIT.

L4168 RS .31250- .31250. NONF
'L5)64 BS ·. NIJNE
L5072 OS ._ _ . _ ._ NCNE
L50S1 .UL NONE
' 5C3 UL . . NONE
L5096 S -- B. . NONE
L51 4 UL . NCNF

-L5112 -- S . . -NONE-'-
L5121 UL - . . NONE

'-L5128 -- UL - -- . NCNE
L5136 S · . NONE

'1L5144 . .UL . NONE
L5152 UL · . NONE

-E5160 - BS . NONE
L5168 UL . · NCNF

-L6064 UL - -' '--- N NE
L6072 U L * . NONE

16080 UL . NONE
L6)88 UL * N]NE
L6096 UL . NCNE
L6104 ' Ut. -- ' ' NONE
L6112 UL * . NONE
'"6120 UL . NONE
L6128 UL NONE
LL36 UL .. NONE
Lb144 UL · · N'NE'

-L6152 UL NONE
L6160 UL NCNE
616f U;L' NNE 

L7064 BS · . NONE
L7072 -''-.-.BS . . .' .......- ........... NONE
L708 8S 1.00000- 1.33000 N INE
L7088''' UL .''-''- .' ' -' .---'' .' NChE
L7096 BS N NE

-L7134 -8S'---. 000=- -- -'.OO10000' '. NJNE
L7112 UL . NONE
L7120 UL . . NONE
L7129 BS 1.30000- 1.00000 NONE
L7136'..'-' UL NNE---
L7144 UL NONE

"L7 152' R S.- 75'- ' 750'0' N ' NE
L7160 UL . . N ONE
L7168 UL- " NNE' '
L8064 UL · NONE
O3J72 UL . ' '''. : NONE

L1080 UL NONEL808- . ..L '---- '..'-.*'.'''. N-)NE ..
L03;6 UL NONE
L8104 ' UL NONE
LO112 UL NONE
L8120 UL ' ONE
La128 OS NONE
'L3136- .UL - . NONE
L8144 UL , NONE
La152 UL N3NE
L8160 UL NONE
L8168''- BS '5625- .15625"' ' NONE
t064 EQ .·

"X37?2 -EO
X080 EQ
X)8 . .. . ..
Xo96 EQ3
X104 - EC
XLIZ EO . .
XI2a -- ..... .
X128 EQ ... ........
X1 36 -''- '' E .......
X144 EQ

X152 EQ
X160 EC
X168 EO

UPPER LtlMIT. .DUAL ACTIVITY

02.. 00000

402.00000

* @~43220300
402:00000-:* 402.00000

402.00000
402.00000

· *_ 402.00000

·59.003* . ..... 630.00000
1019.0010
453.46429

....... 269.46429
781.46429.-' '490.26429
122.8)0')

"710. 810000
188.80000

... ·-..-. 533.0)31 )')
1019.00030

-- 6552.7857L

... 184.00000

184.00000
184. 030)-

..............14.,030 20'
184.00000

184.0)09...... 184.00000
119.00000

... 119.22)))
119.00000

-'. '-''- 119.000)
23.20000

119.00000
119. )))
102.20003

119.00000
- 1.00000
119.00000

· 5.72656-
5.72656-
5 72656-

· * - 5.72656-

·. ̀ ''~ ~" 5. 72656-5.72656-
* 5.72656-

5. t2656-
_- - -- --- .5.7256-

5.72656-
5. 72656-
5.72656-

Pigure 4.2-6d Remainder of the row activity of the best
schedule for the revised problem, Ln(ttt) is the startup
logic equation and X(ttt) is the hydro reservoir accounting
equation
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-CtLuMN.' AT'- ;.-.ACT IV{'TY;.. *..IiPrTCo-Sr ' I;; 'bwE''tT't; .. 'UPPER LIMIT.;' .RE OUCED COST.

A1056 -'-- EQ - 1.0-0000 
A2356 EC 1.00000
A3056 ' - E 0 1.OOOO.. ' 00 
A4356 EQ 1. )0O.3
A5056 EO ' '' 1.00000
A6056 E 1.00000
A7)56 'EO . 1. )JO) 
HL056 EO 100.00000
J1064 ''-''BS 1.033) 36435.3330
W1064 LL . 330.00000
J2064 BS' - .. 1:00000 t. -.--- 1768.00000
W2364 LL 112.00000
J3064 OS 1.00000'''' ' 640.00000
K3064 UL 1. ) 3333 3123.333
30c6'4 c L· . . 000O'

J4064 UL 1.00000 1424.00000
K4364 ' S . 33333 - 1520.33300
W4064 LL 150.00000
J5064 LL . ' '-' 3120.0000)
K5064 0S 1.30000 1288.00000
W5064 ' ' L .' .. ' '.' 402.00000
·J6)64 UL 1. 03)
W6064 ns . 1019.00000
J7064 UL '1.30000
W7064 L ' ... 184:00000
A8064 LL
68)64' .LL.
HL064 35 100.000.PO
w8064 3S' ' 119.0000
JI172 aS 1. 0000 3640.00000
W1072 LL ' . ' ' 330.00000
J2072 FRS 1768.)3311
W2072 '1 t 112. 00000
J3072 UL 1.00000 640.30000
K372 S ' 1.30000 3120.00000
W3072 S 185.00000
J4072 ' LL-- . 1424.)303)
K4072 LL . 1520.30000
W4072 ' .LL ' - 150.30000
J5372 LL 3120. 0000
K5072 ' ' S -' .. 1.00000 '. 1288 .0000
W5072 LL 402.3303)
J6072 s - .84000'-----
W6072 LL . 1019.00000
J17372 ' ' BS - 1 )3 .
W7072 LL _ _ 184.00000
A8072 LL .
G8072 LL
HL072 ". B S'-- --- 1.)10000"00- '-
W8072
J1080
W1080
J2 ) )
W2080
'J3'3J0
K3080
W3,J0
J4 )3
K4080
W4U.10
J5 ) )
K 03 
w53JQO
J6080
WbJOIC

85
ns
LL
RS
RS
IJL
UL
LL
LL
LL

I

BS

LL

1.00030
1. 0000

60. 00

:26000

1.0(. I.Nc
I t.OC
1.0%

. 1.0.1. 

1.0(
1.01

100.0-...- .Io- o

119.03)03
3640.00000

330.00000
1768. )).)) 
I 12.0000
640.OJ000

3120.00000
185.0 000

12 4. ) )) )
1520.000C0

150.00000
312 0. 00000
1188. J3000
42. 30 )J)

i 019.3: 0o0

3000 1.00003
D000 1.00000
3000 1. 03000
)003 1.0)3)3
3000 1.00000
0000 1.00000
)000 1.OOOOQ
3000 10. 00000

.. 1.03),30
1 .00000
1. 00000
1.00000
1.00000

1. ' 00000
1.00000
1.00000
1.00000

1.00000
1. 00000
1.00000
1.03000
1.000301.339
1.00000
1.00000
*· -j ))0

1o0o.00000
1. ))33)31.0 00
1.00000
1· ).3)0.3
1.00000
1.000)0
1.00000

1.00)00
1.00000
1.00000
1.0000
1.00000

1.00000
1.0)301. 00000
1. 00000

1 00o 000

1.0)1.)
1.00000
1.03000
1.00000

1.0)3)0
I.OJOOO
1.0000

1.o300
1. ooo
1.00000

1.00000
1.00000

Figure 4.2-6e Oolumn activity of the best schedule for
the revised problem, with An(ttt) the on-off variables,
Bn(ttt) on or off the second segment of the loading curve,
extents of incremental loadings Jn(ttt) and Kn(tttl, extent
of pumping hydro storage Gn(ttt), pumped hydro reservoir
levels HL(ttt), and startup variables Wn(ttt) for plants
n at times ttt.

.

1019. 3) 3-

5. 72656-

330.00000

112. 00000

53.:33333-

96.00000-

150.00000
738.66667

402.00003
2046.33333-

225.52381-
184.00030
422.33333

. 1199.00000

330.00000

112.30000
251.42857-

86.85714
182.U5714
150. )))3')
494.85714

432.:0030

860.00000

184. 0a00
812.42857
613.85714

330.00000

251. 42857-

48.85714
86. 5714

182. R57'14

494:85714

389.00000
r
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.COLUMN. A ... ACTIVITY .. .. NPUT COST.. .. LOWER LIMIT. .. UPPER LIMIT. .RECDUCEO CST.

ns ... .. ....
LL L. . 184.0000

100.00000

1.:0000
.-. 1.00000

1. )0o33

1.00DP00
1.30000I . oo0oo
1.) ))3

' 1.00000

1.00000
i .00000

119.3)33)
3640. :30000

.... 330.0000
1768.00000
112.00U00
643. ) )))

3120.00000
185.30000

1424.00000
1520. J003
150.3))

3120.o0:)00
1288.00000
402. 00000

1019.3)0311

184.00000

100.00030'---- -
S . 119.30000

85 ........... ... ....3640.00000
LL . 330. 0000
LL " . - 1768.0000
IL * 112.)3303
-U-- -- l:.0000 64 C. O0000 '
RS 1.30000 3120.00000
6 S . ----- 185.00000
LL - 1424.00000
LL · 1520.33070
LL: - 150.00000
LL . 3120.1033J
8S 1.3J0000 1288.00000
L L 402.00000
FAS 1. )33)0 .
IL
RS
LL
LL
LL
nS
LL
US
LL
S'B
AS

LL
AS
RS
UL
UL
RS
LL
LL
L L

UL

LS
BS
aS
aS
L

BRS -

1.0000
1019.00000

184. 0000

100:00000 .
119.00003

4C06. JO03
3640.00000

_....... - -- - 330.03003
2 154.000
1768.30030

112. 00000
1.00000 1211. 00000
1. )0))0 643.23:))
1.00000 3120.00000

185.00000
1514.00000
1424.00000
1523. J) ))

150.30000
1.00000 3008.00000

3120.3 )))3
1.0,o00 .120.0000
1.00000 1288.3)1)3

402.00000
1.00000 512.00000
.520'333

1019.00000
324.))3))

· * 1.00000
. 1.00000

1.000JO
100G. 00000
* 1.0}300

·.oooo· * ~ 1.00000. 3o0 

1.00000
*. ~ 1.3)30

1.o)0)0
1.00000

. 1.0000
* l·1.00000

1. o000
1.00000
1.0)030
1.00000
1.00000
1.03000
1.00000

1.00000
1.00O0)0

· 1.00000
1.00000

· ' : -)1.033J3
......... 1.00000

1.00000
*.......... -- 1.00000

- 1.00000

1.00000
1.3)0)0
1.0000
1. 00000
1.00000
1.00000

1.00000
1.00030

·. ~ ~ 1. )03)S
* .* - 1000.00000

· 1.0000
*1.OOO3
1.00030

* 1· 03000
1.00000
1.00o000
1.00030
1.00000
1.03))

· 1.0000

1.000J0
1.00000

· l. J) )))
* 1.03000

·* ~ 1. o0030
1.00000
1.00000* 1.0)3)o
1.000JO

.* 1. 00003
· 1.00000
* h 1.0000
· ' 1.3)0)0

184.00000
812.42857
613.85714

458.12500-
185.3))333
96.00000-

1062.50000

6834.46429-

1059.13714-

1976.20000

330.00000
-891. 00000

112. )))3
186.42857-

4 7.85714
143. 57T14
150.00000
546.85714

402. 000o0

565.53571

14 .00000
633.42d57
738:65714

95. a )3,

514.57143

8:32. 3).) 33

251.42857-

622.57143
8o. 85714

182.85714

2879.14286-
494. 85714

749.53571
e

Pigure 4.2-6f Continuation of column activity of the best
schedule for the revised problem

4
LL
LL
RS
BS
BS
8S
AS

AS
JL
LL

ILRSLL

RSAS
UL
FS
UL
OS

8S'

J733'
W7080
G8080
0880

HL080
Wd)8)
188os

J2088
W2088
J3038
K30d8
W3088
J43d8
K4J88
h4038
J5083
K5 088
WS)88
J6088
W6083
J703S
?7088
A808 8

HL 398
68088
J1096
w1096
JZ39632O96
J2096
33396 .. "
K3096
U396
43096
X4396
W4096
J5096
K5096
US 09 6
J60)96
W6096
J7006
W7096
AR096
68396
HL 096
w8096
ALl)]
J31104
W1104
A2104
J2104
W. 1)4
A3 104
J3104
K3104
W3104
A41 34
J4104
K4104
W4134
A t 104
J5134
B51 4
K5104
w514
A6134
J61)4
W6104
A7104

. .
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COLUMN. AT ... ACTIVITY... .. INPUT COST.. .. LOWER LIMIT. .. UPPER LIMITt .RFnUCED COST.

J7104 L L L - 1.00000
7104 LL * t8400000 1.00000

A8134 LL ·· . 1.00000
G8104 LL . . 1.03000
HL104 RS 100.00000 . 1033.4)))3
W8104 BS5 -- · -. - 119030000 ' 1.03000
1112 RS · 4400.00000 · 1.00000
J11 I AS . 3640.)3 3) · ..3 30
W1112 AS · 330.00000 1.00000
A2112 LL . -- -2000.30000 .1 )3O33
J2112 OS * 1768.0JO0 · 1.00000
W2112 BS . 112.0000 0 · 1.00000
A3112 UL 1.)0030 1373.J3))) I 1. ))3O)
J3112 UL .1.00000 640.00000 L. 100000
K3112 BS 1.00000 3120.00000 . 1.3)333
W3112 IL 185.00000 .1.00000
A4112 LL 1622.00000 1.00000
J4112 LL 1424.00000 . 1.00000
K4112 LL 1520.000 1.00000
h4112 BS 15 0.)333 _._ __ 1.033 3
A5112 UL C02.UJ300 1.00000
J5112 8BS 3120.0000 .00000
B5112 UL 1.))330 3120.03000 · 1.00000
K5112 UL 1.00000 12·8.00000 1.00000
W5112 LL .402.03)3'3 1.)33)0
A6112 BS 1.00000 441. 30000 o . 1.00000
J 12 . .BS 1;,)0000 . . 1.00000
w6112 LL . 1019.00000 · 1.00000
A7112 BS .80000 200.00000 1.03000
J7112 3S .803)30 . , ,.3.) J30
W7112 S .. .80000 184.00000 . 1.00000
A9112 LL 1. 00000
G6112 LL . · 1.00000
HL112 BS 100.00000' 1000.00000
w3112 'BS --- .. - 119.0300.3 -. 1. 330)3
A1120 BS 1.00000 4400.00000 . 1.00000
J1120 -UL - -- 1.00000---- 3640.00000 . 1. 00000
Wi1123 UL 1.)0330 330.))303 · 1.00000
-2120 - - S . 2411.00000 .O I .00000
.2120 EL . 1768.00000 1.0)3330
W2120 - as- -1-. . 1 2.00000 . 1.00000
A3120 UL 1.00000 1121.00000 1.00000
J312) RS 1. i.3030 640.031)0) 1J.33)00
K3120 UL 1.00000 3120.00000 _ 1.00000
W3120 L '; - 185.30000 ' ' 1.0.)33
A4123 BS .25000 1711.00000 · 1.00000
J4120 -S --- -.. 50000 ---- 1424.0000 . 1.00000
K4120 LL . 1520. )3)03 . 1.03)30
W4120- BS . .50.000 0 015.0 .' 1.00000
£5120 IlL 1.00000 3100.03000 1. 0 ))33
Jl512I- LL. . 3120.00000 .. . 1.00000
85120 BS 1.00000 312.00000 1.00000
K5120 BS 1.3030 .1288.1'33))3 * 1.0)0)30
W5120 RS . 402.00000 . 1.00000
A6120 - .s .- -00000 .490.O0o ' . 1.00300
J612') UL 1. )3)3 1.00000
16120 -" L L019O 0000. 1.03000
A7120 BS 1.00000 211.033003 1.0333)J7120 U 1.0000 . . - .000
w7120 RS .20000 184.00000 . 1.00000
A812 'RS " . 1.00000
G8120 LL 1.00000
-HL120 -- RS 100.00000- . 100. ) 3)
W8 20 LL . 1L9.00000 · 1.00000
A1128 RS ..4355.00000 . 1.0000
J1128 LL . 3640.0)300 . 1. 3330
w1128 LL . 330.0000 . 1.00000
IZ128 8S . 2584. )333) . 1.30000

J2128 LL · 1768.o0000 * 1·30000
w2128 aS . 12.00000 1. )33)0J
A3128 BS 1.00030 1307.0000 · 1.00000

72.00000
184.00000
812.47857
613.85714

555.63)1)3)

129.68571-
185.42857-

126.14286
7)4. L7143
47.25714

143.25714

3458.28571-

547.65714-
4)2.)03)

237.53571

744.74857
740. 57714 -

350.62857-
697.37143-

58. 6250)3

1904.37500-

463.12500-
185. )33

96. 3000

6619 ))3 3)3-
1066.50000"

7145.53571-
528. 735 71

1102. 10714-

1985:80009

16.80000

533.57143
330.00000

1232.0U000

Figure 4.2-6g Continuation of column activity of the best
schedule for the revised problem
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.COLUN. A T ... CTIVITY.. N.tNPUT COST.. ..LOWER LIMIT. ..UPPER LIMIT.

J3128' JL 1.00000 640.0300
K3128 BS .53330 3123.33)))
W3128 a'S - 185.00000
A4128 LL . 1659.00000
J4128 LL 1424.0000
K4128 LL 1520.)0000
i.4128 - L . 15.03))33
£5128 UL 1.00000 2983.03000
J5128 LL 3120.0000
8512 OS 1.)3)' 3120.0QJO00
K5128 a S 1.00000 1288.00000
w512 nS . 432.30))
A6128 BS 1.00030 . 58a.30000
J618 S .08000
W61S LI . 1019.0300
A7123 S . 266.30000
J7128 LL
W7128 LL · 184.03000 
A8125 LL * ·
G81Zd LL .°
,L118 S 100.00000 . 10

W8128 LL . 119.3303)
A1136 LL . 4312.00000
J1136 OS . 3640.03000
a1136 - BS . 330.3)30
A2136 LL . 1632.03000
J2136 S 1768. ) )3')
42136 RS . 112.30000
A313o UL 1.00000 1120.03000
J3136 UL 1. 300 640.3))0) ·
K3136 BS . 1.300000 3120. 3300
W3136 LL · 185.0000
A4136 BS * 1132.00000
J4136 LL . 1424.0000
K14136 LL .. . 1520.)))))
W4136 BS 150.030.00
A5136 UL . 1.30000 5220.303030
J5136 S 3120.0000
85134 UL 1.00000 3120.0300
K5136 BS 1.33033 1288.0) 33)
95116 L . 402.00000
A6136 BS 1.00000 430.00003
J6136.. BS . 1.C0030 .
k6136 LL 1019:03000
A7136 BS .300') 238.3)0),)
J7136 BS .30000 .
w?136 OS .30o3) 184.0300
AS136 LL
Gd136 LL . .
HL136 aS 13:. 0))3 . . IC
W8136 RS 119.00000A1144 -RS . 4548.')0) -
J1144 LL . _ _364C. 0000-
W1144 [S . 330.30000
A21.4 BS · 2188.3333
J2144 LL · 1768.00000
W2144 BS 112.00000
A3144 .. UL 1.0000 L127. 0J00J 
J3144 UL 1.00000 640.00003
K3L44 UL 1. 33)3) 312 3.3 )00)
W3144 RS . 185.03000
£4144 aS 1433.00000
J4144 LL . 1424.0300
K4144 LL '1520.00000
W4144 8S * _ 150.00000
A5144 Ut 1.00000 4886.33000
J5144 BS . 3123. ))33' 
R5144 . OS 1..0000 ---- 3120.33030
K5144 UL 1.00000 1288.00030

6l9144 OS . 432.J0000
A6144 DS 1.00o30 544.00000

-oJoo0
1.03000

1.00)0)1.0000
1.00000
1.00000
1. ))))
1.00000looooo
1.000o30
1.0000
1.00000
1.0030)
1.03000
1.00000
1.3000
1. U0000
1. )0))
1.0000
1.00000
1.0000

00.0300
1.00))3
1.00000
1.00030
1.0000
1.03000
1.1))
1.00000
1.00000
1.03330
1.03000

1. 0)000
1.00000
1.3)000

1. )) )
1.03000
1.03000
1.0)333
1.00000
1.03030
1.00000
1.000001.0)))
1.00000
1.00030
1.00000
1. 00000

00.0)0000
1.00000
1. 3)o03
1.00000
1.00000
1.00000
1.03300
1.3) )J3
L.00000
1.00000
1.33200
1.030000
1.00000
L.00000
1.03000
1.03000
1.00O30
1.030333
1.03000
1. O00000
1.00000
1. 00000

R EDUCED cnST.

251.42857-

6'17.57143
86.85714

182.85714
153. 0333)

2904.14286-
494.85714

896.20000

14. )-)))
184.00000
693.42357
613.85714

119. 33.)
548.57143

161.00000

536.28571-
166.42857-

30.14286

139.14286
235.14286

1316.28571-

562:85714-

402.00000

308.20000

703.62857
777.05714

523.77143

602.90000

- 3 10 . 042 86 i .
318.02857-
233.13000-

299.44286
395.44286

1574.28571-

628.05714-

Figure 4.2-6h Continuation of column activity of the best
sohedule for the revised problem
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.COPLUN.. AT ... ACT IVITrY.....,_ N :·_.T Cn..ST.. .. WER LIMIT. UPCER LIMIT. .REO CED COST.

J61S4 L 1. )3 .
Wa144 tL . 1019.00000
A?7 14 AS - - .90oo0o 217.0 000 -
J 71-, 8S .833) .
W7144 AS ---- .ooo 184.0000

G81,4 LL .
HL144 RS 0.0000 . 100
W81-4 s . - .19.030.
£1152 UL 1.00000 2256.00000
J1152 ui .o 100000 364 000000
W1152 BS _ 1.00000 330.00000
A2152 LL . 2354.00000
J2152 S . 1768.)33J _
W2152 85 - -- 112.00300
A3152 UL 1.30000 1124.30000

-J312 . . ...UL 1. 30000 . 64 .0.3000 .
K3152 UL 1.00000 3120.30000
k3152 s85 . - 185. 3)3' 3
A4152 LL _ 1289.030000
J4152 L . 1424.00000 
K4152 LL . 1520.J0000 __
W4152--t l 150.30000' 
A5152 Ut 1.)0000 3139.33)0 
J5152 - LL . 3120.000 .
85152 8S 1.00000 3120.00000

1.30000 1288.00000
402.00000

1. )333)) '486.00000
.47500

1019. 3333

.72500 252.30000- --

.72500
184. 3009

100.0000
... 119.00000 

1. )033 4237. )3033
1.30000 3643. OOOO

330.30000
1.00000 ' 2137.0000
1.00000 1768. 0000
1.33 ) - 112.)))))
1.30000 1237.00003
1.00000 640.00000
1.00000 3120.30000

185. )30000
.31259 1732.))J))
.62500 .- 1424.00000

1520.00000
.31250 150.00000

1.00000 3217.. )000
3123.))))

1.00030 3120. 30000
1.0030 1288.30000

402.03 300
1.00030 50 ?. 0000

1019.03000
304.)00300

184.03000

119. )) )3
- 4100.00030

3640.3333
330.00030

2040.J0000

1.3393
1.00000
1.00300
1.00003
1.00000
1.33333
1.00000

Da nn n.) n

1.00000
1.0o000 864.00000-
,1.0)333 371.42857-
1.00000
1.00000 - 1002.00000
1.3)030
1.03000
1.33330 28.14286-
1.00000 251.42857-
1.00000
1. )).33 .
1.00000 247.57143
1.00000 86.85714'
1.00000 182.85714
1; 00030 ' 150.000o00
1. )33)0 2778.14286-
1.00000 . ...494.85714"
1.00000

1665.3 )3)'3-
830.23300

599.33857
933.537 14

1.00000
1.00000
1.00000
1.00000
1.33303
1.000000
1.00000
1.000U0
1.00000
1.3).)30

1000.00000
1. 00000
1.00000
1.00000
1.O03J)
1.0 000
1. 00000
1. 0300
1.00000
1.3) )))
1.00000
1.00000
1.J33))33)
1. 00000
1.00000
1.03 000
1.33000
1. 33))')
1.00000
1. 03000
1.00000
1. 00000
1.3 )))
1.00000
1. 0000
1.00000

1.333301.000001.0000
1000. J000

1.03000
1. 0300

1.00000
1.03000

486. 3333

184.00000
812.42857
613. 85714

1253.00000-

121 75000-

721.75000-
542.5)33))-

1018.75000-
185.00000

96)3))33

6967.00030-
1077. 333))

402:00000

7276. 78571-

1219.35714-

2011.00000

330.00000
421.75000

Pigure 4.2-6i Continuation of column activity of the best
schedule for the revised problem
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.COLUMN. AT ... ACTIVITY.....INPUT COST.. .. LOWER LIMIT. .. UPPER LIMIT.
.......................... ~~~~10303

J2168
W2163
A3163
J3168
K31068
W31b60
A4163
34168
K4168W4168

J5168
J5168
85168
K5168
W5163
A6 68
J6 13
W6168
A7168
J7163
W7168

G8168
H 168
w8168
OS'4
USN
OSH
UtH

USPH
A1064
A2064
A3064
A4364
A5Jb4
85064
A 064
A7)64
A1372

LL
RS

UL
as

· 1768.)3))
112.00000

1.30000 - 1304.30000 
1.03000 640.00000
1.30000 ' 3120.00000

-. 1 385.·)J03

S

1
I
1I
I
11
{

L _ 1601.00000
BS . 1424.)303))
LL 1520.30000
LL . 150.00000
UL 1. 0000 _ 3 3117.3o 0000
BS . . 3120.00000

S 1. )0333 3120.))o3)
UL 1.J0000 1288.00300
BS . 402.00000
RS 1. 300j 449. 00o00
UL
LL
8S
UL
DS
LL

1.0000

1.30000
1.00000

.... )19:)3 3)) 
247. 00000

184.00000

L *.

$...-. -RS -. . 103
LL * 119:.0000
L . 8.60000 , 1200
LL . 2.00000 1800
LL . 7.633)) 2 )
IL . 1.10000- * 340
LL ...000. 100
UL 160. ))330 5.5000- · 16
IV 1.00000 '4512.00000
IV 1.)333) 2512. 33)) 
IV 1.00000 1360.00000
IV 1.33000 1630.JO000
IV 1. 3JO3 O 36). )30)0 
IV - 1.00000 3120.0000 
IV 1.00000 507.00003
IV 1.00000 ' 452.000O00
IV 1.J000 4388.JJ000

.o3oo

.00000

00000

.00000
L. 00000

1. 00000
L.30000'
1.00000

1.00000
1.00000
1.03))00
L.00000
1. 0000
1.00000

1.00000
1. 00000
1. 133))
1.00000
1.00000
1. )0)
0.00 000
1.0 J00U
0.000O
C. 00000
0.) )) )
0.00000
C. 00000
0.00000
1.0000
. 00 000

1.00000
1.00 00
1.00000
1. ))3'i)
1.0000
1.00U00

.pEDUCEn COST.

112.00000

308:62500-
247.37500-

579.00000

96.00000
15J. 33)

3036.00000-

647.00000-

1028.21429-
366.21429

17.35714-

569.00000
979.00000

119. 3-)) 3)
3.02857
7.57143
2.11357
4.38643

10.72656
11.22656-
45.33333

733.33333
1091.66667-

586.66667
4392.00000-

896.57143
.iA2 I 'I

A2072 EQ 2507. )-)J) .. .
A3072 V - .. 00000 1 199. 00003 1.00 00 89.28571-

A4372 IV 1532.30000 * 1.00000 400.57143

A5372 IV 1.)) )0 2963.33000 . 1.000j0 3728.14286-
85072 IV 1.03000 3120. )030 _ . 1.0j000
A6072 IV 1.)3003 471.))))) 1..)O3 ) 
A7072 IV 1.30000 258.00003 1.00000 190.00000
A1J83 lV . 4033.0J000 1.00000 211.57143
A2383 EQ _ . 2047. 00000 695.00000

3o08o IV 1.00000 1201.3000 1:00000
A4080 IV 1581.030)) .. 1. )3 J3 689.57143

A5080 Iv 1.0C8.00000 .3C0.000 * 1.0)000 3281.14286-

85380 IV 1.30000 3120.30000 . 1.00000
Ao)S) .I V 1.))33) . 389.)3))0 1.0O000 
A703 IV 245.JO00 1.00000 7.00000-
A1083 IV 1.U0000 .. 4772.00000 1.0)J3 660. 33331-

A2)88 IV . 2159.0300 · 1.00000 74.37530-

A3088 IV 1.00000 1092.00000 -. 1.00000 1926.375)3-
A4388 IV 1. )0030 1511. ))000 * 1.00000
A5088 IV 1.00000 __ 2994.00000 1.00000 6299.00000-
B5088 I V . .1.30000 3123.)30)) 1.3)0)0

A6038 TV 1.00o30 547.00000 . 1.00000
A7o08s8 -- I V.' -- ;o0000 244. 3 0o0U 1.00000
Al)06 IV 4660.)3333 1.00000 630.57143

A2096 -- IV -- 2446.00000 1.00000
A3096 IV 1.00000 1166.33000 * 1.030)0 392.14286-
A4)6 IV 16. 1 7.00000 1.00000 549.57143
A50-6 IV 1.30000 3121.00000 · 1.03030 3882.14286-

8506 IV--- . ))3. - 3123.)30)) '1. )0333
A6096 IV 1.00000 544.33JQ0 1.00000
A7096 -. .IV 1.30030 19 8.00000 . 1.00000

Figure 4.2-63 Remainder of column activity for the best
schedule for the revised problem, OSN, OSH and OSPH are.

overshoots of quota targets for nuclear, hydro and pumped

hydro energy levels at end of week, USN, USH and USPH are
under achievements of target levels in the same catagories

-
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5. Peasibilitv and Usefulness

This study was undertaken as an attempt to include

environmental costs in the unit commitment scheduling

process, as well as to build such a scheduler which is

compatible with the maintenance and production program

of reference (19). Because it accomplishes this goal,

the procedure developed should prove useful. The scheduling

technique presented also offers a technique for including

major production scheduling variables, such as nuclear,

hydroelectric, and pumped storage production levels,

without the need of pseudo-incremental costs, and does

not require such artificial information as initial

feasible schedules, priorities of unit startups and

removals, nor does it require iterations to attempt

to couple portions of the problem that are usually

treated separately, because here they are treated simul-

taneously.

This mechanism is also usable as a simulation tool

with computation efforts increasing only linearly with

expanded time horizons. An example of a simulation on

this unit commitment level is given in reference (104),

where in a hypothetical example it is shown that an 11%

error in cost could have been made by present simulation

techniques which consider only peak load and total energy

demands on a system, and which do not delve into the

problem of a systems capabilities for handling projected
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load shapes, as this project's simulator does.

5.1 Cost Considerations

There should be no concern over the cost and time

involved in running this scheduling program. The largest

problem handled for this project used 112 decision variables

which were simultaneously constrained to be integers

and the resulting completed system schedules were generated

at a cost of about $3 per schedule.

The major concern, in the cost area, will probably

be the cost of the mixed integer program itself. It

is possible that at some time in the future mixed integer

program products will come with other portions of system

libraries at no additional cost, as is the case with

linear programs presently. The product used, MPSI-MIP,

however, currently costs 225 per month. If this cost

is a consideration there are then three options available.

(1) The schedule can be formed from the linear program

alone, see figure 4.2-1, and the error associated with

this approximation could be very small, especially

considering that a valid schedule made up by taking the

linear optimal solution and moving the appropriate

variables to the nearest integer values would bring the

linear solution points in figure 4.2-1 much closer to the

optimum integer solution. (2) It might be worthwhile to

develop the integer program_ starting with available
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linear programming subroutines. (3) Time might be

rented at a user center where a mixed integer program

is available.

5.2 Drawbacks

Outside of any computational cost drawbacks (which

don't appear to be a problem) there are few disadvantages

to this scheduling procedure. Perhaps one objection

could be the difference of this technique from those

now existing, thus requiring time consuming initial

problem setups. However, the significant and lasting

gains to be made seem to more than ustify the initial

time investment.

Another problem is that the input data is not all

readily available. For example, reserve requirements

in megawatts may be difficult to obtain, and certainly

the atmospheric and aquatic environmental consequences

of power generation will require a real collection and

computation effort (see references (105) and (106) ).

This data collection in the case of the ecological

impact figures is, however, something which sooner

or later must be performed if the system is to operate

in a manner consistent with energy-environmental priorities.

That is, this data requirement is not a fabrication

of this particular scheduling scheme, but is a necessity

for effecting a proper balance between the environment
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and environmentally imperfect means of power generation.

The quasi-optimal, i.e. in a sense optimal, solutions

which are of a suboptimal nature cannot, it appears,

be considered a drawback. Not only does this technique

minimize the recompuational effort required due to

changes in input factors, but it should be considered

which of the pure optimal solutions would be lost by

this suboptimal process. An optimum would be lost,

for example, if for its small gain over other near-optimal

schedules it was relying tenuously upon an otherwise

unexpected scheduling move to be made more than an

entire decision field time span in the future (or the
past). This characteristic of the solution technique
of bypassing narrow, unwaverable optimum paths could

be considered an attractive factor in the scheduling
process, for it introduces a healthy respect for the
uncertainties of the future - a respect any complex,

real-world system deserves.

Thus, this technique is more 'sensible' from the

scheduling point of view, and this 'sensibility' also
makes it more realistic from the simulation viewpoint.
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Glossary of Eauation Nomenclature

Ai (t) binary, on=l off=O, variable for plant in
interval t

Anttt computer symbol for A(ttt)
Bn(t) binary variable indicator of whether system is

on=l or off=O the second segment of the loading
curve for plant n at time t

Bnttt computer symbol for B (ttt)

0 costs of various plants loading curves at
particular points on those curves

D(t) demand for power in interval t, including
reserve requirement

Dttt' computer symbol for D(ttt)

En(t) dummy variable which paces the startup of plant
n so it conforms to its startup rate requirements

ES(t) external emergency support power purchased at
time t

ESttt computer symbol for ES(ttt)
GH(t) amount of water pumped into a pumped storage

facility' reservoir

Gn(t) fractional extent of use of pumped storage
facility number n 's input capabilities at
time t

Gnttt computer symbol for Gn(ttt)

HL(t) water storage amount contained in reservoir at
time t

HLttt computer symbol for HL(ttt) at the pumped hydro
storage facility number 8

HYTOT computer symbol representing the hydroelectric
energy usage quota for the remainder of the week

J (lt) fractional extent of use of the first segment of
the loading curve that plant i has at time t
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Jnttt computer symbol for J (ttt)

X (t) fractional extent of use of the second segment
n of the loading curve for plant n at time t

Knttt computer symbol representing E n(ttt)

Ln(t) name of the row or equation which keeps track
of the startup logic for plant n at time t

ILttt computer symbol for row Ln(ttt)

H (t) name of row or equation which preserves the
n proper loading of plant n at time t in that it

requires plant turnon before the first segment
of the loading curve can be used

Mnttt computer symbol for row M (ttt)

N (t) name of row or equation which preserves the
n proper loading order-of plant n at time t in

that it requires the plant to use the 'first
segment of the loading curve before taking
advantage of cheaper incremental power in the
second segment

Nnttt computer symbol for row Nn (ttt)

NUTOT computer symbol representing the nuclear
energy usage quota for the remainder' of the week

OSH computer symbol representing the over'use of
the hydro energy beyond the allotted quota for
the week

OSN computer symbol representing the over use of
the nuclear energy beyond the allotted quota for
the week

OSPH over supply of water storage at pumped hydro
reservoir beyond the quota set for the end of
the. week

pi power levels at various points i on the loading
curve of a particular facility

P(k) power demanded by the system at interval k
including the appropriate reserve requirement
for the system at that time
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PAI(k) capacity of the ith plant in the kth interval,
derated to average in the effects of the
forced outage rate for that particular plant

PA(t) amount of water drawn out of a reservoir for
use in power production at time t

PHTOT computer symbol representing the pumped hydro
reservoir storage quota at the end of the week

Q the dollar quality of a particular schedule

QA the amount which represents the total air
pollution environmental impact of a particular
schedule

QAX variable which is forced to take on the value
of the air pollution quality of a particular
schedule

QB the equal weighting of the dollar quality
measure and the atmospheric quality measure
of a particular schedule

qd total dollar quality of a particular schedule

QD the point which represents the minimum dollar
quality schedule

QE the point which represents the best quality
where quality is measure by equally weighted
aquatic and atmospheric environmental impact
measures

qei quality of a schedule as measured by a specifically
monitored, ith, environmental quality measure

QS02 the quality of a schedule as measured by the
SO2 level at a certain time

QS02X relative extent of the consequences of SO levels
that have resulted from levels predicted o be
caused by external, background sources

QT the point representing the best quality where
quality is measured by equal weightings of the
three measures: total dollar quality of a
schedule, and the atmospheric and aquaspheric
quality measures of the schedule
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QV the point representing the best quality of
system operation where quality is measured by
the equally weighted sum of the total dollar
quality of a schedule and the aquatic impact
quality

QW the point which represents the best aquatic
environmental impact consequences of all
possible

QWX the variable which is forced to take on the
value of the water pollution quality of a
particular schedule

QX the variable which is forced to take on the
value of the dollar cost quality of a particular
schedule

S02X input variable representing the predicted SO2
level from background sources

SR(t) total amount of spinning reserve available
on the power system at time t

SRttt computer symbol for row which collects the
spinning reserve capabilities of each of the
machines at each time ttt

T total storage capacity of pumped hydro reservoir

UPi(k) tractional extent of operation of plant 
in the k interval

USH computer symbol representing the under use of
the hydro energy below the allotted quota for
the week

USN computer symbol representing the under use of
the nuclear energy below the allotted quota for
the week

USPH under supply of water stored in the pumped hydro
reservoir below the quota set for the end of
the week

Wn(t) binary variable indicating whether the nth plant
has been started up at time t, variable equals 1,
or has not been started up at time t, equals 0

computer symbol representing W(ttt)Wnttt
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X(t) name of equations or rows which keep track of
the pumped hydro reservoir water accounting at t

Xttt computer symbol for row X(ttt), that is at
time ttt

AQS02 change in the consequences from SO2 caused
solely by power plant operation

0i parameter representing the weighting given to
the specific environmental quality problem qe
in the total quality measure used for scheduling
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AvPendix A

The following is the program which was used for

the unit commitment example shown in chapter 4.

/*MAIN T I ME=20 .INES
//JOPL I DO DSNAt=SY? .MPSX.LOAD .UI SP (SH PASS)
//OPTUCSO1 EXEC PSX
//MPSCOMO.SYSIN OD *,DCB=(RECFM=FPLRECL==),BLKSIZE=2000)

P OGR A M.,

THIS PROGPAM IS DESIGNED TO
1- SET P TrE MIXED INTE(ER PROGRAM ASSOCIATEU WITH THE

THIpn- EVOLVING STEP IN THE SOLUTION OF THE OPTIMUM UNIT
COMMITMENr SChEOULEH - OPTUCS.

2- SOLVF FOR T OPTIMUM CHEI)ULE I,NORING THE INTEGEH
CONSTPA INT SETS

3- THEN OffAIN UP TO h INTEGEP SOLuTIOSs IF THEY EXIST,
WITH DOLLAR PLUS ENVIRONMENTAL QUALITY MEASUPES OF NOT
MORE THAN THF COST OF HAND COM'UTED SCHEDULE

* ) *) * * * *) * * * * * *

*
*
*
*
*
*)
*
*
*
*
*

* * * * *** ** * * * *** 

MOVE (XOATA. tMODEL')
MOVF (XouNA-E, 'PBl')
CONVERT
SETU( 'ROUND' '8DI')

MOVE XOPJS, ' ' )
MOVE (X iS * I %',A )

OPTIM'IZE
SOLl[f ION
SAV('NAML','tOPTC')
INIMIX
MIXST4QT ( ATRIX')
XMXDROP='40000.
CT=O

VADR ( XDOPR NTI. NT
MI XFLOW
MI XSAV ( 'NE' 'TREE 1),)
MIXSTATS( NOUES')
EXIT
SOLUTION
XMXCpROp=450000 .

*
*
*
*)
*
*
*
*
*
*
*
*

STOP

TNT
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CT =CT+1
IF CTFG.6,STOP)
CONtI NUE

CT DC(O)
PEND

/*
//MPSFWEC.MATRIX? DD UNIT=SYSDA;SPACE=(CYL.(5))
//MPSEXE C .MIX WO OD UNIT=SYSDA, SPACE (CYL* (5))
//MPSEXEC.SYSIN. D *,DC= (RECFM=FB,LRECL=R 8OLKSIZE=2000 )

A brief summary of the data used to describe the ystem

in the above program is contained below.
Mlnimum turn-on reuir.e.ts and costs

Meganwatt Average Average
Plant Minimum - dollar aoausoheri

1

2
3
4
5

output
70
30
30
20

120

cost, $

501 
283.
151
189
378

cost
4'5
100
150

50
250

Average
e atmosnhere.

costct cost..
450
100
230
45'

1250

Firt sement of loadinr curves

Megawatt
. output
of segment

90
40
20
30
80

Megairawtt
output

Average
dollar
cost, $

455
224
80,

178
390

Ave rage
dollar

of segment cost, A

70
30
40

390
190
161

Average Average
aquasphere atmosphere

cost cost

65
125
100
75
500

500
100
150
65

125

Average Average
aquas phere atmosphere

cost cost

330
75

750

500 .
65
180

Turn-oncost. $ 
330
112
185
150
402 

Plant

1

2
3
4
5

Plant

3
.4
5

- - ---- ---- - --- ---- - ----------

Second-segment of loading eurves

- - �-I
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Nuclear and Hydro ruirements and costs
Plant M1inimum Additional Extent of m Startup

megawatt 4 cost additional cost
output above quota $ loading

6 60 64 500 1019
7 5 41 95 184

Pumped Hydro St.tistics
Pumping Input to Output from Max. Startup

Plant power storage storage input to , cost
used, max. per hour per hour,mn;x. system $

8 96 80 80 64 11.9

Penjlties for missin 0ouotas

Dollars Water Air

Overuse of nuclear energy 8.6 7.9 1.3
Underuse of uclear energy -7.9 -1.3
Overuse of hydro energy 7.6 1.1 0.1
Underuse of hydro energy -t 1 -1.1 -0.1
Overstorage in pumped hydro res. 5i0 -1.1 -0.1
Understorage in pumped hydro res. -5.5 1.1 0.1

Nuclear energy usage trget quota = 51,420 megawatt hours
Hydro energy usage target quota = 7,700 megawatt hours
Pumped hydro reservoir target level = 160 megawatt hours
Total stora, e cnacity of reservoir = 1,000 megawatt hours
Initially ll plants on except plant 8
Initially 100 megawatt hours in reservoir

There are 19 pages of additional data available

for this particular example. This data is in the form

of the exact computer listing of the program used.

This listing, with pages numbered from A1 to A19 is

available upon request.
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ADpendix B

Oontained in this appendix is a summary of the

data which appeared in the original example of chapter

4 but which was replaced in the revision which resulted

in the program shown in Appendix A, i.e. the revised

problem.

Minimum turn-on requirements and costs
Minimum

Plant Megawatt
output

-- ' i i i i i i i i

1

2
3
4
5

70
30
30
20

120

Average
dollar
cost, $

282
157
85

100
210

Nuclear and Hydro requirements and costs
Minimum Additional

Plant Megawatt $ cost
output above quota $

6
7

60
5

32
15.

There are 3 pages of additional data available for

this revision. This is in the form of the exact listing

of the changed data cards. This listing is available

upon request and consists of pages B through B3 of

the Optional Appendix B.
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