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Abstract

The thesis develops and demonstrates methods of classifying ocean processes using

an underwater moving platform such as an Autonomous Underwater Vehicle (AUV).

The "mingled spectrum principle" is established which concisely relates observations

from a moving platform to the frequency-wavenumber spectrum of the ocean pro-

cess. It clearly reveals the role of the AUV speed in mingling temporal and spatial

information. For classifying different processes, an AUV is not only able to jointly

utilize the time-space information, but also at a tunable proportion by adjusting

its cruise speed. In this respect, AUVs are advantageous compared with traditional

oceanographic platforms.

Based on the mingled spectrum principle, a parametric tool for designing an AUV-

based spectral classifier is developed. An AUV's controllable speed tunes the separa-

bility between the mingled spectra of different processes. This property is the key to

optimizing the classifier's performance.

As a case study, AUV-based classification is applied to distinguish ocean convec-

tion from internal waves. The mingled spectrum templates are derived from the MIT

Ocean Convection Model and the Garrett-Munk internal wave spectrum model. To

allow for mismatch between modeled templates and real measurements, the AUV-

based classifier is designed to be robust to parameter uncertainties. By simulation



tests on the classifier, it is demonstrated that at a higher AUV speed, convection's

distinct spatial feature is highlighted to the advantage of classification.

Experimental data are used to test the AUV-based classifier. An AUV-borne flow

measurement system is designed and built, using an Acoustic Doppler Velocimeter

(ADV). The system is calibrated in a high-precision tow tank. In February 1998, the

AUV acquired field data of flow velocity in the Labrador Sea Convection Experiment.

The Earth-referenced vertical flow velocity is extracted from the raw measurements.

The classification test result detects convection's occurrence, a finding supported by

more traditional oceanographic analyses and observations. The thesis work provides

an important foundation for future work in autonomous detection and sampling of

oceanographic processes.
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Chapter 1

Introduction

1.1 Motivation

One of the most challenging tasks in observing and studying the ocean's temporal and

spatial variability is to identify the underlying ocean processes. The thesis develops

and demonstrates methods of classifying ocean processes using observations from an

Autonomous Underwater Vehicle (AUV). Automated classification will also enable

adaptive sampling [1] and other refined-monitoring measures [5], [6].

Eulerian and Lagrangian platforms are representative of traditional oceanographic

monitoring tools [7]. An Eulerian platform is fixed in location, providing time series

records of measured quantities. Moored current meters and Conductivity-Temperature-

Depth (CTD) sensors have become a routine in oceanographic monitoring. A La-

grangian platform, on the other hand, drifts with the current flow. The path followed

by Lagrangian drifters reveals the current flow history [8], [9]. By tracking Lagrangian

platforms acoustically (e.g. SOFAR drifters) or by satellite (e.g., the ARGOS system)

for surface floats, we can obtain a first-order description of the global ocean circula-

tion. Surface drifters and many subsurface floats are considered "quasi-Lagrangian"

since they move on a two-dimensional plane [7]. Improved Lagrangian floats [10] fol-

low the three dimensional motion of water parcels through density matching and a

high drag (we will see example results in Section 9.3).

Classification imposes a higher level of requirement than monitoring. Both tem-
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poral and spatial features should be utilized to optimize classification. Eulerian and

Lagrangian platforms have inherent limitations in this respect. Eulerian measurement

is confined to a fixed location. Although a mooring may sense some information of

the field's spatial variation via a horizontal advective current, this kind of sensing is

uncontrolled and tends to be ambiguous. Deploying an array of moorings can add in

spatial coverage, but high cost would often deter dense spatial sampling (please see

the example under Item 1 in Section 2.1). A Lagrangian platform drifts with zero

relative velocity against the ambient flow. It does move, but its motion is no different

from the advecting current. As a drifter is bound to a tagged parcel of water, it

has hardly any chance to catch sight of the real spatial variation of the field. Since

Eulerian or Lagrangian platforms have limitations in providing temporal plus spatial

features of ocean processes, we resort to moving platforms to overcome this deficiency.

A towed platform is tied to a surface ship. This type of platform is typically

confined to a depth of no more than a few hundred meters [11]. A larger depth

slows the tow speed, limits maneuverability, and increases the cost of the cable and

winch system. An Autonomous Underwater Vehicle (AUV) [1] is an unmanned,

untethered moving platform. The Odyssey IIB AUVs can dive to the full ocean

depth in most places [12]. An AUV is neither Eulerian nor Lagrangian, but cruises

through the ocean at a controllable and flexible speed, collecting information of both

time and space. AUV measurements mingle the temporal and spatial variations of

the field. Once equipped with a classification capability, an AUV has the promise

of autonomously searching for oceanographic processes of interest. Hence we are

encouraged to explore how to utilize its controllable mingling of temporal and spatial

information to the advantage of classification. The thesis addresses this problem

with goals of: developing a parametric tool for designing an AUV-based classifier,

and demonstrating the AUV-based classification by simulations and experiments.
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1.2 Thesis Outline

Chapter 2 reviews existing research in relation to the thesis work. An AUV is com-

pared with traditional oceanographic platforms: Eulerian, Lagrangian, and towed.

Previous formulations of the Doppler effect on spectrum measurement are introduced.

Another area reviewed is statistical classification, which is the background for design-

ing the AUV-based classifier. Theories of feature extraction and linear classifier lead

to the spectral feature classification method to be presented in Chapter 4.

Chapter 3 develops the mingled spectrum principle. Derivations and interpreta-

tions are given. The comparison with previous research is discussed. The presented

formula concisely relates observations from a moving platform to the temporal-spatial

spectrum of the process under survey. It clearly reveals the role of the AUV speed in

mingling temporal and spatial information. The mingled spectrum principle lays the

theoretical basis for AUV-based classification.

Chapter 4 presents the design of an AUV-based spectral feature classifier. We ap-

ply the general method of feature extraction to the classification of Power Spectrum

Density (PSD) estimates. The class separability metric and the resultant transfor-

mation vector are built upon the statistics of PSD estimates. It is the AUV speed

that tunes the separability of the mingled spectra of different processes. This fact is

the key to optimizing the classifier's performance.

Chapter 5 introduces two oceanographic processes to demonstrate AUV-based

classification. They are ocean convection and internal waves. The vertical flow ve-

locity is the measured quantity used for classification. We run the MIT Convection

Model using experimental parameters. The temporal-spatial spectrum of convective

vertical velocity is obtained from the model output. For internal waves, we apply the

well-known Garrett-Munk model. The temporal-spatial spectrum of internal wave

vertical velocity is derived from the original formulation.

Chapter 6 merges the three preceding chapters. Given the temporal-spatial spec-

tra of ocean convection and internal waves, the mingled spectra observed by the AUV

are found. The AUV-based classifier is applied to distinguish these two oceanographic
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processes. Model data are used in the simulations. The simulation results demon-

strate that at a higher vehicle speed the classification performance is better since the

distinction between convection and internal waves is highlighted.

Chapter 7 adds robustness to the classifier. Because of parameter uncertainties,

the classifier needs to be robust to model mismatch. Model parameter uncertainties

are categorized into "local uncertainty" and "global uncertainty", referring to small

perturbation and major mismatch, respectively. The effects of these uncertainties are

to increase the total variance of PSD estimates, and accordingly suppress the ampli-

tude of the feature transformation vector. The classifier's performance (probability of

detection versus probability of false alarm) is thus lowered, but with a gain of robust-

ness to model mismatch. Through progressive work from Chapter 3 to Chapter 7, we

have developed a parametric tool for designing an AUV-based spectral classifier.

Chapter 8 proceeds to the experimental work. We built an AUV-borne flow veloc-

ity measurement system using an Acoustic Doppler Velocimeter (ADV). To verify the

vehicle hull's influence on flow measurement, we conducted a calibration experiment

in the David Taylor Model Basin - a high-precision tow tank. The data processing

method to extract the Earth-referenced vertical flow velocity from the AUV's raw

measurements is presented. The error analysis is formulated.

Chapter 9 brings the AUV to the open ocean. In January/February 1998, the

AUV-borne flow velocity measurement system acquired data from the Labrador Sea.

Meteorological and hydrographic conditions for convection, as well as Lagrangian

float observations of convection, are described in relation to AUV missions. The

Earth-referenced vertical flow velocity is extracted from the AUV's measurements.

The experimental data are used to test the AUV-based classifier. The test result for

the 250-m depth measurement during AUV Mission B9804107 detects convection's

occurrence.

Chapter 10 summarizes the thesis and proposes future work.
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Chapter 2

Review of Existing Work

2.1 Autonomous Underwater Vehicle in Compari-

son with Traditional Oceanographic Platforms

Figure 2.1: An Odyssey IIB AUV being recovered after operations [1].

An Autonomous Underwater Vehicle (AUV) is a mobile instrument platform [1]. An

Odyssey IIB AUV [12] (designed and built by the MIT Sea Grant AUV Laboratory)

is shown in Figure 2.1. Each vehicle has a length of 2.2 m, and a diameter of 0.6 m at

its largest vertical cross-section. The vehicle has an outer fairing for hydrodynanuic

stability and drag reduction, and an inner fairing for structural integrity. These struc-
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tures are free-flooded, except for two 17-inch-diameter glass spheres which provide

the dry volume. The vehicles operate autonomously with its on-board computer and

battery system, running various sensors. With minimal logistical support, they can

be deployed at remote sites, off ships of opportunity, or in rough seas. In the past

several years, Odyssey IIB AUVs have fulfilled about 400 missions under the Arctic

ice, over the Pacific Ocean ridge, in the Haro Strait tidal current, off the coast of New

Zealand, at the polar Labrador Sea, and along the narrow Monterey Canyon.

A comparison between an AUV and traditional oceanographic platforms is made

in Table 2.1. Note that the comparison of temporal-spatial capability is from the

specific perspective of process classification, since good classification requires jointly

utilizing temporal and spatial information. To help explain Table 2.1, we briefly

review traditional oceanographic platforms as follows.

Table 2.1: Comparison of an AUV with traditional oceanographic platforms

Records field's Records field's Deep ocean Platform Autonomous
temporal variation spatial variation capacity motion

AUV Controlled
Mooring Disturbed by
(Eulerian) ambient current

Drifter Follows
(Lagrangian) current flow
Towed * Tied to
platform surface ship

t: As a drifter is bound to a tagged parcel of water, it can hardly sense
the real spatial variation of the field.

*: Typically no more than a few hundred meters [11] deep. A larger
depth slows the tow speed, limits maneuverability, and increases the cost of
the cable and winch system.

1. Eulerian platform.

An Eulerian platform is fixed in location, providing time series records of mea-

sured quantities (such fixed-location measurement is named after L. Euler who

first formulated the fluid motion equations in a fixed frame of reference [7]).
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Moorings are the most common Eulerian platforms. Moored Conductivity-

Temperature-Depth (CTD) sensors [13] and current meters [14] have become

a routine in oceanographic monitoring [7], [15]. While being able to provide

long-term observations, moored measurement is confined to one fixed location.

Although a mooring may sense some information of the field's spatial variation

via a horizontal advective current, this kind of sensing is uncontrolled and tends

to be ambiguous. Deploying an array of moorings can add in spatial coverage,

but high cost would often deter dense spatial sampling. During the Northern

Mediterranean deep convection experiment in winter 1991/92, a triangular array

of current meter moorings were deployed. The 2-km spacing between moorings

was so large that the plume measurements made at the three stations were

decorrelated. Hence the three stations' measurements could not be combined

into a joint plume analysis [16].

2. Lagrangian platform.

A Lagrangian platform drifts with the current flow, thus can be considered

following a tagged parcel of water (such path-following measurement is named

after J. Lagrange who is noted for his early work on fluid dynamics [7]). Surface

floats can be tracked by satellites (e.g., the ARGOS system) while subsurface

drifters are tracked acoustically, such as SOFAR (SOund Fixing And Ranging)

drifters which are neutrally buoyant at the sound channel depth. Tracking

of a large number of drifters provides a first-order description of the ocean

current [17]. It seems that a Lagrangian platform obtains both temporal and

spatial information by moving through the field, but it cannot sense the real

spatial variation of the field because it is bound to a tagged parcel of water.

Launching a large number of drifters may help construct a temporal-spatial

picture of the current, but this picture should be taken only in a statistical

mean sense because of variability of particle trajectories due to the ocean's

large Reynolds number [18].

3. Towed platform.
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A towed platform is hauled by a surface ship. It utilizes the ship speed to

carry out underwater surveys. Towed measurement has been used for numerous

oceanographic studies [19], [20], including on internal waves [2]. A recent ex-

ample of towed platform is Seasoar [11] which makes CTD profiles in the upper

350-m water column. It is equipped with controllable wings to enable ascent or

descent to desired depths. In the respect of motion, a towed platform resembles

an AUV, but it has the following constraints that limit its applicability:

" It is typically confined to a depth of no more than a few hundred me-

ters [11]. A larger depth would add loads on the cable and wrench system.

" Its motion is essentially affected by that of the surface vessel. Accurate

motion control is hard to achieve.

" Its operation completely relies on a ship. Sustained human attendance and

expensive ship time make such operations costly.

2.2 Doppler Effect on Measurement's Spectrum

Internal wave's power spectrum is established in [2] based on moored, towed, and

dropped measurements in the ocean. The paper considers the towed spectrum from

the perspective of Doppler effect on elementary waves. Its derivation is summarized

as follows, with some variable notations changed to those used in the thesis.

For a sensor moving in the positive x1 direction (in a horizontal plane) at a con-

stant speed u, one has x1 = ut where t is time. The observed phase of an elementary

wave train e3- is then

y = kix 1 + k 2 X2 - wt = k2 x2 - (w - kiu)t (2.1)

where w is the angular frequency; kj, k2 are the two orthogonal horizontal wavenum-

bers. Denote the radial wavenumber as k, and then k2 - ki + k2. In [2], it is assumed
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that the field is horizontally isotropic so that k suffices for the description of spatial

variation.

Denote the frequency-of-encounter as o-, and then

- = Iw - kiul (2.2)

Power contributions to a come from three branches (allowing that w is always

positive):

1. k, <0, Ow > klu (w w < -): negative waves (traveling opposite to the sensor)

2. k, > 0, w > klu (w w > a): positive waves, overtaking the sensor

3. k, > 0, w < k1 u: the sensor overtaking positive waves

Accordingly, the towed spectrum of internal wave's vertical displacement is com-

posed of three parts as follows. Note that due to isotropy, wavenumber integrations

are over the radial wavenumber k.

F (O-) = 7r-a F -1 f Z2(w)d f [k2 _I-_2]- E(k, w)dk
F~~~(u)~ l3 I3 j- o- ~ 2 __

+ [k 2  E(k, w)dk

/0 2 + O-)2 2 (2.3)
+ [k U A2]-E(kw)dk

where wi is the Coriolis frequency and n is the buoyancy frequency at the studied

depth (n > wi). These two bounds confine the internal wave's frequency range. M is a

scaling wavenumber corresponding to the e-folding depth of the buoyancy frequency.

Z(w) is a real wave function of the vertical displacement, and Z2 (w) is the mean-

square averaged over modes. E(k, w) is the energy density spectrum. Coefficient u-1

is due to the scaling between -and ki as in Equation (2.2).
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Equation (2.3) thus gives a method of calculating the sensor-recorded spectrum

from an isotropic spectrum of the original field, as 1r-3w 3Z2(w)E(k,w) can be re-

garded as the spatial-temporal spectrum Sradial(k, w). By removing frequency bound

limitations associated with specific processes, and adopting notations Sradial (k, w) for

the original spatial-temporal spectrum and S(-) for the sensor-recorded spectrum,

Equation (2.3) can be generalized to (although [2] has not explicitly made this ef-

fort):

S(U) = j dw [k2 2 - S(i)l](kw)dk
-foo

+ [k2 
- 2 -Sradial(k, w)dk (2.4)

+ -[k2 _ c + 2 -Sradial(k, w)dk
UUU nalJ

/ Integral I

X1//////1 Integral II

C0 IDlIIIII|IIIII||I| Integral III

(2) or-a+ku

(T/u k

Figure 2.2: Integration regions in calculation of the Doppler-shifted spectrum (based
on Figure 8 of [2]).

In Equation (2.4), the three integrals enclosed in curly braces correspond to the

28



three branches listed below Equation (2.2). The integrations are illustrated in Fig-

ure 2.2, where the three integral components in Equation (2.4) are marked by region

"I", "II", and "III", respectively. In Figure 2.2, integral region I is to the right of

line (1); region II to the right of line (2); and region III to the right of line (3). Line

w = - bisects regions I and II. When u = 0 (moored measurement), lines (1) and (2)

coalesce into the horizontal line w = -. When u -+ oc, lines (1) and (3) approach the

vertical line k = c-/u. Note that region III overlaps with regions I and II.

In [2], Equation (2.3) is called "Doppler-shifted spectrum". In Subsection 3.1.3, we

will discuss the differences between the Doppler-shifted spectrum method introduced

herein and the mingled spectrum principle to be presented in Chapter 3.

2.3 Statistical Classification

The objective of classification is to determine which class a given sample set belongs

to [21], [3]. Through a measurement process, we obtain an observation vector. By

a decision rule we assign the observation vector to one of the given classes. If the

conditional probability density function for each class is known, the classification

problem becomes one of statistical hypothesis testing.

2.3.1 Bayes Decision Rule

In this thesis, we study two-class problems. Denote the classes as H1 and H2, and

the observation vector as X. The conditional probability density functions of X are

Under Hl: p(XJH) (2.5)

Under H2 : p(XIH 2) (2.6)

The ratio ( is termed the "likelihood ratio".

The a priori probabilities of the two classes are denoted
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Pr{H} = P (2.7)

Pr{H2} = P2  (2.8)

The task is to determine whether X belongs to H1 or H2. A wrong decision is

penalized by an associated cost. The classification decision should be made such that

the total average cost (in the statistical sense) is minimized. The cost associated with

each decision is expressed as

cij = cost of deciding X C Hi when X E Hi (2.9)

Usually a correct decision incurs no cost, i.e., c 11  C22 = 0.

The criterion in devising the Bayes decision rule is to minimize the total average

cost, also called the "Bayes cost":

R(f) = E[C(f (X), H)]

= cn Pr{H1, H1 } + c12Pr{i1, H 2} + c21Pr{H2 , H 1} + c22Pr{H2 , H21

where C(Hi, Hj) = cij (as defined in Equation (2.9)) is the cost function; f denotes

the decision rule; f(X) takes on either H1 or H 2 (^is added to denote the decision,

which may or may not be correct); H denotes the truth, taking on either H1 or H2.

Note that the expectation is executed on both X and H.

It can be deduced that the "Bayes decision rule" [21], [3] minimizes R(f). The

rule is expressed by

p(XH2 ) #2 (c 2 1 - cu)P
> (2.11)(X IH1) -- (C12 - C22)P2
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h12
where e means that when ">" holds, we decide H2 ; otherwise we decide H1. The

41

above rule is also called a "Likelihood Ratio Test (LRT)".

2.3.2 Bayes Error and Its Upper Bound

When cjs = 1 - 6ij (6ij is the Kronecker Delta notation), i.e., correct decisions carry

no cost while incorrect decisions induce a cost of one, then the Bayes cost in Equa-

tion (2.10) reduces to the total probability of errors (wrong decisions):

R(f) = Pr{H1, H2} + Pr{H 2, H1 } (2.12)

Accordingly, the LRT decision rule in Equation (2.11) becomes

p(X|H2 ) 2 P1  (2.13)

p(XIH1) f, P2

or equivalently,

f2

P(H2|X ) P( H1|X) (2.14)

which is obtained by substituting into Equation (2.13) a posteriori probability equali-

ties P(H1 IX) = p(XH) P and P(H2|X) - P(XH2 ) P2 . Therefore, to minimize the totalp(X) - ApX) eoe omnmz h oa

error probability, the hypothesis decision is made simply by choosing the maximum

a posteriori probability. The LRT under this circumstance becomes the "Maximum

A Posteriori (MAP)" test [21].

Under the specialized Bayes decision rule in Equation (2.13), the observation space

is bisected into two complementary subspaces: L1 and L2. When X falls into L1, H1

is declared; otherwise ft 2 is declared. Decisions can be wrong in two possible ways:

X E H1 but it falls into L2 , or X E H2 but it falls into L1. The Bayes error is defined
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as the sum of probabilities of the above two decision errors.

I L 2 p(XIH) dX + P 2 j p(XH 2 ) dX

= PC1E + P2 C 2

(2.15)

It can be proved [3] that the Bayes error E is the lowest achievable total probability

of error. It can also be shown [3] that the Bayes error c is bounded by the so-called

"Chernoff bound" cu:

cu(s) = P1 P1 S J(p(X|H1))s (p(XIH2))l~s dX VO < s < 1

(2.16)

where s = soptium minimizes cu.

When both p(XIHI) and p(XIH 2) are Gaussian, the integration in Equation (2.16)

will lead to a closed-form expression. Suppose under H1 and H2, X obeys N(M, E1 )

and N(M 2 , E2 ), respectively (hereafter N(M, E) denotes a Gaussian distribution with

the mean vector M and the covariance matrix E). Then Equation (2.16) reduces to

cu (s) = P1 P2 -s e-/(s) (2.17)

where

s (1 -- s) 1 __sE1+_(1__s)E2

Ps)= 2 (M2 - M 1 )T[sE1 + (1 - s)E2 ]- 1 (M2 - M1 ) + I 1n

(2.18)

is called the "Chernoff distance".

If we loosen the selection criterion of

specializes to

s, and just let s = 1/2, the Chernoff bound
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E6(1/2) 2e (2.19)

where

I(1/2) = 1(M2 - M1 )T[_ + E2 ](M2 - M1 ) + -in 2

(2.20)

is called the "Bhattacharyya distance". Actually, if both classes obey Gaussian dis-

tributions and their covariance matrices are identical, i.e., E1 = E2 = E, it can be

easily shown that soptimum is indeed 1/2. In this case, the Bhattacharyya distance

in Equation (2.20) is further simplified to

1
p'(1/2)= --(M2 - M1 )TE-1(M2 - M1) (2.21)8

which corresponds to the lowest Chernoff bound. In Subsection 2.3.3, we will relate

the Bhattacharyya distance with the class separability criterion we use in the thesis.

2.3.3 Feature Extraction and Linear Classifier

Feature extraction is to choose those components that are most effective for separating

classes. It is a process of converting the original vector Y into a lower-dimensional

feature vector Z. Then Z, rather than Y, is fed into the hypothesis decision rule.

The selection of Z is crucial to the classifier design: if Z shows significant difference

from one class to another, the classifier has a good performance. The selection rule

is based on a class separability criterion.

Theoretically speaking, the Bayes error E as in Equation (2.15) is the ideal crite-

rion for class separability, but a major disadvantage is that an explicit mathematical

expression of the Bayes error is not available except for a very few special cases [3].
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Even for Gaussian distributions, calculation of the Bayes error requires a numerical

integration unless the covariance matrices are identical. Thus we cannot expect in-

sightful theoretical development by using the Bayes error as the feature extraction

criterion. Corresponding to the Bayes error as the ideal criterion, a posteriori prob-

abilities as in Equation (2.14) are the ideal features. Unfortunately, in practice, a

posteriori probabilities are hard to obtain, and their estimates often have severe bi-

ases and variances [3]. Thus feature extraction based on the Bayes error criterion

tends not to be a practical solution.

We need simpler criteria based on clear physical notions and associated with sys-

tematic feature extraction algorithms. The process of establishing class separability

criteria and using them to extract features is called "discriminant analysis" [3]. In

the thesis, we use a criterion that is based on a function of scatter matrices [3]. This

criterion is formulated by a within-class scatter matrix and a between-class scatter

matrix. The within-class scatter matrix A,_y depicts the scatter of samples around

their respective class means:

2 2

AW ZY = PiE[(Y - Mj)(Y - Ms) T |Hi] = Z(Pi i) (2.22)
i=1 i=1

where Y is the data column vector; Pi = Pr{Hj} is the a priori probability of class

i; Mi = E[Y|Hj] is the mean vector of Y in class i; Ej is the covariance matrix of Y

in class i.

The between-class scatter matrix Aby measures the "distance" between the two

classes:

2

Aby = _Pi(M, - MO)(M, - MO)T]
i=1 (2.23)

= P1P2(M 2 - M 1)(M 2 - M 1 )T

where the overall mean = 1(PiMi)
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The class separability metric is defined as

Jy = tr(A-Y Aby) = P1P2 tr [(PiE)]- (M2 - M)(M2 - M1)T

(2.24)

Trace of a matrix equals the sum of the eigenvalues. So Equation (2.24) implies

that good separability requires a large between-class scatter and a small within-class

scatter.

It is worthwhile to relate Jy to the Bhattacharyya distance in Equation (2.20)

under a special condition. When Y obeys Gaussian distribution with El = E2 = E

and P1 = P2 = 1/2, Jy is simplified to

11 1
Jy = -tr (E-1(M2 - M1)(M2 - M1 )T) =(M 2 - M 1)TE-1 (M2 - M1 )4 4

(2.25)

Comparing Equation (2.25) with Equation (2.21), we see that under the conditions

of Gaussian distributions, equal covariance matrices, and equal a priori probabilities,

the class separability Jy and the Bhattacharyya distance p'(1/2) are the same except

for a constant coefficient.

With the class separability set up, let us now establish the feature extraction

algorithm. We consider a linear mapping Z = CTY that transforms the observation

vector Y into a lower-dimensional feature vector Z:

Z = CTY (2.26)

where Y is n x 1; Z is m x 1; the transformation matrix C is n x m, with m < n

for dimension reduction. We are justifiably concerned about any possible loss of class

separability information induced by dimension reduction, but it will be shown as
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follows that under the separability criterion defined by Equation (2.24), the dimension

of Z is lowered to one without inducing any loss.

The class separability metric in the Z-space is

Jz = tr(A;Abz) (2.27)

where by the definitions of within-class and between-class matrices as in Equation (2.22)

and Equation (2.23), we have

AWz = CT Aw_yC (2.28)

Ab-z = CT AbYC (2.29)

Now let us find the optimum transformation matrix Coptimum such that Jz achieves

its maximum. Without considering the specific structure of matrix Ab-y, the solution

of C is

Coptimum =- [VY1*VY2: .'Vym1 (2.30)

where Vyi, Vy2 , - - - , Vym are the eigenvectors of matrix AjyAb-y associated with its

largest m non-zero eigenvalues: A 1, A2, . . . , Am in the descending order. Jy can

be expressed as the sum of all eigenvalues, while Jz as the sum of those largest m

eigenvalues:

n

Jy= Ai (2.31)

Jz = Ai (2.32)
i=1
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Taken at one extreme, when m = n and C is an invertible matrix, it can be proved [3]

that

Jz = Jy (2-33)

i.e., a non-singular transformation always preserves class separability.

By its definition in Equation (2.23), however, Aby is special in that its rank

equals one. Accordingly, the rank of A-'yAby also equals one, so the matrix has

only one non-zero eigenvalue. Therefore m = 1, and Coptimum reduces to a column

vector, which is the eigenvector Vy 1 [3] of A-y Ab_y associated with its only non-zero

eigenvalue A 1 :

Coptimum = Vyi A (M2 - M 1 ) (2.34)

where 3 is an arbitrary non-zero constant coefficient.

It is thus shown that under the separability criterion in Equation (2.24), all of the

class separability information is contained in one eigenvector. The original observation

vector Y is transformed into a scalar feature z. Nonetheless, we still have J_ = Jy,

i.e., no separability information is lost. The scalar feature z needed for classifying Y

is

Z=Ctiu.mY = Vy1TY = (M2 - M 1 )TAi Y (2.35)

noting that Ay is symmetric. Equation (2.35) represents the sufficient statistic of

a linear classifier. Once the statistic is chosen, the threshold can be determined by

minimizing the total cost (in the Bayesian sense), or by satisfying a prescribed false

alarm probability (in the Neyman-Pearson sense) [21], [22], [23].

It is noted that the Bayes likelihood ratio test is always the optimum classifier
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since it minimizes the cost or probability of error. To construct the likelihood ratio,

one has to estimate the conditional probability density function for each class using a

finite number of samples. The estimation procedure is generally very complicated and

requires a large number of samples to give accurate results [3]. Even if the conditional

densities can be estimated, the likelihood ratio test is often difficult to implement:

time and storage requirements may be excessive [3]. We are therefore often led to

consider a simpler procedure for designing a classifier. In particular, we may specify

the mathematical form of the classifier, leaving only a finite set of parameters to be

determined.

The most common choices are linear or quadratic classifiers. The linear classifier

discussed above becomes the Bayes classifier (i.e., the optimum classifier) only for

Gaussian distributions with equal covariance matrices [3]. When those conditions are

not met, the linear classifier's performance will be inferior to that of the Bayes classi-

fier. In practice, however, the linear classifier's simplicity and robustness compensate

for its loss in performance [3]. In the thesis, we adopt the class separability metrics

Jy and J, (also called the "Fisher criterion" [3]) as just reviewed. They represent

clear physical notions and lead to a linear feature extraction algorithm.
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Chapter 3

Mingled Spectrum Principle

3.1 Mingled Spectrum Recorded by a

Moving Platform

3.1.1 Formula Derivation

Ocean process X(t,r)

Y(t)

speed=u
(to, ro) (to+T, ro+Tu)

Figure 3.1: A line AUV survey.

Oceanographic processes vary both in time and space. Under the assumptions of tem-

poral stationarity and spatial homogeneity, an oceanographic field can be described

by its frequency-wavenumber spectrum. When an AUV (or some other moving plat-

form) makes a survey in the field, it records a time series of the measured quantities,

e.g. flow velocity. The time series mixes temporal and spatial variations of the sur-

veyed field. The corresponding spectrum therefore mingles the spectral information

in time and space, which we call a "mingled spectrum".

In this chapter, we present the mingled spectrum formula. Suppose an AUV

conducts a line cruise at a speed of u, as shown in Figure 3.1. Denote the field on
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the survey line as X(t, r), and the time series recorded by the AUV as Y(t). The

autocorrelation function of Y(t) is

Ry(T) E[Y(to) -Y(to + T)]

= E[X(to, ro) - X(to + T, ro + UT)] (3.1)

= RX(T, uT)

Then the Power Spectrum Density (PSD) of Y(t), i.e., the mingled spectrum, is

the Fourier transform of Ry(T) (by the Wiener-Khinchine theorem [24]):

Sy f -0 Ry(T)e27frdr 
(3.2)

= Rx(T, UT) e-j2 frdT

For the temporal-spatial process X, its autocorrelation function Rx(T,UT) and

its PSD Sx (r1, v) are a Fourier transform pair (also by the Wiener-Khinchine theo-

rem [24]):

Rx (T, UT) = j Sx(nl, v)e j 2
7r-

2 2 -udrdv (3.3)

where q; is the temporal frequency, and v = k/(27r) is the spatial frequency. Note

that k is a one-dimensional wavenumber in the direction of AUV's line survey.

Incorporating Equation (3.3) into Equation (3.2), we have
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j j j| Sx(y, v)fe- 2 - / ue 2xTdrdrdv
Sf-00 fOO -M

= Sx(7, v)dr7dv ei 2
7rr(f+vu -)dT

J-MO -0 JM-0

= j dvJ Sx(, v)6(f + vu - dq

= Sx ((f +vU),v)dv
-Mo

SY(f) is the integratio ........
over v of Sx(Tl,v) .u larger
on this line.

v=k/(27c) / / 1/u 1=f+vu

Contours of Sx(ri,v)

/ //

(3.4)

Figure 3.2: Illustration of the derivation of Sy from Sx.

Hence the mingled spectrum Sy (f) is the integration over v of Sx(rq, v) on a line

defined by q = f + vu, as illustrated in Figure 3.2. The integration line's slope equals

the reciprocal of AUV speed u. The integration line's intercept on the q-axis equals

f. Equation Sy(f) I = f Sx ((f + vu), v)dv thus concisely reveals the relationship

between the "AUV-seen" mingled spectrum Sy(f) and the original temporal-spatial

spectrum Sx(rq, v).

It is worthwhile to clarify the connection between the "line" PSD Sx(r, v) used

above and the "complete" PSD SX-3D(h v 1, v 2 ) or its variants. The discussion is

in Appendix A.
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3.1.2 Special Cases

1. Platform speed u = 0.

When u = 0, Equation (3.4) is simplified to

Sy(f)u0= j Sx(f, v)dv (3.5)

Referring back to Figure 3.2, u = 0 makes the integration line perpendicular

to the q-axis. Since the measurement platform is spatially fixed, the mingled

spectrum at any frequency f is obtained by integrating the temporal-spatial

spectrum Sx over the spatial frequency v at 1 = f. This case applies to a

mooring when not considering any advective ambient current.

2. Field is temporally frozen.

When the field experiences no temporal variation, its temporal-spatial spectrum

Sx becomes an "impulse fence" [25] on the v-axis (as shown in Figure 3.3):

Sx(n, v) = Sx0(v)6(r) (3.6)

where 6(1) is the unit impulse function [26]. Then Equation (3.4) becomes

Sy(fU j 1 = Sxo(v)6( f + vu)du (3.7)

By variable replacement = vu, we have

Sy(f)I | f Sx0 (-)6( + f)d
U Uo (3.8)

U U
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Sv(f) is the integration
over v of Sx(Tj,v)
on this line.

S----------

/. /. ..-

:1/,-7
/ /

f inFtplses

SX(Il,v)

V

No

Figure 3.3: Derivation of Sy from Sx for a temporally frozen field.

The mingled spectrum derivation in this special case is illustrated in Figure 3.3.

Note that when process X is real, Sxo(v) is an even function: SXO(--)

Sx o (l). Then Equation (3.8) can be written as

Sy (f)Ik = -Sx() (3.9)

Equation (3.9) is actually an expression corresponding to the Taylor's hypoth-

esis [27], [9], [28], [29]. The Taylor's hypothesis is widely used in experimental

turbulence studies [30], [31], [32], [33], [34], and also in ocean acoustics. The hy-

pothesis states that if the traversing speed u of the probe is large enough, we can

assume that the turbulence field is "frozen", i.e., no temporal variation occurs

within the measurement duration. Thus although the probe actually records

a time series p(t), it can be transformed to a spatial series q(x) by replacing

t by u [9]. The Taylor's hypothesis is also known as the frozen-turbulence

approximation [28].

3. Applied to a nondispersive plane wave.

As an anisotropic process, a nondispersive plane wave's temporal-spatial spec-

trum Sx is a skewed "impulse fence" [25] (as shown in Figure 3.4):
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Sx (I, v) = SxI(I)6(vc - 7) (3.10)

where c is the phase speed (also group speed due to nondispersion) of the plane

wave, and it is assumed herein that c > the platform speed u > 0. Then Equa-

tion (3.4) becomes

Sy(f)U fj'0 Sxi(f + vu)6(vc - (f + vu))dv

1 cf
= SX1( )C - C - U

(3.11)

SY(f) is the integration
over v of Sx(iv)
on this line.

V // 1/ Tpf+Vu

/ /

///
/1 1/c

17 //

/ //
2 inspase

Sx(7j,V)

V

Figure 3.4: Derivation of Sy from Sx for a nondispersive plane wave field.

The mingled spectrum derivation in this special case is illustrated in Figure 3.4.

When the plane wave has only one single frequency component fo, i.e., it is a

tone signal, we have

Sx1(v) = a 6(n - fo) (3.12)

where a is the magnitude coefficient. Then Equation (3.11) is simplified to
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Sy(f)U = U( _ - fo) (3.13)

Letting f - fo = 0, we find the frequency of the signal "seen" by the moving

platform:

U
f = (1- -) fo (3.14)

c

This is actually the Doppler-shifted frequency recorded by a moving receiver [44].

3.1.3 Differences from Doppler-Shifted Spectrum Method

Comparing the presented mingled spectrum principle with the existing work of Doppler-

shifted spectrum as introduced in Section 2.2, we observe the following differences:

1. Different requirements on isotropy.

Doppler-shifted spectrum: Equation (2.3) assumes horizontal isotropy, so only

the radial wavenumber k = -/k? + k2, rather than ki together with k2 , is needed

for the spatial axis. For anisotropic fields, therefore, this equation cannot be

directly applied.

Mingled-spectrum: Equation (3.4) does not require the field to be isotropic. It

operates on one-dimensional wavenumber v (v = 1). This equation is readily

applicable to isotropic or anisotropic fields.

2. Different formats and conciseness.

Doppler-shifted spectrum: the integration is over three regions, bounded by four

lines. Factors [k 2 _ (<_ )2]- and [k2 _ (U_ 2]- in the integrands further

complicate inspection and computation.
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Mingled-spectrum: the integration is constrained by one single line. The inte-

grand is simply the frequency-wavenumber spectrum, with no additional factor.

The conciseness facilitates computation, inspection, and interpretation.

3. Different perspectives.

Doppler-shifted spectrum: developed from the perspective of the Doppler effect

on elementary waves.

Mingled-spectrum: developed from the perspective of temporal-spatial autocor-

relation functions and by utilizing the Wiener-Khinchine theorem.

As detailed in Subsection 3.1.1, our mingled spectrum formula ( Equation (3.4)) is

developed directly from a line survey in a temporal-spatial field. Consequently, the re-

sultant formula is not constrained by isotropy requirement. Furthermore, the formula

is concise and embodies a clear physical interpretation. Versatility for anisotropy, ease

for inspection, and simplicity of computation add to the usefulness of the presented

formula.

3.2 Utilization for AUV-Based Classification

Let us first look at two simple fictitious temporal-spatial fields for the purpose of

demonstration. Their 77-v spectra are expressed in Equation (3.15) and Equation (3.16),

and displayed in Figure 3.5. The r7-v spectrum of field No. 2 is just a transposition

of that of field No. 1. In both spectra, the range of frequency r7 is -1 Hz - 1 Hz while

the range of wavenumber v is -1 m-1 - 1 m 1 .

1 -(- + -" 24
Sx1(rv) = 1 e 2 (3.15)

-179 (17110)l+

Sx 2(r7, v,) = 1 e 772 2 (3.16)
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where 7o = vo= 0.5, CT 1 =v2 = 0.2, O2 = og = 0.1

PSD of fictitious field No. 1
1 8

0.8 7
-06

E 6.
0.4

0.2 5
0 4

-0.2 3
S-0.4

-a 2
0.-0.6

-0.8 1

-1 0
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

Temporal frequency (s~)

PSD of fictitious field No. 2
1 8

0.8 7
S 0.6

0.4

C 0.2 5

0 4

-0.2 3
-0.4

2
a.-0.6

-0.8

-1 0
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

Temporal frequency (s 1 )

Figure 3.5: Two fictitious q-v spectra.

Suppose an AUV is to classify the above two fields based on a line survey as

illustrated in Figure 3.1. It is noted that a line cruise is the most common survey

mode for an AUV. Its advantage is long-distance coverage, thus increases chances of

finding ocean processes of interest. During such a survey, the vehicle records a. time

series of the concerned quantity, like flow velocity. Based on distinct spectra of the

time series associated with different processes, the AUV carries out classification.

The spectrum of the AUV-recorded time series is just the mingled spectrum for-

mulated in Subsection 3.1.1. The mingled spectrum, rather than the field's original

frequency-wavenumber spectrum, is the information resource for spectral. classifica-

tion, -because time and space are mixed in the AUV's record. As revealed by Equa-

tion (3.4) and Figure 3.2, time-space mixing is tuned by the AUV speed u: the

integration is constrained by a line whose slope equals 1/u.

For the two fictitious fields whose original temporal-spatial PSDs are given by Equa-
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Figure 3.6: Derivation of mingled spectra from the two fictitious r/-V spectra.

tion (3.15) and Equation (3.16), their mingled spectra under some AUV speed can be

easily computed by Equation (3.4), as illustrated by Figure 3.6. At a series of vehicle

speeds, the two mingled spectra are shown in Figure 3.7. The observation is: the

two mingled spectra may appear more alike or more distinct depending on the AUV's

cruise speed. Due to the "transposition" relation between the two hypothesized 7 - v

spectra, their mingled spectra are identical when the AUV cruises at a speed of 1 m/s

(the third panel of Figure 3.7). This would obviously prohibit classification. At other

speeds of 0.5 m/s (the second panel) and 2 m/s (the fourth panel), however, the two

processes are classifiable since their mingled spectra show difference. A quantitative

metric for separability will be given in Section 4.3.

Our goal is not trying to reconstruct the field [35], [36], [37] or its original spec-
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AUV velocity = 0 m/s

-3 -2 -1 0 1

Temporal frequency (s~)

Figure 3.7: Mingled spectra of the two fictitious fields.

trum [39], but to classify the fields by the difference between their mingled spectra

acquired by an AUV. From this perspective, we are to utilize the mingling of time and

space to the advantage of classification, rather than regarding the Doppler effect as a

contaminating factor [40]. In the following chapters, we will develop an AUV-based

spectral classifier, and demonstrate that the AUV speed can be optimized to high-

light distinct features of processes. We will use two real examples of ocean processes:

ocean convection and internal waves.
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Chapter 4

Spectral Feature Classification of

Different Processes Using an AUV

4.1 Classifier Architecture

Now we apply Equation (2.35) to spectral feature classification using an AUV. In the

thesis, we study two-class problems. The classifier's architecture is illustrated in Fig-

ure 4.1. As noted in Section 3.1, The AUV's measurement Y(t) mingles temporal

and spatial variations of the field. Hence its Power Spectrum Density (PSD) Sy(f) is

a mingled spectrum. It is related to the field's temporal-spatial PSD Sx (r, v) by the

mingled spectrum formula (Equation (3.4)). Classification relies on the "distance"

(i.e., the spectral separability to be given in Section 4.3) between the two mingled

spectra Syi(f) and Sy 2 (f). The AUV speed tunes this distance.

From AUV's measurement Y(t), we obtain the estimate of its PSD, Sy(f). Here-

after we denote the true PSD as Sy(f) and its estimate as Sy(f) (for class 1 and 2,

footnotes "1" and "2" are added for distinction). PSD estimate Sy(f) is the input

to the classifier. We use the Fourier method for spectrum estimation, so Sy(f) is

given at a series of discrete frequencies. Thus the PSD estimate is expressed as a

random column vector Sy(k), k=O, 1, . .. , N - i, where N is the total number of fre-

quency points. Then for classification, the scalar feature described by Equation (2.35)

becomes
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Ocean process X(t,r)

speed=u......
(to, ro) (to+t, ro+Tu)

Y(t)

gy(f) Classi4
T^>7 No H2- - z=V Sy so ---------

<y DO Hi
Sy(f)fClass 2

Figure 4.1: Diagram of an AUV-based spectral classifier.

z = VT Sy (4.1)

where V is the transformation vector to convert a random vector Sy to a random

variable z. The same as in Equation (2.34), V is expressed as (the coefficient # is

dropped since it does not affect the classifier's performance):

V = A (My2 - My 1 ) (4.2)

where

Myj = E[yIHj] i = 1,2 (4.3)

is the class mean and

2

Awy =E(Pi E y) (4.4)
i=1
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is the within-class scatter matrix. P is the prior probability of class i, and Ei is the

covariance matrix in class i:

Eyi E[(Sy - Myi)(Sy - My,)T|H,] i 1,2 (4.5)

SY(2)
ClCass 1

Y2-MY1

.. :: .... Class 2

SY(l)

V=MY2-MY]

Z=VT SY

Figure 4.2: Mechanism of feature projection when the two-dimensional Eyi is diagonal
with -y2 (1) = O-yi(2) (modified on the basis of Figure 4-7 and Figure 10-1 of [3]).

To help explain the mechanism of feature projection as expressed by Equation (4.2),

let us consider a very simple case. Suppose vector Sy has only two components. If

furthermore, Ei is diagonal with equal elements (o i(1) = U2i(2)), Aw.y will be

a scaled identity matrix as expressed in Equation (4.4). Then according to Equa-

tion (4.2), the transformation vector V will coincide with the vector of difference

between mean vectors: MY 2 - My,, except for a constant coefficient not affecting the

classifier's performance. Feature projection is then illustrated in Figure 4.2: when

the clusters of vector $y are projected onto V = MY2 - MY 1 , the distance between

the clusters of scalar feature z is maximized.

Now let us take one step further. If Eyi is still diagonal but with unequal elements:

e.g., oji(i) > oyi(2), Awy will no longer be a scaled identity matrix, thus will play

a role in the formation of V, as shown in Equation (4.2). As illustrated in Figure 4.3,
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When for both classes, GY(1)>GY(2):

SY(2)
Class 1

-. -... .. Class 2

V=AW-'Y(MY2-MYI)

Figure 4.3: Mechanism of feature projection when the two-dimensional Ei is diagonal
with -yi (1) > uy2 (2).

the role of A._y is to rotate V such that V's alignment tilts away from the Sy(i)-

axis but towards the Sy(2)-axis. This tilting represents a penalty on the Sy(1)-axis

projection because the uncertainty of Sy(1) is larger than that of Sy(2). The distance

between the feature z clusters is maximized using the tilted V.

Finally, the scalar feature z is compared with a threshold to make the classification

decision:

Z - T 1
z =VT <Sy (4.6)

ft1

where -y is the threshold. As will be discussed in Section 4.4, the threshold is deter-

mined by minimizing the total cost or probability of error (the Bayesian criterion),

or by satisfying some prescribed false alarm probability (the Neyman-Pearson crite-

rion) [21].
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4.2 Statistics of PSD Estimate

As shown in Equation (4.1), the transformation vector V is the key to the classifier.

V is determined by the statistics of Sy, as shown in Equation (4.2). Hence we first

need to know the statistics of the PSD estimate Sy.

4.2.1 PSD Estimation Method

We use the periodogram to obtain the PSD estimate Sy. The estimation is carried

out in the following steps:

1. Since the recorded data yw(t) is of finite duration ([- ,]), it is equivalent to

a windowed section of the original process realization y(t):

YW (t) = y (t)w(t) (4.7)

where w(t) is a boxcar window, being unity over [-i, !I] and zero elsewhere.

2. Apply the Fourier transform to yw(t):

Yw(f IT) = F[yw(t)] (4.8)

The periodogram is defined as

Sw(f IT) =Yw(f IT) |2
T (4.9)

3. Do frequency-domain smoothing, and take the smoothed periodogram as the

PSD estimate:
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N.,

Sy(f) = ( h.S.(f + -T) (4.10)

where 2N. +1 is the total number of frequency points involved in the smoothing,

and h(n) is the weighting function.

It can be proved [40], [41] that the ensemble average of S.(fIT) approaches the

true PSD Sy(f) as T approaches infinity:

limT4- 0+E[Sw( fIT)] = Sy(f) (4.11)

i.e., the periodogram Sw(f IT) is an asymptotically unbiased estimate of Sy(f). When

the window w(t)'s length T is so large that its bandwidth is much smaller than that

of Sy(f), the bias of the periodogram will be very small. However, this unsmoothed

estimate is very noisy:

CS.(f IT) (4.12)
Sy(f )

i.e., the periodogram's standard deviation is as large as its asymptotic mean. The

purpose of frequency-domain smoothing in the above step 3 is to lower the estimate's

variance, but at the cost of frequency smearing. For instance, if the smoothing weights

in Equation (4.10) are uniform with h 2N+ , the standard deviation of Sy (f) will

be reduced by a factor of V/2N +1:

'In practice, a periodogram estimate is often computed using a single realization (e.g., a time
series) of the random process. For the time-based (versus ensemble-based) periodogram to be mean-
ingful for representing the statistical variation, the random process should be ergodic [41], [42], [24],
[43].
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17 y , 
1(4.13)

Sy (f) 2N + 1(4.

It should be noted that

" In the above step 1, a selected window function can be intentionally applied

on top of the boxcar. Common windows include Bartlett (triangle), Hanning

(raised cosine), and Hamming (modified raised cosine). Fourier transforms of

the latter windows have much lower sidelobes than a boxcar window, but with

wider mainlobes which compromise the frequency resolution. A lower sidelobe of

a window function means less interference from nearby frequencies for spectral

estimation at any desired frequency.

" Besides frequency-domain smoothing, time-domain segmenting can also be ap-

plied to reduce the estimation variance. In this manner, the original time series

is first divided into segments. Then a periodogram is calculated for each seg-

ment. With each periodogram, frequency-domain smoothing can be conducted

as described in the above step 3. Finally, the average of all smoothed peri-

odograms is taken as the PSD estimate Sy(f).

4.2.2 Statistics of PSD Estimate Sy(f)

Based on its formulation in Equation (4.10), the expectation and the covariance

function of Sy(f) are [40]

N3 a

[5y (f )] =_1 hn SY ()W ((-(f + n))|12d< (4.14)
n=-N, -o'0

Cov[Sy( f1), Sy(f 2 )] = N() W* - (f - (f2 + n dg|2Z Z hmhn I =-f T T )
m=-N, n=-N8 _ (4.15)
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where W(f) is the Fourier transform of the window function w(t); h, is the weight

for frequency-domain smoothing. To ensure that Sy(f) is an asymptotically unbiased

estimation of Sy (f), it should be constrained that (f_ coW(f) 2df) (ZN-N h,) 1.

The variance of Sy(f) can be obtained directly from Equation (4.15):

N3  N3  cV ar 5y( )] ( ( hmhn Sy( )W* ( - f + ))W ( _ ( f + n 1(2

Var[Sy(f)] h, h, I hmhnT )
m=-N n=-N, (4.16)

When Sy(f) is smooth across the smoothing bandwidth 2NT+1 Sy(f) can be

pulled out of the integration in Equation (4.16), such that

Ns N,

Var[Sy(f)] = (f 2 h-nhn W*( - (f + -))W( (f + ))<

m=-N, n=-N, f-* T)T

(SY (f))2(.7

Vef f

where 1 is used to represent the quantity in the curly braces, and veff is called
V'ef f

the "effective number of degrees of freedom". The cause for this terminology is that

Sy(f) is shown [40] [41] to approximately obey a X2 distribution with 2veff degrees

of freedom2 , i.e.,

2veff ~Y~j )'X 2 (2veff) (4.18)
Sy(f)

Another important observation from Equation (4.15) is that the PSD estimates are

approximately uncorrelated between frequencies farther apart than B" (B, denotes

the bandwidth of W(f)):

2 The real x2 distribution with 2 veff degrees of freedom is derived from a complex x2 distribution
with veff degrees of freedom. The variance of each component equals I in the former distribution,2
and equals 1 in the latter [40].

57



Cov[Syi(fi),Sy(f2)]~ 0 when If2 - fil > Bw i= 1,2

(4.19)

To give an idea of how veff is related to window shape and frequency-domain

smoothing, let us look at an example. When a boxcar window is applied to the time

series and an L-point smoothing (with uniform weights) is done in the frequency do-

main, we have veff = v L. According to Equation (4.17), the variance of Sy decreases

by a factor of 1. So the more smoothing, the lower the estimation variance. The1
ef f

cost paid, however, is smearing of the spectrum within the smoothing bandwidth. Be-

cause of this smoothing, the total number of frequency points (within some prescribed

frequency range) that provide uncorrelated PSD estimates are effectively reduced.

4.3 Feature Extraction and Spectral Separability

4.3.1 Computation of Feature Transformation Vector V

As shown by Equation (4.1), the transformation vector V is the key to classification.

To compute V as in Equation (4.2), we need class mean vectors My1 and My 2, as well

as the within-class scatter matrix Am y. Relating Equation (4.14) to Equation (4.3),

we have

My1(f) = E[Sy(f)IH1 ] = hJ Sy1()W(( - (f + <)) 2 d
-00N (4.20)

My 2 (f) = E[Sy(f)|H2] = hn Sy2( )|W( - (f + n))|2d
n=-N (4.21)

Matrix Awy, however, is composed of the covariance matrices Ey1 and Ey 2 , as
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We pick frequency points with an interval of B., so the

PSD estimates are uncorrelated according to Equation (4.19). Covariance matrix Ey

is consequently diagonal:

Ey = diag{Var[Syj(O)], Var[Sy(1)], ... , Var[Sy (N - 1)]} i = 1,2

(4.22)

where (0), (1), - - - , (N - 1) denote the N frequency points. By Equation (4.17) (but

replacing Syi(f) with Myi(f) to take into account the window effect), the diagonal

elements are 3

(Myi (f)) 2Var[Syj(f)] = (ef)) 2

lveff
= 1,2 (4.23)

With Ey1 and Ey 2 , the within-class scatter matrix As y can be constructed

by Equation (4.4) (assuming P = P2 = 1):

2

Awy = Z(PiEyi)
i=1

Incorporating

= 1 diag{(My 1 (0))2 + (My 2 (0))22 Veff

(My 1(N - 1))2 + (My2 (N - 1))2}

Equation (4.24) into Equation (4.2), we have

(4.24)

3 The zero-frequency is special: Var[Sy(0)] = 2 (M.'(o)) 2
* This specialty is properly treated in

Vess

computations, but omitted in expressions herein for the sake of conciseness.
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V (MY2 - M 1)

My 2(0) - My1 (0)

-[2V [(My1 (O)) 2 + (My 2 (0)) 2 ]

MY2(N- 1) - My1 (N - 1)

[(My 1(N - 1))2 + (My2 (N - 1))2

(4.25)

I

T

4.3.2 Scalar Feature's Statistics and Spectral Separability

Incorporating Equation (4.25) into Equation (4.1), we have

z = VTSy

N-1

k=0 T

My 2 (k) - My(k)

[(My 1 (k)) 2 + (My2(k)) 2]

Applying Equation (4.3), we obtain the mean of z:

nzi = VT E[y|H j

= VTMy,

N-1 My 2 (k) - My(k)

k=E (My(k)) 2 + (My 2 (k))

Sy(k) (4.26)

(4.27)

i = 1,2

Applying Equation (4.22), Equation (4.23), and Equation (4.25), we obtain the

variance of z:

02 VTY

MY 2 (k) - My(k)
}2 (Myi(k)) 2

Accordingly, the z-domain within-class scatter matrix actually reduces to a scalar
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= " 4 V '1 i = 1,2
(4.28)- eff

k=O (My, (k) )2+ (MY2(k)) 2



(assuming P1 = P2 = '):

2

AW_z= ( z)
(4.29)

12
- (1 + O-2 2 )2

Now let us examine the class separability metrics in the Y and z-domains, using

the general definition given by Equation (2.24). By the definition in Equation (2.23),

the between-class scatter matrix in the Y-domain is (assuming P1 = P2  I

1
Aby (My 2 - My1 )(MY 2 - My1 )T (4.30)

4

and the between-class scatter matrix in the z-domain is a scalar:

1
Ab-z = 1 (Mz2 - mZi) 2  (4.31)

4

Applying Equation (2.24), Equation (4.24), and Equation (4.30), we obtain the

Y-domain class separability:

Jy = tr( Ay Aby)

1
= tr (A-y(My 2 - MY 1 )(MY 2 - Myi)T)4 -

I (My 2 - My 1)TA-i'(My 2 - My 1 ) (4.32)
4 -

Ve_ N-1 [My2 (k) - My(k)] 2

2 - (My 1 (k)) 2 + (My 2 (k)) 2

Incorporating Equation (4.27) and Equation (4.28) into Equation (4.29) and Equa-

tion (4.31), we obtain (noting that A, and Abz are both scalars) the z-domain class

separability:
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J,= tr(A Ab__z)

(mz2 - mzi)2

2(o-z2 + U22) (4-33)

veff N-1 [MY 2(k) - My1(k)]2
2 E (My,(k))2 + (M 2 (k)) 2

Comparing Equation (4.32) and Equation (4.33), we see that

JZ = Jy (4.34)

This verifies the general rule expressed by Equation (2.33). Under the definition

given by Equation (2.24), separability is thus preserved after dimension squeezing

from an N x 1 PSD estimate vector Sy to a scalar feature z.

Let us make some observations of the spectral separability metric in Equation (4.33).

The numerator indicates the difference between the two spectra. Its growth en-

larges the spectral "distance". The periodogram's variance is proportional to the

square of the spectrum height, as shown in Equation (4.17). Thus the denomina-

tor in Equation (4.33) actually represents the spectrum estimate's uncertainty. Its

growth effectively decreases the separability because we have less trust in the spectral

difference. Separability increases with vff, but we should keep in mind the involved

cost. If veff > 1 is realized by temporal segmentation, it would require a longer data

record. With longer data, however, the classifier's underlying assumptions of tempo-

ral stationarity and spatial homogeneity would become more challenged. If Veff > 1

is realized by frequency-domain smoothing, it would smear the spectrum over the

smoothing bandwidth. Within some prescribed frequency range, the smearing would

render fewer frequency points that can provide uncorrelated spectrum estimation.

Fewer frequency points implies lower N for summation in Equation (4.33), which

would adversely affect separability.

Another note is that so far, we have been considering the periodogram's inherent
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uncertainty as the only source of Var[Sy]. This leads to a very simple format of the

denominator in Equation (4.33). When external uncertainties are added in, Var[Sy]

will grow, and its form will become more complicated. The necessity and methods to

treat additional uncertainties will be presented in Chapter 7.

4.4 Decision Threshold Setting and Classifier Per-

formance

The classification decision is made by comparing the scalar feature with a threshold:
ft2

z 2 y. Once the sufficient statistic z is given as in Equation (4.1), the classifier's

PD - PF relationship will be fixed (PD denotes the detection probability and PF

denotes the false alarm probability). Here we have adopted the terminology in signal

detection for our classification scenario. PF is defined as the probability of deciding

class 2 when class 1 is true, i.e., PF Prt 2 IHi}. PD is defined as the probability of

deciding class 2 when class 2 is indeed true, i.e., PD = PrH2 |H2}. The threshold -Y is

to be determined based on the chosen performance criterion. One common criterion

is to minimize the Bayes cost [211. Another criterion is to satisfy some prescribed

PF [21]-[22].

According to Equation (4.18), the PSD estimate Sy obeys a X 2 distribution. When

veff is large, we know that a x2 distribution approaches a Gaussian distribution, as

displayed in Figure 4.4. For the sake of demonstration, we will take this approximation

in the remainder of this section (when veff is small, the concept to be conveyed is

still valid but closed-form probability calculations are no longer available). Since

z = VTSY is a linear transform of Sy, z will also approximately obey a Gaussian

distribution:

z|Hi - A(mzi, ui) i = 1, 2 (4.35)

where mzj and oj are z's mean and variance in class i, respectively. Then z's proba-
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Figure 4.4: A X2 distribution approaches a Gaussian distribution with an increasing
number of degrees of freedom.

bility density function (PDF) is expressed by

1 (z - mzi)2
Pz(zI Hj) = exp(- 2o )

V2 -o zi 2ozi
i =, 2 (4.36)

Suppose for the two Gaussian distributions, mz = -0.3, m,2 = 0.6, U = 0.2,

and o2 = 0.1. The two PDFs and threshold -y are illustrated in Figure 4.5. PF is

(zlH1)'s tail probability to the right of -y, while 1 - PD is (zIH2)'s tail probability to

the left of '-. For Gaussian distributions, we have

PF 0.5[1 - sign(-y*) erf (-*)]

PD = 0.5[1 - sign(y*) erf (72*)]

(4.37)

(4.38)

where y; = " , i = 1, 2, and the error function is defined as erf(x) = f e- 2 dt.

As -y varies, PF and PD vary accordingly. The PD - PF curve is also referred to as

the Receiver Operating Characteristic (ROC) [21]. The ROC evaluates a classifier's

performance. It should be noted that the ROC is determined solely by the PDFs
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Figure 4.5: Illustration of Gaussian distributions under H1 and H2, and definitions
of PF and PD.

Pz(z(H1) and pz(z|H2 ), not by the threshold 'y. The role of - is to pick one particular

spot on the ROC curve. Generally, a smaller -y corresponds to both a higher PF

and a higher PD. Choice of -y depends on the user's preference of criterion. Two

common criteria are: the lowest total probability of error (Bayesian criterion), and a

prescribed PF (Neyman-Pearson criterion). The total probability of error is defined

as P = PIPF + P2 (1 - PD) where P and P2 are prior probabilities of the two classes.

In the sequel we assume P = P2 =, and then P, = !(1 - PD + PF). The ideas are

demonstrated by the ROC curve shown in Figure 4.6 that corresponds to Figure 4.5.

If we want to achieve the lowest total probability of error P, y should be set to 0.17.

On the other hand, if we prescribe the false alarm probability as PF = 0.1, then y

should be set to 0.27 to meet the requirement.

Now it is time to relate the classifier's ROC to the class separability metric Jy.

According to Equation (4.34), J, = Jy. So we can substitute J, for Jy. Still using

the two PDFs shown in Figure 4.5, two ROC curves corresponding to two different

values of J, are compared in Figure 4.7. The curve labeled Jy = J, = J = 1.35 is the

same as in Figure 4.6. The curve below has Jy = J, = J = 0.675. We understand

that a higher ROC curve implies a better classifier performance, no matter by the
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Figure 4.6: Illustration of the ROC curve and the relationship between the threshold
y and (PF, PD).

Bayesian criterion or the Neyman-Pearson criterion. Thus the classifier's performance

improves with class separability Jy = J.

4.5 Impact of AUV Speed on Classifier Perfor-

mance

As pointed out in Subsection 3.1.1, when an AUV makes a line survey in field X

whose temporal-spatial PSD is Sx(ri, v), the mingled PSD Sy(f) recorded by the

AUV is dependent on the vehicle's cruise speed. The relationship is governed by

the mingled spectrum formula (Equation (3.4)). We have observed in Section 3.2

that the mingled spectra of two different ocean processes (Sy1 v.s. SY2 ) may appear

more alike or more distinct depending on the AUV's cruise speed. The quantitative

metric of their spectral distance is expressed by Jy in Equation (4.32). Note that
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Figure 4.7: The classifier's performance improves with Jy = Jz.

in Equation (4.32), Myi is just a variant of Syi when taking into account the effect

of finite data length.

As shown by Figure 4.7, the linear classifier's performance relies on J, = Jy. We

therefore project that given temporal-spatial PSDs of two different ocean processes,

classification can be better conducted at some AUV speeds than others. We will

next introduce two kinds of ocean processes, and study the AUV-based classifier's

performance as a function of the vehicle speed.
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Chapter 5

Ocean Convection and Internal

Waves

5.1 Ocean Convection

5.1.1 Background

Convection is the transfer of heat by mass motion of fluid [44]. It happens when the

density distribution becomes unstable [8]. Open ocean convection takes place at only

a few locations around the world, namely, the Labrador Sea [45], [46], the Greenland

Sea [47], [48], Mediterranean [16], and around the Antarctica [49]. At these locations,

strong winter cooling of the surface water causes it to become denser than the water

beneath. The cooled surface water sinks and mixes with deeper water which enters

the global ocean circulation. This process releases heat from the overturned water to

the atmosphere and thus maintains a moderate winter climate on the land. Hence

ocean convection is an important mechanism for global heat transfer [44], [50], [51].

At those open ocean convection sites, water is weakly stratified during the winter,

i.e., there exists an upper mixed layer. When winter storms set in, they induce intense

heat flux from the sea to the air. Sea surface cooling can initiate ocean convection.

In convection regimes, the water column overturns in numerous convective cells (also

called plumes) [52]. The mixed layer thus deepens, and gradually the convective
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plumes form a deep "mixed patch" ranging tens of kilometers in horizontal scope [52].

In the ending stage, with the cessation of winter surface heat loss, the mixed patch

laterally exchanges water with its surroundings. The mixed water thus disperses

under the influence of gravity and rotation, leading to disintegration of the mixed

patch and re-occupation by stratified water [52].

For process recognition, a very useful feature of convection is the spatial periodicity

of convective cells (as will be shown in Figure 5.2). Numerical [53] and experimen-

tal [54] studies have revealed the spatial scale of convective cells as a function of the

surface heat flux and the Coriolis frequency (due to the Earth's rotation).

Consider a water column that is vertically mixed at its initial state. Heat flux of

Q is applied to its surface. When the water column is sufficiently deep', the evolving

convective layer will come under the geostrophic control (due to the Earth's rotation)

as time approaches f-1 where f is the Coriolis frequency [53]. Corresponding to the

heat flux Q, the buoyancy flux BO can be calculated by

Bo = agQ (5.1)
pCp

where a = 2 x 10-4 (C)- 1 is the water's thermal expansion coefficient; g = 9.81 M/s 2

is the acceleration of gravity; p is the water density; C,=3900 J/(kg 'C) is the specific

heat capacity of water.

Then the horizontal scale 1 of each convective cell will follow [53]:

BO 1
B ~ 2 (5.2)

For instance, at the 1998 Labrador Sea Experiment site (please refer to Chapter 9),

latitude # ~ 57'N. Then the Coriolis frequency f = 2Q sin(#) ~ 1.2 x 10-4 rad/s

(Q = 27r/day is the angular velocity of Earth's rotation). Suppose 2 the heat flux

'i.e., depth > I ~ (?}) . See Equation (5.2).
2 Surface heat flux and sea water density values cited herein are measurements during AUV
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Q=300 W/m2 and the sea water density p=1030 kg/M 3, then the buoyancy flux

B0  1.5 x 10-7 m2/s 3. Accordingly, a convective cell's horizontal scale is (in the

calculation by Equation (5.2), the value of f should be in unit rad/s [53]):

Bo 1.5 x 10-7 M2 S-3 1
B~ ) 2 ms)2~ 290 m (5.3)
f3 (1.2 x 10-4 S-1)3

Convective cell's length scale, or equivalently, the spatial periodicity of convective

cells, is what the AUV utilizes for classification, as will be presented in Chapter 6.

5.1.2 MIT Ocean Convection Model

Prof. John Marshall and his group at the MIT Department of Earth, Atmospheric,

and Planetary Sciences have established a numerical model of open ocean convec-

tion [53], [55], [56]. In the thesis, we use this model to find the temporal-spatial

spectrum of convective vertical velocity.

Heat flux

Figure 5.1: Illustration of the convection model box. Only the top surface is subjected
to a heat flux. The dimension is 200 x 200 x 35 with a grid size of 10 m.

The model is configured as a box as shown in Figure 5.1. Water is cooled at the

top surface. There is no normal heat flux at the bottom or the four side walls. The

Mission B9804107 in the Labrador Sea. Please see Chapter 9.
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mechanism of the model [57] is summarized as follows.

* Governing equations.

The state of the ocean at any time instant is characterized by the three-

dimensional distribution of current velocity U = [u v w], potential temperature

T, salinity S, pressure p and potential density p. For brevity, the potential

temperature and the potential density will be simply referred to as temperature

and density in the following. The Boussinesq approximation [9] is applied to

the model. This approximation has two implications:

1. Fluid is incompressible. This leads to Equation (5.4) in the following.

2. Density variation is negligible in momentum equations for the horizontal

plane, but is important in the vertical. Thus the density variation term p'

only appears in Equation (5.7), but not in Equation (5.5) or Equation (5.6).

The governing equations of the model are listed as follows,

1. Continuity equation:

an av aw
+ + O= 0 (5.4)

ax ay az

where u, v, and w are the two horizontal and the vertical velocity compo-

nents.

2. Momentum equations:

Du 1 ap' a2U a2 U a2 u
+ - fV =Vh( + -) + VV (5.5)

Dt po ax 1ax2 ay2 az2

Dv 1 ap' a2V a 2 V a 2v
+ + fu=vh( + )-vV (5.6)

Dt po ay ax2 ay 2 az2
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Dw 1 Op' p' 92w W 2w W2W
+ +g-- = v( + )+v 2  (5.7)

Dt po (9z PO ax y z2

where po is the static-state reference density; p' is the density deviation

from po; gji2 is the buoyancy forcing; p' is the pressure deviation from
PO

the hydrostatic pressure; f is the Coriolis frequency; vh and vv are the

horizontal and vertical eddy viscosity, respectively;

3. Heat equation:

DT _ 
2T 2 T _2T (5.8)

Dt := h 2 + y2 ) OZ2

where T is the temperature; Kh and K, are the horizontal and vertical

diffusivity of temperature, respectively.

4. Equation of state:

P = po[I - a(T - To) +(S - So)] (5.9)

where a is the thermal expansion coefficient; # is the saline contraction co-

efficient. To and So are the static-state reference temperature and salinity,

respectively.

9 Boundary conditions.

The boundary conditions of the model are as follows,

1. Kinematic boundary conditions:

- At top and bottom.

Free slip:

du _dv- - - 0 (5.10)
dz dz
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No normal flow:

w = 0 (5.11)

- At four vertical walls.

Free slip:

du _dw dv dwS -- = 0 (for x-directional walls) and -- -- 0 (for y-directional walls)
dy dy dx dx

(5.12)

No normal flow:

V = 0 (for x-directional walls) and u = 0 (for y-directional walls)

(5.13)

2. Thermal boundary condition:

- At bottom and four side walls.

No normal heat flux:

dT
= 0 (5.14)

dn

- At surface.

&T _Q

rC- = -- (5.15)
Oz Po

where Q is the prescribed surface heat flux.

5.1.3 Model Parameter Setting

In the thesis, the model parameters are set by using the meteorological and hydro-

graphic data acquired in the 1998 Labrador Sea Experiment that will be presented in

detail in Chapter 9. In this way, the model output of vertical flow velocity can be rea-

sonably used as the theoretical template for matching the corresponding measurement
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made by the AUV (please see Chapter 9). The classifier tests will be presented in Sec-

tion 9.5. The model parameters and physical parameters are listed in the following

two tables, and explained accordingly.

Table 5.1: Model parameters

Parameter Symbol Value

Initial reference temperature To Labrador Sea profile *
Initial reference salinity So Labrador Sea profile *
Surface heat flux Q 300 W/m2 t

Initial velocities u0 , vo, wo 0
Grid length Ax, Ay, Az 10 m*
Number of grids in x and y N2, Ny 200 *
Number of grids in z Nz 35 *
Internal iteration time step Atiteration 10 s

Data output time step Atoutpt 30 s
The initial

* measured by
on February

temperature and salinity prohles are assigned values
the AUV during Mission B9804107 in the Labrador Sea

10, 1998.

The surface heat flux is assigned a value obtained from the measure-

t ment on board R/V Knorr during AUV Mission B9804107. Details
are contained in Table 9.1 in Section 9.2.

Considering the characteristic convective wavelength of about 200 m in
the 350-m mixed layer during AUV Mission B9804107, we set the grid
length and the number of grids such that there can be held about 10
convective cells in the x or y direction, and the spatial sampling interval
is about 1/20 of the characteristic wavelength. Note that the total
number of grid points, Nx x Ny x Nz is constrained by the processor
capability. The job defined herein runs on all the 8 processors of MIT's
parallel computer Pleiades.

5.1.4 Vertical Flow Velocity Results

The model is run with grid numbers N, = 200, Ny = 200, and Nz = 35, i.e., simulat-

ing the 350-m mixed layer observed during AUV Mission B9804107. The temperature

and salinity profiles during AUV Mission B9804107 are used, as shown in Figure 9.8.

Model computation outputs are temperature T, horizontal flow velocities u and v,
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Table 5.2: Physical parameters

Parameter Symbol Value

Coriolis frequency f 1.2 x 10-4 rad s-*
Coefficient of thermal expansion a 2 x 10-4 oC- 1

Coefficient of saline contraction 3 7 x 10-4 (psu)- 1

Specific heat capacity 3900 J kg-1 aC-
Horizontal diffusivity of momentum and temperature vh, Kh 0.1 m2 sI
Vertical diffusivity of momentum and temperature v', ii, 0.1 m2 s-I
Acceleration of gravity g 9.81 m S2

At the latitude of AUV Mission B9804107 site, #~ 570 N, so we have
* f = 2Q sin(o) ~ 1.2 x 10-4 rad s- where Q = 27r/day is the angular

velocity of Earth's rotation.

and vertical flow velocity w.

At 26520 s (about 7.4 hours) after surface cooling starts, the vertical flow velocity

w is shown in Figure 5.2. The upper panel displays the horizontal cross-section

at the 250-m depth, the same depth of AUV Mission B9804107. The lower panel

displays the vertical cross-section at y = 1000 m. Convective cells with periodicity

of 200 m - 250 m are observable in both panels, which is close to the theoretical

prediction in Equation (5.3). As a "cut" out of the lower panel of Figure 5.2, a one-

dimensional plot of w at depth 250 m is shown in Figure 5.3. Based on the model

output for two hours (from 5.4 hours to 7.4 hours after the onset of surface cooling),

we compute the temporal-spatial PSD of convective vertical velocity w, as will be

presented in Subsection 6.2.1.

5.2 Internal Waves

5.2.1 Background

Internal waves occur in the ocean's interior. It is the water's response to a disturbance

to its equilibrium of hydrostatically stable density stratification, via the gravitational

restoring force [39], [58], [44]. Unlike convection which occurs in a vertically mixed
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Figure 5.2: Horizontal and vertical cross-sections'
7.4 hours.
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of vertical flow velocity w at time

(i.e., unstratified) water column, internal waves are found in stably stratified water.

Stable stratification is depicted by the buoyancy frequency N (also called the Brunt-

Vaisala frequency) [9], [59]:

(5.16)N= gdp(z)
Pa dz

where g is the acceleration of gravity; p(z) is the water density as a function of z; po

is the reference density. Note that z points upwards.

Internal waves play an important role in mass and momentum transfer. in the
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Figure 5.3: w v.s. x at depth 250 m, y=1000 m, and time 7.4 hours.

ocean [39]. Their dynamics is essential for understanding the ocean circulation and

the temperature and salinity structure [39]. In another aspect, the sound-speed fluc-

tuations induced by internal waves are the dominant sources of the high-frequency

variability of acoustic wave fields in the ocean [60].

Vertical flow velocity is a key quantity and signature of ocean convection and in-

ternal waves [47], [16]. For the purpose of experimental test, an AUV-borne Doppler

sonar acquired flow velocity measurement during the 1998 Labrador Sea Experiment,

as will be presented in Chapter 9. Thus we select vertical flow velocity as the quantity

to use for distinguishing ocean convection from internal waves. Prospects of intro-

ducing more quantities (e.g., temperature) to improve classification will be discussed

in Section 10.3.

5.2.2 Vertical Flow Velocity Spectrum Based on Garrett-

Munk-79 Model

The internal wave spectral model presented by C. Garrett and W. Munk [2], [61], [39],

[62], the so-called GM79 model, is widely used in the oceanographic community [60],

[63], [64]. The model gives the power spectrum of vertical displacement at each mode

i (i > 1):
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2b2 Eo No (Z2 + i2)- 1  wo(w 2 _ (5.1/2
-I r N(z) EZ1[(i2 + i)-1] W3

where N(z) is the profile of buoyancy frequency; No is the surface extrapolated buoy-

ancy frequency; b is the e-folding depth of N(z); wo is the Coriolis frequency; Eo is

the power parameter; i, is the mode scale number. The values of these quantities in

our computations will be given in Table 5.3.

The spectrum of vertical velocity W can be deduced from Equation (5.17) by the

differentiation relation

W = -d (5.18)
dt

and we obtain

Sw(w, i) = ljWl2S(W7iZ

= w2 Sc(w, Z) (5.19)

2b 2 EO No (i2 + i )- 1  wo(w 2 
- 2)1/2

-F N(z)ZEt(i 2 + i)-1] W

which follows the same approach as in [61] whereby the horizontal velocity's spectrum

is deduced from that of the horizontal displacement.

In the thesis, we are concerned about the temporal-spatial PSD S_,radia(W, k)

where w is the frequency and k is the horizontal wavenumber. Note that based on the

isotropy assumption [62], only a single radial horizontal wavenumber k = k+ k2

is used. To transform Sw(w, i) to wradial (w, k) (footnote "radial" is added for

emphasis), we resort to the dispersion relation [62]:
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N(z) 2 - W 2  -r N(z) 2 - W 2

mn = k =2 2 i- W (5.20)W2 - LJO b N02

where m is the vertical wavenumber. It leads to the k - i relation

7A 
2 _ 2

k = i- 2 2 (5.21)
b N02 U)2

which enables the transformation

S'1rai(W, k) dk = Sw(w, i) 6i (5.22)

which is equivalent to

7 W2-W 2 b N2_0
S'wadja(Wk = -2) = (-- )Sw(w i) (5.23)

b N02 - U) 7r W2 - WO

Evaluation of Equation (5.23) is carried out numerically. The procedure is as

follows:

1. At any specified w, map the wavenumber range K = [kmin, kmax] to the mode

number range I using Equation (5.21). Note that the mode number must be

an integer. So in the mapping, the mode number range I is obtained after

rounding. The spectrum is then computed directly by Equation (5.19). As

shown in Equation (5.23), the scaling ensures preservation of power in different

spaces.

2. Due to the rounding in the above step, the mapped mode number range I does

not exactly correspond to the required wavenumber range K, but to a varied

range K'. Spectrum values on K is obtained by interpolation using values on
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K'. Note that Equation (5.21) dictates that at any specified w, k has a lower

bound corresponding to mode number i = 1:

x 2 _2

klower-bound 0 (5.24)__
b N2 _ (5.24)

below which S' radial(w, k) is assigned zero.

3. Loop through all w values between the Coriolis frequency wo and the buoyancy

frequency N(z).

Hereafter we use frequency and wavenumber notations 71 = and Vradial = .

Correspondingly, the PSDs using the two sets of notations are expressed as

S'-radial(W, k) = SWy-radial (27,q, 21uradial) = SW-radial(rl, 7radial)

(5.25)

Table 5.3: GM79 model parameters
No (rad/s) N(z) (rad/s) b (m) EO * max wo (rad/s)
5.2 x 10-3 5.0 x 10-3 1.3 x 103 6.3 x 10-5 3 100 1.2 x 10-4

In the computation of Equation (5.19) and Equation (5.23), the following pa-

rameter values are taken from [62]: b=1300 m, EO = 6.3 x 10-5 (dimensionless),

No = 5.2 x 10-3 rad/s (equivalent to about three cycles per hour), i=3. Those

parameters have also been adopted in other research [60]. The two remaining pa-

rameters, the Coriolis frequency wo and the buoyancy frequency N(z) are assigned

in the thesis context. In relation to the Labrador Sea Experiment data (to be pre-

sented in Chapter 9), we use latitude q = 570 N of the experimental site in calculating

wo = 2Q sin# ~ 1.2 x 104 rad/s where Q = 2/day is the angular velocity of Earth's

rotation. We let N(z) = 5.0 x 10-3 rad/s be very close to the upper bound No.
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In Chapter 7, we will look at the internal wave spectrum corresponding to a lower

N(z).

The calculated SW-radial (7, Vradial) is shown in Figure 5.4. As expressed by Equa-

tion (5.24), at any w, k has a lower bound corresponding to mode number i = 1, below

which S'y_,. (w, k) vanishes. This is why we see a "shadow region" in Figure 5.4,

and equivalently a "shadow disk" in Figure 5.5.

0 -3.

-4A

10

-20

-30

-4 -:.8
Iog,071 (s )

Figure 5.4: Internal

SW-radial (7, Vradial).

wave vertical velocity's temporal-spatial (radial) PSD

Using Equation (A.5) and Equation (A.8)in Appendix A, the "for line survey"

PSD Sw (0 v) can be obtained by an integration over one of the two wavenumbers,

as illustrated in Figure 5.5. Sw(71, v) is shown in Figure 5.6 (only its first quad-

rant is displayed). Note that after integration over one wavenumber (as expressed

by Equation (A.5)), the shadow region as seen in Figure 5.4 no longer exists. This

phenomenon can be explained by the illustration of Figure 5.5.

By integrating Sw(q v) over v or 71, we can obtain the vertical velocity's q-

spectrum and v-spectrum, as shown in the upper and lower panels of Figure 5.7,
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Isotropic contours of
S3D(Tj,v1,V2)

Integration line for
producing S(71,vi)

Vi

"Shadow" regiol
at rl=o/(27t)

Figure 5.5: Integration over one wavenumber to produce the "for line survey" PSD
Sw(77, v) of internal wave vertical velocity.

respectively. For the sake of comparison, those two spectra are also calculated for

the vertical displacement, as shown in Figure 5.8. Due to the differentiation relation

as expressed in Equation (5.18), vertical velocity's q-spectrum is flattened up from

vertical displacement's 9- 2 asymptote.
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Figure 5.6: Internal wave vertical velocity's temporal-spatial (for line survey) PSD
Sw(rq, v) (the first quadrant).
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Frequency power spectrum density of vertical velocity
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Figure 5.7: Internal wave vertical velocity's frequency-spectrum (upper) and
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Chapter 6

AUV-Based Spectral Classification

of Ocean Convection and Internal

Waves

6.1 Classification Steps

We now apply the AUV-based classifier to distinguish ocean convection from internal

waves. According to the classifier architecture illustrated in Figure 4.1, the steps

of classification are summarized as follows (internal wave is denoted class 1 while

convection is denoted class 2):

1. For each process, derive the mingled spectrum Sy(f) from its temporal-spatial

spectrum Sx (rI, v) by Equation (3.4). Then by including the data window's

effect, calculate class mean vectors My 1 and MY 2 by Equation (4.20) and Equa-

tion (4.21), respectively.

2. Obtain the transformation vector V by Equation (4.25).

3. By Equation (4.26), we apply V to the PSD estimate Sy(f) of the input time

series Y(t). The resultant scalar feature z is compared with a threshold to make

the classification decision.
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In this chapter, we use model-based synthesized data in step 3. We evaluate the

classifier's performance by the statistics of the ensemble of z. In Chapter 9, we will

use experimental data to test the classifier.

6.2 Mingled Power Spectrum Density (PSD) of

Vertical Velocity of Convection and Internal

Waves

6.2.1 Temporal-Spatial PSDs of the Two Processes

1. Ocean convection.

In Section 5.1.4, we have configured and run a 2000 m x 2000 m x 350 m mixed-

layer convection model, over a time duration of two hours. The model has a grid

size of 10 m and a data output step of 30 s. At any depth, there are thus 200

lines evolving for 240 time steps. We carry out model computations at the depth

of 250 m, selected to coincide with that of the AUV's Labrador Sea experimental

data which will be presented in Section 9.4 and tested in Section 9.5.

To obtain vertical velocity's temporal-spatial PSD for a line AUV survey, we

conduct two-dimensional Fourier transform [65] (over time and distance) for

each line. Then we take the average of the 200 lines' two-dimensional peri-

odograms as the averaged periodogram. This procedure is illustrated by Fig-

ure 6.1. While the mingled spectrum principle does not rely on isotropy, we

consider the convection field to be isotropic because of the isotropic surface

cooling in the model. Based on symmetry properties as expressed by Equa-

tion (A.10) and Equation (A.12), the whole q-v spectrum is constructed using

the first quadrant of the averaged periodogram. The resultant spectrum is

shown in the upper panel of Figure 6.2. It is regarded as the temporal-spatial

PSD template for convection.
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Temporally, the vertical velocity field varies little during the two hours of evolu-

tion (from 5.4 hours to 7.4 hours after the onset of surface cooling) as convection

approaches a stationary state. The observed baseband spectrum on the i-axis

is mostly due to the two-hour window effect. on the v-axis, however, there is a

peak at about 0.005 m- 1 because convective cells have a spatial periodicity of

about 200 m (as displayed in Figure 5.2). As will be shown in Subsection 6.2.2,

we can utilize the AUV's speed to highlight this feature of convection for clas-

sification against internal waves.

Line 1

*eeoeeo -e-e-Line 200

Plan view of convection box

X

t 2-D FFT, and then
average over 200 lines
to generate convection
Sx(iv) template.

Figure 6.1: Generation of the temporal-spatial PSD of convective vertical velocity
from model data.

2. Internal waves.

The temporal-spatial PSD of internal wave's vertical velocity has been obtained

in Subsection 5.2.2, as shown in Figure 5.6. That spectrum is confined within an

upper bound of buoyancy frequency (N(z) = 8 x 10-4 Hz, equivalent to nearly

three cycles per hour) on the a-axis. In the ocean, however, processes with
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Figure 6.2: Temporal-spatial PSD of vertical velocity of convection (upper) and in-
ternal waves (lower, with extended plateau).

frequencies higher than the buoyancy frequency do exist [40], like turbulence [9].

We therefore need to consider higher-frequency processes along with internal

waves.

According to the Power Spectrum Density (PSD) of ocean wave kinetic en-

ergy as illustrated in Figure 6.3, the spectrum follows q-2 within the internal

wave frequency range (i.e., between the Coriolis frequency and the buoyancy

frequency) and follows 7- 4 above the buoyancy frequency. The observed q-2

power law is consistent with observations in classic internal wave papers [2], {61],
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Figure 6.3: Notional plot of frequency spectrum of kinetic energy of internal wave
and higher-frequency waves. The turning point is at the buoyancy frequency. (Based
on a plot with courtesy of Dr. Thomas Curtin.)

[39], [62]. In Figure 6.3, the frequency bounds are: Coriolis frequency=10-5 Hz,

corresponding to a latitude of about 3001; buoyancy frequency=2.8 x 1-- Hz,

equivalent to about one cycle per hour; upper end of frequency=0.017 Hz, up to

where the r/- power law still applies well. By integration, the power contained

above the buoyancy frequency is found to be about 1% of the internal wave

power. Varying the buoyancy frequency up to three cycles per hour (as used for

our internal wave spectrum computation so far), this ratio rises to about 3%.

To account for power contribution from higher-frequency processes, we need to

extend internal wave's power spectrum to above the buoyancy frequency. Before

carrying out the extension, we should determine the upper bounds of frequency

'At a higher latitude (e.g., ~-. 570N for the 1998 Labrador Sea Experiment to be presented
in Chapter 9), the Coriolis frequency will be higher. The Pai oeaoeo bnuoyac waesun
will correspondingly rise. As to be given below, the ratio is set large enough to allow for this
variation.
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and wavenumber:

" Temporal frequency r/

In convective vertical velocity PSD computation, the 30-s time step in

running the model determines that the upper end of temporal frequency

is . x -= 0.0167 Hz. For internal wave vertical velocity, most power

is contained below 0.0167 Hz which corresponds to the highest frequency

point drawn in Figure 6.3. So we take 0.0167 Hz as the upper-end temporal

frequency for both convection and internal wave PSDs.

" Spatial frequency v

In convective vertical velocity PSD computation, the 10-m grid size in

running the model determines that the upper end of spatial frequency is

x = 0.05 m-. For internal wave vertical velocity PSD as shown2 iom

in Figure 6.3, the power density is very low above 0.05 m 1 (power above

this spatial frequency accounts for less than 0.3% of the total power). So

we take 0.05 m- as the upper-end spatial frequency for both convection

and internal wave PSDs.

Now for the temporal-spatial PSD of internal wave vertical velocity, we add a

spectrum plateau above the buoyancy frequency to account for higher-frequency

processes. Although a plateau is not an accurate description of the spectrum,

we deem it sufficing to serve the purpose of thesis work since the forthcoming

computation of mingled spectrum is in an integration sense. From the per-

spective of classification, the spectrum extension will prevent a classifier from

unduly taking advantage of a vanishing part of a spectrum2 .

Calculated based on Figure 6.3, the ratio Power above buoyancy frequency isPower of internal waves

used to set the height of plateau. Although the ratio calculated this way is for

kinetic energy but not for (vertical velocity) 2 per se, we still deem it a usable

2 In detection theories, the problem is referred to as "singular detection" [21], [66].
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reference. To allow for unaccounted power at even higher frequency and also

allow for latitude variations, we set the power ratio to 0.1.

With this plateau extension above the buoyancy frequency, the r0 - v spectrum

for internal wave vertical velocity is shown in the lower panel of Figure 6.2.

Symmetries are due to isotropy, as expressed by Equation (A.10) and Equa-

tion (A.12). Note that for the sake of testing the classifier, we have scaled

internal wave vertical velocity's amplitude such that its power equals that of

convective vertical velocity. On the q-axis, internal wave power is confined be-

tween the Coriolis frequency (1.2 x 10- rad/s, corresponding to the Labrador

Sea Experiment latitude) and the buoyancy frequency (5.0 x 10- rad/s, i.e.,

nearly three cycles per hour). On the v-axis, most power lies at very low

wavenumber, showing no peak at away from v = 0. This distinction from

convective vertical velocity is what a cruising AUV can take advantage of for

classification.

6.2.2 Mingled PSDs at a Series of AUV Speeds

Having obtained Sx (rq, v) of convective and internal wave vertical velocities, let us

derive the AUV-seen Sy(f) by the mingled spectrum principle, as illustrated in Fig-

ure 6.4. We intend to depict the temporal-spatial distinctions of the two processes

in Figure 6.4, rather than accurately plot Sx(, v). Convection's spatial peak on

the v-axis is projected onto the f-axis of the corresponding mingled spectrum. At a

higher AUV speed, the spectral peak on the f-axis is pulled farther away from f = 0.

For internal waves, however, the picture is different. Because the internal wave power

is concentrated at baseband on the q-axis and the v-axis, the corresponding mingled

spectrum also lies at baseband on the f-axis. A higher AUV speed will not change

this basic spectral shape. Based on this inspection even before conducting computa-

tions, we project that the classifier's performance will improve with AUV speed as

convection's spatial feature is highlighted in contrast with internal waves.

We apply Equation (3.4) at a series of AUV speeds u= 1 m/s, 0.25 m/s, 0.1 m/s,
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and 0.05 m/s. The resultant mingled spectra of convective and internal wave vertical

velocities are compared in Figure 6.5. The effect of data window has been included in

the calculations, by using Equation (4.20) and Equation (4.21). So the results shown

in Figure 6.5 are class mean vectors My1_o(f) and My 2 _o(f). The data window

length is set to 1400 s to coincide with that of the AUV's Labrador Sea experimental

data which will be presented in Section 9.4 and tested in Section 9.5. The results

in Figure 6.5 are consistent with the predictions inspected from Figure 6.4: a higher

AUV speed improves classification by highlighting convection's spatial feature through

mingled spectrum projection.
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AUV speed = 1 m/s, with 1400-s window effect.
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Figure 6.5: Mingled spectra of vertical velocity of convection and internal waves.

6.3 Feature Transformation Vector

Having obtained class mean vectors Myi 0 (f) and My 2 -o(f), the feature transforma-

tion vector V is derived by Equation (4.25). For an AUV speed of 1 m/s, V is shown

in the lower panel of Figure 6.6, labeled "unmodified". In Chapter 7, the computation

method of V will be modified in consideration of parameter uncertainties. Although

we do not present the modification method herein for the sake of clarity, we show the

modified V and the resultant classifier performance hereafter. Class mean vectors

Mfyi 0 (f) and My 2 _o(f) and the transformation vector V for AUV speed series u

1 m/s, 0.25 m/s, 0.1 m/s, and 0.05 m/s, are shown in Figure 6.7.

For the purpose of the forthcoming experimental data test, we have normalized the

power of Myi1 0 and My 2 _0 to that of the experimental data set which will be presented
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Figure 6.6: Class mean vectors My1 _o and MY2- 0 , and the feature transformation

vector V for AUV speed 1 m/s.

in Section 9.4. The upper frequency bound is prescribed such that both My1_O and

MY2_0 are higher than 0.0015 (m/s) 2 /Hz. This power density value maintains an SNR

of about 20 dB over the instrument noise floor of the Acoustic Doppler Velocimeter

(ADV) under normal operation conditions (an AUV-borne ADV acquired the flow

velocity data in the Labrador Sea Experiment, as will be presented in Chapter 9). At

a lower AUV speed, levels of mean spectra decrease at high frequency, thus the valid

frequency range shrinks as the vehicle speed drops.

In computations presented in this chapter, we let veff = 1 (please refer to Equa-

tion (4.25)). This implies that no time-domain segmentation or frequency-domain

smoothing is applied in periodogram computation. The periodogram thus generated

is noisy. For the AUV-based classification, treating this adverse situation is necessi-

tated when the data length is small, since segmentation would lead to an even shorter

duration for each segment, which corresponds to a wider bandwidth B,. In the formu-

lation of the classifier's transformation vector V, it is required that adjacent frequency
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and M2_0 and the feature transformation

points are separated by a spacing of B such that the PSD estimates are uncorrelated.

Given a limited frequency range constrained by a signal-to-noise-ratio (SNR) over

the instrument noise floor, the total number of valid frequency points participating

in classification will decrease when B, increases. Frequency-domain smoothing, on

the other hand, also reduces the total number of valid frequency points participating

in classification, because smoothing makes the PSD estimates within the smoothing

band no longer uncorrelated. The Labrador Sea AUV data used in the thesis has a

length of about 1400 s, corresponding to B, ~ 7 x 10-4 Hz. With no time-domain

segmentation or frequency-domain smoothing applied in periodogram computation,
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i.e, veff = 1, the total number of valid frequency points participating in classification

are: 14, 9, 6, 5 for AUV speed 1 m/s, 0.25 m/s, 0.1 m/s, and 0.05 m/s, respectively, as

shown in Figure 6.7. Hence further segmentation or smoothing would be unrealistic

for this case.

An AUV should be equipped with the ability of carrying out classification based

on a short data record. This is necessary for the vehicle to make timely responses to

detected processes of interest. On the other hand, the classifier's underlying assump-

tions of temporal stationarity and spatial homogeneity would become more challenged

when the data length is large. With the above considerations, we deem it necessary

to investigate the classifier's performance under veff = 1 which constitutes the most

challenging situation in the respect of available data length. This is also necessary for

testing the classifier with the short experimental data. In Chapter 7, we will present

the results for veff = 4 by assuming a longer data record.

6.4 Model-Based Simulations

6.4.1 Simulation of AUV-Acquired Convective Vertical Ve-

locity

For simulating a line survey in the convection field, the AUV-recorded time series

are directly drawn from the convection model at depth 250 m which is displayed

in Figure 5.2. We thus consider each of the 200 lines to be an AUV survey line with

a duration of no more than two hours, as illustrated in Figure 6.1. At an AUV speed

< m/s, interpolation is done in distance to fit the initial time step of 30 s; at an

AUV speed > } m/s, interpolation is done in time to fit the initial grid size of 10 m.

An example of an AUV-recorded vertical velocity time series is shown in Figure 6.8.

In the second panel, circles mark the original data points, and crosses mark the

interpolated data.

An ensemble of 200 AUV survey lines are used for a classifier test at each prescribed

AUV speed. To add randomness to different test runs, the starting time and location
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Figure 6.8: An AUV survey line in the convection field at speed 1 m/s.

are randomly picked (within range). For example, in the test run corresponding

to Figure 6.8, the start time is 60 s while the start location is 240 m.

6.4.2 Simulation of AUV-Acquired Internal Wave Vertical

Velocity

At AUV speed 1 m/s, the mingled PSD of internal wave vertical velocity SyintWave(f)

(obtained by Equation (3.4)) is shown by the solid curve in the second panel of Fig-

ure 6.9 (without the data window's effect). Syjintwave(f) approximately follows a

power law of f0 at low frequency, and follows f- 2 at high frequency. This property

reminds us of the feasibility of simulating the corresponding time series as the output

of a first-order AutoRegressive (AR) model [67].

The difference equation for a first-order AR model is
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Figure 6.9: The mingled PSD of internal wave vertical
PSD at AUV speed 1 m/s.

y(n) = ay(n - 1) + u(n)

velocity v.s. the AR modeled

(6.1)

where a is an coefficient constrained by jal < 1; u(n) is a white noise process with

variance or.

+ output y(n)

white noise u(n) o

Ta IZ-' --

Figure 6.10: A first-order AR model.

Consider u(n) and y(n) to be the input and output of a system, and then the

system's transfer function is
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Y__) 1
H(z) = ()- 1(6.2)

U(z) I - az-1

which is depicted by Figure 6.10. The coefficient a represents the pole zo = a. Its

closeness to the unit circle determines the frequency response of the system H(z).

Since the input u(n) is white noise of power o, the PSD of the output y(n) is

simply

2 2

SyAR(f) = oJ IH(f)12  u 1 - (6.3)
11 - ae-j 27f 2 1 - 2a cos(27rf) +012

To facilitate a quick observation of SyAR(f), we can utilize the technique of Bode

diagram. The denominator of SyAR(f) in Equation (6.3) can be written as

11 - ae-j2f 12 = [1 - a cos(27rf)]2 + [asin(27rf)]2  (6.4)

asin( 1 )-_7
At fo = iQf Ii - a cos(27rf) equals a sin(2irf) (condition: a > ). For

f < fo, the former dominates; for f > fo, the latter dominates. As a Bode diagram

approximation, we only keep the dominant terms below or above fo. For f < 1, we

can further apply the Taylor series expansions to sin(-) and cos(-) functions and only

keep the first terms, which leads to fo ~ ". Equation (6.3) is then approximated

by

SY (f { 0 < f < fo
Sy(U.~ 2 (6.5)

(27ra fo f 
< f 1

where Sy (f) follows f 0 below fo and follows f 2 above fo, respectively. This verifies

the applicability of simulating the AUV-acquired time series of internal wave vertical

velocity by use of a first-order AR model. Figure 6.11 displays the comparison of
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an AR model output PSD and its Bode diagram approximation. The

model design procedure can be summarized as follows:

For internal wave vertical velocity at AUV speed 1 rn/s

10

10-

a
Cl)
0-

10,~

1o-

10- 1Fu (
Frequency (Hz)

10-1

first-order AR

Figure 6.11: Comparison of a first-order AR modeled PSD and its Bode diagram.

1. Inspect the Bode diagram's fo for the given PSD. Determine an initial AR

coefficient a by use of fo = 1-. Assign a corresponding value to white noise

variance ao2 to guarantee that the AR model output has the same power as that

of the given PSD.

2. Do a finer search of a, until the AR output PSD best matches the given PSD.

The metric is ||Sy(f) - Sy-AR(f)12 (weighting can be applied based on the

feature transformation vector V). Each time a is adjusted, so is a; to preserve

power.

With parameters a = 0.9627 and ao2 = 1.1041 x 10 4 , comparison of the AR

modeled PSD and the objective PSD of internal wave vertical velocity is shown in Fig-

ure 6.9. Including the effect of the 1400-s data window, Figure 6.9 updates to Fig-

ure 6.12. The two PSDs appear to match well. One sample time series generated by

this first-order AR model and its PSD estimate are shown in Figure 6.13.

At a lower AUV speed such as 0.1 m/s, the mingled spectrum of internal wave

vertical velocity shows a spectral peak at non-zero frequency. The non-zero spectral
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Figure 6.12: With a 1400-s data window, the mingled PSD of internal wave vertical
velocity v.s. the AR modeled PSD for AUV speed 1 m/s.

peak prompts us to use a second-order AR model, which has a pair of conjugate poles,

thus providing an additional degree of freedom for the location of peak frequency [67].

The difference equation for a second-order AR model is

y(n) = aiy(n - 1) + a2Y(n - 2) + u(n) (6.6)

where oz = 2r cos(27rfpeak) (r is the radius of the pair of conjugate poles and fpeak is

the peak frequency) and a2 = -r 2 ; u(n) is a white noise process with variance o.

The system's transfer function is

_Y(z)

H(z) - U(z)
U(z)

1

1 - - a2z-2
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Figure 6.13: A sample time series and its PSD generated by a first-order AR model
for AUV speed 1 m/s.

which is depicted by Figure 6.14. The PSD of the output y(n) is [67]

SYAR(f) = |H(fu|2
2

(6.8)a1 - aie- 2 / - -j4l2

or2
or-

|- rei 2 x(ff-,ea) 2 ~1- re--2 xt(-|-pak)l2

For AUV speed 0.1 m/s, a second-order AR model is designed to match the

mingled PSD. The resultant model parameters are: a1 = 1.9217, a 2 = -0.9235, and

= 4.5521 x 10-7. With the effect of a 1400-s data window, the modeled PSD is

compared with the mingled PSD in Figure 6.15.

One sample time series generated by this second-order AR model and its PSD

estimate are shown in Figure 6.16. Like in the convection field, 200 AUV survey lines

in the internal wave field are randomly generated in each classifier test.
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Figure 6.14: A second-order AR model.

6.5 Classifier Test Results

Now we test the classifier by convection and internal wave data generated in the

preceding section. For each time series of AUV data, its PSD estimate is converted

to a scalar feature z by the transformation vector V following Equation (4.1). 200

lines of AUV data in the convection field and another 200 lines in the internal wave

field are used for each test, as summarized in Table 6.1. The classifier's performance

is evaluated by the statistics of the resultant ensemble of z.

Table 6.1: Parameters and method for classifier test of convection versus internal
waves

Test parameters Simulation method

Internal wave vertical velocity N(z) = 5.0 x 10- rad/s 200 time series by
No = 5.2 x 10-3 rad/s AR modeling

Convective vertical velocity surface heat flux=300 W/m2  200 time series by
mixed layer depth=350 m extracting AUV survey lines from

the convective box at depth 250 m

Corresponding to Figure 6.5, we test the classifier at a series of AUV speeds u=

1 m/s, 0.25 m/s, 0.1 m/s, and 0.05 m/s. The AUV's Labrador Sea experimental data

was acquired at a speed of about 1 m/s. We therefore present the case for AUV speed

1 M/s with more details than the other speeds, for clarity and also to serve Section 9.5.

Corresponding to 200 AUV survey lines in the internal wave field and 200 lines in

the convection field, we get the histograms of z as shown in Figure 6.17. In this

test run, the distributions of z in the two classes do not overlap. The corresponding

Receiver Operating Characteristic (ROC) curve is shown in Figure 6.18 (please refer
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Figure 6.15: With a 1400-s data window, the mingled PSD of internal wave vertical
velocity v.s. the AR modeled PSD for AUV speed 0.1 i/s.

back to Section 4.4 for explanations of ROC).

The arrow in Figure 6.17 marks the z value corresponding to the AUV's Labrador

Sea data. So we see that the experimental z falls in the cluster of the model-based

simulations. We will present the experimental data in Section 9.4 and discuss their

tests on the classifier in Section 9.5.

With the same procedure, we obtain the classifier's performance at other AUV

speeds. For the speed series, Figure 6.18 shows the histograms and the correspond-

ing ROC curves. The corresponding first and second-order statistics of z is shown

in Table 6.2.

Classification of the two processes is very difficult at low AUV speeds 0.05 in/s and

0.1 in/s1 shown by the severely overlapping histograms and the corresponding ROC

curves in Figure 6.18. As noted in Subsection 6.2.1, convective vertical velocity is

temporally low-pass but has a non-zero spectral peak on the wavenumber axis which

indicates considerable spatial variation. At a low vehicle speed, convection's spatial
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shown in Figure 6.5 at low AUV speeds.

It is noted that in internal wave fields or convection fields, the ocean's horizontal

advection often exists [471, [ 21. The advective speed can be larger than 0.1 in/s [47].

For a mooring, the effect of advection current makes its measurement equivalent to

that made on a low-speed AUV. Then based on the mooring measurement, it would

also be difficult to classify vertical velocities of convection and internal waves.

At higher AUV speeds 0.25 in/s and 1 m/s, convection's spatial peak on the v--

axis is apparently projected onto the f-axis of the corresponding mingled spectrum,

as displayed by Figure 6.4. Thus convection's spatial feature is brought to light in

the AUV-recorded time series. Due to the properties of internal wave's frequency-

wavenumber spectrum, its mingled spectrum lies at baseband on the f-axis. A higher
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Figure 6.17: At AUV speed 1 m/s, the histograms of feature z for internal wave and
convection. The value of z corresponding to the experimental data is marked by the
arrow.

AUV speed does not change this basic spectral shape. Consequently, the mingled

spectra of the two processes show a noticeable difference. This highlighted difference

greatly improves the classifier's performance, as shown by the much better separated

histograms and the corresponding ROC curves in Figure 6.18. Fundamentally, a

higher AUV speed pulls the peak of convection's mingled spectrum farther away

from the base frequency band where internal wave's stays despite the heightened

vehicle speed. This case study demonstrates that we can take advantage of AUV's

controllable motion for good classification.
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Table 6.2: Statistics of z (class 1: internal wave, class 2: convection)
I m/s Mzi Uzi mz2 -z2

Theoretical -0.48 2.31 10.00 3.95
Simulation -1.44 2.13 10.39 2.42

0.25 m/s Mi 1  -zi Mz 2  Uz2

Theoretical 0.49 1.24 3.24 1.99
Simulation 0.82 0.86 3.09 1.84

0.1 m/s Mi2 1  ozi mz2 Uz2

Theoretical 0.19 0.48 0.42 0.46
Simulation 0.23 0.27 0.39 0.36

0.05 m/s Min Uzi mz2 -z2

Theoretical -0.07 0.34 0.01 0.21

Simulation -0.06 0.20 0.03 0.23
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Chapter 7

Classifier Robustness

7.1 Spectrum Uncertainty at Successive Stages

Variant - -
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Figure 7.1: Flow chart of spectrum uncertainties at successive stages.
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Essentially, the AUV-based classifier works by matching the input data's spectrum

with the model-based spectrum templates. In the thesis, the two models are the

MIT Convection Model and the Garrett-Munk internal wave model, as introduced

in Chapter 5. To build the spectrum templates, we assign a set of parameters to each

model. These parameters are selected based on our understanding of the process

and available prior information. For instance, we set the heat flux Q=300 W/m2

and mixed layer depth=350 m for the convection model, based on meteorological and

hydrographic measurements in the Labrador Sea.

The real data, however, may have some discrepancy from the model. From the

perspective of modeling, this mismatch problem is equivalent to parameter uncer-

tainty. We should enable the AUV-based classifier to be robust to model parameter

uncertainty. As briefly mentioned in Section 6.3, the computation of the feature

transformation vector V and the classification results presented in Section 6.5 have

already used the robust classifier presented in this chapter. We did not present ro-

bust design therein so as not to complicate the mainstream. Adding robustness to

the AUV-based classifier becomes the topic of this chapter.

The relation between the model's template spectrum Myo and the data's PSD

estimate Sy is illustrated in Figure 7.1. If the parameter uncertainties were neglected,

the middle two blocks would not exist such that the only source of Var[Sy] is the

periodogram's inherent variance. This simplified case is expressed in Equation (4.23).

Let us now consider parameter uncertainties associated with internal waves. As

presented in Section 6.2, the buoyancy frequency N(z) is the key parameter of inter-

nal wave vertical velocity's spectrum since it prescribes the upper bound frequency.

While we set this parameter to about 3 cycles/hour, we should allow for an uncer-

tainty range around this value. Another parameter is the height of the extended

PSD plateau to account for higher-frequency processes. It is set such that the ratio
Power above buoyancy frequency equals 0.1. We should also allow for an uncertainty

Power of internal waves
range for this ratio. Using internal wave as an example, notations in Figure 7.1 are

explained as follows.

1. My and Myo: Under a specified buoyancy frequency N(z), the mingled spec-

111



trum is denoted My (including the data window's effect). Uncertain values

of N(z), however, will cause major changes to the mingled spectrum. Corre-

sponding to some range of N(z), e.g., from 1 cycle/hour to 5 cycles/hour, My

experiences a variational range too. The mean of My is denoted Myo:

E[My] = Myo (7.1)

We call Myo the "global class mean".

2. My: When the buoyancy frequency N(z) is specified, so will be My. But

spectrum uncertainty still exists, which is caused by the contribution from the

unreliably modeled portion of the T1 - P PSD, i.e., the uncertain height of the

extended PSD plateau at above the buoyancy frequency. At a specified plateau

height, the mingled spectrum is denoted My. Corresponding to some range of

plateau height variation, My has a variational range too. The conditional mean

of M, is My:

E[MytMy] = My (7.2)

We call My the "local class mean".

3. Sy: When both the buoyancy frequency N(z) and the height of the extended

plateau are specified, My' will be specified. Its estimate Sy, however, has un-

certainty due to the nature of periodogram estimation. The conditional mean

of Sy is MY:

E[5yIMy'] = My' (7.3)
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For convective vertical velocity, the concept is the same. The picture is simpler by

leaving out the third block "uncertain local class mean": as we regard convection's

rq - v PSD as reliably modeled, My' and My coincide, or equivalently, Var[M-] = 0.

7.1.1 Local Uncertainty

As presented in Section 6.2, a power density plateau is added to internal wave verti-

cal velocity's temporal-spatial PSD to account for processes at above the buoyancy

frequency. By calculations based on a notional plot, we set the plateau height such

that its integrated power equals 10% of internal wave's, as shown in the lower panel

of Figure 6.2. In contrast to internal wave PSD, we deem the extended plateau "unre-

liably modeled". It contributes to the mingled spectrum by integration as illustrated

in Figure 3.2. The proportion of "unreliable contribution" varies with frequency as

the integration line slides through the temporal-spatial PSD. Figure 7.2 shows the

variation of percentage of internal wave power density contribution (considered reli-

able) as a function of frequency and AUV speed. At a lower AUV speed, the "reliable

contribution percentage" drops faster to zero because the integration line in Figure 3.2

slides out of the reliable PSD region earlier.

There exists uncertainty with the plateau height, which implies that the total

power at above the buoyancy frequency could vary. This uncertainty translates into

the mingled spectrum after integration. It affects the PSD estimate variance which

in turn has an effect on the transformation vector V.

In this section, we do not yet include global uncertainty, but only consider local

uncertainty due to the variation of the extended plateau height. Following notations

in Figure 7.1, we denote internal wave's uncertain PSD template as M1, and its mean

as My. My is composed of reliable and unreliable contributions:

MY, = aMy + (1 - a)My 0 (7.4)

where a is the reliable contribution percentage as shown in Figure 7.2. Random
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cx (percentage of reliably modeled PSD contribution for internal wave). AUV speed = 1 m/s

AUV speed = 0.25 m/s
1a

0.s5- -..

AUV speed= 0. 1 m/s!I
AUV speed = 0.05 m/s

0.5 - -...

Frequency (Hz)

Figure 7.2: Percentage of reliably modeled power density contribution to the internal
wave mingled spectrum.

variable 13 embodies the uncertainty of the unreliable contribution. It is supposed to

have a mean of one:

E[O] = 1 (7.5)

Then we have

E[My] = aMy + (1 - a)MyE[3] = My

Var[My] = My21 - a)2Var[3]
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These local uncertainty properties will be used in the derivations in Section 7.2.

7.1.2 Global Uncertainty

1. Ocean convection.

In Section 5.1, we set the heat flux Q=300 W/m 2 and the mixed layer depth

H=350 m for the convection model, based on meteorological and hydrographic

measurements in the Labrador Sea. Corresponding to the concept in Figure 7.1,

we regard the mingled spectrum under those parameters as the global class

mean MY 2 0 . Now we apply a significantly different set of parameters to repre-

sent global uncertainty. We let the heat flux and the mixed layer depth both

increase by a factor of three: Qextreme= 9 0 0 W/m 2 and Hextreme=1050 m. We

call convection under this setting an "extreme convection case", and denote the

resultant mingled spectrum My2-extreme-

At 36000 s (10 hours) after surface cooling starts, vertical flow velocity w is

shown in Figure 7.3. The upper panel displays the horizontal cross-section at the

500-m depth; the lower panel displays the vertical cross-section at y = 1000 m.

Convective cells with periodicity of about 400 m - 450 m are observable in both

panels. This spatial period is about twice the value (200 m - 250 m as shown

in Figure 5.2) for the former model setting. According to Equation (5.2), the

increment ratio of spatial period is supposed to be v/3 (noting that the buoyancy

flux B0 is proportional to the heat flux). The new model run result is close to

the theoretical prediction.

Based on the model output for two hours (from 8 hours to 10 hours after the

onset of surface cooling), we compute the temporal-spatial PSD of convective

vertical velocity. It is shown in the upper panel of Figure 7.4. On the v-axis,

the spectral peak wavenumber is lower than that of the former convection result

(shown in the upper panel of Figure 6.2), due to an enlarged spatial period of

convective cells.

2. Internal waves.
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Figure 7.3: Horizontal and vertical cross-sections of vertical flow velocity w at time
10 hours, for "extreme" convection.

In Section 5.2, we set N(z) = 5.0 x 10- rad/s, i.e., about 3 cycles/hour. We

regard the mingled spectrum under this parameter as the global class mean

My1_o. To represent global parameter uncertainty, we now set a significantly

different value: N(z) = 1.7 x 10-3 rad/s, i.e., about 1 cycle/hour. We call in-

ternal wave under this setting an "extreme internal wave case", and denote the

resultant mingled spectrum My1_extreme. The corresponding temporal-spatial

PSD of internal wave vertical velocity is shown in the lower panel of Figure 7.5.

Due to the decreased buoyancy frequency, the internal wave's spectrum shrinks

on the I-axis. As before, we have made an extension of PSD plateau to ac-
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Figure 7.4: Temporal-spatial PSD of vertical velocity of "extreme"
and "mean" internal wave (lower).

convection (upper)

count for higher-frequency processes. The plateau height is set such that the

ratio Power above buoyancy frequ equals 01. Note that the internal wavePower of internal waves

vertical velocity's power has been normalized to that of convection.

From the q - v spectra, we compute the "mean" and "extreme" mingled spectra

MIy_o and Myi-extreme (both including the data window's effect). Parameters for

Myi-o and Myi-extreme are summarized in Table 7.1. At AUV speed 1 m/s, the two

mingled spectra for convective vertical velocity are shown in Figure 7.6, along with

their difference. For the extreme convection, the spacing between convection cells is
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10log 10S(n,v) for convective vertical velocity
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Figure 7.5: Temporal-spatial PSD of vertical velocity of "mean" convection (upper)
and "extreme" internal wave (lower).

larger. Consequently, by mingled spectrum projection as illustrated in Figure 6.4, its

spectral peak lies at a lower frequency.

At a series of AUV speeds u= 1 m/s, 0.25 m/s, 0.1 m/s, and 0.05 m/s, the "mean"

and "extreme" mingled spectra as well as their difference are shown in Figure 7.7.

Corresponding to the second block in Figure 7.1, we consider (My 1_0 - Myextreme) 2

and (MY 2 O - MY 2 -extreme) 2 to be the estimates of class variances, i.e., at frequency
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Table 7.1: Parameters for Myj_ 0 and Myiextreme

Mean: Myi-o Extreme: MYi-extreme

Internal wave vertical velocity N(z) = 5.0 x 10-3 rad/s N(z) = 1.7 x 10-3 rad/s
(i=1) No = 5.2 x 10-3 rad/s No = 5.2 x 10-3 rad/s
Convective vertical velocity surface heat flux=300 W/m 2  surface heat flux=900 W/m 2

(i=2) mixed layer depth=350 m mixed layer depth=1050 m

Var[Myi(k)] ~(My1 o(k) - My 1_extreme(k)) 2

Var[My 2 (k)] ~ (My 2-0 (k) - My 2 -extreme(k )) 2

(7.8)

(7.9)

7.2 Derivation of Total Variance of Mingled Spec-

trum Estimate

With considerations of local and global model parameter uncertainties, we need to

re-examine the statistics of PSD estimate Sy of the AUV-recorded time series Y(t).

Only on this basis can we correspondingly modify the feature transformation vector

V and thus add robustness to the classifier. Note that the following derivations are

for an arbitrary frequency point.

First, let us find the expectation of Sy:
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Figure 7.6: The "mean" and "extreme" mingled spectra, and their difference, of
convective vertical velocity at AUV speed 1 m/s.

E[Sy] Sy p, ( Sy) dSy
-oo

fjS y dy
-00

fy d~yf

-0pmy (My) dA

psyM (Sy|) pMy,(My) dMb

- yo
PS 0 M {Y) dM j PM-,|My

yV ju PM M( My|MY ) dMG j

(M | My) pMy (My) dMy

Sy PSYIM, ( Sy| ) dSy

(7.10)

= M

(My) dMy M IP Y(M|My) dM'

pmy(My) dMY

where we utilize f_ Sy pYlMy (SyMy') dSy = E[Sy|My] = My' (Equation (7.3)),

and f My pPj1 m-(My'My) dM, = E[My'jMy] = My (Equation (7.2)), as well
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Figure 7.7: The "mean" and "extreme" mingled spectra and their difference, for
internal wave and convection at a series of AUV speeds.

as Equation (7.1) such that f_'. My pMy (My) dMy = Myo

So we see that based on the formulation in Section 7.1, Sy is still an unbiased

estimate of the global class mean Myo. Next let us find the variance of Sy. Us-

ing Equation (7.10), we have
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Var[Sy] = E [(Sy - E[Sy]) 2]

= E[(Sy - Myo) 2]

f j(~y - Myo) 2 ppy (Sy) dS

S [(Sy - MY') + (Myi - My) + (My - Myo)] 2 p g (y) dSy

[($y- MP) 2 + (M - My) 2 + (My - Myo) 2
(7.11)

+ 2(My' - My )(Sy - My) + 2(My - Myo) (Sy - My)

+ 2(My - My)(My - Myo)] pg,($y) dSy

Let us integrate the six terms individually and then sum them up. Beginning from

the integration of the first term:

j(Sy - MY,) 2 pg,(Sy ) dSy

S- My)2(f

-i
00

y - )2(
-00 J 0

pS m,(Sy|My) pM (My) dMy) d~y

ps M ( Sy|My) dMy,

PM0 IMy(M Imy My pm (My) dMy) d~y

pmy j My) dMy M |IMy (M IMy) dMyl

(7.12)

) 2p (SyIMY ) d~y

where'

f(y - M ) 2pYM (SyM ) d~y = Var[Sy|My] = M 2

-co ( _M yIMy--eff
(7.13)

Incorporating Equation (7.13) into Equation (7.12), we have

'The zero-frequency is special: Var[$y(O)IMy] = 2 m 0). This specialty is properly treated in

computations, but omitted in expressions herein for the sake of conciseness.
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f(00y - My)2 pgy(Sy) dy (714)

- J_- f)p (My) dMyf M pMIM|Y(My IMy) dMy

where

] M pM IMy (My'My) d My

(M - E [My'IMy] + E [MMy])2 PM,(MYy|My) d My

f j{ (E[My7 |My]) 2 + (MY, - E[My My]) 2  (7.15)

+ 2E[MyMy] (My7 - E[MjMy ]) pMuIMY(My'|My) dMy,

By Equation (7.2), the first term equals My; the second term equals Var[My|My];

the third term vanishes. Note that in Equation (7.2), "... My" was implicitly in-

cluded as My was still considered deterministic therein. Equation (7.15) then becomes

J M2 pM Im (My My) d My

= My2 + Var[My|My] (7.16)

= My + (1 - a(My)) 2Var[O]My2

= { + (1 - a(My)) 2 Var[0]}MY2

where we utilize Equation (7.7) to reduce Var[MylMy]. Once again, note that

in Equation (7.7), "... .My" was implicitly included. In Equation (7.16) we assume

3 does not vary with My but a does, thus we use notation a(My). Then Equa-

tion (7.14) is written as
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(Sy - My,) 2 p ,($y) d(
-,o 1 01+( My 2(7.17)

+ (1 -a(My))Var3]}M2 pmy(My) dMy

a (percentage of reliably modeled PSD contribution for internal wave). AUV speed = 1 m/s
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Figure 7.8: Internal wave's a for the "mean" and "extreme" cases.

For the "mean" and "extreme" internal wave cases, a (percentage of the reliably

modeled PSD contribution) is shown in Figure 7.8. a drops with frequency as the

mingled spectrum integration line slides out of the central internal wave spectrum,

into the outside plateau. The rate of descent, however, varies with the AUV speed

since the integration line's slope is determined by the vehicle speed. At a given AUV

speed, a is lower for the. "extreme" case than for the "mean" case because the central

internal wave spectrum is narrower in the former. Variational a(My) adds complexity

to the integration in Equation (7.17). For the sake of robustness for classification,

let us find an upper bound of the integral. We denote the minimum value of a
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corresponding to the range of My as amin. At any vehicle speed, we pick the lower

one of the two a curves (in Figure 7.8) as amin. Then we have

1 + (1 - a(My)) 2Var[] 1 + (1 - amin)2Var[ (1

So

Vefi { (1 - a(My)) 2Var[#]}My pMy (My) dMy

(7.19)V-f- f{I + (1 - amin)2 Var[]1}My pMy (My) dMy
(e)5 _0O

f{1 + (I - ami,,)2 Var[#3]}

where

-ooVef f
lVIy PMy VIMY) LyVIy

I My2 pMy (My) dMy

= (E[My ]) 2 +Var[My] (7.20)

= Myo +Var[My]

where we utilize Equation (7.1) such that E[My] = Myo.

Combining Equation (7.17), Equation (7.19), and Equation (7.20), we reduce Equa-

tion (7.14) to

MYI) 2 p,(Sy) dSy < {1 + (1 - amin) 2Var[3]}
Vef f

(Myo + Var [My])

(7.21)

We have thus obtained an upper bound of the integration of the first term in Equa-

tion (7.11). Now let us find the integration of the second term:
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1- M) 2 pg,(Sy) dSy

My - M) 2 (JPgYIM (SY!MyI) dMyj pM|IM, (M' IMy) pM, (My) dMy) dSy

f7.22)

f PM, (My) dMy f (My - My)2 Mp|IMy (My'IMy) dM ' psyIMy (Sy|My dy 2

where f p (SyMy)d~y = 1. So Equation (7.22) is simplified to

f(MY, - My) 2 pgy (Sy) dSy

f PM My) dMy f (My - My)2pMyIMy ( M yMY) dMy

j Var [My|My] pMy (My) dMy

f fC( - a)2Var[]MypMY(My) dMy
(7.23)

S(1 - amin) 2 Var[3] My pMy (My) dMy

(1 - amin) 2 Var [] ((E[My]) 2 + Var[My])

= (1 - amin) 2 Var[] (My2 + Var[My])

where we utilize E[MyjMy] = My (Equation (7.2)) and Var[Myj My] (1 -

a(My)) 2 Var[O]My2 (Equation (7.7)). The same as in the derivation of Equation (7.21),

we use a > amin to arrive at an upper bound of the integral.

Similarly, we can find the integration of the third term in Equation (7.11):
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(My - Myo) 2 pg, (Sy) dSy

MyO) 2 (J_ p M(y My ) dMy J0 pmImy (My I My) pmy (My) dMy) dSy

MyO) 2 pmy (My) dMy P my Imy (My' My) d My' f Py|M (Sy|IMy) dSy

MyO) 2 pmy (My) d My pMM y (My|My) dMy (7.24)

J ](My - MyO) 2 pMy(My) dMy

= Var[My]

where we note that f_ pgyIjM(yjMy) dSy = 1, fcI7pMuIMY(My< My) dMy,= 1,

and that E[My] = Myo.

Now let us show that the integrations of the fourth, fifth, and sixth terms in Equa-

tion (7.11) all vanish. Integration of the fourth term is

J 2(My' - My)(Sy - My) pg,(Sy) dSy

= 2 (My - My)(Sy - My)

{ py|Imy, ( Sy|MMy) d My pMy Imy ( My|IMy ) pmy ( My ) d My }d~y

= 2 f pmy (My) dMy (My' - My) pImy (My IMy) dMy } (7.25)

SCO(y - My ) p, Imy ($y|IMy ) d, y
'0

=0

since we know that f (Sy - My) pMyMy (MyIMy) dSy

E[(y - Mo iMy] = M i- Mi (= 0.

Integration of the fifth term in Equation (7. 11) is
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f 2(My - Myo)(Sy - My,) p ($y) dSy

= 2 (My - My.) (Sy - My)

pyI mPy (y|IMGy) dMy

= 2 f(My - Myo) pmy (My) dM,

jSy - MG) PSY M I u$Y|MY) dSy

=0

due to the the same reason as for Equation (7.25).

Integration of the sixth term in Equation (7.11) is

f 2(My' - My)(My - Myo) pgy(Sy) dSy

= 2 j (My' - My)(My - MO)

pSyMy, ( Sy|My) dMy :
2 j(My - Myo) pMy(My) dMy

My - MY) pMyIMy I My) d My'

pM ,Im(My|My) pmy (My) dMy} dy

f oop, Imy (y I My ) d~y

(7.27)

= 2j(My - Myo) pMy (My) dMy (MY - MY) PM lImy (My|My) dMy

noting that f p (y|My)d~y = land that f ' M - My)pMIMy (M |My)dMy -

E[(My - My)|My] = My - My = 0

Summing up Equation (7.21), Equation (7.23), Equation (7.24), Equation (7.25),

Equation (7.26), and Equation (7.27), Equation (7.11) finally reduces to
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Var[Sy] ; {(1 - amin)2Var[] + + (1 - amin})2 MVar3It lef f

1
+ (1 + ){1 + (1- amin)2 Var[O]}Var[My] (728)

Vef f (8

Equation (7.28) expresses the total variance of the PSD estimate Sy, including

effects of local uncertainty (embodied in (1 - amin) 2 Var[]) and global uncertainty

(embodied in Var[My]) of model parameters. Let us observe Equation (7.28) in

simplified cases:

1. When not considering global variation of My, i.e., Var[My] = 0 and thus a has

no variation, Equation (7.28) is simplified to

Var[Sy] = {(1 - a)2Var[3] + + ( - a)2 Var[3]MY
Vef f

(7.29)

This corresponds to cases where only local uncertainty is a concern.

2. When a = 1 or Var[#] = 0, i.e., either the unreliably modeled PSD makes no

contribution or the PSD is reliably modeled, local uncertainty is not a concern

(as for convection). Then Equation (7.28) is simplified to

1 1
Var[Sy] = Myo + (1 + )Var[My] (7.30)

Veff Veff

3. If not only local uncertainty is left out but also we have Veff > 1 , then Equa-

tion (7.30) is further simplified to

Var[Sy] ~ Var[My] (7.31)
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i.e., only Var[My] leaves its legacy.

4. When both local and global uncertainties are neglected, Equation (7.30) is sim-

plified to

1
Var[Sy] = My2 (7.32)

Veff

This is the most simplified form of Equation (7.28), only containing the pe-

riodogram's inherent variance. We have seen it in Equation (4.23). Compar-

ing Equation (7.32) with Equation (7.28), we note that the model parameter

uncertainties increase Var[Sy] in addition to the periodogram's inherent vari-

ance.

7.3 Modified Feature Transformation Vector

With an increased Var[Sy (k)], the formulation of the transformation vector V in Sub-

section 4.3.1 needs to be modified in the steps as follows.

1. Modify covariance matrices Eyi and Ey 2 -

The formulation of the covariance matrix of Syj in Equation (4.22) still holds,

but we should assign updated values to the diagonal elements. For internal

wave vertical velocity, the covariance matrix is

Eyl = diag{Var[Sy1(0)], - , Var[5y1(N - 1)]}

(7.33)

where (0), - -- , (N-1) denote the N frequency points. At frequency k, diagonal

element Var[Syj(k)] is replaced by its upper bound as in Equation (7.28):
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Var[Syj(k)] = {(1 - amin(k)) 2 Var[] 4 1 + ( - }mi_(k))2 Var[I (k)
Veff

1
+ (1 + ){1 + (1 - amin(k))2 Var[/3]}Var[My1] (7.34)Vef f

Similarly, for vertical velocity of convection, the covariance matrix is

EY2 = diag{Var[Y 2 (0)], ... , Var[SY 2(N - 1)]}

(7.35)

At frequency k, diagonal element Var[SY 2 (k)] is replaced by its upper bound

as in Equation (7.28):

1 1
Var[SY 2 (k)] = M. 2 _0(k) + (1 + )Var[MY2] (7.36)

11eff Veff

noting that we regard convection's rv - PSD as reliably modeled (i.e., there

exists no local uncertainty) such that amin = 1, which simplifies the expression.

Mingled spectrum class means MyjO (for internal wave vertical velocity) and

MY2_0 (for convective vertical velocity) are shown by the blue curves in Fig-

ure 7.7. For the extreme internal wave and convection cases, My 1 _extreme and

MY2_extreme are shown by the red curves in Figure 7.7. Var[My1] and Var[My 2]

are then calculated by Equation (7.8) and Equation (7.9), based on the spec-

trum difference shown by the crosses in Figure 7.7.

Knowing convection's MY2_0 and Var[My 2] is sufficient for computing Var[y 2 1

by Equation (7.36). To compute internal wave's Var[Sy1 ] by Equation (7.34),

however, we should also know amin and Var[#] (as in Equation (7.4)) besides

My 1 _o and Var[My1]. a (percentage of the reliably modeled PSD contribution)

for the "mean" and "extreme" internal wave cases is shown in Figure 7.8. At any
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vehicle speed, we pick the lower one of the two a curves as omin. The extended

plateau PSD height's variance, Var[#], is set to 4. This value is considered

sufficiently large to account for the plateau height's uncertainty (please refer

to Subsection 6.2.1 for discussions). Now, with My 1 0O, Var[My1], a0 min, and

Var[#] all known, we can compute internal wave's Var[Sy1] by Equation (7.34).

2. Update transformation vector V.

With Var[Sy1 ] and Var[Sy 2 ] known, Ey1 and Ey 2 are obtained by Equa-

tion (7.33) and Equation (7.35), respectively. Incorporating Ey1 and Ey 2

into Equation (4.4), we get the within-class scatter matrix Amy (assuming

P1 = P2 = -). Then, incorporating Amy, My 1_O, and My 1_O into Equa-

tion (4.2), we arrive at the transformation vector V:

=A (MY20 - My 1 _0 )

My 2 _o(0) - My1 _-(0)

[Var[Sy1(O)) + Var[y 2 (0)]] (7.37)

MY2_0(N - 1) - My1 _O(N - 1) ~T

{ [Var [y1 (N - 1)] + Var[Sy2 (N - 1)]]]

After including model parameter uncertainties, the total variance of Sri is in-

creased compared with merely the periodogram's inherent variance. Conse-

quently, the denominators in Equation (7.37) are larger than their counterparts

in Equation (4.25). The magnitude of the modified V is therefore smaller than

that of the unmodified V, as illustrated in Figure 7.9. For AUV speed 1 m/s,

the modified and the unmodified transformation vectors are compared in the

lower panel of Figure 6.6. A lower magnitude of V means that to a lesser extent

we utilize the difference between the two spectra. The classifier's performance

is thus lowered, but with a gain of robustness.
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Figure 7.9: The impact of a larger spectrum variance on the transformation vector
formulation.

7.4 Robustness Tests on AUV-Based Classifier

We test the classifier's robustness using input data that is mismatched with the

model. The goal is to distinguish the "extreme" convection from the "mean" internal

wave. As the "mean" internal wave spectrum has a higher buoyancy frequency (about

3 cycles/hour) than that of the "extreme" one (about 1 cycle/hour), its mingled spec-

trum is closer to that of convection. Hence the classification is more challenging. We

therefore select this more difficult case to test the classifier's robustness. Test case

parameters and approaches are summarized in Table 7.2, as compared against Ta-

ble 6.1.

Table 7.2: Parameters and method for classifier test of the "extreme" convection case
versus the "mean" internal wave case

_ __ ITest parameters Simulation method

Internal wave vertical velocity N(z) = 5.0 x 10-3 rad/s 200 time series by
(mean case) No = 5.2 x 10- rad/s AR modeling
Convective vertical velocity surface heat flux=900 W/m2  200 time series by
(extreme case) mixed layer depth=1050 m extracting AUV survey lines from

the convective box at depth 500 m
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1. veff - 1.

When the AUV-acquired data is short, it will be hard to do time-domain seg-

mentation or frequency-domain smoothing for the purpose of classification. This

situation necessitates letting Veff 1 in formulating the classifier. Detailed dis-

cussions are found at the end of Section 6.3.

The modified transformation vectors for a series of AUV speeds have been shown

in Figure 6.7, and explained in Section 6.3. The classifier's performance is

shown in Figure 7.10. We see that with the modification of V, the AUV-based

classifier is able to distinguish model-mismatched convection from internal waves

at a high AUV speed. As we have observed before, the classifier's performance

improves with the AUV speed, since a higher vehicle speed pulls the peak of

convection's mingled spectrum farther away from the base frequency band where

internal wave's mingled spectrum stays.

2. veff = 4.

If a longer data record is available, we can apply time-domain segmentation or

frequency-domain smoothing to increase veff so as to reduce the periodogram's

variance. Now we assume that the data record is lengthened to 5600 s=1400 s

x 4. We then partition the time series into four non-overlapping segments, and

use the average of the four periodograms as the input to the classifier. Thus

veff equals 4, which reduces the periodogram's variance by a factor of 4.

A change of veff updates Var[Syl] and Var[Sy 2 ] according to Equation (7.34)

and Equation (7.36), respectively. At AUV speed 1 m/s, the "modified" V is

shown in the lower panel of Figure 7.11. Compared with the "unmodified" V

(i.e., only taking into account the periodogram's inherent variance but without

consideration of the spectrum's local or global uncertainty), the "modified" V

has a lower magnitude because of the additional variances. Compared with Fig-

ure 6.6 where veff = 1, the magnitudes of both the "unmodified" V and the

"modified V" are higher due to the larger veff. With reduction of the peri-

odogram's inherent variance, variances due to the spectrum's local uncertainty
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(only for internal wave because of the unreliably modeled PSD plateau) and

global uncertainty (for both internal wave and convection because of signifi-

cant variations of process parameters) carry more weight in the total variance.

Consequently, the effect that variances from the spectrum's local and global un-

certainties restrain the growth of V is more apparent in Figure 7.11 (veff - 4)

than in Figure 6.6 (veff = 1).

Corresponding to Figure 6.7, V for a series of AUV speeds is shown in Fig-

ure 7.12 when veff = 4. Then we test the classifier again by the "extreme"

convection and the "mean" internal wave cases. Test case parameters and ap-

proaches are the same 2 as in Table 7.2. The difference is that we now take

time series four times as long, and then use the averaged periodogram of the

four segments as the input to the classifier. The classifier's performance is

shown in Figure 7.13. We see that compared with veff = 1 in Figure 7.10,

the classifier's performance improves at AUV speed 1 m/s and 0.25 m/s. This

improvement is due to the reduced variance of the periodogram because of the

increased veff. At low AUV speeds of 0.1 m/s and 0.05 m/s, however, the

classifier still has a hard time distinguishing the two processes. This is because

the two mingled spectra are similar at low AUV speeds. Simply reducing the

periodogram's variance cannot essentially break this similarity. We still need to

resort to a higher vehicle speed for a better classification.

2 Except that at AUV speed 1 m/s, 100 (rather than 200) time series are tested because of the
limitation imposed by the convective box's size.
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Figure 7.11: At AUV speed 1 m/s, class mean vectors My 1_O and M 2 _0 (upper
panel), and the transformation vector V (lower panel) when veff = 4.
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Chapter 8

AUV-Borne Flow Velocity

Measurement and Data Processing

8.1 System Integration

An Acoustic Doppler Velocimeter (ADV) [68] measures water current velocity utilizing

the Doppler principle [44]. It transmits acoustic waves and then receives echoes

returning from sound scatterers in the water. The reflected wave has a frequency

shift compared with the transmitted wave. The frequency shift is proportional to the

radial velocity of the scatterer, as expressed by Equation (8.1).

fD 2-fs (8-1)
c

where fD is the Doppler frequency shift; f, is the frequency of the transmitted signal;

Vr is the radial velocity of the scatterer; c is the sound speed. Note that since an

ADV both transmits and receives, the Doppler frequency shift is doubled.

Based on the frequency difference between the transmitted and received signals,

the velocity of sound scatterers can be calculated. These scatterers are plankton

or other small particles floating in the water. In most cases, the assumption that

the scatterers are passively advected by water motion is valid, hence the scatterers'
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velocity represents that of the water current [69], [70].

Acoustic receivers

Sampling

High-frequency cable Signal conditioning volume
to processor module

Acoustic transmitter

Figure 8.1: Side view of an Acoustic Doppler Velocimeter (ADV) probe (based on
Figure 4 of [4]).

An ADV probe is illustrated in Figure 8.1. The acoustic beams of the transmitter

and the three receivers intersect at a small sampling volume (< 2 cm3 ) located away

from the instrument base (16 cm distance for Model ADVOcean. Please see Table 8.1).

Three-dimensional flow velocity at this distant focal point is calculated. Thus the

flow velocity measurement can be considered undisturbed by the probe. As shown

in Figure 8.1, the ADV's local z-axis is defined along the probe stem; the x-axis is

coplanar with one designated receiver arm; the y-axis is accordingly defined by the

right-hand rule. Table 8.1 gives the specifications [4] of the ADV device that we have

installed in an Odyssey IIB AUV.

An ADV's spatial focus and low noise make it suitable for experiments that require

high-resolution and high-precision [71]. It has found applications in flow measurement

in laboratory flumes [72], near river beds [73], [74], and the seabed [75]. In the above

applications, ADVs monitor current velocity only at spatially fixed positions. The

1998 Labrador Sea Experiment requires high-precision flow measurement of weak

velocity signals (several cm/s) from an AUV. This provides a unique opportunity and

challenge of integrating an ADV into a moving platform.

The mounting location and orientation of an ADV on an AUV should meet the

following requirements:

1. Avoid saturation of velocity measurement.
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Table 8.1: Specifications for the SonTek ADVOcean

Sound frequency 5 MHz
Output data rate 0.1 Hz - 25 Hz
Velocity's dynamic range (x and y) 0 to 0.5, 1.2, 2.0, 6.0, 7.2 m/s, programmable.
Velocity's dynamic range (z) 1/4 of above
Measurement noise 1% of velocity range
(at 25 Hz data rate)
Velocity resolution 10-4 M/s
Distance of sampling volume from transmitter 0.16 m
Sampling volume size 2 cm3

Depth rating 2000 m
Size 0.36 m x 0.18 m (diameter of stem: 0.05 m)
Weight 1.5 kg

2. Avoid interference with other AUV instruments.

3. Keep the ADV probe out of harm's way during AUV launch and recovery.

4. Minimize hull influence corrections so that the measurements are as direct as

possible.

5. Locate the sampling volume outside wakes as much of the time as possible.

According to the above requirements, the following options are ruled out: 1. At AUV's

nose. The vehicle's up to 2 m/s speed could saturate the ADV's z-velocity with the

probe in the along-ship direction. The ADV would also interfere with and be affected

by the AUV's docking latch and the Ultra-Short-BaseLine (USBL) hydrophone array

that are mounted at the nose. The velocity measurement would need considerable

corrections because of the ADV's closeness to the vehicle's stagnation point. 2. At

AUV's top or bottom. Either upward or downward flow velocity measurement would

be in the wake, and the AUV's launch gear or the storage cart would jeopardize the

ADV probe. 3. At the horizontal-plane flank of the vehicle. The ADV probe would

interfere with the vehicle's recovery hoop.

Our choice is to mount the ADV at the vehicle's largest cross-section, with its

probe pointing 450 from the vehicle's horizontal central plane, as shown in Figure 8.2.
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Port side X (XAUV (4V
45 deg.,

(V)

Z (AUV) (ADV

X (ADV)

Sampling volume

Figure 8.2: Cross-sectional view and side view of the ADV's mounting on the vehicle
for the 1998 Labrador Sea Experiment (in the lower panel, the lower half of the AUV's
inner fairing is placed upside-down for ease of installation).

The ADV's three receiver tips reach the brink of the hull but do not protrude beyond

it. This satisfies all the requirements listed above. In the vehicle, the ADV probe

is mounted with a horizontal plate and a 450 slanted bracket. During installation, a

laser pointer is used to improve precision of alignment.

The ADV works at 24 V provided by the AUV's batteries. ADV data are read

by the vehicle's computer through a serial port, and saved in the vehicle's central

data file. This guarantees time synchronization with other instrument data. The

bandwidth of the AUV's data bus limits the ADV's.data output rate to 2.5 Hz.
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8.2 Algorithm of Extracting Earth-Referenced Ver-

tical Flow Velocity from AUV's Raw Measure-

ment

The AUV-borne ADV measures flow velocity relative to the moving vehicle. Hence to

obtain the Earth-referenced flow velocity, i.e., the true flow velocity, we must subtract

the vehicle's own velocity from the raw measurement. Another issue of concern is the

vehicle hull's influence on the measurement. As shown in Figure 8.2, the ADV probe's

sampling volume is located about 13 cm from the vehicle's hull surface (the vehicle has

a length of 2.2 m, and a diameter of 0.6 m at its largest vertical cross-section where

the ADV is mounted). This distance is small enough to necessitate the consideration

of the hull's influence on flow measurement. In this section, we present the algorithm

of extracting the Earth-referenced vertical flow velocity.

U

L2 V

Z (AUV) ...... X (AUV)

rm ampling volume

Y (AUV)

Figure 8.3: Definition of velocity vectors in the AUV coordinate system (plan view).

Figure 8.3 shows the plan view of the spheroid that serves as our model of the

AUV [76]. We choose the spheroid to be of the same aspect ratio as the Odyssey

IIB AUV's axisymmetric fairing. The length of its major and minor axes are a

and 0.293a, respectively, where a=0.991 m. This represents fairly closely the shape
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of the fore half of the hull, which poses the most important influence on the flow

measurement as the vehicle is running forward. The ADV's sampling volume is

located at rm = [0 0.304a 0.304a]T. At a normal straight-ahead flight attitude of

the AUV, the ADV's sampling volume is far outside the boundary layer or any wakes,

in accordance with the mounting criteria laid out in Section 8.1.

The AUV coordinate system is at rest in the Earth coordinate system, but its

origin and orientation is coincident with the vehicle's at any instant. Velocities U, V,

, vm, and un listed below are all in the AUV coordinate system. U = [U1 U2 U3 ]T

is the current velocity, which is assumed to be constant over the length of the vehicle.

The vehicle translates with speed V = [V V2 V3 ]T, and rotates with angular velocity

Q = [Q 1 Q2 Q3 ]T. These motions are also referred to as degree of freedom 1 through

6, respectively. The sampling volume, located at r., translates with velocity

Vm = V + Q x rm (8.2)

The vehicle's motion relative to the water surrounding it imparts a disturbance

at r.. The flow velocity that the ADV measures, um, therefore has a difference

from U - vm. According to the potential flow theory, the disturbance is a linear

combination of the components of V - U and Q. So ur equals U - vm plus a

correction term:

UM= U -Vm +[A(V - U) + BQ] (83)

= (A - I)(V - U) + (B+ rmx)Q

where Equation (8.2) is incorporated. A and B are two square matrices describing

the AUV hull's effect on flow velocity measurement: A for translational motion and B

for rotational motion. By potential flow theory calculations conducted by Dr. Knut

Streitlien [76], the two matrices are found to be
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-0.0678 0 0

A 0 0.0563 0.4053 (8.4)

0 0.4053 0.0563

0 0.0687 -0.0687

B - 0 0 0 a (8.5)

0 0 0

Thus for instance, if the vehicle is moving forward with velocity [1 0 0]T rel-

ative to the ambient current, the ADV's sampling volume will see a velocity of

[-1.068 0 O]T due to the accelerated flow at the hull's maximum diameter.

The Earth-referenced flow velocity is extracted through the following steps.

1. Transform the velocity measurement in the ADV coordinate system into the

AUV coordinate system, both systems shown in Figure 8.2.

UM = TADV- AUV UADV (8.6)

where UADV is the velocity vector originally measured in the ADV coordinate

system.

Matrix

0 -1 0

TADV-+AUV -sin(a) 0 -cos(a) (8.7)

cos(a) 0 -sin(a)

transforms from the ADV coordinate system to the AUV coordinate system,
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where a = 450 is the mounting angle of the ADV probe's stem relative to the

vehicle's horizontal central plane.

2. Compensate the AUV hull's influence and subtract the velocity induced by the

vehicle's rotation, by applying Equation (8.3) and Equation (8.6). Then the

relative flow velocity in the AUV coordinate system is obtained:

U - V (I - A)~1 [um - (B + rmx)Q]

(I - A) 1 [TADV-+AUV UADV - (B + rmx)Q]

where the angular velocity (i.e., the vehicle's yaw/pitch/roll rate)

measured by the AUV's KVH Digital Gyro Compass and Digital

nometer [77].

(8.8)

vector Q is

Gyro Incli-

3. Recover the relative flow velocity in the Earth coordinate system using the

vehicle's heading, pitch, and roll measurements:

UEarth - VEarth

U1

U2

U3

= TAUV--+Earth (U - V) (8.

= TAUV-+Earth (I - A) [TADV+ AUV UADV - (B + r, x)Q ]

where

TAUV *Earth = Th Tp Tr

cos(h) -sin(Oh) 0 cos(OP)

= sin(Oh) cos(h) 0 0

0 0 1_ L-sin(op)

0

1

0

sin(6p) 1
0 0

cos(OP) 0

0

Cos(Or)

sin(O,)

0

-sin(0.) (8.10)

Cos(Or)
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where Oh, Op, and O, are the AUV's heading, pitch, and corrected roll angles,

respectively. Transformation from the Earth coordinate system to the AUV

coordinate system is illustrated by Figure 8.4 which contains the three rotation

angles. Note that Equation (8.10) represents a transformation in the oppo-

site direction: from the AUV frame to the Earth frame. So TAUV-+Earth ~

(TEarth-*AUV) 1 . Since the three rotational matrices are all orthogonal, the in-

verse of TEarth-+AUV equals the product of transpositions of three matrices in

the reverse order, which leads to Equation (8.10).

X3
....-.-..... X (North) Op ------------------- -X 2

X2 Or (X3)
Or'

Y 2 Oh
Y (East) Y3(Y2) Y 3

Z 2 (Z, dmn) Z2 Z3 Z3 Z

(X,Y,Z): Earth reference systen ---------------------- - (x,y,z): AUV refence system

Figure 8.4: Transformation from the Earth coordinate system to the AUV coordinate
system.

The measured roll angle Or is referenced to the horizontal plane, rather than the

rotational angle needed in matrix Tr. Trigonometric derivation [78] gives the

relation between the desired rotational angle Or' and the roll measurement Or as

expressed by Equation (8.11). When the pitch angle 6, is small, the difference

between Or and Or' is small too.

f cos( 20,) + cos( 20p)
o'r= acos(+) x sign(O,) (8.11)

2cos((O) /cos2 (0,) - Sin2(0r)

4. Extract the Earth-referenced flow velocity, i.e., the true flow velocity. In the

thesis, we are concerned about the vertical component, i.e., the third compo-

nent of UEarth. Let us denote the third component of UEarth and VEarth as

WdownEarth and VdownAUV, respectively (note that the z-axis points downward,

as shown in Figure 8.4). Then according to Equation (8.9), we have
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WdownEarth - Vdown-AUV ~ 3 (1

So the Earth-referenced downward flow velocity is

WdownEarth U3 + VdownAUV

d (8.13)
= U 3 + -[AUV depth z(t)]

dt

where u3 is expressed in Equation (8.9). The vehicle's own vertical velocity is

obtained by differentiating its depth sensor measurement.

To comply with the commonly adopted upward convention, the Earth-referenced

upward flow velocity is written as

WEarth WdownEarth

= -(u 3 + +[AUV depth z(t)]) (8.14)
dt

8.3 Calibration Experiment at the David Taylor

Model Basin

To ascertain the AUV hull's influence on the flow velocity measurement, we carried

out a calibration experiment in the David Taylor Model Basin (DTMB) in August

1997. In the tow tank, a complete AUV hull equipped inside with an ADV was towed

by the carriage at different attack angles under different speed. The experiment

required a large tank cross-section to minimize influence from the tank boundaries,

and also required a precise speed control. The cross-sectional area of the DTMB tow

tank is about 370 times that of the AUV. The tank carriage has an accuracy of about

2 cm/s. To be away from the tank boundaries as much as possible, the AUV was
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towed along the central line, and at a depth of about 2.8 m.

8.3.1 Experiment Design

Let us present the experimental set-up in relation to Equation (8.3) and Figure 8.3.

In consideration of the available facilities, we do not attempt to generate the vehicle's

rotational motion, so Q = 0 in Equation (8.3). The tank water is still, so U = 0.

Then Equation (8.3) is simplified to

Um = (A - I)V (8.15)

Hence the calibration experiment is to actually validate matrix A as given in Equa-

tion (8.4). This matrix depicts the AUV hull's influence on the flow velocity mea-

surement, which is induced by the vehicle's translational motion. At a series of AUV

speed, ADV-measured flow velocities are to be compared with theoretical predictions

computed by Equation (8.15) using matrix A in Equation (8.4). To test out various

flow orientations relative to the AUV, we need to enable different combinations of the

vehicle's yaw and pitch angles.

The experimental structure is illustrated in Figure 8.5. The structure is composed

of three parts: a rotating bracket, a wedge, and a hull platform (please see Appendix B

for details). The upper rectangular plate of the rotating bracket attaches the whole

load to the tow tank carriage. Its lower circular plate connects to the wedge via four

bolts. This circular plate has multiple bolt holes to permit yaw angles of 00, 50, 10 ,

150, 30 , and 45'. The wedge is for realizing the AUV's pitch/roll angles of 50, 100,

150, 30 . The hull platform's upper circular plate connects to the wedge, and its

lower rectangular plate attaches to the AUV's inner fairing. Its 45' slanted clamp

(not visible in Figure 8.5 from this perspective) holds the ADV probe.

It should be noted that in this calibration experiment, the ADV probe points

450 upward on the vehicle's port side, as shown in Figure 8.5. In the Labrador Sea

experiment, the ADV probe points 450 downward on the vehicle's starboard side, as
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Carriage strut

Bracket

Wedge

Hull platform

ADv

Figure 8.5: Assembly diagram (upper) for the DTMB tow tank experiment; and
photo (lower) of the AUV being mounted on the carriage strut using a 5' wedge, with
three ADV receiver tips visible.

shown in Figure 8.2. The purpose of the change is to facilitate recovery of the AUV

at the end of missions, which requires contacts at the upper half of the vehicle. This

difference is trivial since it is equivalent to rotating the vehicle for 1800 about its along-

ship axis. It can be shown that this reciprocal move of the ADV position from the

port side to the starboard side causes no change to matrix A, and only sign flippings

in TAD V--AUV (the coordinate transformation matrix given in Equation (8.7)).

In the 1998 Labrador Sea Experiment, the AUV had a "V"-shape latch at its nose

for docking to an underwater station. The latch's length is about 30% of the vehicle's,

and its largest span between the two tips equals the vehicle's largest diameter. Its

thickness is about 1 cm. To be as close as possible to field operations, we also added a

latch to the vehicle during the calibration experiment. It is found that the latch affects

flow velocity measurement only at "unfavorable" attack angles when the vehicle speed
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reaches 2 knots. This will be shown at the end of Subsection 8.3.2.

As shown in Figure 8.3, the AUV coordinate system is defined such that its x-axis

points forward, y-axis to starboard, and z-axis downward. Accordingly, yaw is the

angle between the AUV's along-ship central vertical plane and that of the tow tank;

pitch is the angle between the AUV's x-axis and the horizontal plane. A plus sign

of yaw means that the AUV steers to the starboard side, while for pitch it means

the vehicle's nose is up. Different combinations of yaw and pitch angles as shown

in Table 8.2 were tested. At each AUV yaw/pitch, the carriage ran successively at 1

knot, 2 knots, and 3 knots, each speed lasting for about 40 s.

Before the calibration experiment, we distributed neutrally buoyant hollow glass

spheres [79] in the tank water. The tiny spheres (10-20 pm) acted as sound scatterers,

providing strong echoes for the ADV's measurement. There are two parameters for

evaluating the ADV data quality: the correlation coefficient should be above 70%

and the Signal to Noise Ratio (SNR) should be above 10 dB, to achieve the 1%

velocity precision as listed in Table 8.1. In the calibration experiment, the correlation

coefficient was about 90% and the SNR was about 15 dB.

Two installation errors are calibrated and corrected in data post-processing: 1.

rotation of the ADV probe in the clamp (the nominal position of the ADV's x-

axis should be in the vertical plane), 2. misalignment between the hull platform's

centerline and that of the AUV. The first error is found to be 2.7' by using the zero-

yaw, zero-pitch calibration run without the AUV hull. The second error is found to

be 2.20 by using a zero-yaw, zero-pitch run with the AUV hull on. Note that the 2.20

error angle is on the AUV's x-y plane, but not the horizontal plane if the pitch angle

is non-zero. The translation formula is

yaw error tan-1 ( tan(2.20 )
cos(pitch)

For example, at the largest pitch angle -15', yaw error=2.28'.
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Table 8.2: Tested combinations of yaw and pitch angles (0)

PitchYaw -15 -5 0 5 15
-15 X X *
-5 X X X X X
0 X X X*t X X
5 Xt X X

X: ADV Mounted in hull, latch attached.
t: ADV Mounted in hull, no latch.
*: ADV only.

8.3.2 Comparison of Theoretical and Experimental Results

Figure 8.6 shows the comparison of experimental results (with the AUV's latch on)

and the theoretical predictions [76]. v, vY, and v, are in the ADV's coordinate

system. The two installation errors (given at the end of Subsection 8.3.1) have been

compensated. Each velocity point in Figure 8.6 is the mean value of 600 data points

under a constant carriage speed, which is further normalized by the carriage speed

for display. The overall measurement noise for each mean velocity is reduced to

(2 cm/s)2(1 cm/s)2 ~ 0.1 cm/s, where 2 cm/s is the carriage speed uncertainty

and 1 cm/s is the ADV's measurement noise (at 25 Hz sampling frequency in this

experiment), which are two independent errors. In the above calculation it is assumed

that measurement errors for different data points are uncorrelated.

Relative errors between the experimental results and the theoretical predictions

are shown in Table 8.3, defined as

-4 -4

V experiment - Vtheory 112relative error =_ _
||Vexperiment |2

where 11 - 112 denotes the Euclidean norm. Relative errors at different carriage speed

(1, 2, 3 knots) are averaged to give the tabulated values.

The AUV latch's influence on the ADV's flow measurement is shown in Figure 8.7.

At zero-yaw and zero-pitch, the influence is minimal: measurements with and without

the latch are very close. At yaw=-5' and pitch=5', the two measurements are still
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experiment results and the theoretical

very close at carriage speed 1 knot; at higher speed of 2 and 3 knots, however, the

velocity measurement data are no longer valid with the latch on. We call this attitude

"unfavorable" for the ADV: the vehicle headed to the port side and its nose was up,

so the ADV (mounted at the upper port side) suffered from the wake generated by

the protruding latch, although the effect can be tolerated at low speed (1 knot).

8.4 Error Analysis of Processed Vertical Flow Ve-

locity

The total estimation error of the extracted Earth-referenced vertical flow velocity

WEarth (expressed in Equation (8.14)) has two components: 1. noise, 2. bias due to

instrument alignment errors. We first investigate the noise. At the end of this section,
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Table 8.3: Relative errors between experimental results and theoretical predictions

PitchYaw -150 -50 00 50 150
-15 4% 2%

5 4% 3% 3% 3% 2%
00 3% 2% 2% 3% 2%
5 3%* 2% 2%

*: Only at 1 knot carriage speed.

yaw = 0 pitch = 0

-- -- - -

Vx (theory)
- - Vy (theory)

Vz (theory)
+ + with AUV latch
o o without AUV latch

S .. . . . .

- S

1.2

0.8

0.6

*0

E0.4

0

yaw = -5, pitch = 5

1 2 3

Carriage speed (knot)

Figure 8.7: Effects of AUV's latch on flow measurement.

we will discuss the bias.

The estimation noise of WEarth results from three sources of measurement noise:

1. ADV, 2. KVH heading/pitch/roll and rate sensor, 3. AUV's depth sensor. We

trace the evolution of noise following the same steps as in Section 8.2:

.1. Consider the covariance matrix of ADV's three-axis velocity measurements to

be EADV '2DV I, where we regard noise of the three velocity measurements

as uncorrelated. Since the ADV's x and y-axis have higher noise than z-axis,

we uniformly take the x-axis measurement noise as UADV. Then through the

orthogonal transformation in Equation (8.6), the covariance matrix of um is,

155

1.2

0

0

ca

z

0.8

0,6

0.4

0.2

0

--- - - - - - -0

0.'
1 2 3

Carriage speed (knot)

I



COV [Um] = TADV-+AUV 7ADV -fTADV-4AUV

= 2
~ADV'

where we note that TADV-AUV is an orthogonal matrix.

2. By Equation (8.8),

(8.16)

Cov[U - V] = (I - A)-0Cov[u - (B + rmx)Q]((I - A) )

(8.17)

Noting that the noise of ADV measurement um is independent of that of KVH

heading/pitch/roll rate measurement Q, we have

Cov[urn - (B + r, x)Q| = Cov[um] + Cov[(B + rrnx)Q]

COv [um] + Cov[(B + R)Q]
(8.18)

where B is expressed in Equation (8.5) and

-rz

0

rX

0

R =r2

-rY

ry

-rX

0

(8.19)

whose elements are the three components of rm - the location vector of the

ADV's sampling volume, as given at the beginning of Section 8.2.

Consider the covariance matrix of the KVH's rate measurements to be En =

oa I. The pitch/roll rate measurement noise is slightly larger than that of the

heading rate, so we uniformly take the larger one as o-n. Then by incorporat-
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ing Equation (8.16), Equation (8.18) becomes

COV[U - (B + rmx )] =-2DV I + {(B + R)(B + R)T

(8.20)

Thus Equation (8.17) becomes

Cov[U - V] = (I - A)- [D2  I +02 (B + R)(B + R)T ]((I - A)-1)T

(8.21)

3. By Equation (8.9), we have

CoV[UEarth - VEarth]

= Cov{[ui U 2 U3 ]T}

= TAUV-Earth Cov[U -V] TAUV- Earth

where TAUV-+Earth= Th Tp Tr as in Equation (8.10).

4. By Equation (8.14), we have

2 -Ert 2 2 A
WEarth U3 VupAUV (8.23)

where vupAUV = -VdownAUV (in Equation (8.13)), computed by differentiat-

ing the vehicle's depth reading. Note that the noise of the calculated U3 is

uncorrelated with the AUV's depth measurement noise.

By definition, or is element (3,3) of COV[UEarth - VEarth] in Equation (8.22),

so
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ofWEarth ={element (3, 3) of COV[UEarth - VEarthl} 2pAUV

(8.24)

In level runs as we will analyze for AUV Mission B9804107, the vehicle's pitch

and roll angles are close to zero. Hence when calculating COV[UEarth - VEarthl

using Equation (8.22), we can approximately deem Tp,-= Tr = I (please refer

to Equation (8.10)). Then TAUV-+Earth r Th. Since the third row of Th is [0 0 1],

TAUV+Earth Cov[U - V] TAUVy_,Eath preserves element (3,3) of Cov[U - V].

Thus by incorporating Equation (8.21) and Equation (8.22), Equation (8.24)

becomes

or2
WEarth

~ {element (3, 3) of Cov[U - V]} + U

= {element (3,3) of (I - A)- [UDv I + U2 (B + R)(B + R)T]((I - A)-1)T} + o2(8.25)
AD Q Vup-AUV

Now let us quantify the three error sources. In the following, the values of error

No. 2 (of KVH measurement) and error No. 3 (of depth measurement) do not vary

with AUV missions. The value of error No. 1 (of ADV measurement) is specifically for

AUV Mission B9804107, which will be analyzed in detail in Chapter 9. The ADV's

measurement noise depends on operation conditions in different regions of water.

" For AUV Mission B9804107, there appears a noise floor of 5 cm/s in the pe-

riodograms of ADV's x and y velocity measurements (z velocity is less noisy).

The ADV's data output rate is 2.5 Hz. Then 50-s smoothing is equivalent to

125-point averaging. Assuming white noise, UADV -5 / s ~ 0.45 cm/s after

smoothing.

" The KVH pitch/roll sensor's repeatability is 0.25' (heading's is smaller) [77].

The KVH sensor's data rate is 5 Hz. So by differentiation, noise of rate is
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0.25 x7r/180' - 0.022 rad/s. 50-s smoothing is equivalent to 250-point averaging.
0.2 s

Thus 0.022 rad/s ~ 1.4 x 10-3 rad/s after smoothing.

The AUV's depth sensor (Model 8B-4000) [80] has a precision of 0.01 m. The

depth sensor's data rate is about 5 Hz. So by differentiation, the noise of

the vehicle's vertical velocity estimate is 0.01 M = 5 cm/s. 50-s smoothing is0.2 s

equivalent to 250-point averaging. Thus a,_, =5 c/s ~ 0.32 cm/s after

smoothing.

Incorporating the above UADV, UQ, vp_AUV, as well as matrix A (Equation (8.4)),

B (Equation (8.5)), and R (Equation (8.19)) into Equation (8.25), we get oWEarth

0.7 cm/s. These results are summarized in Table 8.4.

Table 8.4: Measurement/estimation noise

Measurement/ Flow Heading/attitude AUV vertical WEarth

estimation velocity rate velocity

Sensor ADVOcean KVH Paroscientific
5 MHz 8B-4000

Noise after 0.45 cm/s* 1.4 x 10-3 rad/s 0.32 cm/s 0.7 cm/s*

50-s smoothing I I
*: For AUV Mission B9804107 in the 1998 Labrador Sea Experiment.

Besides measurement noise, bias is another type of error. In the estimation of

WEarth, installation errors of the ADV probe and the KVH box are of concern. In

processing the data for AUV Mission B9804107, two errors are corrected as shown

in Figure 8.8: 2' rotation of the ADV probe (face view) and 1 pitch-up of the KVH

box. Although we used a laser pointer to improve alignment precision, accurate

installation of the ADV probe was still difficult. A photograph taken by facing the

probe suggests a clockwise error as shown in Figure 8.8. The KVH box is mounted

in the front sphere of the AUV. Precise alignment is also very challenging, both for

the KVH box inside the sphere and the glass sphere itself. The values of errors are

hard to ascertain. The criterion we take in data processing is: after error corrections,

the mean value of convective WEarth during an AUV level run should vanish. This

criterion is based on mass preservation and also the output data of the convection
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model (presented in Subsection 5.1.4). For AUV Mission B9804107, after correcting

the above two installation errors, WEarth at the 20-m depth is about -0.2 cm/s. WEarth

at the 250-m depth is about -0.9 cm/s, but this larger magnitude is largely due to

a negative mean during the third and fourth legs (in Section 9.6, we will discuss

possible reasons). With improvement of installation accuracy, the problem of bias

will be reduced.

1 deg.
- ----.-.. KVH

AUV bow - -----------------

ADV

2 deg.

Figure 8.8: Installation errors that are corrected in estimating WEarth in AUV Mission
B9804107.
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Chapter 9

Labrador Sea Experiment

9.1 Background

Cruise Track, Kn156

286- 290' 295 300' 305' 310' 3 6

60.-60

55,

45- 5

40- 40

285- 0 32
29' 295' 300' 305' 310- 15

Figure 9.1: Ship track of R/V Knorr during the 1998 Labrador Sea Experiment

(courtesy of Dr. Knut Streitlien).

The Labrador Sea lies between northern Canada and Greenland. It is one of the

few locations in the world where open ocean convection occurs [45], [46]. During
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the winter, the sea surface is subjected to intense heat flux to the atmosphere. The

resulting buoyancy loss causes the surface water to sink to large depths, initiating

ocean convection. Detailed discussions are found in Subsection 5.1.1.

During January/February 1998, researchers from MIT, the Woods Hole Oceano-

graphic Institution, and the University of Washington, led an expedition to the

Labrador Sea to study ocean convection. The Research Vessel (R/V) Knorr was

employed in this expedition. The map of the Labrador Sea area as well as the ship

track is shown in Figure 9.1 (The cruise number was KN156). AUVs and other

oceanographic platforms were deployed in this experiment. The current flow velocity

was measured by an Acoustic Doppler Velocimeter (ADV) installed in an Odyssey IIB

AUV, as presented in Section 8.1. Vertical flow velocity is a crucial signature of ocean

convection [47], [16]. It is the quantity we use in the thesis for distinguishing ocean

convection from internal wave. In the ending section of this chapter, the AUV-based

classifier will be tested by the Labrador Sea data.

9.2 Observed Conditions for Ocean Convection

During the January/February 1998 Labrador Sea Experiment, the meteorological

measurement recorded intense heat loss from the ocean to the atmosphere. Hydro-

graphic measurements by the AUV and on-deck CTD casts showed mixed water layer

down to several hundred meters. Intense surface heat loss plus vertically mixed water

layer, provides very good conditions for ocean convection. In Section 9.3, we will

introduce direct observations of convection using Lagrangian floats of the University

of Washington.

9.2.1 Meteorological Condition

Meteorological data were recorded by an Improved Meteorological (IMET) system [81]

on board R/V Knorr. Prof. Peter Guest of the Naval Postgraduate School calculated

the ocean surface heat flux based on the measurements. The time series of total

surface heat flux is shown in the third panel of Figure 9.2. Note that by the convention
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Figure 9.2: Total surface heat flux time series (the third panel) during the Jan-
uary/February 1998 Labrador Sea Experiment (courtesy of Prof. Peter Guest).

used in this calculation, negative heat flux means that the sea water loses heat to the

air.

The average heat flux value was about 220 W/m2 . Around January 24 and Febru-

ary 16, the heat flux value was as large as 600 W/m 2 and 800 W/m 2, respectively'

Meteorological parameters duringAUV Mission B9804107 (which will be used to test

the classifier) are summarized in Table 9.1.

Let us make comparisons with previous open ocean convection experiments. In

the Greenland Sea Experiment [47] during the winter of 1988/1989, the heat flux fluc-

tuated between 100 W/m. and 500 W/m2, with an average value of about 250 W/m2

Ocean convection was observed during that experiment, using moored Acoustic Doppler
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Table 9.1: Meteorological parameters (using Prof. Peter Guest's calculation results)
during AUV Mission B9804107

Sea surface temperature Air temperature Dewpoint Wind speed Total heat flux*

3.1 0C -2.2 0C -8.3 0C 10.3 m/s -300 W/m 2

*: "" sign means that the sea water loses heat to the air.

Current Profilers (ADCPs) (with 30-minute data interval). In an earlier Labrador

Sea experiment [46] during the winter of 1994/1995, the average heat flux was about

300 W/m 2 . Using a moored ADCP (with 20-minute data interval) and Profiling Au-

tonomous LAgrangian Circulation Explorer (PALACE) floats, ocean convection was

observed. The sea surface heat flux value in our Labrador Sea Experiment is close

to that of the two previous experiments. We therefore have reason to expect ocean

convection's occurring during Cruise KN156.

9.2.2 Hydrographic Condition Measured by the AUV and

On-Deck CTD Casts

Besides surface heat loss, a vertically mixed water column is another key condition

for ocean convection. Across the Labrador Sea basin (about 600 km), a mixed water

layer of depth 270 m ~ 500 m was observed by a series of Conductivity-Temperature-

Depth (CTD) casts from the ship deck. During two different AUV missions four days

apart, mixed water layers were also clearly recorded. During Mission B9804107, the

mixed layer was down to 350 m. During an earlier Mission B9803703, the mixed layer

existed over a horizontal distance of about 8 km, depth varying from 280 m to 180 m.

1. On-deck CTD casts across the Labrador Sea basin.

From the ship deck of Knorr, Prof. Eric D'Asaro and his group conducted CTD

casts at 20 stations across the Labrador Sea basin, as shown in Figure 9.3. This

cross-section is known as "AR7W" in the oceanographic community [49], [45],

covering a distance of over 600 km. To the east of CTD Station No. 17 is the
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Figure 9.3: Track of on-deck CTD cast stations across the Labrador Sea basin (Section
AR7W) (Courtesy of Prof. Eric D'Asaro and Ms. Elizabeth Steffen).

site of the former Ocean Weather Station Bravo (56'30'N, 51*00'W [82]).

The vertical cross-section of potential temperature obtained from these CTD

casts is shown in Figure 9.4. Corresponding to Figure 9.1, the left boundary

in Figure 9.4 is northern Canada and the right boundary is Greenland. Between

CTD Station No. 16 and No. 21, the water was well mixed down to about

270 m (measurements made on January 31 ~ February 5 [83]). Out of all .CTD

stations along Section AR7W, these six were closest to sites of AUV missions (to

be presented). The observed 270-m mixed layer depth is close to that measured
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Figure 9.4: Potential temperature across the Labrador Sea basin (Section AR7W)
(Courtesy of Prof. Eric D'Asaro and Ms. Elizabeth Steffen).

by the AUV during Mission B9803703, to be given below.

Between CTD Station No. 24 and No. 27, however, the mixed layer was

deeper: about 500 m (measurements made on February 6 ~ February 8 [83]).

Thus we see a large variation of mixed layer depth over the basin scale (several

hundred km). The impact of this variation on AUV-based classifier design will

be reviewed at the end of this section.

2. Mixed layer measured by the AUV during Mission B9803703.
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In contrast to the above basin-scale hydrographic sampling, AUV carried out

fine-scale surveys in a local area. AUV Mission B9803703 took place at 1:23

~ 3:30 on February 6, 1998 (GMT). The mission launch location was about

56042'N, 52046'W - where the AOSN (Autonomous Oceanographic Sampling

Network [84]) mooring was anchored. This was a long-range yo-yo run between

190-m and 400-m depths, covering a horizontal distance of about 8 km.

The CTD sensor suite on the vehicle made measurements of temperature, salin-

ity, and depth. We then derive potential temperature and potential density

from these in-situ measurements, so as to remove water pressure's effect. Poten-

tial temperature, salinity, potential density, as well as vehicle depth are shown

in Figure 9.5.

AUV Mission B9803703

-

L
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1000 2000 3000 4000 5000 6000 7000 8

1000 2000 3000 4000 5000 6000 7000 8
: L : L I L :

1000 2000 3000 4000 5000 6000 7000 8
Time (s)

000

000

000

000

Figure 9.5: Potential temperature, salinity, potential density, and
Mission B9803703.

AUV depth during

To facilitate inspection, we plot potential density profiles for successive de-

scent/ascent legs during this yo-yo mission. In regions cruised in the early

stage, water was mixed down to about 280 m. The mixed layer became shal-
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lower later on, up to about 180 m where the vehicle ended the mission. As

observed by the vehicle within the mission range, the mixed layer extended for

8 km with a thickness variability of 100 m.

150

200 -

250 -

C-

300- -

350- - -

400 L
27.65 27.7

Figure 9.6: Potential density measured on successive descent/ascent legs during yo-yo
Mission B9803703 (density anomaly, i.e., potential density - 1000 kg/m3 , is displayed).

3. Mixed layer measured by the AUV during Mission B9804107.

AUV Mission B9804107 took place at 4:46 ~ 7:00 on February 10, 1998 (GMT),

four days later than Mission B9803703. The mission location was about the

same as that of Mission B9803703. The AUV behaviors in this mission are

illustrated in Figure 9.7. The vehicle first spiraled down to 426-m depth, then it

spiraled up to 250-m depth. At this depth plane, the vehicle made a "diamond"

run, i.e, closed a 4-leg loop with 900 turns, each leg lasting for 720 s. After that,

it spiraled up to 20-m depth, making an identical "diamond" run. At the end,

the vehicle ascended to the sea surface.

Profiles of potential temperature, salinity, and potential density are shown

in Figure 9.8. These profiles demonstrate that water was well mixed down

to 350 meters. Water was stratified below this mixed layer.
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Figure 9.7: AUV behavior sequence in Mission B9804107.

We have not only observed significant surface cooling and mixed water layers, but

also noticed that the associated parameters (i.e., heat flux and mixed layer depth)

experience variations over time and space. This necessitates that the AUV-based clas-

sifier should be robust to parameter uncertainty. In the robustness analysis presented

in Chapter 7, we treat the variation of these key parameters as the "global uncer-

tainty". Its effect is to increase the total variance of PSD estimate, and accordingly

suppress the amplitude of the feature transformation vector. The classifier's perfor-

mance (probability of detection versus probability of false alarm) is thus lowered, but

with a gain of robustness to model mismatch.

9.3 Convection Shown by Lagrangian Floats of the

University of Washington

Prof. Eric D'Asaro of the University of Washington developed a type of Lagrangian

float [10] that follows water motion through density matching and a high drag. Its

horizontal motion is tracked acoustically and its vertical motion is recorded by pres-

sure measurement.

In the 1998 Labrador Sea Experiment, seven Lagrangian floats were also deployed
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Figure 9.8: Profiles of potential
AUV Mission B9804107.

temperature, salinity, and potential density during

to study convection. They were launched on January 26 at 56'30'N, 51'00'W [85], to

the northwest of AUV mission sites (Mission B9803703 and B9804107). The floats'

depth-time records in February 1998 are shown in the lower panel of Figure 9.9. A

convectively mixed layer extending from the surface to about 600-m depth is evident.

The floats cycled across this layer, following water's convective motion. The time

of records shown in Figure 9.9 was two weeks (or more) later than the two AUV

missions: B9803703 (2/6/1998) and B9804107 (2/10/1998). As the winter progresses,

the convective layer continues to deepen due to sustained surface cooling. This should

explain why the mixed layer depth recorded by the floats is larger than that measured

by the AUV. The Lagrangian floats' records confirm not only the existence of mixed

layers, but also the occurrence of convection.

Furthermore, the root-mean-square (rms) vertical flow velocity is found to be

2 - 3 cm/s based on the float data [83]. In the AUV data processing results to be

shown in Figure 9.11 and Figure 9.12, the counterpart is 2 cm/s at the 250-m depth

and 3.5 cm/s at the 20-m depth (both of Mission B9804107). Measurements by these

two independent platforms are consistent.
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Figure 9.9: Depth history of Lagrangian floats in the Labrador Sea, in 1997 (top) and
1998 (bottom). The abscissa is day of February. (Courtesy of Prof. Eric D'Asaro.)

9.4 Data Processing Results of AUV-Measured Ver-

tical Flow Velocity

AUV Mission B9804107 has been described in Section 9.2. The mission comnprises

two long-duration runs at 20-in and 250-in depths, as shown in Figure 9.7. On the

vehicle, the ADV probe measured three-dimensional flow velocity, while the CTD

sensor suite measured other water properties. These measurements are shown in Fig-

ure 9.10, where potential temperature and potential density are deduced from in-situ

measurements.

In the Labrador Sea, the AU V-borne ADV experienced low correlation coefficient
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3-D vel. (m/s) meas. by ADV (after 50 s smoothing) along with CTD and potential density in Mission B9804107
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Figure 9. 10: During AUV Mission B9804107, flow velocity was measured by an Acous-
tic Doppler Velocimeter (ADV). Conductivity, temperature, and depth were measured

by on-board CTD sensors.

and low Signal to Noise Ratio (SNR). This was probably due to the low density of

floating particles in the water. Measures of electrical /magnetic noise reduction, such

as twisting the ADV's signal wire pairs, will also be necessary for improving the SNR.

By applying a 50-s smoothing to the Labrador Sea data, the final estimation noise

of the extracted Earth-referenced vertical flow velocity WE"rth is reduced to about

0.7 cm/s, as shown in Table 8.4.

In AUV Mission B9804107, an acoustic communication device (MOdulator/DEModulator,

i.e., MODEM) periodically transmitted high-power signals with a duty cycle of 3.5 s

every 28 s. In the 3.5-s transmission duration, the ADV data were found to be cor-

rupted by the MODEM's interference, probably through the power supply system.

'In a later AUV experiment in 1999 using a different flow measurement sonar - an Acoustic
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In data processing, interfered portions (' ~ 13%) of ADV data are excluded'.

AUV depth = 250 m
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Figure 9.11: The Earth-referenced vertical flow velocity WEarth (the first panel) at
the 250-rn depth of AUV Mission B9804107. In the second panel is the AUV's own
vertical velocity. The AUV's roll (the third panel) shows when the vehicle made 90~
turns.

We apply the algorithm in Section 8.2 to process the ADV measurements made

at 250-rn and 20-rn depths during Mission B9804107. The raw measurements are

plotted in the first three panels in Figure 9.10. The data processing results are shown

in Figure 9.11 and Figure 9.12, where the vehicle's own vertical velocity (the second

panel) has been removed for producing the Earth-referenced vertical flow velocity

WEarth (the first panel).

Doppler Current Profiler (ADCP), severe interference from the MODEM transmission was again
noted. This problem needs to be solved.

2The exclusion ratio in data processing is 16% due to the leading and trailing edges of the
MODEM pulses. The ADV-measured along-ship flow velocity (i.e., the vehicle's cruise speed) is
accordingly reduced after the 50-s smoothing, but the exclusion has little impact on the transverse
flow velocity (including the vertical flow velocity) which is basically zero-mean.
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AUV depth = 20 m
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Figure 9.12: The Earth-referenced vertical flow velocity WEarth (the first panel) at.
the 20-m depth of AUV Mission B9804107. In the second panel is the AUV's own
vertical velocity. The AUV's roll (the third panel) shows when the vehicle made 90'
turns.

In Figure 9.13, we overlap WEarth at the two depths: 250-m and 20-m. A shift of

3550 s is added to the time index for the 250-m depth, during which the vehicle com-

pleted the diamond loop at the 250-m depth and ascended to the 20-m depth plane

(please refer to Figure 9.7). We note that for about 600 s in Figure 9.13, consistency

between the two curves is pronounced. According to the MIT Ocean Convection

Model data presented in Subsection 5.1.4 and Subsection 6.2.1, over a depth differ-

ence of 230 m and a time difference of 3550.s, vertical velocities at the same horizontal

position should show strong similarity. The reason is that convective cells are verti-

cally aligned, and the field varies very slowly as convection approaches a stationary

state (as discussed in Subsection 6.2.1). As will be pointed out in Section .9.6, the

convection model is inadequate for depicting the 20-m depth shallow water as it does
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not include effects of the atmospheric forcing. So the model-based "strong similar-

ity" between depths may not apply. Nevertheless, it still offers a means for checking

measurements. The consistency of WEarth between the two depths as shown in Fig-

ure 9.13, although only lasting for a short duration, adds to our confidence in the

data processing results.
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9.13: Comparison of WEarth of 250-m. and 20-m depths, with a time shift of
corresponding to AUV's cruise time (please see Figure 9.7).

9.5 Tests of AUV-Based Classifier Using Labrador

Sea AUV Data

As shown in Table 5.1 in Subsection 5.1.3, parameters of the MIT Convection Model

are set to measured values (heat flux, mixed-layer depth, and Coriolis frequency cor-

responding to the experiment site) during AUV Mission B9804107. The model-output
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of vertical flow velocity (one snapshot shown in Figure 5.2) are then used to compute

the temporal-spatial PSD (i.e., the 71-v spectrum), as presented in Subsection 6.2.1.

From the q-v spectrum, we obtain the corresponding mingled spectra at a series of

AUV speed, as shown in Figure 6.5. These mingled spectra constitute the theoreti-

cal template for convection. The AUV-based classifier is built upon this convection

template along with the internal wave template, as presented in Section 6.3.

In Section 6.5, we have tested the classifier using model-based synthesized data. In

this section, we test the classifier using the Labrador Sea data acquired by the AUV-

borne ADV. The input to the classifier is the Earth-referenced vertical flow velocity

(denoted WEarth) extracted from raw data during AUV Mission B9804107, using the

algorithm in Section 8.2 and shown in Figure 9.11 (250-m depth) and Figure 9.12

(20-m depth).

9.5.1 At 250-m depth of AUV Mission B9804107

The convection model parameters use measurements in this AUV mission. Further-

more, model computations are carried out at the depth of 250 m. We therefore expect

to see that the model-based classifier recognizes the 250-m depth AUV data as con-

vection. The PSD estimate of WEarth on the first and second legs 3 at the 250-m depth

is shown in Figure 9.14, using five-point frequency-domain smoothing to reduce the

variance of estimate. We note a spectral peak at 0.007 Hz. The AUV speed during

this mission is about 1 m/s. As shown in the first panel of Figure 6.5, the peak fre-

quency of the mingled spectrum template (based on the convection model) for AUV

speed 1 m/s lies at about 0.005 Hz. These two frequencies are close.

Now let us feed the 250-m depth WEarth data into the classifier. The PSD estimate

of WEarth is shown in Figure 9.15, along with the two PSD templates for convection

and internal wave as we have seen in the upper panel of Figure 6.6. In Figure 9.15,

we do not conduct frequency-domain smoothing to ensure that individual frequency

points provide uncorrelated PSD estimates as required by the classifier's formulation

3The third and fourth legs will be discussed in Section 9.6.
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PSD of the 1st and 2nd legs, 250-m depth. After 5-point freq. smoothing with A f=7 x 10-4 Hz.
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(detailed discussions are found at the end of Section 6.3).

Processed in the same way as for simulations in Section 6.5, the experimental

test result is shown by the arrow in Figure 9.16 (the same as Figure 6.17). The

experimental z is shown to fall in the cluster of model-based simulation results of

the convection class. The classifier thus declares that the AUV-measured WEarth at

the 250-m depth in the mixed layer is convective. This result is consistent with

what meteorological and hydrographic conditions indicate in Section 9.2, and with

the Lagrangian float observations given in Section 9.3.

9.5.2 At 20-m depth of AUV Mission B9804107

The PSD estimate Of WEarth on the first and second legs at the 20-m depth is shown

in Figure 9.17, using five-point frequency-domain smoothing to reduce the variance

of estimate. We note a spectral peak at 0.002 Hz, and a lower spectral peak at

0.007 Hz (side-lobe possibility is ruled out considering the data length of 1400 s and

the smoothing window of 50 s). Compared with the counterpart PSD of the 250-m
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Figure 9.15: PSD estimate of WEarth at the 250-m depth of Mission B9804107 (non-
smoothed) along with PSD templates of internal wave and convection.

depth (for the first and second legs) as shown in Figure 9.14, we notice that the two

PSDs both have spectral peaks at 0.007 Hz. In the time domain, Figure 9.18 shows

the cross-covariance function of WEarth between the two depths (on the 2nd leg at each

depth). The function has a period corresponding.to 0.007 Hz, and has an amplitude

of about 20% or larger (note that the tapering at tails is largely due to sliding of time

series for covariance calculation). This time-domain observation shows consistency

with the peak frequency of 0.007 Hz that is shared by the two depths.

The convection PSD template used by the AUV-based classifier is developed from

the MIT Convection Model data. The model uses a mixed layer of 350-m depth which

is set to the same value as that measured by the AUV during Mission B9804107. Due

to its 0.007-Hz peak frequency which is close to the model template's 0.005 Hz, the

250-m depth vertical flow velocity data is determined -to be convective by the classifier.

We thus have reason to believe that the 0.007-Hz spectral peak is associated with

ocean convection.

The 20-m data, however, has an additional higher peak at 0.002 Hz. Due to this

low-frequency peak, the 20-m depth vertical flow velocity differs from the model-

based convection template, thus making classification difficult. The classification test
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Class 1: internal wave. AUV speed=1 rn/s. rn 1 =-1.44, z1=2.13
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Figure 9.16: At AUV speed 1 m/s, histograms of feature z for internal wave and
convection. The value of z corresponding to the 250-m data of Mission B9804107 is
marked by the arrow.

result for the 20-m depth WEarth is shown in Figure 9.19, marked by the arrow. The

arrow still lies in the convection cluster, but at the very tail towards the internal

wave cluster. In Section 9.6, we will propose the cause of the discrepancy between

shallow-water data and the ocean convection model.

9.6 Discussions

9.6.1 Effects of Ocean-Atmospheric Coupling on Shallow-Water

Measurement

The sea water loses heat to the air, thus convection can also happen in the atmosphere.

Because of its closeness to the air-sea boundary, water at the 20-m depth is much more

influenced by the atmospheric forcing than at the 250-m depth. Vertical flow velocity

at the 20-m depth is therefore expected to bear characteristics of the atmospheric

structure. Ocean-atmosphere coupling is not included in the convection model. It is
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PSD of the 1st and 2nd legs, 20-m depth. After 5-point freq. smoothing with A f=7 x 10~ 4 Hz.
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Figure 9.17: PSD estimate of WEarth at the 20-m depth of AUV Mission B9804107.
The 1-- error band is shown, using five-point frequency-domain smoothing.

probably this inadequacy that has caused the discrepancy between the 20-m depth

AUV data and the ocean convection model, and consequently a difficult classification.

The atmospheric spatial scale is not the same as the ocean's, and is probably

larger due to a thicker convective layer. Hence it is quite possible that the low-

frequency (0.002-Hz) spectral peak4 (which makes classification difficult) of the 20-m

depth data is due to the atmospheric forcing. In modeling ocean processes in shallow

water, it is thus necessary to include ocean-atmosphere coupling [86], [87], [88]. Good

performance of AUV-based classification relies on well modeled templates.

The 20-m depth data also brings out the issue of adjusting the AUV speed. Ac-

cording to the illustration in Figure 6.4, the mingled spectrum peak is projected from

the convection's spatial periodicity. The peak frequency in the mingled spectrum in-

creases with the vehicle speed. At the 20-m depth, convection's spatial scale is larger

than that in deeper water, probably due to the atmospheric forcing. At an AUV

speed of 1 m/s, this larger spatial scale is projected to the 0.002-Hz low-frequency

4 In consideration of the typical surface wave period of 10 s [59], it is not very likely that surface
waves are the cause of this low-frequency peak.
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Cross-covariance function of wEarth between 250-rm and 20-rm depths (2nd leg of each depth)
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Figure 9.18: Cross-covariance function of WEarth between 250-m and 20-m depths (on
the 2nd leg at each depth).

peak on the mingled spectrum. If we increase the vehicle speed, this frequency of

convection will be higher, offering a better separation from internal wave's mingled

spectrum which remains at the base band. Therefore, we should increase the AUV

speed when the spatial scale of convection is larger.

9.6.2 Unsteadiness of Surface Cooling

Let us compare the root-mean-square (rms) values of vertical flow velocity given by

the model and shown by the Labrador Sea AUV data during Mission B9804107:

WAUV=0.020 m/s < Wmodel=0.04 3 m/s at the 250-m depth

WAUV=0.0 3 5 m/s > Wmode=0.014 m/s at the 20-m depth

The two pairs of values agree within a factor of less than 2.5. What attracts our

attention, however, is the relative magnitude of WAUV at the 20-m depth. It is not

only larger than the modeled counterpart, but also larger than WAUv at the 250-m

depth. One possible explanation is associated with the ocean-atmospheric coupling

which is not included in the model. The coupling may enhance convective vertical

velocity in shallow water.

Stronger sea surface cooling would also enhance convection. According to the
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Figure 9.19: At AUV speed 1 m/s, histograms of feature z for internal wave and
convection. The value of z corresponding to the 20-m depth data of Mission B9804107
is marked by the arrow.

convection model theory [53], flow velocity amplitude is proportional to the square

root of surface heat flux. AUV runs at the two depths were both conducted shortly

after midnight (local time). The 20-m depth run was about one hour later than

the 250-m depth run. Stronger night cooling might have contributed to the larger

convective vertical velocity at the 20-m depth. In the model setting presented in Sub-

section 5.1.3, we apply a steady surface heat flux of 300 W/m 2 which is an average

value around the AUV mission time. For more accurate description, unsteadiness of

surface cooling should be incorporated when setting the model parameters.

Consideration of unsteady atmospheric forcing may also help us understand the

heat flux calculation results based on the AUV's measurements: Earth-referenced

vertical flow velocity WEarth and potential temperature T. The average heat flux in

duration T can be calculated by [9]

Q = pCp- W'Earth)T(t

where po=1028 kg/rn 3 is the water density and C,,=3900 J/(kg 0C) is the specific heat
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capacity of water. wEarth(t) and T'(t) are deviations from their respective means in

duration T:

WEart(t) = WEarth(t) - WE arth (t)dt (9.2)
T0

T'(t) = T (t) - - T (t)dt (9.3)
7 0

Applying the above computation method to the whole duration of the 20-m depth

run (four legs each lasting for 720 s), the average heat flux is 130 W/m 2 . Note that in

the thesis definition, positive WEarth points upward, so heat flux upward should have

a "+" sign. Therefore, the heat flux calculation result using the 20-m depth data

has a sign consistent with that of surface cooling. The value is lower than 300 W/m2

estimated from meteorological data, but within a factor of less than 3.

The calculation results using the 250-m depth data are complicated. On the first

and second legs (720 s each) before the significant temperature dip at 3200 s (please

see the fourth panel in Figure 9.10), the average heat flux is 140 W/m 2 . The sign is

consistent with that of surface cooling, and the value is close to the calculated average

heat flux at the 20-m depth. On the third and fourth legs, plus the temperature dip

which connects leg 2 and leg 3, the calculated average heat flux is -930 W/m 2 . The

sign is inconsistent with that of surface cooling. This phenomenon needs further study,

but we can propose possible explanations. At ~3 cm/s convective vertical velocity,

temperature at the 250-m depth is the result of more than two hours of convection

from the surface. This temperature may not represent the present conditions at the

surface if the atmospheric forcing is unsteady. If the surface cooling has turned off,

there could be rebound of convective column resulting in cold water going up. We

should note that simple correlation depends on a steady-state process.

On the other hand, we observe that the time series of WEarth on the third and fourth

legs at the 250-m depth no longer has the periodicity shown in the first and second
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legs. It is likely that due to unsteadiness of meteorological conditions, processes

occurring on these two legs differ from convection. Besides the above consideration of

unsteadiness, a closely related issue is the length of AUV surveys, as discussed below.

9.6.3 Consideration of AUV Survey Length

Towards the end of Section 6.3, we relate data length to veff in periodogram estima-

tion. When data are short, we have to tolerate periodogram's variance to leave enough

uncorrelated frequency points for the classifier's operation. Another issue concerning

data length is ergodicity [41], [42], [24], [43]. In the time domain, an ergodic random

process is defined as one whose first and second moments (ensemble averages) can

be replaced by the corresponding time averages as the data length approaches infin-

ity [42]. Ergodicity is often assumed in practical data analysis, since we rarely have

an ensemble of realizations but need to deal with a single realization of the random

process [7]. A longer sample time series would better cover the statistical variations

of the overall random process.

The concept of ergodicity is equally applicable in the space domain. A longer

AUV survey would better cover the statistical variations of the random spatial field.

In AUV Mission B9804107, each leg had a length of only about 800 m. By inspecting

the upper panel in Figure 5.2, we notice that over a scale of up to several hundred

meters, an AUV may encounter a continuous "row" of positive or negative vertical flow

velocity. This localized inhomogeneity can be overcome by a long AUV run since the

orientation of such rows is random. For an AUV leg shorter than 1 km as in Mission

B9804107, ergodicity of the measurement would be challenged if the AUV happened

to fly along a row. As shown in the first panel in Figure 9.11, WEarth has a negative

mean on the third and fourth legs at the 250-m depth during Mission B9804107.

While keeping in mind other considerations (measurement bias in Section 8.4 and

unsteadiness of surface cooling in Subsection 9.6.2) regarding these two legs, we should

also consider the possibility that the AUV ran along downwelling rows.

The shortness of AUV runs also makes the heat flux calculation difficult. The

mean values of vertical flow velocity and temperature are removed in applying Equa-
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tion (9.1). These mean values are for the data duration T, as shown in Equation (9.2)

and Equation (9.3). A reliable heat flux estimation requires long observations, i.e.,

long AUV runs.

From the above two viewpoints, AUV survey lines should be made longer. This

lengthening, however, is not without limitation. As we have discussed in Subsec-

tion 9.6.2, the assumption of stationarity of the field would be compromised over a

longer duration due to possible unsteadiness of the atmospheric forcing. In AUV

survey designs, the length of cruise legs should be determined by trading off the

requirement of spatial ergodicity against that of temporal stationarity.
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Chapter 10

Conclusions and Future Work

10.1 Conclusions

1. The "mingled spectrum principle" concisely relates observations from a moving

platform to the temporal-spatial spectrum of the process under survey.

2. The principle can be utilized to optimize surveys for classifying ocean processes.

It lays the theoretical basis for designing an AUV-based classifier.

3. AUV-based classification is demonstrated for distinguishing ocean convection

from internal waves. Simulation results show that at a higher vehicle speed, the

classification performance is better as the distinction between convection and

internal wave is highlighted.

4. Tests using model data and field data demonstrate that we can utilize the AUV's

controllable motion to the advantage of ocean process classification.

10.2 Summary of Contributions

1. We established the "mingled spectrum principle".

2. By utilizing the mingled spectrum principle, we developed a parametric tool

for designing an AUV-based spectral classifier. Based on general methods of
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feature extraction, we presented an approach for classifying Power Spectrum

Density (PSD).

3. In consideration of model parameter uncertainties, we devised a method to make

the classifier robust to mismatch between models and real data.

4. We applied the AUV-based classifier to distinguish ocean convection from in-

ternal wave.

5. We installed a high-precision acoustic Doppler sonar in an AUV to measure flow

velocity. We calibrated this AUV-borne measurement system in a high-precision

tow tank. The system acquired field data from the Labrador Sea in 1998. We

developed the data processing method to extract the Earth-referenced vertical

flow velocity from AUV's raw measurement, and the error analysis approach.

6. Using the Labrador Sea flow velocity data acquired by the AUV, the classifi-

cation test result detects convection's occurrence. This finding is supported by

more traditional oceanographic analyses and observations.

10.3 Future Work

10.3.1 Expand Dimension of Classification Quantities

Classification of convection versus internal wave is studied as an example application

in the thesis. Since the vertical flow velocity is a key signature of both processes [47],

[16], [2], we use it as the classification quantity. The ocean process X(t, r) in Figure 3.1

and Figure 4.1 thus refers to the vertical flow velocity. Corresponding to this single

classification quantity, the process X is a scalar (as a function of time and space),

i.e., of one dimension.

To fully utilize the information resources, we can add in more classification quan-

tities, such as temperature. The addition is equivalent to expanding the dimension

of process X. For example, when using vertical flow velocity and temperature as the
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two quantities for classification, X will become a two-dimensional vector with each

component being a function of time and space.

With the dimension expansion, the mingled spectrum computation should be cor-

respondingly extended. Not only each component's mingled spectrum, but also the

cross-mingled-spectra between components, will be useful for classification. The cross-

spectrum between vertical flow velocity and temperature, for instance, will reflect the

correlation between the two quantities. We should note, however, this correlation is

based on the AUV's "mingled" measurements. As we have demonstrated, the vehicle

speed is still the tuning factor we should optimize for good classification.

10.3.2 Extend Two-Class Method to Multi-Class Method

We consider a two-class problem in the thesis. In distinguishing convection from

internal wave, the binary hypothesis formulation is plausible, as the former process

occurs in a vertically mixed water column while the latter occurs in a stably stratified

water column. To treat more complicated ocean process possibilities, we should

extend the binary classification method to M-ary [21] (i.e., multi-class) classification.

The class separability metric (Equation (2.24)) based on the within-class scatter

matrix Ay (Equation (2.22)) and the between-class scatter matrix Aby (Equa-

tion (2.23)) is readily applicable to L-class problems [3], noting the definition of the

overall mean Mo = '(PiMi) where L ;s 2. Correspondingly, the feature extrac-

tion will map the observation vector to an (L-1)-dimensional feature vector Z. For a

two-class problem where L = 2, vector Z reduces to a scalar feature z, as seen in the

thesis.

10.3.3 Incorporate Real-Time Algorithm into AUV Software

To ensure quick response from the AUV, the classification algorithm should be im-

plemented in real time. In the thesis research, we have made efforts to meet this

requirement:
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1. The AUV-based spectral classifier is linear. As we have commented at the end

of Section 2.3, light computational load is a major reason for our formulating a

linear classifier.

2. The classifier has demonstrated its performance using a short data segment, as

presented in Section 6.5, Section 7.4, and Section 9.5. Capability of classification

within a short duration is important for real-time or quasi-real-time operations,

as discussed at the end of Section 6.3.

To make the classification algorithm operational in an AUV, we need to eventually

integrate it into the vehicle's software architecture.

189



Appendix A

Relations between Various Forms

of Temporal-Spatial PSD

By definition [89], [25], the "complete" autocorrelation function of a stationary and

homogeneous field X(t, x1 , x2 ) is

Rx_3D(r, Pi, P2) = E[X(t, x1 , x2) - X(t + T, X1 + Pi, X 2 + P2)] (A.1)

and its Fourier transform, i.e., the "complete" Power Spectrum Density (PSD) is

f- J JRX3D (T, P1, P2) e-j27re j2Trv1p1J2 v2P2dTdpldP2

(A.2)

Now let us integrate SX 3D(, v 1 , U2) over v2 :
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SX. 3D (7, V1, V2) =



SX_3D(7i 1/, V2 )dv 2

-

j f-o fo f- Rx_3D (7, Pi P2)e
27 e j27rv1lp1 ej2
12rP2 dFdpldP2dv2

f:r: f:0 RX-3D(T, P1 P2 e j2TpJ 2 v1p16(P2 ) dTdpdP 2

f:o i0 Rx 3D(T, P1,0 e-j27r j27rv1P1dTdpl

(A-3)

On the other hand, for two locations on a line along the x1-axis, the "line" auto-

correlation function is

Rx(T, pi) = E[X(t, x 1, x2 ) - X(t + T, x 1 + Pi, x 2 )] = Rx_3D(T, P1, 0)

(A.4)

Then, replacing RX3D(T, P1,0) with Rx(T, PI) in Equation (A.3), we get

Sx_3Dr7, v1 , v2)dv 2
-00

=f Rxf R(T , p1 )e- 27r7i2 I1 PI dTdp1

= Sx (r, v1 )

(A.5)

where the last step is by the definition that the "line" PSD is just the Fourier trans-

form of the "line" autocorrelation function. So we see that the "line" PSD equals

the integration of the "complete" PSD over one spatial frequency. Equation (A.5)

generally holds no matter whether the field is isotropic. The notation "Sx(r, v)" used

in the derivation of the mingled spectrum formula in Subsection 3.1.1 means the same

as "Sx(r/, v1)" in Equation (A.5).

If the field is furthermore isotropic, its spatial spectrum will also be isotropic [90].

Equation (A.5) is then illustrated in Figure A.1. For an isotropic spectrum, only one
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Figure A.1: Obtaining the "line" PSD by integrating the "complete" PSD (contours
shown are for an isotropic field).

spatial frequency suffices for description. Thus the "complete" PSD can be written

as a "radial" PSD: SXradial(J, Vradial). Note that at any spatial frequency Vradial,

the "radial" PSD implicitly represents the integration on a circle of radius 2 7rvradial.

Hence the "point-wise" PSD is

Sxpoint-wise(i IVradial) 1 Sxradial (n, Vradial)2 7FVradiaI
(A.6)

Based on isotropy, we know that

(A.7)

Then the three variants of the "complete" PSD of an isotropic field are related by

the following equation:
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SX 3D (T, v1, v2) = SXpoint-wise(i, V2,

1 SXradial('q,

2 2 v 2
(A.8)

2 V2

Incorporating Equation (A.8) into Equation (A.5), we obtain Sx(TI, v1) from

Sx-radial(r7, 1v+ v2) by a simple integration.

For any real process X(t, x1 ) (on a line along the xi-axis), we have

Rx(T, P1) = Rx (--, -p1) (A.9)

since E[X(t, x1 ) -X(t + r, x, + p1)] = E[X(t + T, x, + Pi) - X(t, 1)].

By the property of two-dimensional Fourier transform [65], we obtain the general

symmetry of the "line" PSD:

Sx(n, vI) = Sx(-ri, -v1 ) (A.10)

When the field is furthermore isotropic, we will additionally have

Rx(T, p) = Rx(r, -pi) (A.11)

since the autocorrelation does not depend on the spatial direction. It leads to'

Sx (7, v1 ) = Sx(rI, --vi) (A.12)

1Equation (A.12) can be derived in another way: Sx(r?, -vi) = f_0 SX3D(, -v 1 , v2 )dv 2

ff Sx_ 3D(,V1, V2)dv 2 = Sx(i,vi) where SX_3D(?,-V1,V2 )
isotropy [2].

= SX.3D(77,V1,V2) is due to
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Combining Equation (A.10) and Equation (A.12), we see that for an isotrpic field,

SX(r1, vi) is symmetric about the rj-axis and also about the vi-axis.
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Appendix B

Mechanical Design for the

Calibration Experiment

In Section 8.3, we have presented the calibration experiment for the AUV-borne flow

measurement system in the David Taylor Model Basin. In this appendix, we give

details of the mechanical design. The mechanical system is composed of three parts:

a bracket, a wedge, and a hull platform, as shown in Figure B.1.

1. The bracket is for fixing the mechanical system to the strut of the tow tank

carriage. Its upper rectangular plate attaches to the base of the strut via six

bolts. Its circular lower plate, as shown in Figure B.2, attaches to the wedge

via four bolts. The multiple hole positions are designed for adjustability of the

vehicle's yaw angle.

2. The wedge is for adjusting the vehicle's pitch/roll angle. Four wedges of differ-

ent angles are built. Their side views and views perpendicular to their upper

intersections are shown in Figure B.3 and Figure B.4, respectively. The wedge's

upper elliptical surface attaches to the bracket, and its lower circular surface

attaches to the hull platform.

3. The hull platform is for holding both the ADV probe and the vehicle's hull.

It is attached to the wedge via its upper circular plate. The ADV probe is
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held by the 450 slanted arm as shown in Figure B.5. The lower rectangular

plate attaches to the flat section of the vehicle's inner fairing, and thus upholds

the whole vehicle. To achieve rigid attachment, the lower plate matches the

vehicle's inner fairing with the largest possible area. The slanted arm ensures

that the ADV probe's stem lies in the vehicle's largest vertical cross-section.

The farther the ADV's sampling volume from the hull, the smaller influence

of the vehicle's hull on the flow. To minimize the influence, the ADV probe is

positioned such that its three receivers reach the brink of the hull but do not

protrude.

A photo showing the system is displayed in the lower panel of Figure 8.5. The

vehicle is mounted on the carriage strut using a 5' wedge. The tips of the ADV's

three receivers are visible.
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Figure B.1: The overall structure of the mechanical system for the calibration exper-
iment ("nipple" is renamed as "bracket" in the thesis).
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Figure B.2: Top view of the lower plate of the bracket.
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Figure B.4: Views of the four wedges perpendicular to their upper intersections.
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