
Modeling and Analysis of Manufacturing Systems
with Multiple-Loop Structures

Zhenyu ZHANG1 and Stanley B. GERSHWIN1

zhyzhang@mit.edu gershwin@mit.edu
1 Massachusetts Institute of Technology

Abstract— Kanban and Constant Work-In-Process (CONWIP)
control methods are designed to impose tight controls over
inventory, while providing a satisfactory production rate. This
paper generalizes systems with kanban or CONWIP control
as assembly/disassembly networks with multiple-loop structures.
We present a stochastic mathematical model which integrates
the control information flows with material flows. Graph theory
is used to analyze the multiple-loop structures. An efficient
analytical algorithm is developed for evaluating the expected
production rate and inventory levels. The performance of the
algorithm is reported in terms of accuracy, reliability and speed.

Index Terms—CONWIP, decomposition, graph theory, kanban,
loop.

I. INTRODUCTION

The study of kanban controlled systems can be traced back
to the Toyota Production System in the 1950s. The classic
kanban controlled system was designed to realize Just-In-Time
(JIT) production, keeping a tight control over the levels of
individual buffers, while providing a satisfactory production
rate (Figure 1(a)).

(b)

(c)

Machine Buffer Material flow Kanban flowKanban detacher

1

5

2 3 4

4

1

5

2 3

6

5

2

6

3

7

4

(a)

(b)

(c)

Machine Buffer Material flow Kanban flowKanban detacher

1

5

2 3 4

4

1

5

2 3

6

5

2

6

3

7

4

(a)

Fig. 1. Variations of kanban systems
(a) Classic kanban controlled system; (b) CONWIP controlled system; (c)
Hybrid controlled system

There are several variations of kanban control widely used
in industry, such as CONWIP control and hybrid control
(Figure 1(b)(c)).

A. Essence of Kanban Control

Consider the kanban loop in Figure 1(a). Once a part enters
a closed loop, a kanban card is attached to it. The kanban

card is detached from the part when it leaves the closed loop
and proceeds to the next stage. The number of kanbans within
the closed loop is constant. We define it as the invariant of
the loop. Similarly, when we look at the CONWIP loop in
Figure 1(b), kanban cards are attached to the parts at the first
stage of the production line while they are detached from the
parts at the last stage. The total number of kanbans circulated
within the CONWIP loop gives the loop invariant β:

β = b(1, t) + b(2, t) + b(3, t) + b(4, t) + b(5, t) (1)

in which b(i, t) is the level of Bi at time t.

The invariant imposes an upper limit of the buffer levels
within the closed loop. For example, the total number of parts
N allowed in the large CONWIP loop is constrained by:

N = b(1, t) + b(2, t) + b(3, t) + b(4, t) ≤ β (2)

More generally, systems using kanban controls can be
represented as a set of systems with multiple-loop structures.
Each closed loop has a loop invariant.

B. Importance of Multiple-Loop Structures

To control a given production system, a variety of kanban
control methods can be used. Classic kanban control, CON-
WIP control and hybrid control are compared by Bonvik [1].
The hybrid control method is demonstrated to have the best
inventory control performance. Therefore, to study the design
of control structures is valuable for developing insights into
operational control.

After we determine the control method, the design para-
meters of the closed loop, such as the number of kanbans,
also have significant effects on the system’s performance and
cost. When CONWIP control is implemented by circulating
pallets instead of kanbans, as pallets cost money and take up
space, the optimal selection of control parameters, such as the
number of pallets and the storage buffer space of the pallets,
could provide a saving of millions of dollars.

Therefore, an exhaustive study of the properties of multiple-
loop structures is needed. This study is challenging but highly
valuable. It will provide a theoretical basis and practical
guidelines for factory design and operation.

C. Relevant Work

As the analysis and design of kanban systems usually
involve evaluating a large number of variations with different
structures and parameters, analytical methods are much more
promising in terms of computational efficiency. Markov chains
and decomposition method are used to evaluate stochastic
manufacturing systems by breaking them down into a set of
two-machine lines (building blocks) [2], [3]. These building
blocks can be evaluated analytically by using the method
in [8]. This method models the two-machine lines by assigning
multiple failure modes to the pseudo-machines, instead of
using single failure mode. This new decomposition method
was applied to study systems with the closed loop. Werner
and Gershwin [5], [10] developed an efficient method to
evaluate large single-loop systems. Levantesi [6] extended it
to small multiple-loop systems. However, Levantesi’s method
demonstrated the feasibility of his approach but required an
analysis of the propagation of blocking and starvation that had
a very inefficient method for doing this. Therefore, this method
is not able to provide satisfying speed and reliability while
evaluating large-scale multiple-loop systems. In addition, a
systematic understanding of the behavior of multiple-loop
structures has not been developed yet.

D. Research Goal and Contributions

This research is intended to investigate the behavior of
multiple-loop structures, to develop mathematical models and
efficient analytical methods to evaluate system performances,
and to help design factories. Specifically, the contributions of
this paper include:
• a unified model to represent multiple-loop structures

which integrates information flows with material flows
• a systematic method to analyze blocking and starvation

propagation based on graph theory
• an efficient algorithm to evaluate assembly/disassembly

systems with arbitrary topologies
• experiments to demonstrate that the algorithm is accurate,

reliable, and fast.

E. Outline

In Section II we introduce assembly/disassembly networks
with multiple-loop structures. To analyze blocking and star-
vation propagation in systems with complex topologies, in
Section III, we develop a graph model. In Section IV, blocking
and starvation analysis is discussed based on the graph model.
In Section V, we present an efficient algorithm for evaluating
assembly/disassmebly networks with arbitrary topologies. We
also discuss the performance of the algorithm in terms of ac-
curacy, reliability and speed. Conclusions and future research
are in Section VI.

II. ASSEMBLY/DISASSEMBLY NETWORKS WITH
MULTIPLE-LOOP STRUCTURES

In this section, we develop a model to provide an integrated
view of material flows and information flows.

A B

C

4

5

9

F13E

6

D 12

G14

15

16

7

82

1

3

10 11

H

Demand

Demand tokens

CONWIP loop

Demand
tokensPallets

17 18

A B

C

4

5

9

F13E

6

D 12

G14

15

16

7

82

1

3

10 11

H

Demand

Demand tokens

CONWIP loop

Demand
tokensPallets

17 18

Fig. 2. Assembly/disassembly network with multiple-loop structures

A. A Unified Model

Consider the system in Figure 2. The machines in the
system are only allowed to perform single part, assembly or
disassembly operations (We do not include merges or spits
of flows). A CONWIP control loop is implemented between
machine G and A. Demand tokens are generated by machine
H to make base stock control at machine A and F.

Various meanings of assembly/disassembly operations are
represented in the unified graph of Figure 2. Traditionally,
assembly/disassembly is used to describe a process involving
two or more real work pieces. However, this is not always
the case. Sometimes, a work piece is assembled to a pallet
or fixture when it enters a system. After going though a set
of processes, the work piece is disassembled from the pallet.
Therefore, assembly/disassembly takes place between a real
work piece and a fixture or pallet. For example, machine B
and E in Figure 2 conduct the disassembly and assembly of
real parts. Machine C and D disassemble and assemble real
parts with pallets.

When we consider kanban control, the attach and detach
operations between kanban and work pieces are actually
assembly/disassembly operations. By imagining the kanban
as a medium which conveys control information, the assem-
bly/disassembly operations happen between information flows
and material flows.

More interestingly, the demand information can be embed-
ded into a tandem line with material flow [4] by using virtual
assembly/disassembly machines. In Figure 2, machine H is
a demand machine which generates demand token flows by
disassembly. The demand tokens are assembled with real parts
at machine A and F.

In summary, the definition of assembly/disassembly is ex-
tended to include both material flows and information flows.
Kanban, CONWIP and other information-based control meth-
ods can be modeled as assembly/disassembly networks with
multiple-loop structures.

B. Approach to Evaluation

Decomposition is developed as an approximation technique
to evaluate large-scale complex manufacturing systems [2]. A
two-machine one-buffer line is designed as the building block
to approximate the behavior of the flow in the buffer. The up-
stream pseudo-machine of the two-machine line approximates

the failure propagation from the upstream, while the down-
stream pseudo-machine approximates the failure propagation
from the downstream.

By using the multiple failure mode method to decompose
the system [9], the assignment of the failure modes is deter-
mined according to the blocking and starvation propagation
property. If any machine failure could cause the observed
buffer to be full, its immediate upstream machine is blocked
and thus the failure is assigned to the downstream pseudo-
machine. Likewise, any machine failure which could result in
an empty buffer is assigned to the upstream pseudo-machine.

To obtain the blocking and starvation propagation property,
we are interested to know the interrelationship between ma-
chine failures and buffer levels: given a machine failure, what
are the levels of buffers in the system and which machines in
the system could be blocked or starved. Therefore, before we
decompose the system into building blocks, we should derive
the property of blocking and starvation propagation.

While there are closed loops in the system, the behavior of
blocking and starvation propagation become complicated. The
analysis of blocking and starvation of multiple-loop structures
is the focus of this paper. Decomposition evaluation will be
briefly mentioned since it is almost the same as existing
techniques [5], [10].

C. Loop Invariants
Loop invariants result in the complicated behavior of block-

ing and starvation propagation. At this point, we introduce the
definition of loop invariants.

I

M2B1M1

B4

M3B2

M4 B3 M2B1

M1

B3

B2

B4 M4

M3I

(a) (b)

M2B1

M1

B4

B2

B5 M5

M3

I

M4

B3

M6

B6

(c)

Invariant= n(1,t) + n(2,t) + n(3,t) + n(4,t) Invariant= n(1,t) + n(2,t) -n(3,t) -n(4,t)

Invariant = n(1,t) + n(2,t) -n(3,t) + n(4,t) + n(5,t) -n(6,t)

I

M2B1M1

B4

M3B2

M4 B3 M2B1

M1

B3

B2

B4 M4

M3I

(a) (b)

M2B1

M1

B4

B2

B5 M5

M3

I

M4

B3

M6

B6

(c)

Invariant= n(1,t) + n(2,t) + n(3,t) + n(4,t) Invariant= n(1,t) + n(2,t) -n(3,t) -n(4,t)

Invariant = n(1,t) + n(2,t) -n(3,t) + n(4,t) + n(5,t) -n(6,t)

Fig. 3. Loop invariant of single-loop systems

Consider the variation of the single loop in Figure 3(b). Al-
though there is no part circulated in this disassembly/assembly
system, an invariant still can be found. Consider the disas-
sembly at machine 1. Whenever one part goes into the upper
branch, there must be one part going into the lower branch.
Similar things happen to the assembly at machine 2. Therefore,
the difference between the sum of the buffer levels of the upper
branch and that of the lower branch is constant.

A more complicated variation of single loop is shown in
Figure 3(c). The flow direction changes four times in the loop.
Loop direction, as an abstract concept, is introduced for the
purpose of defining the invariant. An invariant can be then
obtained by adding the levels of buffers whose direction agree
with the loop direction and subtracting the levels of all the
rest.

III. GRAPH MODEL OF ASSEMBLY/DISASSEMBLY
NETWORKS

This section presents, in the manufacturing system con-
text, how to apply graph theory to develop a graph model
for the analysis and design of large-scale complex assem-
bly/disassembly networks with multiple-loop structures.

A. Terminologies and Notations

As the terminologies of graph theory vary from one book
to another, in order to keep consistency, the definition of
terminologies used in this paper are referred from [7].

The vertices and arcs of a digraph are denoted by vi, i =
1, 2, ..., n and aj , j = 1, 2, ..., m. The topology of the digraph
could be represented by the all-vertex incidence matrix Φ =
[φij]. A set of fundamental circuits in the digraph is specified
by ck, k = 1, 2, ..., m−n+1. The circuit matrix corresponding
to the set of fundamental circuits is given by Ψ = [ψkj].

B. Graph Model

1) Underlying Digraph: For any pair of machines in an
assembly/disassembly network, a buffer is used to model the
interstage connection if there exists a flow between the pair
of machines. By convention, a machine is allowed to handle
multiple flows of parts by assembly/disassmebly, whereas a
buffer is only allowed to process a single incoming flow from
its upstream machine and generate a single outgoing flow
toward its downstream machine. In such a way, a buffer could
be defined exactly as an arc in graph theory,

Bj = (u(j), d(j)) (3)

where u(j) and d(j) denote the upstream and downstream
machines of Bj , respectively.

Machines in the network are mapped to vertices in the
digraph. For a machine Mi, we define U(Mi) as the set of
its upstream buffers, and D(Mi) as the set of its downstream
buffers. The initial vertex of an arc is the upstream machine of
the corresponding buffer, while the terminal one is the down-
stream machine. Loops in assembly/disassembly networks are
essentially defined in the same way as circuits in digraphs.
Each loop corresponds to a circuit vector of the digraph.

In summary, any assembly/disassembly network N has a
unique underlying connected digraph G. The vertex set V and
arc set A correspond to the set of machines M and the set of
buffers B, respectively. The set of circuits C is identical to the
set of loops L. Therefore, network (M, B, L)N is equivalent
to (V, A, C)G. For example, the underlying digraph of the
network in Figure 2 is given in Figure 4

Arc

Vertex

Arc

Vertex

Fig. 4. Underlying digraph of an assembly/disassembly network

2) Capacity, Level and Flow: In an assembly/disassmebly
network N , the capacity of an arc, or buffer, is defined as
the size of buffer Nj . The level of Bj is an assignment of
a non-negative function b(j, t), which denotes the amount of
material stored in Bj at time point t subject to the capacity
constraint

0 ≤ b(j, t) ≤ Nj for all Bj ∈ B (4)

The flow or the amount of materials transported through Mi

during the time period (0, t) is denoted by q(i, t).
3) Machine Failure, Blocking and Starvation: When a

machine Mi is down due to a failure at time t = 0, the flow
transported through the machine is forced to be zero:

q(i, t) = 0 t ≥ 0 (5)

As a result, the upstream buffers of Mi tend to be filled up,
while the downstream buffers of Mi will be depleted gradually.

For a given machine Mi in the system, suppose any of its
downstream buffers is full,

b(v, t) = Nv v ∈ U(Mi) (6)

Mi is said to be blocked at time t through buffer Bv .
Similarly, Mi is starved at time t if any of its upstream arcs
is empty:

b(w, t) = 0 w ∈ D(Mi) (7)

C. Conditions

1) Conservation Condition: Suppose at time t = 0, the
initial inventory level of Bj is b(j, 0). Recall that the amount of
material transported through Mi during the time period (0, t)
is denoted by q(i, t). The resultant inventory level of Bj at
time t is given by

b(j, t) = b(j, 0) + q(u(j), t)− q(d(j), t) (8)

in which u(j) and d(j) are, respectively, the upstream and
downstream machines of Bj .

This equation is called the conservation condition which
requires that, during a time period, the increase or decrease of
the buffer level is equal to the net flow of materials entering
or leaving the buffer.

By using the corresponding column vector Φ∗j =
[φ1j , φ2j , . . . , φnj]T of incidence matrix Φ, we can rewrite
the conservation condition for each buffer as follows,

b(j, t) = b(j, 0) + [φ1j , . . . , φnj] [q(1, t), . . . , q(n, t)]T

for all Bj ∈ B
(9)

Define the level vector of buffer set B

b(t) = [b(1, t), b(2, t), . . . , b(m, t)]T

Define the flow vector during (0, t) of machine set M

q(t) = [q(1, t), q(2, t), . . . , q(n, t)]

The equations of the conservation condition can be con-
cisely written as

b(t) = b(0) + ΦT q(t) t ≥ 0 (10)

2) Invariance Condition: When there exists loops or cir-
cuits in assembly/disassembly network N with n machines
and m buffers, we can obtain another set of equations called
the invariance condition. Fundamental circuit matrix Ψf is
used to depict the condition.

The circuit value of each fundamental circuit vector Lk is
defined by

βk = [ψk1, . . . , ψkm] [b(1, t), . . . , b(m, t)]T

k = 1, 2, ..., n−m + 1
(11)

As the circuit value is an invariant of time, the above
equation is the invariance condition of loop Lk. The circuit
values of a set of fundamental circuits or loops can be
organized into a column vector β:

β = [β1, β2, . . . , βm−n+1]

The invariance condition with respect to the set of funda-
mental circuits can be written as:

Ψfb(t) = β t ≥ 0 (12)

IV. BLOCKING AND STARVATION ANALYSIS

In this section, we apply the graph model to analyze
the blocking and starvation propagation in complex assem-
bly/disassmebly networks.

A. Assumption

With the purpose to understand the maximal effect of a
single machine failure on the propagation of blocking and star-
vation, we must make the single machine failure assumption:
In an assembly/disassembly network, once there is a failure
at machine Mi, none of the other machines is allowed to fail.
The failure of Mi should persist for a sufficient amount of
time such that the levels of all the buffers remain in the steady
values.

This assumption, though not necessary to be true in real
cases, is very helpful to investigate the maximal effect of
propagation due to a single machine failure and eliminate the
effects caused by other failed machines. Under this assump-
tion, suppose Mi failed at time t = 0, the buffer level vector
in the steady state with respect to the single machine failure
at Mi is defined as below:

b(+∞|Mi) = lim
q(i,t)=0
t→+∞

b(t) (13)

in which q(i, t) is defined as the amount of material
transported through machine Mi during time period (0, t).

In the assumption, steady state is referred to that, when
there is a single machine failure at Mi, the propagation of
blocking and starvation has reached the maximal effect after
a sufficient amount of time such that
• The buffer levels will not change with time and remain

in the steady values.
• There is no flow through any machine in the system.
• Except the failed machine, other machines can only be in

one of the three states: being blocked, being starved or
being simultaneously blocked and starved. Blocking and
starvation of a machine are defined as follows:

Mk ∈ M, k 6= i is

blocked if ∃j ∈ D(Mk)
b(j, +∞) = Nj

starved if ∃j ∈ U(Mk)
b(j, +∞) = 0

(14)

B. Objective

The objective of blocking and starvation analysis is formu-
lated as solving the following problem in the graph model
context:

Given q(i, t) = 0 t ≥ 0,Mi ∈ M
Solve b(+∞|Mi)

(15)

in which Mi is the machine failed at time t = 0.

Intuitively, b(+∞|Mi) is the solution b(t) of the multi-
objective optimization problem as follows:

maximize q(t) = [q(1, t), q(2, t), · · · , q(n, t)]T (16)
subject to b(t) = b(0) + ΦT q(t) (17)

Ψfb(t) = β (18)
0 ≤ b(t) ≤ N (19)
q(i, t) = 0 (20)

where N is defined as the buffer size vector:

N = [N1, N2, . . . , Nm]

The objective is to maximize n-dimensional vector q(t).
Constraints (17) and (18) are the conservation and invariant

conditions of the graph model. This optimization problem
gives an equivalent statement because, in the steady state with
respect to any single machine failure, the amount of material
through each machine must be maximized when t → +∞
and thus there is no flow through any machine in the system.
The solution of the optimization problem b(t) is unique and
regardless to the initial condition b(0). This indicates that the
blocking and starvation propagation property is deterministic.

C. ‘Machine Failure - Buffer Level’ Matrix
A matrix Θ is designed to neatly represent the blocking

and starvation propagation property between machine failures
and buffer levels under single machine failure assumption.
Consider the five-machine tandem line in Figure 5, all the
buffers has size 10. The ‘machine failure - buffer level’ matrix
of this tandem line is given as below:

Θ =

M1

M2

M3

M4

M5

B1 B2 B3 B4

0 0 0 0
10 0 0 0
10 10 0 0
10 10 10 0
10 10 10 10

M2 B2 M3 B3 M4 B4 M5M1 B1 M2 B2 M3 B3 M4 B4 M5M1 B1

Fig. 5. A five-machine tandem line

In the matrix, the vertical dimension represents the failures
of different machines, while the horizontal one records the
levels of different buffers in steady state. Entry θij reflects
the level of Bj in the steady state with respect to the single
machine failure at Mi:

θij = b(j, +∞|Mi) Mi ∈ M, Bj ∈ B (21)

In the matrix, column j represents the levels of Bj with
respect to the failures of different machines. By looking
into row i in matrix Θ, we can identify buffer level vector
Θi∗ with respect to the single machine failure at Mi. This
matrix tool efficiently records the results of blocking and
starvation analysis. It could be used to derive the information
for decomposition evaluation.

D. Induction Method
The most critical part in blocking and starvation analysis is

to obtain the buffer level vectors in steady state. Theoretically,
we could solve the buffer level vectors in steady state from
optimization problem (16-20). However, directly solving this
multi-objective optimization problem is very difficult and
inefficient, especially when the system is large-scale and mul-
tiple loops are coupled together to form a complex topology.
Therefore, we are seeking an efficient and intuitive approach
to solve the buffer level vectors in steady state.

In this section, we present the induction method to ef-
ficiently solve the buffer level vector in steady state for
assembly/disassmebly networks with arbitrary topologies.

1) Intuition: For any assembly/disassmebly network N
with n machines and m buffers, we can establish a unique
underlying connected digraph G with n vertices and m arcs.
By choosing a spanning tree T of G, we can get a set of
m−n+1 chords of T . The digraph G can be constructed by
adding chords c1, c2, ..., cm−n+1 to spanning tree T :

G = T ∪ c1 ∪ c2 ∪ ... ∪ cm−n+1 (22)

Therefore, the system can be constructed by selecting a
tree-structured network corresponding to a spanning tree T
of G and adding a set of buffers corresponding to chords
c1, c2, ..., cm−n+1 of T .

Consider the four-loop assembly/disassembly network G
shown in Figure 2. The digraph T of Figure 6(a) is a spanning
tree of G. A set of subsystems of G with respect to spanning
tree T is shown in Figure 6(b)(c)(d).

(a)

(b) (c)

(d) (e)

(a)

(b) (c)

(d) (e)

Fig. 6. A spanning tree and corresponding subsystems and chords (indicated
by dashed lines)

Notice that directly solving the steady state buffer level
vectors of a tree-structured network is easy. Therefore, we
develop the intuition of induction method as follows:
• Construct the ‘machine failure - buffer level’ matrix for

the tree-structured network. Given a Bj in the tree, if the
failed machine Mi is connected to Bj via the downstream
machine of Bj , then θij = b(j, +∞|Mi) = Nj ; If the
failed machine Mi is connected to Bj via the upstream
machine of Bj , then θij = b(j, +∞|Mi) = 0.

• Add a buffer to form a new loop. Thus the matrix will
be expanded by one column, which corresponds to the
added buffer. The induction step is to solve the steady
state buffer level vectors in the matrix based on those in
the previous matrix.

2) Induction Sequence: For an assmebly/disassembly net-
work N = (M,B, L), the selection of tree-structured network
T is not arbitrary because the set of fundamental loops L is
usually specified with its components and invariant. Therefore,
in the underlying digraph G, we need to determine the set

of chords and spanning tree corresponding to the set of
fundamental loops.

Recall that the components of the set of fundamental loops
L can be represented by the circuit matrix Ψ. Each row
vector Ψk∗ of Ψ corresponds to a fundamental loop Lk. Each
fundamental loop has a defining chord. Therefore, in row k,
we can identify at least one column ck which gives

|ψk,ck
| =

m−n+1∑

i=1

|ψi,ck
| = 1 (23)

Notice that Bck
corresponds to chord ck of loop Lk.

Therefore, among the set of buffers B, a subset Bc =
{Bc1 , Bc2 , ..., Bcm−n+1} corresponding to the set of funda-
mental loops Lk, k = 1, ..., m−n+1 could be identified. The
set of machines M and the remaining n− 1 buffers compose
a spanning tree T which is equivalent to the tree-structured
network.

T ≡ (M, B −Bc)N (24)

Let the tree-structured network as Ω0 and define a set of
subsystems Ωk, k = 1, 2, ...,m− n + 1 of network N :

Ωk =
{

(M, B −Bc)N k = 0
Ωk−1 ∪Bck

k = 1, ..., m− n + 1 (25)

The subsystems Ω0,Ω1, ..., Ωm−n+1 specify the induction
sequence to construct the system starting from a tree-structured
network. In kth induction step, Bck

will be added and the
invariant condition with respect to loop Lk should be satisfied.

Finally, we reorder the set of buffers such that

B1, B2, ..., Bn−1 ∈ Ω0

Bn−1+k = Bck
k = 1, 2, ..., m− n + 1 (26)

3) Induction Operator: During induction, suppose we have
constructed the ‘machine failure - buffer level’ of subsystem
Ωk. Denote the matrix by Θ(Ωk−1), then entry θij(Ωk−1) is
defined as

θij(Ωk−1) = b(j, +∞|Mi)Ωk−1

i = 1, ..., n; j = 1, ..., n− 2 + k
(27)

The buffer level vector in the steady state with respect to
the single machine failure at Mi is a row vector of Θ(Ωk−1)
given as below:

Θi∗(Ωk−1) = [θi1(Ωk−1) θi2(Ωk−1)
· · · θi(n−2+k)(Ωk−1)]

(28)

When we add a new Bn−1+k to subsystem Ωk−1, the new
system Ωk will have one more loop Lk whose chord is ck. The
‘machine failure - buffer level’ matrix Θ(Ωk) will have one
more column which corresponds to Bn−1+k, originally Bck

.
Therefore, each buffer level vector has one more component:

Θi∗(Ωk) = [θi1(Ωk) θi2(Ωk) · · ·
θi(n−2+k)(Ωk) | θi(n−1+k)(Ωk)] (29)

From the perspective of induction, the buffer level vectors
of current subsystem Ωk should be derived based on those of
previous subsystem Ωk−1. In addition, the invariant βk should
also be the input of induction operation since it determines
whether all the components of Θi∗(Ωk−1) are conservative or
not. Let Γ be the induction operator, then we have

Θi∗(Ωk−1) = Γ(Θi∗(Ωk−1), βk) i = 1, 2, ..., n (30)

in which βk is the invariant of loop Lk, whose chord is
Bn−1+k.

Although all-vertex incidence matrix Φ(Ωk−1) and circuit
matrix Ψf (Ωk−1) are not considered as inputs, they are part
of induction operation such that the conservation and invariant
conditions are satisfied.

4) Solution Technique:
a) Insight: The focus of induction method is to design

the induction operator Γ to solve the buffer level vectors
correctly. Recall the optimization formulation in Section IV.B
and compare the formulation of subsystem Ωk and that of
subsystem Ωk−1. In kth step of induction, Bn−1+k is added
to form Lk. Therefore, in the formulation of Ωk, we have three
additional equations as follows:

b(n− 1 + k, t) = b(n− 1 + k, 0) + q(u(n− 1 + k), t)
−q(d(n− 1 + k), t)

(31)

[
ψk1, ψk2, . . . , ψk(n−1+k)

]

b(1, t)
b(2, t)

...
b(n− 1 + k, t)

 = βk (32)

0 ≤ b(n− 1 + k, t) ≤ Nn−1+k (33)

in which u(n− 1 + k) is the upstream machine of Bn−1+k

while d(n− 1 + k) is the downstream machine of Bn−1+k.
Nn−1+k is the size of Bn−1+k.

In the steady state with respect to the single machine
failure at Mi in Ωk, we conserve the value of components
θi1(Ωk−1), ..., θi(n−2+k)(Ωk−1)

b(j, t) = θij(Ωk−1) j = 1, ..., n− 2 + k (34)

and relax the capacity constraint (33), then we can rewrite
(32) and solve the buffer level of Bn−1+k as follows:

[
ψk1, ψk2, . . . , ψk(n−1+k)

]

θi1(Ωk−1)
θi2(Ωk−1)

...
θi(n−2+k)(Ωk−1)
b(n− 1 + k, t)

= βk

(35)

b(n− 1 + k, t) =(
βk −

∑n−2+k
s=1 ψks × θis(Ωk−1)

)/
ψk(n−1+k)

(36)
If b(n−1+k, t) of (36) satisfies (33), the solution of system

Ωk is

θij(Ωk) =

θij(Ωk−1)
j = 1, ..., n− 2 + k

(
βk −

∑n−2+k
s=1 ψks × θis(Ωk−1)

)/
ψk(n−1+k)

j = n− 1 + k
(37)

If b(n− 1 + k, t) of (36) does not satisfy (33), the level of
Bn−1+k is either negative or larger than the size of Bn−1+k.
• When b(n−1+k, t) < 0, it seems that there is a backlog

in Bn−1+k and the downstream machine of Bn−1+k

overdrafts −b(n− 1 + k, t) parts from Bn−1+k.
• When b(n−1+k, t) > Nn−1+k, it seems that there is an

excess in Bn−1+k and the upstream machine of Bn−1+k

overflows b(n− 1 + k, t)−Nn−1+k parts to Bn−1+k.
b) Reverse Operation Policy: A reverse operation policy

is developed to eliminate overdrafts or overflows. We firstly
define some new quantities.
• Nominal Level: In the kth induction step, the nominal

level of Bn−1+k is calculated according to (32) disre-
garding the capacity constraint.

• Overflow and Overdraft: Given a Bj in subsystem Ωk,
– When 0 ≤ b(j, t) ≤ Nj , Bj has neither overflow nor

overdraft;
– When b(j, t) > Nj , Bj has overflow which is

b(j, t)−Nj ;
– When b(j, t) < 0, Bj has overdraft which is −b(j, t).

Therefore, overflow and overdraft of Bj are defined as
follows:

δ+
j = max{b(j, t)−Nj , 0} (38)

δ−j = max{−b(j, t), 0} (39)

Assume in the kth induction step, the single machine failure
happens at Mi in subsystem Ωk. We reuse the solution of the
buffer levels in the (k − 1)th induction

b(j, t) = θij(Ωk−1) j = 1, ..., n− 2 + k (40)

and calculate the nominal level of Bn−1+k using (32). If
there exists overflow δ+

n−1+k in Bn−1+k, identify the
upstream machine Mu(n−1+k) of Bn−1+k and operate it
reversely to process δ+

n−1+k parts such that the levels of
upstream and downstream buffers will be updated as follows:

• For the upstream buffers of Mu(n−1+k):

b(v, t) = b(v, t)+ δ+
n−1+k v ∈ U(Mu(n−1+k)) (41)

• For the downstream buffers of Mu(n−1+k):

b(w, t) = b(w, t)− δ+
n−1+k w ∈ D(Mu(n−1+k))

(42)
Therefore, the updated level of Bn−1+k becomes Nn−1+k.

Bn−1+k is full so that its upstream machine Mu(n−1+k) is in
steady state.

On the other hand, if there exists overdraft δ−n−1+k in
Bn−1+k, identify the downstream machine Md(n−1+k) of
Bn−1+k and operate it reversely to process δ−n−1+k parts such
that the levels of upstream and downstream buffers will be
updated as follows:
• For the upstream buffers of Md(n−1+k):

b(v, t) = b(v, t)+ δ−n−1+k v ∈ U(Md(n−1+k)) (43)

• For the downstream buffers of Md(n−1+k):

b(w, t) = b(w, t)− δ−n−1+k w ∈ D(Md(n−1+k))
(44)

After the update, the overdraft in Bn−1+k is balanced.
Bn−1+k becomes empty so that its downstream machine
Mu(n−1+k) is therefore in steady state.

In case that, for a given machine Mq , there exist multiple
overflows among its upstream buffers or multiple overdrafts
among its downstream buffers, we update the buffer levels as
given below:

Let

δq = max{δ+
v , δ−w} for all v ∈ U(Mq), w ∈ D(Mq)

(45)
• For the upstream buffers of Mq:

b(v, t) = b(v, t) + δq v ∈ U(Mq) (46)

• For the downstream buffers of Mq:

b(w, t) = b(w, t)− δq w ∈ D(Mq) (47)

c) Induction Operator: Finally, we summarize induction
operator Γ. Assume in the kth induction step, the single
machine failure happens at Mi in subsystem Ωk:
• Assign buffer levels with the buffer level vector

Θi∗(Ωk−1) in subsystem Ωk−1 using (40).
• Calculate the nominal level, overflow and overdraft of

buffers Bj , j = 1, ..., n−1+k using (32), (38) and (39).
• Identify a set of machines M∗ which has either overflow

among its downstream buffers or overdraft among its
upstream buffers.

• Calculate the reverse quantity δq of Mq ∈ M∗ using (45).

• Update the upstream and downstream buffers of Mq using
(46) and (47).

• Check the steady state condition. If the system is not in
steady state, repeat steps (1) to (4). If the system is in
steady state, assign buffer level vector Θi∗(Ωk):

θij(Ωk) = b(j, t) j = 1, ..., n− 1 + k (48)

Consequently, we are able to efficiently derive the ‘Ma-
chine failure - Buffer level’ matrix for complex assem-
bly/disassembly networks with arbitrary topologies.

V. ALGORITHM AND RESULTS

A. Algorithm

We present a comprehensive algorithm to synthesize the
blocking and starvation analysis and the decomposition eval-
uation to predict the performance of an assembly/disassembly
network with arbitrary topology.

1) Phase I: Blocking and Starvation Analysis:
• Establish the graph model for assembly/disassembly sys-

tem N = (M, B, L) composed of n machines, m buffers
and m− n + 1 loops.

• Identify m− n + 1 chords of the graph and create a set
of subsystems Ωk, k = 0, ...,m − n + 1, in which Ω0 is
a spanning tree of N .

• For subsystem Ω0, construct the ‘machine failure - buffer
level’ matrix Θ(Ω0).

• Construct matrices Θ(Ωk), k = 1, ..., m − n + 1 using
induction method. In the kth induction step, assume the
single machine failure at Mi, solve buffer level vector
Θi∗(Ωk) using induction operator Γ(Θi∗(Ωk−1), βk).

2) Phase II: Decomposition Evaluation: The procedures of
decomposition evaluation include:
• Eliminate the buffer thresholds;
• Decompose the transformed system and setup the build-

ing blocks;
• Evaluate the unknown parameters and record the perfor-

mance measures.
Details of each procedure could be referred to [5], [10].

B. Experiment Design

We experiment the algorithm by evaluating systems with 15
machines and 4 loops. As we are interested to know how well
the algorithm performs while evaluating systems with different
complex structures, we should randomly generate both the
system structure and the parameters of the machines and
buffers. Therefore, we generate 50 random system structures.
For each system structure, we generate 50 sets of parameters.
Therefore, we have 1500 cases in total.

To validate the accuracy of the algorithm, we compare the
results with simulation. For production rates, we calculate the
percent error of the approximated production rate from the
simulated production rate as follows:

ErrorPR =
PRdecomp − PRsim

PRsim
× 100% (49)

For average buffer levels, we calculate the average absolute
percent error of the approximated average buffer level as
follows:

ErrorBL =

∑m
j=1

|b(j)decomp−b(j)sim|
Nj/2

m
× 100% (50)

C. Numerical Results

We discuss the algorithm performances in terms of accuracy,
reliability, and speed.

1) Accuracy: The percent errors calculated for 1500 cases
are shown in Figure 7 and 8. The mean of the absolute percent
errors of approximated production rate is 0.88%. The mean
of the average absolute percent errors of approximated buffer
levels is 7.93%.

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

1 301 601 901 1201

Case number

P
er

ce
nt

 e
rr

or
 o

f a
pp

ro
xi

m
at

ed
 p

ro
du

ct
io

n
ra

te

Fig. 7. The errors in the decomposition approximation for production rate

0

5

10

15

20

25

1 301 601 901 1201 1501

Case number

A
ve

ra
ge

 a
bs

ol
ut

e
pe

rc
en

t e
rr

or
 o

f a
ve

ra
ge

bu

ffe
r

le
ve

ls

Fig. 8. The errors in the decomposition approximation for buffer levels

2) Reliability: Since we have not proved the convergence
of the algorithm, we calculate the reliability as the faction
of all the cases which converge successfully. Among 1500
cases, only 2 cases can not reach convergence. This shows the
algorithm is 99.87% reliable.

3) Speed: Cases were run on a 2.0 GHz Pentium IV
Celeron PC with 256 MB of RAM. We specify the speed
of the algorithm using two time measurements:
• tI : Phase I time to perform blocking and starvation

analysis.
• tII : Phase II time to perform iterative evaluation.
The average value of tI is 0.06 second. tII is proportional

to the number of iterations and the time per iteration. The
average value of tII of the experiment is 15.4 seconds.

VI. CONCLUSION AND FUTURE RESEARCH

The purpose of this research is to investigate the behavior
of multiple-loop structures and develop an efficient algorithm
for evaluating assembly/disassembly networks with arbitrary
topologies. By using tools in graph theory and induction
method, we are able to efficiently derive the blocking and
starvation propagation property of arbitrary complex networks.
The algorithm described in this paper provides extremely
accurate approximations of expected production rate.

There are several issues will be researched in the future:
• Study the behavior of some typical multiple-loop control

structures;
• Formulate some specific optimization problems, e.g.,

maximize throughput;
• Develop the guideline for designing multiple-loop sys-

tems, such as how to design multiple-kanban control
structures and loop parameters.

REFERENCES

[1] A. M. Bonvik. Performance analysis of manufacturing systems under
hybrid control policies. Technical Report Ph.D. dissertation, MIT
Operations Research Center, 1996.

[2] S. B. Gershwin. An efficient decomposition method for the approximate
evaluation of tandem queues with finite storage space and blocking.
Operations Research, 35(2):291–305, 1987.

[3] S. B. Gershwin. Manufacturing Systems Engineering. Prentice-Hall,
1994.

[4] S. B. Gershwin. Design and operation of manufacturing systems: the
control-point policy. IIE Transactions, 32(10):891–906, 2000.

[5] S. B. Gershwin and L. Werner. An approximate analytical method for
evaluating the performance of closed loop flow systems with unreliable
machines and finite buffers - part ii: Large loops, 2003.

[6] R. Levantesi. Analysis of multiple loop assembly/disassembly networks.
Technical Report Ph.D. dissertation, Politecnico di Milano, 2001.

[7] M. N. S. Swamy. Graphs, Networks, and Algorithms. Jon Wiley &
Sons, 1981.

[8] T. Tolio, S. B. Gershwin, and A. Matta. Analysis of two-machine lines
with multiple failure modes. IIE Transactions, 34(1):51–62, 2002.

[9] T. Tolio and A. Matta. A method for performance evaluation of
automated flow lines. Annals of the CIRP, 47(1):373–376, 1998.

[10] L. Werner. Analysis and design of closed loop manufacturing systems.
Technical Report Master’s thesis, MIT Operations Research Center,
2001.

