7.02 Fall 2001 PBC Day 3 Recitation

Version 1.02

- I. Today in Lab
 - a. Equilibrate APTG column
 - b. Load DEAE/AF load
 - c. Run AF column
 - d. Contemporaneously, equilibrate PD-10 column
 - e. Qualitative assay on AF fraction, load on PD-10.
 - f. Assays and calculation
- II. Affinity Chromatography
 - a. Separation based on affinity for substrate.
 - b. What substrate would you want to use for β -gal?
 - i. Analog of lactose—bound by β -gal.
 - ii. Shouldn't be cleaved
 - c. APTG (Draw) this analog can t be cleaved by β -gal.
 - d. Other considerations.
 - i. Binding must be reversible
 - ii. Specificity! Non-specific binding of analog may lead to high background. Other proteins that may bind?
 - 1. Galactose binding proteins transporters, storage proteins.
 - 2. Other enzymes envolved in sugar metabolism
 - 3. Proteins that bind β -gal! (This is sometimes useful!)
 - e. Running the column
 - i. Binding What buffer is the protein in for binding?
 - ii. Washes. Why? Remove stuff not sticking to APTG ...
 - iii. Elution. Can be accomplished in 2 methods. Which one do we use?
 - 1. Competition. Knock-off by binding lactose analog in buffer to β -gal.
 - a. Advantage won t cause activity loss via protein denaturation.
 - b. Disadvantage analog will compete with reaction substrate. How to get rid of analog?
 - 2. Disrupting interactions by changes in salt, pH, etc.
 - a. Advantage easy to switch back to normal via PD-10 column or dialysis.
 - b. Disadvantage may cause protein denaturation and loss of activity.
 - 3. We use the disruption method. What is so special about our elution buffer that disrupts the interaction? Answer: presence of borate ion and pH 10—destabilizes and partially unfolds β -gal. Do we use high pH to disrupt β -gal interaction anywhere else in this module? Answer—when stopping β -gal assays, use sodium carbonate, pH 12.
 - *iv.* High salts/buffer pH are bad. How do we solve this? How did we get rid of unwanted salts before? *Answer: run over another PD-10 column.*
 - f. Applications of Affinity Chromatography. How can we use AF chromatography to isolate a protein with an unknown substrate? Make a fusion protein
 - i. Insert gene encoding known protein in the open reading frame of the protein of interest.
 - ii. When transcribed and translated, fusion protein composed of your protein plus a tag is formed.
 - iii. Fusion protein can be isolated base on affinity of tag.
 - iv. Tag can be removed once fusion protein is purified through use of proteases.
 - v. Some common protein tags:
 - 1. GST (glutathione-S-transferase) binds glutathione. (Use glutathione affinity column to purify.)
 - 2. (His)6 Binds zinc.
 - 3. MPB (maltose binding protein) binds

III. Review of chromatography

Column Type	Example used in Module	Separation based on:	Elution conditions	Elution order
Gel Filtration	PD-10	size	Lots and lots of buffer	High MW-first. Low MW-last.
lon Exchange	DEAE- cellulose	Charge (in this case, negative charge)	Compete of with ion of same charge	Un-charged or positive first, negatively charged last with increasing salt concentration.
Affinity	APTG- agarose	Affinity for substrate	Alter salt/pH, compete off with substrate	Low affinity first. High affinity elutes with altered buffer conditions.