1 MATH FACTS

1.1 Vectors

1.1.1 Definition

We use the overhead arrow to denote a column vector, i.e., a number with a direction. For example,
in three-space, we write

2
a=41
7

The elements of a vector have a graphical interpretation, which is particularly easy to see in two or
three dimensions.
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1. Vector addition is pointwise.

ith =&
2 3 5
1443 =44
7 2 9

Graphically, addition is stringing the vectors together head to tail.

2. Scalar multiplication is pointwise.

2 —4
—2xq4l = -2
7 —14

1.1.2 Vector Magnitude

The total length of a vector of dimension 7, its Euclidean norm, is given by
Lo
= — x.
Il = 3. =%

this scalar is commonly used to normalize a vector to length one.

1.1.3 Vector Dot Product




The dot product of two vectors is the sum of the pr odug[s of the elements:
—r —+ " ¢ =
'‘OEE U= LTl

The dot product also satisfies

where &is the angle between the vectors.

1.1.4 Vector Cross Product

— — —
The cross product of two three-dimensional vectors is another vector, ¥ * ¥ = 2 whose

1. direction is normal to the plane formed by the two vectors,

-

2. direction is given by the right-hand rule, rotating from Fto ¥,

3. magnitude is the area of the parallelogram formed by the two vectors - the cross product of
two parallel vectors is zero - an

4. (signed) magnltude is equal to ""’""IE’““”E where 8is the angle between the two vectors,
measured from Fto y.

The schoolbook formula is

Tags — Ty
EFxg =4 mm— Ty
Tt — Tl

1.2 Matrices

1.2.1 Definition

A matrix, or array, is equivalent to a set of row vectors, arranged side by side, say
23
=[2 b=
T 2

This matrix has three rows (fi = 3-) and two columns (7. = 2); a vector is a special case of a matrix
with one column. Matrices, like vectors, permit pointwise addition and scalar multiplication. We
usually use an upper-case symbol to denote a matrix.

1.2.2 Multiplying a Vector by a Matrix

If A*.'Fdenotes the element of matrix Ain the #th row and the J'th column, then the multiplication
£ = A#'is constructed as:

E}
o = Apm + Agrg 4 oo+ Apgng = ;E.iﬂij”j:

where 7iis the number of columns in A. Ewill have as many columns as Ahas rows (#). Note that
this multiplication is well-defined only if #has as many rows as Ahas columns; they have consistent
inner dimension 7. The product #Awould be well-posed only if Ahad one row, and the proper
number of columns. There is another important interpretation of this vector multiplication: Let the

subscript :indicate all rows, so that each A!.ﬁs the J-'th column vector. Then
f= A=A 4+ Aamm + 00+ Aym,.
We are multiplying column vectors of Aby the scalar elements of 77.

1.2.3 Multiplying a Matrix by a Matrix

The multiplication £’ = AHis equivalent to a side-by-side arrangement of column vectors
Oy = '#, so that
('=A8 =[AB, ABs .+ ABj),



where &is the number of columns in matrix . The same inner dimension condition applies as noted
above: the number of columns in Amust equal the number of rows in H. Matrix multiplication is:

(¥} (
=)

AR L AC (B4

-
1. Associative. 114
2. Distributive. {4+

3. NOT Commutative. A8 '?é _H}l' except in special cases.

{(B+C)A=BA+CA

1.2.4 Common Matrices

Identity

. The identity matrix is usually denoted f, and comprises a square matrix with ones on the diagonal,
and zeros elsewhere, e.g.,
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The identity always satisfies Alpyn = L A

Diagonal Matrices

. A diagonal matrix is square, and has all zeros off the diagonal. For instance, the following is a
diagonal matrix:

4 0 0
A= |0 -2 0
0 0 3

The product of a diagonal matrix with another diagonal matrix is diagonal, and in this case the
operation is commutative.

1.2.5 Transpose

The transpose of a vector or matrix, indicated by a T'superscript results from simply swapping the
row-column indices of each entry; it is equivalent to ~ ~flipping" the vector or matrix around the
diagonal line. For example,

1

d= {2 —aT= {123}
3
1 2

A= |4 5| —s 47 = [;;g].
89

A very useful property of the transpose is
(AT = BTA%.

1.2.6_Determinant

The determinant of a square matrix Ais a scalar equal to the volume of the parallelepiped enclosed
by the constituent vectors. The two-dimensional case is particularly easy to remember, and

illustrates the principle of volume:
dﬂf(ﬂj = }1114‘122 - .Am}lm

s3] <o



T T - %
-1 L
In higher dimensions, the determinant is more complicated to compute. The general formula allows
one to pick a row &, perhaps the one containir;g the most zeros, and apply
=l

=1

Forf AN % oA AyE+ia

MEELA] = Jf, Agpl— 1] “Ladg.
=1

If the determinant of a matrix is zero, then the matrix is said to be singular - there is no volume,
and this results from the fact that the constituent vectors do not span the matrix dimension. For
instance, in two dimensions, a singular matrix has the vectors colinear; in three dimensions, a
singular matrix has all its vectors lying in a (two-dimensional) plane. Note also that

dﬂf(‘q] = dﬂf(‘qu If "ff’f(‘q) '.7"é ﬂ, then the matrix is said to be nonsingular.

1.2.7 Inverse

The inverse of a square matrix A, denoted A~!, satisfies AAd~! = 4~1 4 = I Its computation
requires the determinant above, and the following definition of the 7 X Tmadjoint matrix:

(_1)1+1ﬂ11 - [—]JH-“ﬂin
(1) ALy e (1AL
Once this computation is made, the inverse follows from
Al = adjiA)
det(A)
If Ais singular, i.e., dﬂt(‘q] = ﬂ, then the inverse does not exist. The inverse finds common
application in solving systems of linear equations such as

— o — —1_'
A= —F=Ah
1.2.8 Trace
The trace of a matrix is simply the sum of the diagor;lals:

r(4) = 3 As

1.2.9 Eigenvalues and Eigenvectors

A typical eigenvalue problem is stated as

A7 = A7,
where Ais an 7 ¥ mmatrix, Fis a column vector with mnielements, and Ais a scalar. We ask for what
nonzero vectors E"f(right eigenvectors), and scalars A(eigenvalues) will the equation be satisfied.

N —
Since the above is equivalent to ':A - M)'T = 0, it is clear that dﬂf(fl - Mj - ﬂ. This observation
leads to the solutions for A; here is an example for the two-dimensional case:



A= ["‘ ‘5]—>

2 -3
4—-X -5
A—XM = [ 9 _a_l]—r
det(A— M) = (4 —-X)(-3-X)+10
=X_-x-2
= A+1(A-2.
Thus, Ahas two eigenvalues, A1 = —land A2 =2 Each is associated with a right eigenvector . In
this example,
(A 207 = 0—
v 1241 s '
re =1
| o I — =
[ n A 1F1 = 00—
| & —£1
L 4
¢ — 47
2. o= dufin ininl
o 'Lv..:.-_lrz.-, v..:.-_lrz.-.‘r -
(A el = 0 —
L e
2 b, =
|:2 _5]-'1':2 = 0—

T
# = {5v29/29, 2v29/29]
Eigenvectors have arbitrary magnitude and sign; they are often normalized to have unity

magnitude, and positive first element (as above). A set of rieigenvectors is always linearly

independent. The condition that rank(A — ,J) = rank(A] — Lingicates that there is only one
eigenvector for the eigenvalue X If the left-hand side is less than this, then there are multiple
unique eigenvectors that go with Ay

The above discussion relates only the right eigenvectors, generated from the equation Ar = ¥

- R T — —_ —
Left eigenvectors, also useful for many problems, pertain to the transpose of A: A F=M Aand
ATshare the same eigenvalues A, since they share the same determinant. Example:

(AT - D5 = 0—
[_g ﬁ] -5
7 = {2v29/29, —Ev’fgfzg}i"
I:AT—;'&I] =0
e

iz
# o= (Va2 —vaja)

]
—h—

1.2.10 Modal Decomposition

. . . . . - -
The right and left eigenvectors of a particular eigenvalue have unity dot product, that is F: I = 1,
with the normalization noted above. The dot product of a left eigenvector with the right eigenvector
of a different eigenvalue is zero. Thus, if

X = [#)+++7], and
Y = [fidh],
then we have
Y'X = ILex
¥T = x°1L,

Next, construct a diagonal matrix of eigenvalues:



A= . ;

0 A

it follows that

s A

Al Vi *

- aw el

A = VAW~
1.5 1 =+
= .L- AT .

Hence Acan be written as a sum of modal components

1.2.11 Sinqular Value

Let G{E}be an T X 7, possibly complex matrix. The singular value decomposition (SVD) computes
three matrices satisfying

—— e

&G =05V,
where fis rn = m, Tis e % n, and Vis m % m. The star notation indicates a complex-conjugate
transpose. The matrix Ziis diagonal, with the form

a0 0 0
0 - 00
00a O
0000

where B = ™[, 1] Each nonzero entry on the diagonal is a real, positive singular value,
ordered such that 71 - @2 2 ' ** T5_The notation is common that @1 = @, the maximum singular
value, and ¢ = I the minimum singular value. The auxiliary matrices Uand Vare unitary, i.e.,
they satisfy A* = X . Like eigenvalues, the singular values of {xare related to projections. ¢
represents the Euclldean size of the matrix Galong the #'th singular vector:

a = maz|p|||Gzl|

=

a = |G|

Other properties of the singular value include:
a(AB) < {A)e(B),
(A) = P ar(47A4)
a(A) = Poea( A 4)

o(4) = 1/m(4~)
o(4) = 1/a(4~)

1.3 lLaplace Transform

1.3.1 Definition

The Laplace transform converts time-domain signals into a frequency-domain equivalent. The signal
#(t)has transform ¥ (¥)defined as follows:

Y(s) = L) = [ y(r)edr,
where &is an unspecified complex number; Y(“jls considered to be complex as a result. Note that

the Laplace transform is linear, and so it is is distributive: Liz(t) + »(t]) = L(z(£)) + Lzt )i
hold throughout. The following table gives a list of some useful transform pairs and other
properties, for reference.
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g(t) +— ¥i(s)
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1
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(Pure Delay) g(t—1)l{t— 1) +— ¥i(s)e™™
The last two properties are of special importance: for control system design, the differentiation of a
signal is equivalent to multiplication of its Laplace transform by &; inte%ration of a signal is

equivalent to division by &. The other terms that arise will cancel if y(0) = ﬂ, or it #(0Jis finite, so
they are usually ignored.

1.3.2 Convergence

We note first that the value of saffects the convergence of the integral. For instance, if y(ﬂ = Bt,
then the integral converges only for R‘E(“) > 1, since the integrand is €' ~%in this case. Convergence
issues are not a problem for evaluation of the Laplace transform, however, because of analytic
continuation. This result from complex analysis holds that if two complex functions are equal on
some arc (or line) in the complex plane, then they are equivalent everywhere. This fact allows us to
always pick a value of sfor which the integral above converges, and then by extension infer the
existence of the general transform.

1.3.3 Convolution Theorem

One of the main points of the Laplace transform is the ease of dealing with dynamic systems. As
with the Fourier transform, the convolution of two signals in the time domain corresponds with the

multiplication of signals in the frequency domain. Consider a system whose impulse response is F(ﬂ
, being driven by an input signal :r:(tj; the output is g(t) = g(t) * #(£]. The convolution Theorem is



p(t) = [ gt - 1)a()dr = ¥(s) = Gl)X(5).

Here's the proof given by Siebert:

TELYy — ) ey _—al g
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= {" (1) G(s)e™ dr
= G(s)X(s)
When F(ﬂis the impulse response of a dynamic system, then y(fjrepresents the output of this
TiF]

system when it is driven by the external signal =3*+.
1.3.4 Solution of Differential Equations by Laplace Transform

The Convolution Theorem allows one to solve (linear time-invariant) differential equations in the
following way:

1. Transform the system impulse response 7Einto G(“‘l and the input signal Z(Elinto X(“j
using the transform pairs.

h P

b
2. Perform the multiplication in the Laplace domain to find ¥ %),
3. Ignoring the effects of pure time delays, break Y("‘)into partial fractions with no powers of
sgreater than 2 in the denominator.

4. Generate the time-domain response from the simple transform pairs. Apply time delay as
necessary.

Specific examples of this procedure are given in a later section on transfer functions.

E
! By carrying out successive multiplications, it can be shown that Afhas its eigenvalues at J"i and
keeps the same eigenvectors as A.



	1  MATH FACTS
	1.1  Vectors

	1.1.1  Definition
	1.1.2  Vector Magnitude
	1.1.3  Vector Dot Product
	1.1.4  Vector Cross Product
	1.2  Matrices

	1.2.1  Definition
	1.2.2  Multiplying a Vector by a Matrix
	1.2.3  Multiplying a Matrix by a Matrix
	1.2.4  Common Matrices
	Identity
	Diagonal Matrices

	1.2.5  Transpose
	1.2.6  Determinant
	1.2.7  Inverse
	1.2.8  Trace
	1.2.9  Eigenvalues and Eigenvectors
	1.2.10  Modal Decomposition
	1.2.11  Singular Value
	1.3  Laplace Transform

	1.3.1  Definition
	1.3.2  Convergence
	1.3.3  Convolution Theorem
	1.3.4  Solution of Differential Equations by Lap

