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Graded Problems: Thermodynamics 

3.	 Transforming materials. Elemental manganese has several phase transi­
tions among different solid states in the temperature range 800 − 1500 K. 
The constant pressure heat capacity of Mn can be modeled by the poly­
nomial expression: 

� � 
c J 

Cp = a + bT + 
T −2 mole K 

Constants for the heat capacity of manganese, along with relevant tem­
perature and enthalpies of transformation are: 
Phase Stable Temperature 

Range (K) 
a b c ΔHtrans 

(J/mole) 
α 298 − 993 21.6 .0159 0 -
α → β - - - - 2010 
β 993 − 1373 34.9 .0028 0 -
β → γ - - - - 2300 
γ 1373 − 1409 44.8 0 0 -
γ → δ - - - - 1800 
δ 1409 − 1517 47.3 0 0 -
δ → liquid - - - - 12958 
liquid Tm < T < Tboil 46 0 0 -

a.	 Using this data, calculate the entropy change for heating 1 mole of 
Mn from 860 K to 1400 K at constant pressure. 

The total entropy change is arrived at by (1) integrating the constant 
pressure heat capacity in segments and (2) accounting for the jumps in 
entropy at the phase transitions: 

dq dS 
Cp = = T 

dT dT p p 

Cp(T )
dS = dT 

T � 993 Cp(T ) 
� 993 21.6 + 0.0159T J

ΔS860−993 = dT =	 dT = 5.22 
T	 K860 T 860 

at the α → β phase transition. The entropy of formation corresponding 
to this transformation is: 

2010 J
ΔSα β =

ΔHα→β = = 2.02 →
Tα β 993 K →

1 



We proceed similarly with the integrations for the rest of the temperature 
increase: 

J
ΔS993−1373 = 12.37 

K 
2300 J

ΔSβ γ = = 1.68 → 1373 K 
J

ΔS1373−1400 = 0.872 
K 

Thus, 

ΔST OT AL = ΔS860−993 + ΔSα β + ΔS993−1373 + →

J
ΔSβ γ + ΔS1373−1400 = 22.16 →

K 

b. Suppose 1 mole of Mn is supercooled (cooled below its stable solidifi­
cation temperature without transformation to the solid) to a temper­
ature of 1000 K then adiabatically allowed to solidify into its stable 
form at constant pressure. Determine what final phase is formed, the 
fraction that has solidified, and the final temperature of the system. 

The solution is most easily described graphically, after plotting the be­
havior of enthalpy as a function of temperature over the temperature 
range of interest. 
Shown below is the calculated total enthalpy change between the solid 
α phase at 800 K and the liquid phase at 1600 K, along with the 
paths of supercooling and subsequent adiabatic solidification that were 
specified in the problem. The restriction of constant enthalpy on the 
adiabatic process dictates the horizontal white arrow path moving to the 
equilibrium β phase. 

Because heat cannot transfer out of the system, the system is forced 
along an isenthalpic line.. This is not a process that transforms the 
solid isothermally—temperature changes because the heat that is ex­
pelled during the transformation from liquid to solid cannot leave the 
system. Thus, as solidification proceeds, the heat expelled is used up in 
immediately raising the temperature of the system isenthalpically until 
the system reaches the point on the equilibrium curve that intersects the 
isenthalpic line. 
To determine the temperature value quantitatively, we can calculate the 
enthalpy of the supercooled liquid relative to some arbitrary reference 
point in the liquid phase and find the temperature on the equilibrium 
curve that matches the resultant change in enthalpy. 
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For example, if we determine the enthalpy of the supercooled liquid at 
1000 K relative to the liquid at the melting point, we have: � TM 

HL − HL = CLdTTM 1000 K p 
1000 K 

We write down this difference and keep it somewhere safe, because we’ll 
need it again in a few lines. 
Remember, enthalpy a is a state function, and state functions make life 
easy. We can simply start at the same arbitrary point in the liquid state 
that we chose above (I believe we chose TM ), and follow the equilibrium 
enthalpy-temperature curve instead of the supercooling curve. We follow 
the equilibrium curve until we find that temperature Tf inal that gives 
us the same value for ΔH that we stored for safekeeping. 
Without the graph, one might start by guessing that we are in the β 
phase: 

βHL − HL ?? =??HL 
TM 1000 K TM 

− H1373 K � TM 
βHL 

TM 
− H1373 K = ΔHM + Cδ dT + ΔHγ δ +p →

1409 K � 1409 K 

Cδ dT + ΔHβ γp →
1373 K 

We find that we could be in the β phase because 

βHL − HL 
1000 K > HL 

TM TM 
− H1373 K 

so we search for a temperature Tf inal in the β phase that would give us 
ΔH = HL − HL :TM 1000 K � 1373 

βHL − HL = HL 
pTM 1000 K TM 

− H1373 K + Cβ dT 
Tf inal 

Indeed, we find that there is a solution (you can punch this into your 
calculator or use some sort of mathematical software to do all of this—I 
used Mathematica): 

Tf inal ∼ 1370 K 

and the supercooled liquid lies entirely within the β phase. 

4.	 Why is it hard to make measurements at constant volume? We 
have discussed in class that, experimentally, Cv is difficult to measure due 
to thermal expansion. Let’s quantify this difficulty: Suppose you have 
1 mole of iron that has a volume of 7.31 cm2 at 293 K. Determine the 
pressure that would have to be applied after this material is heated to 
298 K (only 5 degrees warmer!) to compress it to the volume it had at 
293 K—thus maintaining constant volume. 
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Data for Fe: 

α = 6.3x10−5 K−1 

κ = 1.10x10−6 atm−1 at 298 K 

We can use the properties of state functions again since we are dealing with 
changes in V, T, p. 

We start with the formula for the thermal expansion coefficient in order to 
calculate the amount of expansion that occurs when the temperature is raised 
to 298 K. At constant pressure: 

1 ∂V 
α = 

V ∂T p 

dV 
αdT = 

V � TH 
� VH dV 

αdT = 
VTL VL 

VH
α(TH − TL) = αΔT = ln 

VL 

Thus the volume after heating is: 

VH = VLe αΔT 

We want to next determine the pressure we need to compress the material 
back to VL: 

1 ∂V 
κ = − 

V ∂p T 

1 
dP = dV− 

κV 
VLeαΔT1 

� VL dV 1 VH 1 αΔT
ΔP = − 

κ VH 
V 

= ln = ln = = 286.3 atm 
κ VL κ VL κ 

This is the difficulty in making constant volume measurements. 

4 


