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Abstract

We compare the practical performance of several recently proposed algorithms for
active learning in the online setting. We consider two algorithms (and their com-
bined variants) that are strongly online, in that they do not store any previously
labeled examples, and for which formal guarantees have recently been proven un-
der various assumptions. We perform an empirical evaluation on optical character
recognition (OCR) data, an application that we argue to be appropriately served by
online active learning. We compare the performance between the algorithm vari-
ants and show significant reductions in label-complexity over random sampling.

1 Introduction

The problem of online active learning, specifically online selective sampling, has received recent
attention in the learning theory literature. The goal of this work is to empirically compare two
algorithms that have theoretical guarantees under disjoint analysis assumptions. We focus on these
algorithms (and their combined variants) as they are the only algorithms of which we are aware
that both have some form of theoretical guarantee and perform selective sampling in a strongly
online fashion: neither the time-complexity of their hypothesis update step nor their memory usage
scale with the number of labeled examples seen. In fact, as they are both based on Perceptron
variants, they each only store a single vector and their algorithmic form is very light-weight and
easy to implement. The two algorithms have not been compared theoretically and since some of
their analysis assumptions are rather limiting, we evaluate them on real data, in order to assess
their performance when these assumptions are removed. In doing so, we also illustrate the useful
application of online active learning to optical character recognition (OCR).

The active learning model is applicable in any domain in which unlabeled data is easy to come by
and there exists a (potentially difficult or expensive) mechanism by which to obtain their labels. By
recasting a supervised problem into the active learning framework, the label-complexity, the number
of labeled examples required to learn a concept via active learning, can be significantly lower than
the PAC sample complexity. While the query learning model has been well studied theoretically
(see e.g. [1]), it is often unrealistic in practice, as it requires access to labels for the entire input
space. It has been shown in domains such as text and OCR that the synthetic examples on which
the learner has the most uncertainty may be difficult even for a human to label [11]. In selective
sampling (originally introduced by [5]) the learner receives unlabeled data and may request certain
labels to be revealed, at a constant cost per label.

The online learning framework is motivated in part by resource limitations facing computational
learners. The learner receives observations one at a time and cannot store all previously seen ob-
servations and simply performing batch learning, i.e. the time complexity of the hypothesis update,
and the learner’s memory must not grow with the number of seen examples. Selective sampling
can be modeled in an online or sequential fashion, in which unlabeled examples are received one at



a time and the learner must make a one-time choice whether to pay for the current label. We will
use the terms “sequential selective sampling” and “online active learning” interchangeably below.
Algorithms for sequential selective sampling that also respect the online constraints we discussed
we will refer to as strongly online active learners, though with a slight overload of terminology we
will also refer to them as online active learners.

Sequential active learning with online constraints has well motivated real-world applications such as
OCR on small devices. As of 2004, a quarter of US physicians were using handheld computers.1 In
the 2004 US presidential election, several major political organizations equipped canvassers going
door-to-door with handheld computers to collect neighborhood voting data. Limited computing
power may constrain the OCR training of these handhelds to be online. In the selective sampling
setting, the device may occasionally ask the user to provide a label for a written character, for
example by entering it through the keypad. Human usage would favor algorithms that minimize the
number of such correction events during the learning process.

2 Related Work

Several selective sampling algorithms have been shown to work in practice, for example Lewis and
Gale’s sequential algorithm for text classification [11], which has batch access to the remaining
unlabeled datapoints at each iteration. Tong and Koller [13] introduced several active learning al-
gorithms, that use a support vector machine (SVM) as the underlying classifier, which work well
in practice. At each step, the SVM algorithm is used to update the hypothesis, and the next query
is selected from the pool of remaining unlabeled data by optimizing a margin-based heuristic that
varies between different versions of the algorithm. Neither of these algorithms are online, and to our
knowledge they lack formal guarantees.

Among the active learning algorithms that have been shown to obey theoretical guarantees, several
schemes with provable upper bounds on label-complexity are actually intractable. Dasgupta pro-
vided a general result in a non-Bayesian, realizable setting [6] for a scheme that requires exponen-
tial storage and computation. In a non-Bayesian, agnostic setting, a recent label-complexity upper
bound for learning linear separators under the uniform input distribution, relies on an algorithm that
is computationally complex [2].

Several formal guarantees have been shown for active learning algorithms that can actually be im-
plemented. Under Bayesian assumptions, Freund et al. [8] gave an upper bound on label-complexity
for learning linear separators under the uniform, using Query By Committee [12], a computation-
ally complex algorithm that has recently been simplified to yield encouraging empirical results [9].
Cesa-Bianchi et al. provided regret bounds on a selective sampling algorithm for learning linear
thresholds [3] from a stream of iid examples corrupted by random class noise whose rate scales with
the examples’ margins. Both algorithms store all previously labeled points, and thus are not online.

We focus on two algorithms for selective sampling that are strongly online, and whose performance
has been analyzed formally under various assumptions. Dasgupta, Kalai and Monteleoni (DKM)
[7] provided an online active learning algorithm with a label-complexity upper bound for learning
linear separators under the uniform input distribution, in a non-Bayesian, realizable setting. We
will explore the empirical performance of this algorithm when these assumptions of separability and
uniform input distribution are violated, by applying it to real data from OCR, an application that we
deem particularly appropriate for strongly online active learning. We compare DKM’s performance
to another state-of-the-art strongly online active learning algorithm due to Cesa-Bianchi, Gentile
and Zaniboni (CBGZ) [4], which has regret bounds in the individual sequence prediction context.

3 Algorithms

The algorithms we consider are both for learning linear separators through the origin, in the sequen-
tial selective sampling framework. Each algorithm can be decomposed into two parts: an active
learning mechanism, wrapped around a sub-algorithm that implements supervised learning.

1McAlearney AS, Schweikhart SB, Medow MA, Doctors’ experience with handheld computers in clinical
practice: qualitative study. British Medical Journal. 2004 May 15;328(7449):1162.



Initialization: s1 = 1√
d
, τ = 0, t = 1, v1 = x0y0, τ = 0.

Do
Receive x.
Predict ŷ = sign(x · vt).
If |x · vt| ≤ st then:
Query the label y ∈ {−1, +1} of x, and set (xt, yt) = (x, y).
If (xt · vt)yt < 0, then:

vt+1 = vt − 2(vt · xt)xt

st+1 = st

τ = 0
else:

vt+1 = vt

τ = τ + 1
If τ ≥ R, then:

st+1 = st/2
τ = 0

else: st+1 = st.
t = t + 1.

Until t == L

Figure 1: The DKM algorithm, parameterized by the dimension d, and R, the waiting time before
halving the active learning threshold.

3.1 The DKM algorithm

The DKM active learning algorithm is shown in Figure 1. The formal framework of the Dasgupta et
al. work [7] is a non-Bayesian setting in which no prior distribution is assumed over hypotheses, yet
the problem is assumed to be realizable i.e. there exists a target linear separator that perfectly classi-
fies all examples. The stream of examples is assumed to be drawn iid from the uniform distribution
on the surface of the ball in R

d, and labels y can be either +1 or −1.

The supervised learning sub-algorithm of DKM is a modification of Perceptron. The same logic is
used in deciding whether to perform a hypothesis update: updates are only made if the seen example
was a mistake. However the update rule differs from standard Perceptron’s update as follows. Start-
ing from hypothesis vt, as opposed to the Perceptron update vt+1 = vt + µ ytxt, with learning rate
µ, the DKM update is vt+1 = vt−2(vt ·xt)xt. This is equivalent to replacing the learning rate with
2|vt · xt|, since updates are only made on mistakes, in which case yt = − sign(vt · xt).This essen-
tially tunes the size of the update to be proportional to a measure of confidence on vt’s prediction on
the example. Using this update, the algorithm monotonically decreases its true error rate with each
mistake, unlike Perceptron whose true error rate can actually increase on an update.2

In the realizable setting, when the input distribution is uniform, Dasgupta et al. [7] prove a mistake
bound for the supervised algorithm in terms of ε, the final true error rate attained. The error rate de-
creases exponentially with the number of mistakes (the mistake bound is logarithmic in 1

ε
), whereas

the mistake bound for the Perceptron update in this setting is polynomial in 1

ε
. They also provide a

polynomial lower bound on mistakes (and therefore labels for the active setting) on Perceptron with
any active learning rule, under the uniform input distribution.

The active learning component of DKM consists of querying for a label only if |vt · x| < st for an
active learning threshold st. The threshold is initialized to 1√

d
in the uniform case. If the learner

queries on R consecutive labels without hitting an error, then st is halved. Since the algorithm is
more likely to err on examples that are close to its current separator, this technique manages the
tradeoff between waiting too long to query an actual error (if st is too high), and making an update
that is too small (if st is too low), since |vt · x| weights the DKM update. Dasgupta et al. [7]
prove a label-complexity bound of the same form as the mistake bound, i.e. the true error of the
algorithm decreases exponentially with the number of label queries. As in the supervised case, the
proof assumes separability and the uniform input distribution.

2As a side effect, the norm of the hypothesis stays constant at one, unlike that of Perceptron.



Initialization: t = 1, v1 = (0, . . . , 0)>.
Do

Receive x.
Set p̂ = x · vt, and predict ŷ = sign(p̂).
Toss a coin with P (Heads) = b

b+|p̂|.
If Heads
Query the label y ∈ {−1, +1} of x.
If y 6= ŷ, then:

vt+1 = vt + ηyx>

else:
vt+1 = vt

t = t + 1.
Until t == L

Figure 2: The CBGZ algorithm, parametrized by b > 0 and learning rate η > 0.

3.2 Application to the non-uniform setting

In applying the algorithm to the non-uniform setting we changed the initial setting of the active
learning threshold. Dasgupta et al. used s1 = 1√

d
in the uniform case based on a fact about uniform

random projections (cf. Appendix of [7]) that need not hold when the distribution is non-uniform.
Instead of starting the initial learning threshold so low, we make no assumptions about the input
distribution and thus set the initial threshold to the maximum value that |x · vt| could take, which
is one, since ‖xt‖ = ‖vt‖ = 1 for all t. Changing the initial active learning threshold might imply
that R should also differ from the value given in the paper. Regardless, the constants in the paper
were not optimized, so we did not have an exact expression for R. Thus we tuned it, along with the
parameters of the other algorithms, as discussed in the evaluation section.

3.3 The CBGZ algorithm

Similar to DKM, the strongly online selective sampling algorithms proposed by Cesa-Bianchi et
al. [4] are based on augmenting Perceptron-type algorithms with a margin-based filtering rule; for
the first-order version used in our experiments, see Figure 2. The algorithm queries for a label with
probability b/(b + |p̂|), where p̂ is the margin of the example with respect to the current hypothesis,
and b > 0 is a parameter. If a label is queried and the algorithm’s prediction sign(p̂) is incorrect, a
standard perceptron update is performed.

The main result in [4] is a bound on the expected (with respect to the algorithm’s randomness)
number of mistakes the algorithm makes on arbitrary input sequences. Both this mistake bound and
the expected number of label queries depend on b. By optimizing b for the mistake bound, one can
match the mistake bound for standard Perceptron. However, this choice of b may result in querying
almost all the labels. Another complication is that the optimal choice of b depends on the data, and
thus in practice is known only in hindsight. To circumvent this issue, the authors provide and analyze
a method for tuning b on the fly, but in practice this adaptive strategy has inferior performance [4].

The theoretical results for DKM and CBGZ are incomparable, as the algorithms are based on dif-
ferent assumptions (uniform distribution with linear separability vs. individual sequences) and the
main results give bounds for different quantities (both accuracy and label-complexity for DKM vs.
mistake bounds for CBGZ). The lack of unified theoretical results motivates our empirical study of
the performance of these algorithms on real data.

4 Evaluation

4.1 Comparison class of algorithms

In designing our evaluation, we considered comparing to the SVM-based active learning algorithms
proposed by Tong and Koller [13], as they are well-known benchmarks for active learning. However



MNIST: 0v1 (0.01) 0vAll (0.05) 4v7 (0.05) 6v9 (0.025) 147vAll (0.15)
DKM2 28.02±25.26 105.30±42.39 150.02±49.61 163.12±42.45 275.34±72.00

DKMperc 13.78±5.88 57.26±15.92 44.00±15.32 20.44±11.75 217.06±75.85

CBGZ DKM 130.12±116.45 183.78±120.83 194.36±80.20 218.28±94.95 379.16±138.38

CBGZperc 32.78±19.52 62.66±30.48 63.32±30.76 30.66±13.31 170.02±63.61

randDKM 87.72±101.84 173.44±114.55 276.92±150.59 367.24±191.25 375.46±164.33

randPerc 83.76±78.47 103.74±76.25 107.98±57.41 104.06±75.10 214.16±93.12

USPS: 0vAll (0.05) 147vAll (0.1)
DKM2 174.22±63.85 190.72±80.09

DKMperc 87.56±28.97 137.86±58.21

CBGZ DKM 156.08±66.75 193.70±96.35

CBGZperc 115.14±61.09 116.28±60.68

randDKM 235.10±129.11 210.40±109.39

randPerc 173.96±98.96 151.32±72.65

Figure 3: Mean and standard deviation (over 5 runs of 10 fold cross-validation) of the minimum
number of labels to reach the test error threshold (in parentheses) for the problem.

our problem framework is different from their pool-based model in which active learners have un-
limited access to all unlabeled data. Additionally, their algorithmic form is less constrained: SVMs
do not obey the online constraints on storage and running time that we are concerned with in this
work. Given these two extra degrees of freedom, we would expect SVM-based methods to outper-
form all the strongly online algorithms. We confirmed this with experiments using an SVM paired
both with random queries and with the Simple heuristic, due to [13]. Thus, the online algorithms
studied in this paper seem to be most useful in settings with strict online requirements, while the
pool based methods seem to have superior performance when applicable.

Therefore as an appropriate comparison class, we instead consider only algorithms that are strongly
online. Thus we compare all six combinations of the two online active learning rules discussed
above, as well as random sampling, paired with two strongly online supervised learning algorithms:
Perceptron and the supervised update of DKM. We will denote as DKM2 the exact algorithm from
[7], i.e. the DKM active learning logic with the DKM supervised update as the sub-algorithm.
Running DKM’s active learning logic with Perceptron as the sub-algorithm, we refer to as DKMac-
tivePerceptron. We will denote as CBGZ, the CBGZ active learning rule with Perceptron as the
sub-algorithm, as specified in [4]. For the sake of completeness, we also experimented with com-
bining CBGZ’s active learning rule and the DKM update, denoted below as CBGZactiveDKMupate.
The random sampling methods simply flip a coin as to whether to query the current point’s label,
and update using Perceptron (randomPerceptron) or the DKM update (randomDKMupdate).

4.2 Experiments

We conducted our evaluation on benchmark data from OCR, since OCR on small devices could stand
to benefit from strongly online active learning solutions. Additionally, these datasets are known to be
non-uniformly distributed over inputs. We used both MNIST [10] and USPS in order to experiment
with multiple datasets and dimensionalities (d = 784 for MNIST, d = 256 for USPS).

We experimented on 7 binary classification problems, 5 from MNIST and two from USPS, each
consisting of approximately 10,000 examples. All the problems but two were linearly separable.
(Using svmLight we were unable to find separating hyperplanes for the problem {1,4,7} vs. all
other characters, both in the MNIST and USPS versions). Since the algorithms access the data in
one pass in a sequential fashion, for each problem we ran 5 runs in which the dataset was uniformly
repermuted, of 10 fold cross-validation.

Several of the algorithms have parameters: Perceptron’s learning rate, CBGZ’s b and DKM active
learning version’s R, so each was tuned independently on a separate holdout set for each problem,
using 10 fold cross-validation on approximately 2,000 examples. A threshold on test error, ε, was
chosen for each problem based (qualitatively) on level of separability, and each algorithm’s param-
eters were tuned to minimize the number of labels, averaged over folds, to reach test error ε.
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Figure 4: Statistical efficiency. Mean minimum labels to reach test error threshold is over 5 folds 10
runs if all folds/runs reached that test error. a). MNIST 0v1. b) MNIST 4v7. c) MNIST 0vAll. d)
USPS 0vAll.

In Figure 3 we report the mean and standard deviations over all the experiments run, of the minimum
number of labels after which each algorithm reached the test error threshold (ε listed in parentheses)
for that problem. On every problem, active learning shows a clear advantage over random sampling:
at least one of DKMactivePerceptron or CBGZ, and sometimes more active learning algorithms, use
significantly fewer labels than both of the random sampling methods. Compared to the best active
learning method for each problem, at the comparison test error threshold, Perceptron with random
sampling used more labels by a factor between 1.25− 6, and for more than half of the problems the
factor was 2 or higher.

The minimum number of labels was attained by DKMactivePerceptron, in all but two of the prob-
lems, in which the minimum was achieved by CBGZ. DKMactivePerceptron also reports the small-
est variance on this figure, in all but one problem. Interestingly, the problems for which CBGZ was
the top performer are the only two unseparable problems. Since both algorithms use Perceptron as
the sub-algorithm, our results may imply that CBGZ’s active learning rule is better equipped for the
non-realizable case than that of DKM.

The DKM supervised update, and methods that used it as their sub-algorithm tended to perform
worse than their Perceptron counterparts. In the unseparable cases, this may be explained by DKM’s
update being much more agressive than Perceptron’s, when the point has a large margin. The com-
parison may not be completely fair however, as the DKM update was the only algorithm without
parameters, and thus the only algorithm not at all tuned per problem. In fact, both of the active
learning variants of standard Perceptron were actually doubly tuned per problem, as the Percep-
tron learning rate was first tuned, and then the active learning parameter (R or b) was tuned for the
problem, using the tuned Perceptron as the sub-algorithm.

It is also important to note that the mistake bound proven in [7] implying better performance of
the DKM update than Perceptron has only been shown under the uniform input distribution, and
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Figure 5: Learning curves. a) An extremely separable problem, MNIST 0v1. b) An unseparable
problem, MNIST 147vAll. c) USPS 0vAll. d) MNIST 0vAll.

here the input distribution is known to be highly non-uniform. For both sub-algorithms however,
the DKM active learning rule tended to outperform the CBGZ active learning rule; with the DKM
update as the sub-algorithm, the DKM active learning rule (DKM2) used fewer labels than that of
CBGZ (CBGZactiveDKMupdate) in all problems but one.

In Figure 4 we plot statistical efficiency curves. Points indicate the average over all the experiments
of the minimum number of labels to reach the test error threshold indicated on the x-axis, only if
all experiments reached that threshold. It is important to note that the algorithms were only tuned
to minimize labels to reach one of these test error thresholds; an algorithm that was minimal at the
chosen threshold need not be minimal at all thresholds plotted. Some of the plots illustrate a slower
rate of label increase for algorithms using DKM as their active learning rule. Not all the plots were
as conclusive, but an interesting example is Figure 4 a) in which the DKM active algorithms have
higher label usage, at most of the ε values measured, than their CBGZactive counterparts, however
the rate of label increase, as ε decreases, appears to be significantly slower.

To provide a qualitative perspective we present some representive learning curves, with respect to
labeled examples, in Figure 5. We show a) a problem that was particularly easy and b) a problem that
we did not find to be linearly separable. Figure 5 c) and d) compare the MNIST and USPS versions
of the problem of 0 vs. all other characters, which is separable but has a large label imbalance with
very few positive examples. In these problems, while DKMactivePerceptron reduces test error at
a faster rate than all the other algorithms, DKM2 and CBGZ continue querying for more labels,
eventually reaching lower error.



5 Discussion and Conclusions

One potentially detrimental artifact of our experimental framework may have been overfitting of the
parameter settings to the holdout tuning set, per problem, which may have prevented some of the
algorithms from generalizing well to the actual problem data. Supervised DKM has no parameters,
but for all other algorithms, tuning was involved.

Another tuning issue relates to the behavior observed above in Figure 5 c) and d), of DKMactivePer-
ceptron attaining an initial test error threshold faster than all other algorithms, but then not querying
for any more labels in the rest of the fold. This related to how one should set the waiting time
threshold R for the DKM active learning algorithm. With a very small value of R, the algorithm has
very little tolerance for labeled examples that do not yield a mistake and thus an update, and so will
quickly halve its active learning threshold. Labeling an example with a smaller margin with respect
to the current hypothesis, is more likely to yield a mistake. Although this can cause a steep descent
of error with respect to the number of labels, when the the active learning threshold becomes too
small the algorithm will hardly ever make label queries. Since we are experimenting on a finite set
of data as opposed to an endless stream, this means the algorithm may not query for any more labels
on the fold. Ideally, we would like to optimize the constants in DKM so that the parameter R need
not be tuned, but this is left for future work. Additional future work would entail modeling other
domains using online active learning, and testing the performance of these algorithms therein.

At a general level, we conclude that online active learning provides significant performance gains
over random sampling the same number of labels, when the random sampler must obey online
constraints on memory and computation. In particular, we provide an application of DKM, and to
our knowledge this algorithm had not yet been applied in practice. In the process we show that
DKM can perform well even when the input distribution is non-uniform, a question left open by
the work of [7], as the performance guarantees were shown under the assumptions of realizability
and a uniform input distribution. When these assumptions are violated, we observe that, in this
application, DKM active learning has better performance when paired with standard Perceptron as
the supervised sub-algorithm, as opposed to the update proposed in [7]. This is an outcome we did
not predict, due to the strikingly better performance guarantees of their algorithm with respect to
Perceptron, under the uniform assumption [7]. We also provide evidence that DKM may not be the
optimal online active learning technique when the separability assumption is violated.

Moreover we contribute to the work on bridging theory and practice for active learning in general
and for online active learning in particular, by providing insight into the practical performance of
two algorithms with recent formal analyses. There has been a resurgence of learning theoretic
results on active learning, specifically geared towards selective sampling algorithms, including
these strongly online active learners. We hope that many of them can be exploited in practice, in
order to improve existing machine learning techniques by allowing them to be more label-efficient,
and to aid in developing new applications in which labeled data is expensive or difficult to obtain.
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