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Abstract— The Survey Propagation (SP) algorithm [1] has
recently been shown to work well in the hard region for random
K-SAT problems. SP has its origins in sophisticated arguments in
statistical physics, and can be derived from an approach known
as the cavity method, when applied at what is called the one-step
replica symmetry breaking level. In its most general form, SP
can be applied to general constraint satisfaction problems, and
can also be used in the unsatisfiable region, where the aim is to
minimize the number of violated constraints. In this paper, we
formulate the SP-Y algorithm for general constraint satisfaction
problems, applicable for minimizing the number of violated con-
straints. This could be useful, for example, in solving approximate
subgraph isomorphism problems. Preliminary results show that
SP can solve a few instances of induced subgraph isomorphism
for which belief propagation failed to converge.

Index Terms— Survey Propagation, Constraint Satisfaction
Problems, Subgraph Isomorphism

I. INTRODUCTION

The satisfiability problem is the archetypical NP-complete
problem, believed to be intractable in the worst case. In
particular, the random 3-SAT problem, consisting of randomly
generated clauses of length 3, has been the focus of much
research. Numerical simulations have shown that satisfiability
of 3-SAT instances depends critically on the clause to variable
ratio, α=M/N , where M is the number of clauses and N
the number of variables. It was observed that there exists a
phase transition for K-SAT problems at a value αc, such that
instances of K-SAT with α<αc are generally satisfiable, while
instances with α > αc are generally unsatisfiable. Moreover,
instances that has α close to αc has been found to be hard to
solve by local search methods such as WalkSAT. Recently, the
Survey Propagation (SP) algorithm has been shown to work
well in this hard region of 3-SAT problems [1], [2]. SP can
be generalized to deal with the MAX-SAT problem [3], where
the algorithm has been named SP-Y. SP has been formulated
for general constraint satisfaction problems (CSP) [4], where
the derivation is given as an extension of the more popular
Belief Propagation (BP) algorithm [5].

In this paper, we formulate SP-Y for general constraint
satisfaction problems starting from the cavity method. The
cavity method is a mathematical method used to compute
properties of ground states in many condensed matter and
optimization problems [6]. Taken to different levels, it can be
shown to be equivalent to either the BP or the SP algorithms.
When using the cavity method to derive the SP algorithm, a

parameter y arises that has to be optimized before the SP-Y
algorithm can be used. It has been shown that in the satisfiable
region for random K-SAT, y needs to be taken to infinity, and
this leads to simplifications that have been exploited when
the SP equations for 3-SAT [2] and general CSP [4] were
formulated. For unsatisfiable instances, y is finite and can be
empirically determined [3], leading to the SP-Y algorithm. We
extend the work of [4] and [3] and derive the SP-Y algorithm
for general CSP.

In 3-SAT, each variable can take either a true value or a
false value. The SP algorithm for 3-SAT can be understood
as extending the BP algorithm by adding a third state to each
variable, known as a “joker” state [7], [2]. One problem that
arises in generalizing SP to general CSP is that the number of
“joker” states is exponential in the cardinality of the variable.
Each variable can be in one of many “joker” states, where
each “joker” state forbids a particular subset of values to the
variable. We suggests methods to get around this intractability,
and show preliminary results using the subgraph isomorphism
problem as an example. In our experiments, SP is able to solve
a few instances of the induced subgraph isomorphism problem
for which BP failed to converge.

II. CAVITY METHOD FOR CSP

The Survey Propagation (SP) algorithm can be derived
through either the cavity approach or the replica approach
[1]. The cavity approach and the replica approach are two
ways of explaining a technique used in physics to solve spin
glass models. The replica approach can be taken to different
depths, from the replica symmetric ansatz (RS), to one-step
replica symmetry breaking (1RSB), and finally to full replica
symmetry breaking (fRSB) [8]. The authors of SP papers
usually explain things through the cavity approach, which,
taken to different depths, can be equivalent to the RS ansatz
(which leads to BP), or to 1RSB (which leads to SP or SP-
Y). In this paper, I will derive the SP-Y equations for general
CSPs by following the cavity approach.

In general, a constraint satisfaction problem can be rep-
resented by a set of variables (denoted by i, j, k...) and a
set of constraints over these variables (denoted by a, b, c...).
For simplicity of notation, we assume that all variables have
cardinality q. Like BP, the cavity method can be explained as
a message passing algorithm on factor graphs [5]. In factor
graphs, constraint satisfaction problems (CSP) are represented



Fig. 1. Factor graph for the clause (xi ∨ xj ∨ xk) ∧ (x̄k ∨ xl), where
a = xi ∨ xj ∨ xk , and b = x̄k ∨ xl. Factor nodes correspond to constraints,
and are represented as square nodes. Variable nodes are represented as circle
nodes.

as a bipartite graph, consisting of factor nodes and variable
nodes. Each factor node correspond to a constraint in the
CSP, and is linked to all variable nodes that appear within
that constraint (See Figure 1 for an example). Each factor
a corresponds to a function Ca(xa), where xa is the set of
variables appearing in the constraint a. Ca(xa) is defined to
equal zero if the constraint is satisfied by xa, and 1 otherwise.
We consider the following joint probability function:

P (x) = Z−1 exp(−βH(x)), (1)

H(x) =
∑

a

Ca(xa), (2)

where Z is a normalization constant. In statistical physics, the
term β=1/T , where T is the temperature. The study of spin
glass models deals with variables with random couplings. The
Hamiltonian H(x) is the energy of a particular configuration,
and physicists are interested in the value of the energy density
of the global ground state (GGS), which is the configuration
that minimizes the Hamiltonian. We denote by EN the ground
state energy of an N spin system, averaged over the distribu-
tion of random graphs and random couplings. It is postulated
that the distribution of the ground state energy density EN/N
becomes more peaked as N increases, so that, as N tends to
infinity, almost all samples have the same energy[1]:

U = lim
N→∞

EN

N
.

This has been proven to be true for random K-SAT [9].
The survey propagation (SP) algorithm arises from the

application of the cavity method at zero temperature. While
the cavity method involves averaging over disorder (i.e. over
random graphs and random couplings), this can be done at
the end, allowing the formulation of an algorithm that can be
applied to specific instances of CSPs [6] .

At zero temperature, we are interested in finding a config-
uration that maximizes P (x), or minimizes the Hamiltonian
H(x). If the CSP is satisfiable, this corresponds to finding a
configuration (i.e. assignment of values to all variables) that
gives rise to a zero Hamiltonian. In statistical physics, such
configurations are known as a zero energy ground state. When
the CSP is not satisfiable, we have finite energy ground states.

In the limit where N goes to infinity, we can define a “state”
(at the zero temperature limit) to be a cluster of configurations
of equal energy, related to each other by single spin flip moves,
which are “locally stable”, in the sense that the energy cannot
be decreased by any flip of a finite number of spins [1]. For
finite N, this definition is problematic (see Appendix C of
[6] for a discussion), but we can understand states as local

minima of the energy landscape. For large N , the optimization
problem might present local minima (local ground states) that
are strictly larger than the global minimum (global ground
state). An optimization problem becomes difficult to solve by
local search procedures when there are many local ground
states (LGS), which act as traps for local search algorithms.

The cavity equations involve message passing between fac-
tor nodes and variable nodes. There are two kinds of messages:
the ua→i messages from factor a to variable i, and the hi→a,
from variables i to factors a. Both ua→i and hi→a are vectors
of length q (cardinality of variable i). We denote by vσ the σ-th
component of a vector v. At the 1RSB level, we are interested
in the distribution over the messages, called surveys. This can
be done efficiently at zero temperature, where we can assume
that the components of the messages take integer values [1].

At zero temperature, the messages ua→i ∈ {0,−1}q can be
understood as a kind of “warning” message: if uσ

a→i equals
-1, then factor a is sending a warning to variable i saying
that if i takes the value σ, then the clause a will be violated.
The messages hj→a are also “warning” messages sent from
variables to factors, telling the factor a that the variable j is
only willing to take on values σ, for which hσ

j→a equals zero.
In statistical physics the h messages are called “local fields”,
and the u messages are called “local biases”.

In the cavity approach, we remove a variable node (a site)
from the graph, creating a cavity. The cavity equations are
then derived by consistency considerations based on putting
back this site, assuming a locally tree-like structure. For an
in-depth discussion of the cavity method, please refer to [6].
In the rest of this section, I will state the assumptions behind
the Replica Symmetric (RS) ansatz and one-step Replica
Symmetry Breaking (1RSB).

A. Replica Symmetric Ansatz

The main assumption behind the RS ansatz is that the
neighborhood of each node is locally tree-like, and that there
exists only one state in the CSP. Following [10], we will also
assume that the CSP is satisfiable, hence ignoring messages
that lead to violated constraints1. This leads to the belief
propagation algorithm [10].

First, we define the message passing mechanism: how the
ua→i messages and the hj→a messages give rise to one
another (See Figure 2). We denote V (a) as the set of variables
appearing in constraint a, and V (i) the set of constraints
containing variable i. The message that j sends to a, hj→a,
is simply a sum of all incoming warnings from nodes b ∈
V (j)− a (See Figure 2),

hj→a =
∑

b∈V (j)−a

ub→j . (3)

In order to define ua→i in terms of incoming
{hj→a}j∈V (a)−i, we assume that we are adding a new
site (the variable i) into the graph, and make use of
consistency considerations to derive their relations. Denoting

1It is possible to define potentials so that BP minimizes the number of
violated constraints. Here, however, we follow the formulation given in [10]



Fig. 2. Message passing between factor nodes and variable nodes.

by EN (resp. EN+1) the minimum energy before (resp. after)
adding the cavity site i,

EN ({σj}) =A−
∑

{a∈V (i)}

∑
{j∈V (a)−i}

h
σj

j→a, (4)

EN+1(σi, {σj}) =A+
∑

{a∈V (i)}

[Ca(σi, {σj})−
∑

{j∈V (a)−i}

h
σj

j→a], (5)

where A is a constant. Figure 2 shows the messages involved
when adding a site i that is connected to a single factor a. After
adding the cavity site, EN+1 can also be written in terms of
σi as follows

EN+1(σi)=min
{σj}

EN+1(σi, {σj}) =A−
∑

a∈V (i)

[wa→i + uσi
a→i]. (6)

In the above equation, ua→i is a vector, while wa→i is a
scalar. Since the terms in the summation for each a ∈ V (i)
can be minimized independently (assuming a locally tree-like
structure), we can write the definition of ua→i and wa→i as

−wa→i − uσi
a→i = min

{σj}
(Ca(σi, {σj})−

∑
{j∈V (a)−i}

h
σj

j→a). (7)

Note that the above definition does not uniquely define ua→i

and wa→i. In this paper, we will assume that ua→i takes values
in {0,−1}, and wa→i absorbs the rest of the right-hand side of
Equation 7. This is possible because the components of ua→i

differ by at most one.
Since we disallow violations of constraints, contradicting

messages are forbidden. This means that in the right-hand side
of Equation 7, the second term must attain the minimum value
of zero. We define T 0

a→i({hj→a}) to be the set of allowed
configurations of the variables j ∈ V (a)− i:

T 0
a→i({hj→a}) = {{σj}|∀j ∈ V (a)− i, h

σj

j→a = 0}. (8)

From Equation 7, the outgoing message ua→i can be calcu-
lated from the set of incoming messages {hj→a}j∈V (a)−i as
follows:

Uσ
a→i(S) = − min

{s}∈S
Ca({s}|si ← σ), (9)

uσi
a→i = Uσi

a→i(T
0
a→i({hj→a})). (10)

To simplify notation, we define the following sets of mes-
sages:

Vj→a(h) = {{ub→j}b∈V (j)−a |
∑

b∈V (j)−a

ub→j = h}, (11)

V 0
a→i(u) = {{hj→a}j∈V (a)−i | Ua→i(T

0
a→i({hj→a})) = u}.(12)

V 0
j→a(h) is the set of incoming messages that could possibly

give rise to the outgoing message h, and similarly for V 0
a→i(u).

With the message passing mechanism described above,
we need to define the distributions over the messages. The
probability of an outgoing message ua→i is the sum of the
probabilities over all incoming messages hj→a that could
possibly give rise to ua→i. Similarly for the probabilities of
outgoing messages of type hj→a. Hence,

Pj→a(h) ∝
∑

Vj→a(h)

∏
b∈V (j)−a

Q(ub→j), (13)

Qa→i(u) ∝
∑

V 0
a→i

(u)

|T 0
a→i({hj→a})|

∏
j∈V (a)−i

P (hj→a),(14)

where |T 0
a→i({hj→a})| is the cardinality of the set

T 0
a→i({hj→a}). Under the RS ansatz, we are working directly

with distributions over configurations. Hence, when dealing
with warning messages, we need to sum contributions of
configurations that give rise to the same warning message.
Although the above update equations are defined on warning
messages, they are equivalent to the sum-product belief prop-
agation defined on distributions over configurations [4].

When the above update equations converge, we are inter-
ested in the local fields (beliefs) at each variable

Pj(h) ∝
∑

Vj(h)

∏
b∈V (j)

Q(ub→j), (15)

where Vj(h) is defined analogously to Vj→a(h) (Equation 11):

Vj(h) = {{ub→j}b∈V (j) |
∑

b∈V (j)

ub→j = h}. (16)

B. One Step Replica Symmetry Breaking
Like RS, we assume a locally tree-like neighborhood for

each site. Unlike RS, we assume that there are more than one
state, and at each iteration, we have to take into account “level
crossings”, or interactions between different local state ener-
gies (LGS). Hence, under this framework, we allow violated
constraints, and the aim is to minimize the number of violated
constraints. This assumption has two consequences: (1) while
under RS, we could simply keep track of distributions over
configurations, under 1RSB, we have to keep track of surveys
(distribution over sets of configurations). This is achieved
by considering sets of configurations allowed by warning
vectors. (2) To take into account crossings between LGS,
we incorporate a penalty term to discourage moving into
states with a higher energy. This penalty term has a natural
interpretation in the derivation given below.

First, we define the message passing mechanism when
violated constraints are allowed. From Equations 7 and 9,

Ta→i({hj→a}) = arg min
{σj}

(−
∑

{j∈V (a)−i}

h
σj

j→a), (17)

uσi
a→i({hj→a}) = Uσi

a→i(Ta→i({hj→a})). (18)



And we define the counterpart for Equation 12

Va→i(u) = {{hj→a}j∈V (a)−i | Ua→i(Ta→i({hj→a})) = u}.(19)

In 1RSB, we make the following assumption: if we denote
by ηN (E) to be the number of states at an energy E, then

ηN (E) ≈ exp (NΣ(ε)), (20)

where ε = E/N . Σ(ε) defined by the above equation is known
as the complexity.

While adding a site i, (hence passing from N to N + 1),
denoting by P (hi, δE) as the joint probability of the local
fields hi and the change in energy, we have (expanding to
first order)

ηN+1(E) ∝
∫

P (h, δE)dh d(δE) exp(NΣ(
E − δE

N
)(21)

∝
∫

P (h, δE)dh d(δE) exp(−yδE),

y =
dΣ(ε)

dε
. (22)

Hence, instead of Equation 13, we have [6]

Pj→a(h) ∝
∫

P (h, δE) d(δE) exp(−yδE) (23)

∝
∑

Vj→a(h)

∏
b∈V (j)−a

Q(ub→j) exp(−yδE). (24)

Intuitively, the exponential term corresponds to a penalty to
be paid for positive energy shifts. The relationship between
ε and y can be defined using a Legendre transform of Σ(ε)
given by g(y) = yΦ(y) as follows:

Σ(ε) = min
y

εy − yΦ(y), (25)

yΦ(y) = min
ε

εy − Σ(ε), (26)

and hence we rederive equation 22, as well as

ε = Φ(y) + y
dΦ(y)

dy
. (27)

Intuitively, denoting by EN the global ground state and U =
limN→+∞

EN

N , we would expect Σ(U) = 0. By equation 25
and 27, this implies

ε = Φ(y), (28)
dΦ
dy

= 0. (29)

Hence, to run SP, we have to determine the optimal value of
y, given by dΦ

dy = 0. An analytical expression of Φ(y) can be
determined with Equation 28. This has been done in [1], [3] for
K-SAT: in the SAT region, Φ(y) is monotonically increasing
in the region y →∞, and hence y has to be taken to infinity.
In the UNSAT region, Φ(y) has a finite optimum, which is
dynamically determined in [3].

III. SP AND SP-Y FOR GENERAL CSP

Since adding a cavity site means that new constraints could
be violated, we can assume that δE is positive. In the SAT
region for SAT problems, the optimal value of y is to take y to
infinity [3]. From Equation 24, this means that terms with non-
zero δE can be ignored. Hence, no additional constraints can

be violated as a new site is added in the cavity method. This
makes intuitive sense, since in the SAT region, no constraints
should be violated in the global ground state. In the UNSAT
region, on the other hand, there is a finite optimal value for
y, and hence we have to take into account non zero values of
δE. Since we are trying to minimize the number of violated
constraints, we should allow violated constraints to come into
the picture, although we would still like to penalize each
violated constraint. This is achieved through the exponential
penalty term in Equation 24.

We have not worked out the analytical form for Φ(y) to
determine the behavior of y in the SAT and UNSAT region
for general CSP, but by the above arguments, we develop SP
for the SAT regions of CSPs by taking y to infinity. This gives
rise to equations identical to those given in [4]. For the UNSAT
region, we formulate the SP-Y equations with a finite y.

A. The SP-Y algorithm

We will first develop the more general SP-Y algorithm. In
order to do that, the first step is to calculate the form of δEi

with Equations 4 and 6:

δEi = min
σi

EN+1(σi)−min
{σj}

EN ({σj}), (30)

= −min
{σj}

(−
∑

{a∈V (i)}

∑
{j∈V (a)−i}

h
σj

j→a)

−
∑

a∈V (i)

wa→i + min
σi

∑
a∈V (i)

(−uσi
a→i). (31)

Now, imposing ua→i to take values in {0,−1} allows us to
determine the value of wa→i from Equation 7

wa→i = −min
{σj}

(−
∑

{j∈V (a)−i}

h
σj

j→a). (32)

From Equations 32 and 31, we define δEi and analogously,
δEi→a,

δEi = min
σi

∑
a∈V (i)

(−uσi
a→i), (33)

δEi→a = min
σi

∑
b∈V (i)−a

(−uσi

b→i). (34)

There is a simple interpretation for δE for CSP: δE counts
the number of violated constraints. In summary, the update
equations for P (h) and for Q(u) are as follows:

Pj→a(h) ∝
∑

Vj→a(h)

∏
b∈V (j)−a

Q(ub→j) exp(−yδEj→a), (35)

Qa→i(u) ∝
∑

Va→i(u)

∏
j∈V (a)−i

P (hj→a). (36)

At convergence, we are interested in the local fields at each
variable:

Pj(h) ∝
∑

Vj(h)

∏
b∈V (j)

Q(ub→j) exp(−yδEj), (37)

where Vj(h) has been defined in Equation 16.



B. The SP algorithm

At infinite y, if constraints are violated, δ(E) 6= 0 and
exp(−yδ(E)) goes to zero: we work within the space of
satisfied constraints. Messages of type h where all hσ 6= 0
give rise to a positive δE and can be ignored. Hence the
message passing mechanism here is similar to the message
passing mechanism in the RS case.

We have the same update equations as SP-Y, without the
exponential penalty:

Pj→a(h) ∝
∑

Vj→a(h)

∏
b∈V (j)−a

Q(ub→j), (38)

Qa→i(u) ∝
∑

V 0
a→i

(u)

∏
j∈V (a)−i

P (hj→a), (39)

Pj(h) ∝
∑

Vj(h)

∏
b∈V (j)

Q(ub→j). (40)

These equations are similar to those presented in [4], where
they work directly with the infinite y assumption, and derived
these equations by extending belief propagation to the 1RSB
level. There are a couple of differences: the first difference is
that in [4], the ua→i take values in {0,+1}, whereas ours take
values in {0,−1}. The second difference is that they used a
max in Equation 3 in lieu of our sum: note that the definition
of T 0

a→i({hj→a}) would be the same, for example, for h =
(−4,−2, 0), h = (−3,−3, 0), or h = (−1,−1, 0). Hence, the
h vectors can be grouped into equivalence classes. This is why
the sum in Equation 3 can be replaced by a max: equivalent h
are grouped together, so that h now takes values in {0,−1}.

C. Decimation

The outputs of SP or SP-Y are distributions over the local
fields Pj(h), for each variable j. To obtain a solution for a CSP
from the outputs of SP or SP-Y, one typically has to perform a
decimation process. In the decimation process, after each run
of SP or SP-Y, (i) variables are selected to be set to certain
values or (ii) certain values are forbidden to certain variables.
Intuitively, if the local fields Pj(h) reflects that the variable
j is highly biased towards (resp. against) one value, then we
can set it to that value (resp. forbid that value to the variable).

Different decimation methods have been used for different
problems, such as 3-SAT [2], and 3-coloring [10]. In our
initial experiments (Section VI), we have not implemented the
decimation process. We only run SP once, and select a set of
variables to set, based on the surveys for each variable.

IV. DERIVING SP AND SP-Y FOR 3-SAT
In this section, we derive the SP and SP-Y equations

for 3-SAT presented in [2] and [3] respectively, using the
formulation we have developed so far.

Define e+ = (−1, 0), e− = (0,−1) and e0 = (0, 0). For
K-SAT, where variables are of cardinality q = 2,

ua→i ∈ {e−, e0, e+} (41)
hj→a = (m,n) ∈ {0,−1, ..,−Γj + 1}2, (42)

where Γj is the number of neighboring factors to variable
j. Moreover, each constraint a in 3-SAT can only forbid one

value, so either Q(ua→i = e+) or Q(ua→i = e−) equals zero.
This leads to an efficient parameterization for SP and SP-Y.

It is common to define the energy as follows (e.g. [3])

E =
∑

a

3∏
i=1

(1 + Ja,is
a
i ), (43)

where sa
i takes values in {+1,−1}, and Ja,i equals −1 if the

literal i is present in clause a, and +1 if literal i is negated
in clause a. (Ja,i is the “forbidden” value of sa

i ). With this
formulation, instead of having u as vectors of size two, we
define them as follows: u = +1 for e+, u = −1 for e−, and
u = 0 for e0.

A. Infinite y for KSAT

The cavity biases ua→i take on values in {−1, 0,+1} ,
signifying a warning for variable i to take on the corresponding
value (a value of zero means no warning). In the large y limit,
conflicting warnings are disallowed. We work within the space
of satisfiable constraints.

The exact value of hj→a is unimportant in the large y limit.
Since no constraints can be violated, for hj→a = (m,n), either
m = 0 or n = 0. To simplify things further, the hj→a can be
grouped into 3 classes. We note by h = +1 if (m 6= 0, n = 0),
by h = 0 if (m = n = 0), and by h = −1 if (m = 0, n 6= 0).

Following [2], we define V u
a (j) and V s

a (j) as neighbors
which tend to make variable j satisfy or unsatisfy the constraint
a, i.e.

V+(j) = {a|Ja
j = −1} ; V−(j) = {a|Ja

j = +1}, (44)
if Ja

j = +1 : V u
a (j) = V+(j) ; V s

a (j) = V−(j)− a, (45)
if Ja

j = −1 : V u
a (j) = V−(j) ; V s

a (j) = V+(j)− a. (46)

To obtain the equations given in [2], we denote

Q(u = −Ja,i) = ηa→i, (47)
Q(u = 0) = 1− ηa→i, (48)

Q(u = Ja,i) = 0, (49)
P (sign(h) = Ja,i) = Πu

j→a, (50)
P (sign(h) = −Ja,i) = Πs

j→a, (51)

P (sign(h) = 0) = Π0
j→a. (52)

Hence Πu
j→a, for example, is the joint probability of the event

that at least one warning comes from V u
a (j), and no warnings

come from V s
a (j). Hence, we get the SP equations presented

in [2]:

Πu
j→a = [1−

∏
b∈V u

a (j)

(1− ηb→j)]
∏

b∈V s
a (j)

(1− ηb→j), (53)

Πs
j→a = [1−

∏
b∈V s

a (j)

(1− ηb→j)]
∏

b∈V u
a (j)

(1− ηb→j), (54)

Π0
j→a =

∏
b∈V (j)

(1− ηb→j), (55)

ηa→i =
∏

j∈V (a)−i

Πu
j→a

Πu
j→a + Πs

j→a + Π0
j→a

(56)



B. Finite y for KSAT

The finite y version of SP for K-SAT is formulated in [3].
It is stated in [3] that

δ(E) =
∑

a∈V (i)

|ua→i| − |
∑

a∈V (i)

ua→i|. (57)

This seems to count the number of violated constraints twice.
However, since y is a parameter to be tuned, tuning y or 2y
is equivalent. I would hence present the algorithm as it was
presented in [3].

Following [3], we group hj→a = (m,n) into equivalence
classes, by denoting hj→a = m − n. This is because the
actual values of m,n is unimportant. Only their relative values
(m − n) is important. We have, in the finite y case, ua→i ∈
{−1, 0,+1}, and hj→a ∈ {−Γj + 1, ...,−1, 0, 1, ..,Γj − 1},
where Γj is the number of neighbors of j.

Pj→a(h) ∝
∑

Vj→a(h)

∏
b

Qb→j(ub→j)

exp(y(|
∑

j

ua→0| −
∑

j

|ua→0|)). (58)

The main update equations are as follows (Equations 13 to 16
in [3]):

P̃
(1)
j→a(h) = η0

b1→iδ(h)+ η+
b1→iδ(h−1)+ η−b1→iδ(h+1), (59)

P̃
(γ)
j→a(h) = η0

bγ→iP̃
(γ−1)
j→a (h)

+η+
bγ→iP̃

(γ−1)
j→a (h− 1) exp [−2yθ(−h)]

+η−bγ→iP̃
(γ−1)
j→a (h + 1) exp [−2yθ(h)], (60)

where θ(h) = 1 if h ≥ 0, and zero otherwise. The above
procedure calculates all the unnormalized P̃ (h) at the same
time, by multiplying on the fly, the penalty terms exp(−2y)
for each violated constraint. The P̃j→a(h) are then normalized
into Pj→a(h), and the second set of updates are as follows:

η
Ja,i

a→i =
K−1∏
n=1

W
Jjn ,a
jn→a , η

−Ja,i

a→i = 0, η0
a→i = 1− η

Ja,i

a→i, (61)

W+
j→a =

Γj−1∑
h=1

Pj→a(h), (62)

W−
j→a =

−1∑
h=−Γj+1

Pj→a(h). (63)

We can understand the above procedure with the following
correspondences:

ησ
a→i = Qa→i(u = σ),∀σ ∈ {−1, 0,+1} (64)

W σ
j→a = Pj→a(sign(h) = σ),∀σ ∈ {+,−}. (65)

V. EFFICIENCY OF SP AND SP-Y

For general CSP, SP becomes quickly intractable for vari-
ables with large cardinality q. The ua→i messages take values
in {0,−1}q, (Qa→i(u) is a vector of size O(2q)), while the
hj→a messages take values in {−Γj + 1, , ...,−1, 0}, where

Γj equals the number of neighbors of the variable j (Pj→a(h)
is a vector of size O(Γq

j)).
In practice, we could take advantage of special characteris-

tics of problems. For example in K-SAT, the nature of the
potentials result in the fact that the hi→a can be grouped
in three equivalence classes as h > 0, h = 0, or h < 0.
Moreover, in K-SAT, the ua→i warnings (-1,0) and (0,-1) are
mutually exclusive (i.e. either Q([0,−1]) or Q([−1, 0]) must
equal zero). For graph coloring problems, due to the nature of
the factors, the only possible values of ua→i are all vectors of
length q with at most a single -1 [10].

We will present preliminary results of the application of SP
to the NP-complete problem of subgraph isomorphism. In this
case, the natural formulation of the problem resulted in vari-
ables of large cardinalities. We get around this intractability
by dynamically pruning warnings states of low probability.

VI. PRELIMINARY EXPERIMENTATION

In this section, we present preliminary results on the ap-
plication of SP to the subgraph isomorphism problem. The
SP-Y algorithm will be required for the approximate subgraph
isomorphism problem, where the objective is to minimize the
number of violated constraints. Due to time constraints, we
have not done any experiments with SP-Y yet.

Subgraph Isomorphism is an important problem, both the-
oretically and in many practical applications such as ob-
ject recognition [11], [12], scene analysis [13] and ontology
alignment [14]. Subgraph Isomorphism (SGI) and Induced
Subgraph Isomorphism (ISGI) are two different but related
problems, defined as follows: The SGI problem consists of an-
swering the following query: given two graphs G = (VG, EG)
and H = (VH , EH), is G isomorphic to a subgraph of H? The
ISGI problem, on the other hand, answers the following query:
is G isomorphic to an induced subgraph of H? We generate
random satisfiable instances of SGI problem as follows:

1) Generate H as a G(nn, pp) graph: H has nn nodes, and
each undirected edge is present with probability pp.

2) Randomly select mm nodes of H , and let G be the
induced subgraph of H consisting of these mm nodes

3) Randomly remove each edge from H with probability
qq. If any edges are removed, then G is a subgraph of
H , but possibly not an induced subgraph.

To generate instances of ISGI, step (3) is omitted. In order
to apply SP to this problem, we need to encode this problem as
a factor graph. Let the nodes in G be numbered 1 to mm, and
the nodes in H be numbered 1 to nn. Let {xk}k∈[1,mm] be
the variables, with cardinality nn. In this factor graph, xk = j
means that node k in G maps to node j in H . Recall that
a factor Ca(xa) equals 1 if the constraint is violated, and 0
otherwise.

For SGI, the constraints are the following

∀(k1, k2) ∈ EG, C(k1,k2)(xk1, xk2) = 0 if (xk1, xk2) ∈ EH

= 1 otherwise
∀(k1, k2) /∈ EG, C(k1,k2)(xk1, xk2) = 1 if xk1 = xk2

= 0 otherwise



TABLE I
NUMBER OF CONVERGENT RUNS OUT OF 100 RUNS OF INSTANCES OF SGI

AND ISGI WITH BELIEF PROPAGATION.

nn mm pp ISGI SGI
qq=0.0 qq=0.1

40 20 0.2 74 0 0
40 20 0.3 99 0 0
40 20 0.4 100 0 0
40 20 0.5 100 0 0

The first constraint imposes that edges in G must map to edges
in H . The second constraint imposes that two nodes in G
cannot map to the same node in H .

For ISGI, the constraints are the following

∀(k1, k2) ∈ EG, C(k1,k2)(xk1, xk2) = 0 if (xk1, xk2) ∈ EH

= 1 otherwise
∀(k1, k2) /∈ EG, C(k1,k2)(xk1, xk2) = 0 if (xk1, xk2) /∈ EH

= 1 otherwise

The first constraint imposes that edges in G must map to edges
in H . The second constraint imposes that nodes not connected
in G must not be connected in H .

Kumar and Torr [12] used a variant of ISGI to match
weighted graphs, and showed that both belief propagation and
generalized belief propagation [15] worked reasonably well
for ISGI. We show in Table I results of BP on 100 randomly
generated instances of SGI and ISGI. (For BP, we used binary
potential functions so that the joint probability is a uniform
distribution over valid configurations). In the table, nn is the
cardinality of H = G(nn, pp), mm the cardinality of the
subgraph G, and qq is the probability of removing an edge
in the generation process described above. We see that SGI
proves to be harder than ISGI for belief propagation.

Next, we study the performance of SP on the SGI and
the ISGI problem. Even for small graph sizes, the number
of warning states becomes large very quickly. To perform
experiments efficiently, we initialize the local fields hj→a

with only “frozen states” (i.e. a single zero and all -1), and
the universal “joker” state (i.e. all zeros). This means that
we start from an initial solution where all other local fields
have probability zero. After each update, we keep at most
a fix number, numstate, of warning states in each message
by pruning away warning states with the lowest probabilities.
We run SP on small instances of both ISGI and SGI. SP has
been successful for SAT problems in the critically constrained
region. Instances of ISGI are more constrained than SGI, hence
we expect SP to be more successful for ISGI than for SGI.
Indeed, for SGI, in almost all our experiments, SP converges to
a paramagnetic solution (local fields with probability 1 on the
universal “joker” state), except a few rare cases where it fails
to converge, possibly due to the pruning of warning states.

For ISGI, we first run 100 randomly generated instances
with BP. We then run SP on instances for which BP fails to
converge. When SP converges, we select, for each variable, the
warning state with the highest probability. If all the warning
states are the universal “joker” state, we say that SP converged
to a paramagnetic solution. If there are “frozen states” among

TABLE II
NUMBER OF NON-CONVERGENT RUNS ON ISGI FOR (nn = 10, mm = 5).

pp BP SP numstate
30 50 100 200

0.2 12 0 0 0 0
0.3 34 3 2 0 0
0.4 45 3 4 1 0
0.5 52 3 5 1 0

TABLE III
RUNS OF SP ON FAILED RUNS OF BP ON ISGI, WITH numstate = 30.

nn mm pp BP Div Para Mixed Frozen
3 8

10 5 0.2 12 0 7 4 1 0
10 5 0.3 34 3 25 6 0 0
10 5 0.4 45 3 41 1 0 0
10 5 0.5 52 3 48 1 0 0
12 8 0.2 75 13 15 39 7 1
12 8 0.3 62 17 15 7 23 0
20 10 0.2 85 26 34 14 11 0
20 10 0.3 86 43 12 1 30 0

the warning states, then the result can be use for decimation.
For each variable i in a “frozen state” eσi

, we set each vi to
the value σi, and then convert the ISGI into a SAT problem
[16]. We solve this SAT problem by a SAT solver, and if the
solution correctly finds a subgraph of H that is isomorph to G,
then SP has correctly set the selected variables. Although SGI
problems are known to be hard for SAT solvers [16], complete
SAT solvers are able to solve these small instances readily.

The results for ISGI are shown in Table II and Table III. In
Table II, we investigate the effects of pruning warning states.
For matching graphs of size 5 to graphs of size 10, we have 5
variables of cardinality 10. This means that the messages ua→i

can take on O(210) possible distinct values. To investigate
the effects of pruning, we perform experiments with values of
numstate ranging from 30 to 200. In Table II, the column BP
shows the number of runs for which BP fails to converge, and
the SP columns show the number of times SP fails to converge
on runs where BP failed. We see that using small values of
numstate may cause divergence of the SP algorithm.

Fig. 3. Histogram of the number of variables set in the “frozen” runs.



Fig. 4. An example of an instance of ISGI. SP correctly found the following
mapping from graph G to graph H: (1,7), (2,3), (3,6), (4,8), (6,10), (7,9),
and (8,2). The warning state for node 5 allows it to map to nodes 1 or 11 of
graph H .

Fig. 5. An example of an instance of ISGI where SP returned a mixed joker
solution. SP correctly found that most nodes in Graph G cannot map to the
isolated nodes 8, 10 and 16 in graph H .

In Table III, we show the breakdown of results for SP runs
on different graph sizes and edge densities, while keeping
numstate fixed at 30. The column BP is the number of runs
for which BP fails to converge, the column Div the number
of times for which SP fails to converge, the column Para
the number of times convergent runs return a paramagnetic
solution, and the column Mixed shows the number of times
convergent runs return solutions with various kinds of “joker”
states, but no “frozen” states. Under the column Frozen, we
show the number of runs for which the frozen states correctly
and wrongly set the variables. Among runs in the “Frozen”
column, different numbers of variables are selected to be set
to a particular value. We show the histogram of the number of
“frozen” variables in Figure 3. For most successful runs, more
than half of the variables are set correctly. For example, among
the 23 successful instances for (nn = 12,mm = 8, pp = 0.3),
11 of them correctly sets all 8 variables.

We show two examples in Figures 4 and 5. In Figure 4, we
show one of the successful runs for (mm = 12, nn = 8, pp =
0.3) where 7 of the 8 variables are set correctly. The last
variable (variable 5) is assigned a “joker” state which allows
it to take one of two possible values, 1 and 11. These are
indeed the only two possibilities left for node 5. In Figure 5,
we show a typical example of a “mixed” result for (nn =
20,mm = 10, pp = .2). Isolated nodes in graph H has been
found to be forbidden to nodes on connected components of
graph G.

VII. RELATED WORK

Survey Propagation has provided new insights into the
difficulties of 3-SAT problem, which has been widely studied

as the archetypical NP-complete problem. The 3-SAT problem
becomes hard at the threshold of satisfiability, where the
cluster of solutions in the easy phase breaks apart into many
disconnected components [4]. The cavity method behind SP
is useful in analyzing the phase transitions of random 3-
SAT instances [4]. Since its formulation, SP has been applied
successfully to instances of 3-SAT [2], Max-3-SAT [3], and
graph 3-coloring problems [10]. Its wide application to general
constraint satisfaction problem [4] is probably hindered by
computational constraints due to the explosion of the number
of “joker” states.

SP, with the large y limit, has been shown to be equivalent
to belief propagation on a modified graph for 3-SAT [7],
[2]. In the modified graph, each variable node can take a
“joker” value, in addition to its true/false values. However, the
structure of the factor graph has to be modified in order to take
into account the semantics of the “joker” state, and this can be
done in two different manners. Braunstein and Zecchina [7]
defined a dual graph to the original graph, where BP on the
dual graph is equivalent to SP on the original graph. Maneva,
Mossel and Wainwright [17] defined the dual graph differently,
introducing a parameter ρ that takes value in the [0, 1] interval.
They showed that BP on this dual graph corresponds to BP
on the original graph when ρ = 0, and to SP when ρ = 1.
This gives rise to a whole family of algorithms, and they
argued (and showed experimentally) that the best ρ is near
1, but different from 1. SP has also been formulated at finite
temperature [18]: at zero temperature, the u and h messages
takes integer value while at finite temperature, surveys take
values on a continuous interval. Wemmenhove and Kappen
[18] showed preliminary results in the application of SP to a
Sourlas code as a toy model.

Applications of SP and SP-Y to problems such as 3-SAT [2]
and 3-coloring [10] rely on decimation processes that so far are
task dependent. For SP and SP-Y to generally apply to CSPs, it
would be interesting to develop a task-independent decimation
process. Besides, when SP or SP-Y returns a paragmagnetic
solution, the decimation processes in [10], [2] depends on
walksat solvers to solve the reduced problem. For general CSP,
this involves converting the CSP to a SAT problem. It would
be interesting if BP [5] or other factor graph based inference
process (e.g. [19], [20], [15]) can take over the problem when
SP or SP-Y terminates in a paramagnetic solution.

We have used the NP-complete SGI and ISGI problems
as examples for a general CSP for SP. Instances of SGI
have been shown to be difficult for SAT solvers [16], and
have been used as test cases in the SAT 2004 Competition.
Theoretically, subgraph isomorphism is a common generaliza-
tion of many important graph problems including Hamiltonian
paths, cliques, matchings, girth, and shortest paths. A brute
force search for solutions of SGI has been formulated as
early as 1976 [21]. Applications of subgraph isomorphism
can be found in a great variety of fields, ranging from
computer vision [12], to applications in chemistry [21]. Kumar
and Torr [12] has shown that generalized BP [15] and BP
worked reasonably well for matching weighted graphs. Their
definition of potentials aims to find approximate induced
subgraphs, which we have observed to be an easier problem



for belief propagation. Encoding ISGI and SGI into a factor
graph resulted in variables with large cardinalities, making SP
intractable due to the explosion of the number of “joker” states.
Preliminary experiments have shown that pruning warning
states allows SP to be runnable on instances of ISGI of small
sizes. We intend to extend our work to SP-Y, with which we
can use to solve the approximate ISGI and SGI problem by
minimizing the number of violated constraints.

VIII. CONCLUSION

We have formulated SP and SP-Y for general CSP, and illus-
trated its application to instances of the subgraph isomorphism
problem. In our experimental results, we have shown that SP
can solve instances of ISGI for which BP failed to converge.
This paper presents a preliminary study of the application of
SP to general CSP, and much remains to be done. We hope to
use SP to solve larger instances of the SGI and ISGI problem,
and this involves formulating a good decimation process in
order to reduce the size of the instances, and deciding what
to do when SP returns a paramagnetic solution. We have also
formulated SP-Y for general CSP, which should apply to the
approximate SGI problem. SP-Y, is however, more expensive
than SP, and further research is required to come up with an
efficient version of SP-Y that can run on large instances of
the SGI problem.
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