These are a set of notes from last year. (They won a \$100.00 Neat Note Contest).

They are not completely infallible or comprehensive, but they are very good and should be helpful.

They won't work without class attendance!

Good Luck. The Management

Courtesy of Jennifer Shieh. Used with permission.

2-06-02 Lecture 1 Introduction to the Nervous System

primary to the state of the state of the primary visual cortex: retinotopic map of eye, visual field

scotoma - contiguous visual blindness in one area of the visual field

- retinotopic maps: 1 primary map (V1), 1 secondary map, many subsidiary maps specialized (color, motion) - true for monkeys/people w/ appropriate visual stimulation during development

sensory cortex: projections from nerve endings in somatotopic organization

primary auditory cortex: pitch, location \rightarrow map of auditory space accessory areas: Wernicke (speech comprehension) damage \rightarrow fluency, recognition nonsense Broca (near motor area for mouth, lips; speech production) damage \rightarrow slurred, slowed speech

H.M. - anterograde amnesia for declarative memories from bilateral hippocampal (+ accessory strucs) removal

mild temporal lobe epilepsy - personality changes rather than memory probs; Thom Jones, Fyodor Doestoevsky constellation of personality changes: - hypergraphia

- hyper-religiosity - hyposexual

Phineas Gage - frontal lobe damage. Bert \rightarrow Cookie Monster. frontal lobe - action planning, working memory, rational behavior

Cell recording: Synaptic potentials

EPSP, IPSP - graded, summate at axon hillock \rightarrow action potential (all-or-none) (~ toilet flush)

Evidence

- From patch-clamping: fire up micropipette tip so it's flat not sharp, stick against cell, not go inside; pull it up usually makes a vesicle. Whole-cell recording.

- Conductance fluctuates quantally in even multiples \rightarrow open or closed, no partial states

- From molecular bio & cloning:

- Chinese krait snake (Bungarus multicinctus) - high affinity toxin that blocks AchR at neuromuscular junction, nearly irreversible binding > α-bungarotoxin. Snake > aBtx > digest & purify > AchR

- Electric fish (rays & eels) - electric organs like DC batteries in series (50mV plates); electroplates: 1 side is all

neuromuscular junction. Grind up fish > pure preparation of Ach (pure protein) > amino acid sequence

- High-affinity toxin tetradotoxin (TTX) blocks Na⁺ channels; Drosophila shaker mutant neuromusc jn lack K⁺ ch

- Use toxins to purify proteins \rightarrow clone channels. Map mutation \rightarrow clone DNA \rightarrow look for channel seq homologs

2-13-02Lecture3 Ionic Basis of the Restina Potential

Sodlum-Potassium Pumps

Want to engineer [ion] & conductances because:

concentrated salt soln \rightarrow H₂O flows down conc gradient into cell \rightarrow lyse cell- osmotic death from McAnion burger \sim Makes ribozymes, protein; nucleic acids & proteins are negative \rightarrow eat McAnion burger \rightarrow net neg Na' Cl So, pump K^{*} in, Na^{*} out using lots of ATP (main cost of brain).
- Blocked by: *ouabain* (neurologists; quick to act, quick to wash out) Na $Na⁺$ ~~ digitalis (cardiologists use to make weak heart beat slower, strong) $Na+$ - Blood [Na¹] = saltwater [Na¹] Na $\overline{\kappa\kappa}$ From toothpaste tube expt (Hodgkin): - lots of Na⁺ outside cell; K⁺ rich, Na⁺ poor inside cell. - very little Cl inside due to McAnion burgers + Basis of Ion Selectivity A $\begin{array}{c}\n\text{Ions in H₂O soln} \rightarrow \text{shells of hydration.}\n\hline\n\text{Smaller the ion} \rightarrow \text{bigger shell of hydration}\n\end{array}\n\quad\n\begin{array}{c}\n\text{Smaller the ion} \rightarrow \text{bigger shell of hydration}\n\end{array}\n\quad\n\begin{array}{c}\n\text{Soulomb} \rightarrow \text{Sylge} \quad \text{Soulomb} \quad\text{Soulomb} \quad\text{Soulomb} \quad\text{Soulomb} \quad\text{Soulomb} \quad\text{Soulomb} \quad\text{Soulomb} \quad\text{Soulomb} \quad\text{Soulomb}$ Na+ ~;;>n~kedion \mathbf{u}^* Na⁺
K
Rb⁺ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ size R_+ naked R_0 \forall Cs' Arrange lining of channels: - size hierarchy in Na⁺ channels; let naked ions through \rightarrow Li⁺ should be even more conductive - fill channel w/ water so hydrated ion goes through \rightarrow Rb even more conductive - K⁺ channel has special lining of polar side chains so K⁺ fits in pseudo-shell of hydration but Na⁺ too small -Engineer shell to fit only desired ion. Predominant channel conductance is K^{*}. Diffusion \rightarrow net flow, excess positive charge \rightarrow voltage gradient. excess positive change Chemical energy lost by going down conc. gradient Must be picked up going up voltage gradient. $Resting potential
\n $\Delta E_{cone} = \Delta E_{electric}$
\n $\Delta E_{core} = RT \cdot \ln [K^{\dagger}]_{canc} = RT \cdot \ln [K^{\dagger}]_{canc} = RT \cdot \ln [K^{\dagger}]_{cancan} / [K^{\dagger}]_{cancan}$$ </u> $\Delta E_{\text{shockive}} = qV = zF\cdot V = RT\cdot \ln [K^*]_{\text{out}} / [K^*]_{\text{in}}$ $z = \text{charge } # (1 \text{ for } K^*, 2 \text{ for } Ca^{*2})$ $V = \frac{RT}{rF}$ in $\frac{R^*}{R^*}$ **Nemst Equation** With $z = 1$, $T = 25$ °C, $V = 58$ mV \cdot log₁₀ [K⁺]_{out} / [K⁺]_{in} Resting potential V = 58 \cdot log [20]/[400] = 58 \cdot log (1/20) = -58 log 20 = - 58 (1.2) = $\frac{1}{2}$ 69 mV \rightarrow most of the resting potential is from K^{*} Nemst batteries Bath-changing experiments -Can change conc gradient, see how resting potential changes. Δ [K⁺]_{out} by 10 $\rightarrow \Delta$ log by 1 $\rightarrow \Delta V = 58$

Almost entirely permeable to K^* , but nerve cells don't follow Nemst totally.
Goldman equation (Nemst eqn + fudge factors)

$$
V = 58 \text{ log } \frac{[K^*]}{[K^*]}_i + \frac{P_{N0}}{P_{N0}} / \frac{P_K}{P_K} \frac{[Na^*]}{[Na^*]}_i + \frac{P_{Cl}}{P_{Cl}} / \frac{P_K}{P_K} \frac{[Cl^*]}{[Cl^*]}_0
$$

 P_x / P_y = permeability ratio = ability of membrane to allow something through the holes. Permeability is a property of membranes.

If cell mostly permeable to Na⁺: $V = 58 \log(440)(50) = 58 \log 8.8 = +55$ mV (like top of AP)

AP like switching between 2 Nemst batteries/ permeabilities: -70 \rightarrow +55 \rightarrow -70 :: E_K \rightarrow E_{Me} \rightarrow E_K E_K = Nemst equilibrium potential for K^{*}

2-19-02 Lecture 4 Action Potential I

Hodklgn & Huxley bath-changing experiments

- Change [Na⁺] outside axon \rightarrow top of AP changes
- What results in switching of ion conductance channels from K⁺ to Na⁺?
- Gating mechanisms for K^* v. Na⁺ slightly different, though both voltage-gated
- Defined threshold (60 mV) for axons \rightarrow voltage important in determining AP
- Adrian & Hodgkin: axon + vasoline to block AP \rightarrow absence of AP, still got some depolarization, not enough for AP \rightarrow conducted voltage from AP \rightarrow open & close channels based on voltage out

Hodkln & Huxley's Problems

- \bullet spatial variation in V_m
	- o little patches of axon; all different \rightarrow communicating temporal variation
- - \circ can't hold conductance still to measure; axon V_m won't stay same
- \bullet How to separate I_K , $I_{N_{\text{min}}}$

flows down V gradient until at equilibrium \rightarrow no V variation at equilibrium \rightarrow Solutions
space clamp: conductors through inside & outside so voltage/conductances are same for each patch of membrane; short circuit w/ wire threaded down middle of axon + vasoline so wires don't connect; I always

Eliminating inactivation: Na channels open but don't close. Depolarize w/o repolarize.

- pronase (proteolytic enzymes)

- DDT: abolishes inactivation of insect & crustacean axons.

K channel w/ inactivation gate in fly contains cytoplasmic amino-terminal loop/tail w/ + charges. Genetic deletion \rightarrow no inactivation. Take away + charges \rightarrow no inactivation. Inject peptides \rightarrow restore inactivation.

2-25-02 Lecture 6 Neurons as Conductors: Propagation of the Action Potential

Permeability: property of membranes.

Conductance: property of system channels & ions

Harvard Bridge analogy: 3 am-permeable but not much traffic (conductance); rush hour → action potential Resting potentials: use Goldman

Synaptic potentials, reversal potentials: use Ohm's law for membranes ($I = g_K(V_m - E_K) + g_{Na}(V_m - E_{Na})$)

Fred the neuron is almost the world's worst wire. Leakage \rightarrow attenuation of signal.

Adrian & Huxley vasoline to block $AP \rightarrow$ found residual depolarization ahead of blocked AP (could contribute to AP) \rightarrow some current spreads ahead of AP to depolarize the next patch of membrane

Patch of membrane \approx leaky cable \rightarrow leaky current flow, can be modeled by ladder circuit electrotonic spread- passive spread of signals Patch of membrane **≈ leaky cable →** leaky current flow, can be modeled by <u>ladder circuit</u>
electrotonic spread- passive spread of signals
२_{o(uside)} ≈ 0 (very large area → very small R). r_m = resistance of membrane r

w/ more holes

 \sim

 P_0
 $\frac{P_0}{P_0}$ $\frac{P_0}{P_0}$ $\frac{P_1}{P_1}$

 $\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$ T_{w}

'"--

س ط

more holes, less insulation \rightarrow lower $r_m \rightarrow$ more leakage \rightarrow dV/dx greater (quicker V dissipates) Skinnier hose $\rightarrow \uparrow r_i \rightarrow$ more water leakage. Better conductor, less holes \rightarrow less attenuation. $r = \text{cone}$ conductor. $r = \text{ineulation}$, so attenuation goes with r, $1r_m \rightarrow \text{exponential}$. Attenuation α leakage

Current attenuation is a negative exponential space constant!

Longer space constant, slower decay \rightarrow farther ahead you can depolarize the next patch over threshold.

speed of propagation $\alpha \lambda \rightarrow$ increase λ to increase speed

Squid: increased $\lambda \rightarrow m$ inimize R_m, small R_i \rightarrow giant axons

People: fewer holds all in one place \rightarrow increase insulation w/ glial cells, myelinated cells \rightarrow saltatory conduction through node of Ranvier muelm

 $~\sim~\sim~$ $~\sim$ $~\sim$ $~\sim$ $~$ $~\sim$ $~\sim$ $~$ $~\sim$ $~\sim$ $~$ $~\sim$ $~\sim$ $~$ AP doesn't spread in both directions unidirectionality from fact that AP starts at hillock and travels to presynaptic end.

Membrane capacitance

- Doesn't matter for steady input, but does for brief pulses like AP or square wave

- For membranes (leaky cables) with R and C:
	- Fall-off of voltage signal is more pronounced than $e^{-x/\lambda}$. \Box \Box \Box
	-
- Giant axons and myelination \rightarrow decreased C

Fewer Na⁺ channels in cell bodies & dendrites \rightarrow no AP

2-27-02 Lecture 7 Electrical and Chemical Synaptic Transmission Chemical Synapses simplest: neuromuscular junction: motor neuron \rightarrow muscle

 $AP \rightarrow$ open Ca⁺² channels \rightarrow Ca⁺² interacts w/ vesicles \rightarrow membrane fusion \rightarrow exocytosis \rightarrow spew Ach into synaptic cleft

Postsynaptic: folds

Membranes w/ Ach receptors (ligand-gated) \rightarrow bind Ach \rightarrow open channels \rightarrow let in current \rightarrow depolarize \rightarrow AP

Electrical Synapses

- gap junctions - connections between pre and

postsynaptic side; hexagonal hole for ions to go through

- quick & simple \rightarrow pass on AP
- found in embryonic cells. cravfish (escape responses)

Postsynaptic Terminal

How do we know the synapse works?

- Otto Loewi. Frog hearts in separate dishes

Stimulate vagus nerve \rightarrow heart beats slower. Stimulate vagus nerve 1 \rightarrow heart 2 beats slower. Substance in the ringer solution: vagusstoffe = acetylcholine.

ringer

Put Ach on neuromuscular junction \rightarrow muscle contraction

iontophoresis (like electrophoresis w/ions; spritz on ions) \rightarrow gives tight spatial, temporal control of Ach application Ach: mimics real neurotransmitter effects: abundant in ground up neuromuscular junctions

agonist -- Ach, mimics biological response- could be the thing

antagonist - binds AchR but doesn't activate, like competitive inhibitors in substrate/enzyme binding

- succinyl choline, flaxedil (muscle relaxants, paralyze muscle)
- curare (B-D- tubocuranine; blow darts, v. effective)
- cobra toxin
- a-bungarotoxin (use tight binding to clone channels)

myasthenia gravis ("bad muscular weakness")- disease, make antibodies to own AchR. Use Achesterase inhibitors to allow Ach to stick around.

At n-m junction, fast response \rightarrow turned on by flooding with Ach

ოოოო м

acetylcholinesterase (hydrolyzes Ach to acetic acid + choline; use to turn off response) spritz on Achesterase inhibitors > bigger, longer response

- neostigmine
- physostigmine
- Insectisides (Raid)
- Nerve gases (Sarin, Tabun, Vx)

How do we know Ach opens channels?

Record intracellularly from muscle, stimulate nerve; fire action potential & end-plate potential simultaneously.

 α : compromise bt 2 events: AP + channels being driven to 0 mV muscle: AP w/ own time constant open channels getting driven to new potential (0 mV)

reversal potential: $I_{N=} = g_{N=} (V_m - E_{N=}) \rightarrow 0$ when V_m

Muscle end-plate \rightarrow Ach equally conductive to Na⁺ & K⁺

 $I_0 = g_{\text{Na}}E_{\text{Na}} + g_{\text{K}}E_{\text{K}}$. $g_{\text{Na}} = g_{\text{K}} \rightarrow I_0 =$ halfway between E_{Na} , $E_{\text{K}} \approx 15$ mV (slightly more permeable to K^{*} \rightarrow 0 mV) Add Ach to voltage clamped motor cell \rightarrow individual openings \rightarrow sign reversal @ 0 mV (in \rightarrow out)

Ach Receptor

- 5 subunits. a subunit binds Ach (and a-bungarotoxin)

- α helices twist \rightarrow open: K^{*} out, Na^{*} in \rightarrow drive membrane to 0 mV

3-04-02 Lecture 8 Mechanisms of Transmitter Release at Synapses How do you tell between an inhibitory and excitatory synapse? Depolarizing \neq excitatory. If E is at threshold \rightarrow neither inhibitory nor excitatory.

$$
\frac{1}{2}
$$

If reversal potential more:
- depolarized at threshold \rightarrow excitatory

 $-$ hyperpolarized at threshold \rightarrow inhibitory

Presynaptic Terminal

frog sartorius muscle

stimulate extracellularly from presynaptic motor nerve

 0200 α

record intracellularly from postsynaptic muscle (indirect measure)

Ca⁺² is important! Enters through voltage-gated channel \rightarrow induces vesicle fusion \rightarrow quanta release Series of experiments in low-Ca⁺² solns.

Block AP \rightarrow measure postsynaptic extrusion in different $[Ca^{*2}]$ λ

size of
EPSP

$$
[Ca^{*2}]^4 = 4 Ca^{*2}
$$
 to bind for a postsynaptic event

$$
[Ca^{*2}]
$$

- No Ca⁺² in extracellular solution (used Co^{+2} antagonist in soln). Iontophoretically apply Ca^{*2} .

- 1. Neuromuscular transmission needs Ca⁺².
2. Spatial localization
-

- needs $Ca⁺²$ near presynaptic terminal for normal transmission

-
- 3. Temporal localization
- Ca⁺² long before AP invasion \rightarrow nothing
	- Ca \cdot long belone AP invasition
	- Ca⁺² at AP invasion \rightarrow little
	- Ca⁺² just before AP \rightarrow transmission
	- needs Ca⁺² just before AP gets there

Leave nm junction alone (no extracellular stim) \rightarrow mini potentials all same size & timing (quanta) Katz: maybe quanta from vesicles releasing transmitter

Detennine if mini-quanta are from Ach

- use Ach antagonists (e.g. curare) \rightarrow bumps go away.

- use Achesterase inhibitors (e.g. neostygmine) \rightarrow bumps get bigger, longer, potentiated

How to prove big neuromuscular EPSP is from little bumps?

- First, make AP smaller/disappear by lowering [Ca⁺²]

- evoked release \rightarrow small, spontaneous miniature end-plate potentials in multiples of 1 mV

Lots of vesicles waiting to be activated, but w/low $[Ca⁺²]$, small chance of activation. Large synapse \rightarrow independent probabilities; each vesicle has equal chance of release, can be described by: Large synapse \rightarrow independent probabilities; each vesicle has equal ch
Poisson distribution $P(x) = m^x e^{-m} / x!$, $x = 0, 1, 2, 3...$ (# events) $m =$ mean quantal content, avg # (vesicles) released per stimulus; vary by varying $[Ca⁺²]$

Frequency of failure = $P(0) = e^{-m}$ \rightarrow if know frequency of failure, then know mean quantal content

Do quanta correspond to vesicle exocytosis?

- -Arrange for AP to reach terminal just as piston goes down & smashes synapse onto frozen metal -Vesicles caught in the act of fusion
- Cell clamp mast cells w/ big vesicles, put AC current, measure impedance. current \propto capacitance - capacitance increases stepwise manner α surface area \rightarrow area increasing from vesicle exocytosis
- Yes, secretion of quanta is result of vesicle exocytosis.

3-06-02 Lecture 9 Indirect Mechanisms of Synaptic Transmission

Quantal analysis

Presynaptic events affect probability of vesicle release \rightarrow m = mean quantal content = avg # [vesicles] released per action potential, not amount of transmitter inside vesicles. All vesicles are created equal (for our purposes). measure Δ m \rightarrow Δ p(vesicle release) \rightarrow Δ presynaptic terminal

Postsynaptic events $\rightarrow \Delta$ in mV response to transmitter = quantal size $\rightarrow \Delta$ end-plate potentials \overline{v}_1 = quantal size = postsynaptic response in mV to exocytosed vesicles worth of transmitter \rightarrow change in postsynaptic cell or synaptic cleft

To find change in quantal content

• Do something and wait for nothing to happen \rightarrow look at frequency of failures, P(0) = e^{m}

To find change in quantal size

Do nothing and wait for something \rightarrow measure response to nothing, spontaneous release

Ca+2-Induced vesicle exocytosis (2000)
Ca+2-Induced vesicle exocytosis (2000)
Ca+2-Induced vesicle exocytosis (2000) a^{*2} -induced vesicle exocytosis
esicle membranes

-
- A^2 synaptotagmin (Zn⁺² fingers)
- synaptophysin
-
- presynaptic synaptophysin
presynaptic synaptobrevin (target for toxins) membrane - rab (GTP-binding site) GTP and

- Make clones of the proteins \rightarrow gene sequencing
- Use toxins: tetanus toxin (blocks vesicle transmission at nm jxn)
- botulinium toxin (affect protein at presynaptic terminal)

Synaptic Modulation & Medium-complex Synaptic Behavior

Orbell' effect- potentiation of neuromuscular transmission when stimulating sympathetic nervous system hormones/neurotransmitters: Loccumum toxin (anot protein at presymptot annually
aptic Modulation & Medium-complex Synaptic Behavior
elli effect- potentiation of neuromuscular transmission when stimulating
nones/neurotransmitters:
adrenaline (Latin)

-
- **.** adrenaline (Latin) = epinephrine (Greek) = EPI
 e noradrenaline = norepinephrine = NA \rightarrow no methyl group
- Fight or flight response \rightarrow want to potentiate muscle $\left\{\begin{array}{c}\text{Right} \\ \text{Right} \end{array}\right\}$

To find out if presynaptic or postsynaptic

- Measure quantal size (∇_1) and quantal content (m)

- Presynaptic (stronger synapse) \Rightarrow p(failure) decreases \Rightarrow increase m
- Postsynaptic \Rightarrow increase in response \Rightarrow increase \vec{v}_1

-
- \rightarrow shows both pre and post synaptic changes

NA binds to α -adrenergic receptors on presynaptic side \rightarrow increase m Epi binds to **B-adrenergic** receptors on postsynaptic side \rightarrow increase ∇ ,

soproterenol = used for anaphalactic shock **β-blockers – heart attack.**
stage fright

Pure a-activity: NA + β -propanolol \rightarrow large increase in m (change in resistance, ingoing current same) Pure B-activity: isoproterenol + clonidine \rightarrow change in ∇_1

 $LHRH =$ luteinizing hormone releasing hormone $nAchR =$ ligand-gated channel to let in Na⁺, ionotrophic $mAchR =$ looks like β -adrenergic receptor, rhodopsin: 7member transmembrane, coupled to G-protein; close K' ch

LH released from pituitary gland; 2 tissuesneuronal part sends signal to hormonal part. $iontophorse$ se LHRH \rightarrow late slow response

Late slow epsp only from B cells BUT immunoactivity stain only on presynapse of C cells \rightarrow LHRH diffuses from C presynapse to B postsynapse (only B has receptors for LHRH) ..\ ~~ CU~(W~.Ac , N:\IJ

occlusion (cosaturatlon) experiments

- e.g. LHRH response occludes mAchR response
- . implies converging downstream pathways
- LHRH & mAch \rightarrow converge on closing m-channel using same 2nd messenger system

-gill & siphon withdrawal response (reflex)

- monosynaptic component (sensory \rightarrow motor) + polysynaptic (sensory \rightarrow interneurons \rightarrow motor) Reflex modulation

habituation- decrease in responsiveness to repeated stimulus (gill withdrawal reflex can habituate) sensitization- increase in responsiveness following strong noxious stimulus; dishabituation

 $(tail shock \rightarrow strong with drawnal reflex)$

Presynaptic or postsynaptic- quantal analysis

- Stimulate sensory neuron extracellularly

 $-$ increase in rate of failures \rightarrow presynaptic

- Post-tail shock, see: (monoamines)
dopamine (DA)

Post-tail shock, see: (monoamines) octopamine \bigcirc^{PH} serotonin (5-HT, 5-hydroxytryptamine) (Of 0 topamine) (Of 0 the \bigcirc^{PH} . $^{\text{H}_\text{OM}}$ $\begin{bmatrix} \circ \\ \circ \\ \circ \end{bmatrix}$

 kH_2
CH₂M^{CH₂</sub>
- increases in all 3 in abdominal ganglion after shock}

- iontophorese them in area of synapse (sympathetic ganglion) \rightarrow only 5-HT produces response

 \rightarrow tail shock \rightarrow 5-HT \rightarrow increase cAMP (2nd messenger system)

PKA - catalytic (C) + regulatory (R) subunits; C phosphorylates proteins, R attaches to C to stop it; cAMP makes R drop off C to activate PKA

PKI (Walsh inhibitor) - constitutive inhibitor; shuts off PKA (binds to C, not to cAMP) ~ no transmission; blocks synaptic facilitation!

Apply 5-HT or tail shock to SN \rightarrow repolarization down very short time later

Block K^* channel (TEA) to make effect larger. Facilitation shuts off K^* channel.

TEA + facilitation \rightarrow bigger repolarization effect from decreased g_K

Close K^{*} channel \rightarrow delay repolarization of AP \rightarrow more Ca⁺² \rightarrow more vesicle fusion \rightarrow more transmitter release Patch clamp expts \rightarrow PKA closing K^{*} channels (K-S channels)

Tail shock \rightarrow excite neurons \rightarrow 5-HT \rightarrow cyclase \rightarrow PKA \rightarrow close K^{*} channels \rightarrow Ca⁺² \rightarrow more vesicle release

Aplys/acal/fomica \$fI\1~t~ - learning-like effects fU;{b~-/,,""=, ~' - traceableganglionic circuit . t~ -L --~ -~ f~

3-13~2 Lecture 11 Leamina and Memorv I

Identified cell co-culture experiment

- If you tie a string around axon so cell juice doesn't come out, culture SN & MN \rightarrow they die - If you tie a string around axon so cell juice doesn't c
- Spritz 5-HT -> synaptic facilitation in a dish for 1 hr

- Spritz 5-HT → synaptic facilitation in
- 5 x 5-HT → facilitation for ≥ 24 hrs.

- 5 x 5-HT → facilitation for ≥ 24 hrs.
- + inhibitors of transcription (actinomycinD) & translation (anisomycin) → block short-term, not long-term facil

Memory in a dish

1. Motphoiogical changes

- Aplysia: sensitized repeatedly \rightarrow bigger & more synaptic (SN) endings

-4 proteins down regulated after LT facilitation (with 10 x 5-HT)

AoCAM (Aplysia NCAM) - cell adhesion molecule, non-specific, abundantly made extracellular stickum downregulated \rightarrow make less with neural plasticity \rightarrow melt old connections

2. \cancel{S} S-channel closure
 \cancel{CPE} (cAMP manage element)

 c AMP \rightarrow PKA \leq CRE (cAMP-response element) - TGACGTCA \rightarrow cAMP inducibility nsaiptionalevents ACTGCAGT

 \overline{v}

MN.

promoter bashing

CREB-PKA binding site for phosphorylation, binds to CRE CREB^{*} phosphorylation. Inject CRE oligomers, but not other landing sites, into nucleus of SN \rightarrow block LTM, not STM Antibodies to CREB also block memory

Associative Learning

Pavlovian conditioning.

Dog: meat powder \rightarrow salivation; bell \rightarrow no saliva; meat powder + bell \rightarrow saliva \rightarrow bell \rightarrow saliva Can make Aplysia learning more specific.

Poke A + tail shock \Rightarrow poke A alone \Rightarrow jumpy, sensitization; poke B alone \Rightarrow not as much

 $\frac{1}{2}$

Pair aversive stimulus (or 5-HT) w/firing for one, not other. Both synapses stronger but paired \rightarrow greater synaptic facilitation. $Q'QQQ$

AP amplifies sensitization response. In AP, Na⁺ in, K^{*} out, Ca⁺² in, Ca⁺² \rightarrow 2nd msgr. Train in Ca⁺²-free soIn \rightarrow no amplification.
Ca⁺² + 5-HT- \rightarrow adenylyl cyclase \rightarrow cAMP \rightarrow learning Ca^{*2} binds to calmodulin \rightarrow CaM

Drosophila associative learning w/odors

Mutants that learn poorly: - dunce: phosphodiesterase (PDE) problem

- -rutabaga: adenylyl cyclase prob
- -amnesiac: forgetful; mutation in strudural gene for peptide neurotransmitter; bad CREB

LATTY

Vertebrate Learning

H.M. & ischemic patients \rightarrow hippocampus is important for memory but memories aren't stored there Trisynaptic circuit in hippocampus
CAI pyramidal Ce **Learning**
emic patien
circuit in hip
Schaffer

coli participate organise anti dentate region

long-term potentiation (LTP)- potentiate synapse, increased throughput transmitter: glutamate (most excitatory synapses use glu) Glu receptors in CA3 (metabotropic 7-transmembrane domain)

 μ

3-18-02 Lecture 12 Learning and Memory II

D.O. Hebb

- What synaptic properties are needed for animals to learn associatively? Synaptic path from visual stimulus to salivation Synapse BA is invariant, excitatory (BORING) Latent pathway CA in existence o Can teach dog in 15-30 min; faster than able to make new synapses Synapse CA initially ineffective (ring bell->nothing), but strenothened if C + A fire simultaneously > Hebbian synapse Presynaptic terminal releases transmitter at same time as postsynaptic cell fires (depolarization) Hebbian synapses found in CA1 cells Is LTP Hebbian? t facilitated Tetanus specific to synapse SC1 Single pulse SC₁ + postsynaptic depolarization (current injection) → LTP If tetanus to SC₁ + hyperpolarize CA1 cell (negative current injection) \rightarrow no LTP LTP appears Hebbian tetanus current **NMDA Receptors** θ ligand-cated \rightarrow opened by glutamate (or NMDA) Mg⁺² blocks channel from ion flow o postsynaptic depolarization \rightarrow charge repulsion \rightarrow kick out Mg permeable to Na⁺ and Ca⁺² (2nd messenger) voltage and ligand-gated \rightarrow simultaneity detector **AMPA Receptors** permeable to Na* Is Ca⁺² important for LTP? Yesl Inject Ca⁺² into CA1 \rightarrow LTP o Ca⁺² can substitute for simultaneous firing What does Ca⁺² do? o 2nd messenger effects of Ca⁺² binds to calmodulin → changes shape → CaM adaptor → activates CaM kinase II
	- activates protein kinase C

Kinases

phosphorylates things w/ catalytic subunit

contains inhibitory domain saying "Ooh, phosphorylate mel"- pseudosubstrate (same sequence as P-sites on substrate)

CaM kinase II blocks pseudosubstrate sites \rightarrow free up catalytic subunits \circ block CaM kinase II \rightarrow no LTP

PKC induces a shape change \rightarrow free up catalytic subunits

Both pre- and post- synaptic effects found.

Experiments

 $HA \rightarrow no$ declarative memory

Morris water maze task

- kiddie pool w/no visual cues, filled w/ milky water; only spatial cues on walls- distal cues; hidden platform \bullet
- spatial learning task ٠
- Beandry, Lynch & Morris: shoot up rats intraventricularly w/APV ->blocks LTP->blocks water maze learning \bullet
- Tonegawa: knockout NMDA receptors in CA1 cells → no LTP ٠

inhibitory domain