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Abstract
We use the Suzuki-Trotter (ST) transformation to map exactly fully quantum me-
chanical Hamiltonians in d-dimensions to a classical system in (d + l)-dimensions.
We study the two-dimensional classical Ising model that is equivalent, via the ST
mapping, to the XXZ-Heisenberg quantum-spin chain. By imposing appropriate
boundary conditions to the Ising model, the spin waves of the quantum model are
studied. We reproduce the entire energy spectrum of the two-spin-wave states and
derive bound-state energies of the three-spin-wave states.

Next, I use the ST mapping to study the fully quantum mechanical XY model
in two dimensions. In the equivalent classical model, the phase transition is intu-
itively described and new order parameters are invented. A Monte Carlo (MC) study
confirms that this picture's transition takes the Kosterlitz-Thouless form. Two addi-
tional local symmetries which have, to date, been neglected in Quantum Monte Carlo
simulations are revealed and used.

Next we study phase behavior in gels. The newly developed Bond Fluctuation
Method (BFM) allows cross-linked polymer networks to be studied via Monte Carlo
simulation. I study the scaling behavior of gels, determining the scaling exponent v
in two and three dimensions. The distance between cross-links follows the scaling law
for self-avoiding random walks, RL N, which confirms a supposition of Flory.

Tanaka and colleagues showed that ionic gels, which are composed of acidic
monomer units, exist in expanded or collapsed phases. Two interactions - the qual-
ity of the solvent and the work done by a gas of counterions - suffice to characterize
the first-order phase transition in these BFM simulations in two dimensions. A tech-
nique is introduced which prevents local attractive interactions from hindering global
relaxation.

Recent experiments by Annaka and Tanaka have yielded multiple coexistence
loops for gels with random positive and negative ionic groups, demonstrating the
existence of up to seven distinct macroscopic phases distinguished by volume discon-
tinuities. We introduce for this system a microscopic model in which the randomness
translates into random fields resulting in competing quenched random interactions in



a spin system. The many phases observed in this model are similar to the experimen-
tal results and are understood as randomly coordinated phases.
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Title: Professor of Physics
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Chapter 1

Introduction

The Principle of Universality tells us that for a wide variety of physical systems

the order parameter behaves in the same way when the underlying symmetry of

the microscopic interactions is the same. An order parameter is an experimentally

measurable quantity which distinguishes phases of matter. Order generally increases

as the temperature is reduced; for example, molecules in the gas phase are unbound

and free to move around while in the liquid phase molecules are loosely bound to ever-

changing neighbors while molecules in the solid phase are frozen into fixed relation

to their neighbors.

Two commonly known phase diagrams are water's solid-liquid-gas phase diagram

[Fig. 1-1(a)] and the phase diagram of a ferromagnet [Fig. 1-1(b)]. Increasing the

temperature at one atmosphere of pressure changes ice to liquid water and later to

water vapor (steam). The density of water changes discontinously at the transitions

at that pressure; such discontinuous transitions are called "first order." At the tran-

sition, the two phases coexist; for example, ice cubes can sit in a glass of water at the

freezing temperatures.

Note that the liquid-vapor line terminates in a point labelled C at high pressure

and high temperature. High pressure increases the density of the gas phase and high

temperature decreases the density of the liquid phase. The difference between the

densities of the two phases decreases until eventually it goes to zero at point C. Point

C is an example of a "second-order transition" or "critical" point.

9
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Figure 1-1: (a) Schematic phase diagram for water plotted against pressure and
temperature. The solid lines indicate discontinuous or "first-order" phase boundaries
between the solid, liquid, and gas phases. The point labelled T is the triple-point
where all phases can coexist. The point labelled C is a critical point, where transitions
are continuous. The phase diagram of a ferromagnet is depicted in (b). The first-order
boundary extends from zero temperature to the critical point C.

Passing through critical points or second-order lines, the order parameter (in this

case, the difference between the densities of the liquid and vapor phases) changes

rapidly though not discontinuously. Fluctuations in observables are generally greatest

at critical points.

The Ising-type ferromagnet phase diagram [Fig. 1-1(b)] is qualitatively similar to

the liquid-gas region of Fig. 1-1(a). As depicted in Fig. 1-1(b), at high temperature

there is no net magnetic moment but at low temperature the ferromagnet sponta-

neously magnetizes in one of two directions. If a field H is applied in the direction

opposite to the magnetization, the magnet will eventually realign with a marked

change of magnetization. The order parameter for this system is half the difference

between the magnetization of the up and down phases at H = 0.

10
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Figure 1-2: The magnetization M which is the order parameter for ferromagnets
is plotted as a function of temperature. Above the critical temperature, thermal
fluctuations destroy ferromagnetism. The system magnetizes at low temperature.
The "critical exponent" f3 characterizes the growth in the order parameter near Tc .

As depicted in Fig. 1-2, the order parameter behaves as a power law of the distance

from the critical temperature

MI T-T.,) (1.1)

In Eq. 1.1, I have used the notation of magnetism (the net magnetic moment M is

the order parameter); 3 is the order parameter critical exponent. There are different

sets of critical exponents - eg: {/, a, v, ... } - as there are different underlying

symmetries and space dimensionalities. The definitions for various exponents are

given in Stanley's book. 1

Let's return to first-order transitions of Fig. 1-1. When one passes through a

first-order transition faster than the system can respond and reach the new global

equilibrium phase, hysteresis is observed.

1H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena, (Oxford Univ. Press,
New York, 1971).
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Figure 1-3: The magnetization M is plotted as a function of applied field H. The solid
curve labels equilibrium phases (up and down), dashed curves labels how a phase can
extend across a first-order transition boundary into the other phase's domain before
eventually collapsing to the true equilibrium phase.

Figure 1-3 shows that if one applies a field H to change phases through a first-

order transition, often the initial phase persists into the final phase. This behavior

is well-known for magnets, and weatherpersons know hysteresis as "supersaturation"

when the relative humidity temporarily but measurably exceeds 100% before rainfall.

When hysteresis is pronounced, the observed state of the system can depend strongly

on the thermodynamic path taken to the final temperature and field.

Successful theories for these systems have been built around classical (n-compo-

nent vector with commuting operators) representations of the local variables.2

On the smallest length scales, however, matter interacts according to the rules of

quantum mechanics so representing the local variables as n-component real vectors

which commute is not truly accurate.

Quantum mechanics complicates calculations and intuitions because there is a

quantum operator, in place of a classical vector, to represent some local magnetic

2 Phase Transitions and Critical Phenomena, edited by C. Domb, M.S. Green, and J.L. Lebowitz
(Academic Press, New York, 1976-1994).
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moment; only the quantized value of the moment in some basis can be known.

What makes quantum mechanics so intuitively unnatural is that a spin which

would be represented classically as a vector in three-space an take (for S = 1/2) only

two discrete values - called the "+" and "-" states - along the measurement direc-

tion. The other level of complexity that quantum mechanics introduces arises from

the non-commutivity of operators; the result of an observation can change depending

on the order in which quantum measurements are made.

We were interested in solving problems in statistical physics that fully incorporate

quantum mechanics into model Hamiltonians. To attack quantum statistical mechan-

ics problems, we follow Suzuki who employs an exact identity of Trotter's for mapping

a quantum problem in d dimensions to a classical (commuting operators) system with

somewhat complicated - but local - interactions in one additional dimension. One

great advantage to working with the (d + 1)-dimensional system is that the local

variables take values of ±1 and commute (as long as local constraints are satisfied)

which enables computer simulations as well as rigorous mathematics. The Quantum

Monte Carlo (QMC) technique popularized by Suzuki has allowed investigators to

accurately study properties of quantum Hamiltonians.3

We studied the excitation spectrum of the spin wave problem working within the

Suzuki-Trotter (ST) formalism without resorting to QMC. This work is presented in

Sec. 2.1. In this model, X and Y components of quantum spins (S = 1/2) interact

with the same interaction strength K while the Z component coupling K, may be

different. The excitation spectrum for small deviations from the fully aligned state

(which is the ground state for K > K) was calculated in this formalism. Exact

solutions are obtained in agreement with previously published results derived from

another technique, namely the Bethe ansatz. New results are also obtained.

To verify that correctly including the quantum interactions does not effect the uni-

versality of phase transitions I studied the quantum XY model which is presented in

Sec. 2.2. Other investigators have used QMC to show that the Principle of Universal-

ity extends to quantum systems. The most successful of these calculated correlation

3 Quantum Monte Carlo Methods, edited by M. Suzuki (Springer-Verlag, Berlin, 1987).
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functions for large systems and showed that their results agreed with the classical

theories. One difficulty with these approaches is that there is no convenient intuitive

mental picture of what is happening to the quantum spins which distinguishes the

disordered phase from the low temperature phase.

A general picture of how local variables look in different phases emerges and helps

in our understanding of the transition. One example is the liquid to vapor transition

where one can picture molecules being compressed by high pressure into the liquid

form on the one hand, but being impelled to fly apart by thermal energy on the other;

another example is the magnetic case where one can imagine that vector magnetic

moments want to align but thermal energy seeks to randomize them; yet another

example is Kosterlitz and Thouless' picture of the binding and unbinding transition

of topological defects called vortices.

In Sec. 2.2, I show that in the ST formalism, there is an intuitive way of under-

standing the quantum XY phase transition. I hope that this visual/intuitive way of

looking at the problem may allow some of the renormalization-group techniques to

be used effectively. The renormalization-group procedure requires the amalgamation

of local quantities (spins) into macro-spins and calculating the effective couplings

on progressively larger length scales; therefore, one must first learn how to combine

quantum spins into macro-quantum spins.

Another interesting research area in statistical physics - how randomness effects

phase behavior - is explored in Chapter 3. Because many of the solved models are

highly idealized, it is important to know whether real materials with random imper-

fections will behave in the same universality class as the theoretical ideal predicts.

That is, in part, the subject of my colleague Alexis Falicov's doctoral work.

Random systems are also particularly interesting because they present a starting

point for studying the complex interactions of proteins or DNA. Often, one is inter-

ested in how random competing interactions can lead to multiple stable configurations

and thus multiple observable phases. Statistical physicists often study these types of

systems under the name "spin-glasses."

Proteins are polymer chains with different monomeric groups which interact with

14



competing Coulombic, hydrogen-bonding, and hydrophobic-hydrophilic interactions.

These interactions, for particular chain sequences, lead to uniquely folded structures

which act as catalysts for biologically important reactions. One puzzle concerns why

particular sequences have biological relevance while the vast majority of sequences do

not.

A logical starting place in an effort to solve this puzzle is to study gels made up

of random monomer sequences to distinguish the behavior of purely random systems

from what you would see using special sequences. Professor Tanaka's group at MIT

lately has also been interested in creating "smart gels" which use receptors on the gel

or other means to induce a phase transition to perform a useful function. One such

system is a gel which undergoes a phase transition when saccharides are present 4 and

therefore serves a diagnostic function.

In Chapter 3 of this thesis, I study systems in which random interactions play

an important role: polyampholyte gels. The term "polyampholyte" refers to poly-

mer chains with monomers (the links in the chain) composed of acidic and basic

components. Unlike polyelectrolytes which have only acidic or only basic monomers

and are swollen by self-repulsion, attractive Coulombic interactions may dominate in

polyampholytes, leading to a collapsed phase. Polymer chains are hooked together

by multi-functional units called "cross-links" or "branch points" to make a random,

globally connected network. Experiments conducted by Professor Tanaka's group on

polyampholyte gels showed a very rich phase behavior with many stable configura-

tions at given external conditions (i.e., temperature and pH).

Two programs of investigation are used here for studying gels: In the first program

(Secs. 3.1 and 3.2), a Monte Carlo simulation technique called the Bond Fluctuation

Method (BFM) is used to study model gels. Using the BFM, I first study how the

volume of gels and the lengths of the polymer chains in gels scale with the number of

links in the chain. Then, I introduce into the BFM simulation interactions between

the gel and the solvent to simulate the phase transition in ionic (polyelectrolytic) gels.

In experiments conducted by Tanaka and colleagues on ionic gels, only two phases -

4 E. Kokufata, Y.-Q. Zhang, and T. Tanaka, Nature 351, 302 (1991).
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swollen and collapsed - were observed. The swollen phase is the gel analog of the

vapor phase; the collapsed phase, of the liquid phase.

In the second program of investigation (Sec. 3.3), we model gels composed of

randomly distributed monomer types (acidic or basic) subject to Coulomb interac-

tions. For pH pK, acidic monomers are predominantly ionized or neutral while for

pH pKb, basic monomers are predominantly ionized or neutral. For these experi-

ments, there is a pH region where both types are ionized and in this region oppositely

charged groups can form ionic bonds, reducing the size of the gel. We consider cou-

pled density and charge local variables in our model Hamiltonian and achieve good

qualitative agreement with novel experimental results.

Finally, in Chapter 4, I present my conclusions and a look to the future.

16



Chapter 2

Quantum Systems

In this chapter, I describe two quantum statistical mechanics calculations entitled:

"Spin-Wave Bound-State Energies from an Ising Model" and "Entanglement Transi-

tion in the Two-Dimensional Quantum XY Model." Both employ the Suzuki-Trotter

formalism to map a spin-' problem in d dimensions onto a classical problem in (d+ 1)-

dimensions.

2.1 Spin-Waves

The first system studied is the quantum XXZ-chain. Bethe calculated the excitation

spectrum of single spin-deviations and two spin-deviations in the Heisenberg case in

which X,Y, and Z couplings are equal. The Heisenberg Hamiltonian is

' = -AC E a ~,,, o, (2.1)
n

where ro denotes the Pauli spin matrices.

A clear treatment of Bethe's solution is given by Feynman.' I shall summarize

Bethe's results. A ferromagnetic ground-state is one in which all of the spins are

aligned; for example, + + + +). For single-spin deviations, the eigenfunctions are

1 R.P. Feynman, Statistical Mechanics: A Set of Lectures, (Benjamin/Cummings Publishing Com-
pany, Reading Massachussetts, 1972), Chapter 7.

17



Fourier transforms of kets labelling the site with the minus spin.

k) Z n ), (2.2)
n

with In) denoting a spin-deviation (-) at site n. The spin-wave energy relative to

the fully aligned state is

E = 4A(1 - cos k). (2.3)

Bethe also considered the case of two-spin deviations. He realized that it is ener-

getically favorable for two-spin deviations to sit next to each other - one less bond

is broken - and that spin-wave bound-states were possible. He solved for com-

plete energy spectrum of two spin-deviations with an ansatz for bound and unbound

wavefunctions. In his approach, an amplitude is assigned to unphysical kets, namely

those states in which two-spin deviations are assigned to the same site. Doing this

eliminates one equation at the expense of an additional constraint on the wavefunc-

tions which is satisfied by his ansatz. His approach can be generalized to more spin

deviations although it becomes progressively more complicated to solve.

In the following paper, "Spin-Wave Bound-State Energies from an Ising Model,"

we study a slightly more general Hamiltonian than Eq. 2.1, the quantum XXZ-

chain. This published work may be found in Phys. Rev. B 49, 1073 (1994). We

use the Suzuki-Trotter mapping to map this quantum problem in one dimension to a

(l+l)-dimensional classical problem and calculate energy spectra including the three

spin-wave bound states. The calculation proceeds without assigning amplitudes to

unphysical kets.

18



Spin-Wave Bound-State Energies

from an Ising Model

Daniel P. Aalberts and A. Nihat Berker

Department of Physics, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139

Abstract

We study the two-dimensional classical Ising model that is equiv-

alent, via the Suzuki-Trotter mapping, to the XXZ Heisenberg

quantum-spin chain. By imposing appropriate boundary condi-

tions to the Ising model, the spin waves of the quantum model

are studied. We reproduce the entire energy spectrum of the

two-spin-wave states and derive bound-state energies of the three-

spin-wave states. Thus, the continuum energetics of the elemen-

tary excitations of a d-dimensional quantum model are contained

in the equivalent (d+ 1l)-dimensional classical model, even though

the latter is a discrete-spin model.

PACS Numbers: 75.30.Ds, 03.65.Ge, 05.30.Ch, 64.60.Cn

19



I. Introduction

Noncommuting quantum-mechanical operators bring an added degree of difficulty to

the statistical-mechanical treatment of model systems. A general step along the direc-

tion of relieving this difficulty was taken by Suzuki [1], who showed that the Trotter

formula [2] can be employed to map, rigorously, d-dimensional quantum-mechanical

systems onto (d + 1)-dimensional classical systems with somewhat complicated, but

local, interactions and constraints. This mapping for the partition function is similar

to the Feynman path-integral formalism for particle propagators in many-body the-

ory. The Suzuki-Trotter transformation has to date been exploited to enable Monte

Carlo simulations, which are carried out on the equivalent (d + 1)-dimensional classi-

cal system [3, 4, 5, 6]. Unfortunately, it has not been much used within closed-form

treatments of model systems.

The classical system that is the upshot of the Suzuki-Trotter mapping is com-

posed of discrete, namely Ising-type, local degrees of freedom. Therefore, a question

that arises is how the latter system incorporates elementary excitations of the initial

quantum-mechanical system such as spin waves, that have a continuously varying en-

ergy spectrum. We have investigated this question with XXZ Heisenberg magnetic

chains. We find that its answer lies, quite generally, in the extreme spatial anisotropy

of the (d + 1)-dimensional classical system. In the process of this study, working with

the equivalent classical Ising system, we have reproduced the entire energy spectrum

of the two-spin-wave quantum states and we have derived bound-state energies of the

three-spin-wave quantum states.

II. The XXZ Heisenberg Magnetic Chain and Its Equivalent

Classical Ising Model

The XXZ Heisenberg chain is defined by the Hamiltonian

- f-xxz = K (of`c 1 + oj') + K,7 ) + Z E i, (2.4)
i i

20



where = 1/kBT, and ao- are the Pauli spin matrices at site i. For K = Kz, 0 <

IKI < KZI, IK > IKZI > 0, K = 0 K, and K 0 = K= the model respectively

reduces to the Heisenberg, easy-axis Heisenberg, easy-plane Heisenberg, Ising, and

XY models. This model has been treated by Bethe [7], Dyson [8], Orbach [9], Wortis

[10], and others, within its quantum-mechanical formulation.

Suzuki has mapped [1] the XXZ chain onto a classical system as follows. The

Hamiltonian is separated into two terms, each containing every other bond. The

Trotter formula states that

e- 2 = lim (e-Ol/n e-32/n) n (2.5)

the corrections being of order n- 1. Suzuki uses this formula by inserting a complete

set of states between each of the 2n factors in the right side. In each -7ij/n,

the operators associated with a given bond (i,i + 1) commute with all other oper-

ators. Thus, the matrix elements, resulting from the insertion of the complete set

of states, themselves factorize to local calculations of matrix elements of single-bond

operators. The result of such a calculation amounts to a local coupling in a clas-

sical two-dimensional Hamiltonian, where the degrees of freedom are the quantum

numbers of the single-bond operators in two adjoining inserted states.

The equivalent classical d = 2 anisotropic model is finalized, after the insertion of

states and the calculations just mentioned, by taking matrix elements of the operator

in Eq. (2.5), in manners to be specified in Sec. III, which determines the classical

boundary conditions. The resulting model is composed of classical spins mij = +1

at each site (i,j) of a square lattice. These classical spins are coupled by local

interactions that are grouped into every other square in a checkerboard pattern, as

shown in Fig. 2-1. Thus, in this figure, each darkened square contributes to the

21
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Figure 2-1: The classical d = 2 model that is equivalent to the XXZ Heisenberg
quantum-spin chain (Ref. [1]). There is a classical variable mij = +1 at each site
(i,j). These are coupled only in the shaded squares, with the interaction of Eq. (2.6),
which shows that the model is extremely anisotropic. There are N (the number of
the original XXZ Heisenberg spins) sites horizontally and 2n + 1 (the number of
inserted sets of states plus 2) sites vertically. Various specifications of the horizontal
boundary conditions determine the property of the original quantum system that is
studied via the classical system (Sec. III).
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exponentiated Hamiltonian a term

A 0 0 0

e-P37- o(mij ,mi+l j ,mi,j+l ,mi+l,j+l ) = O COOCBO
O0 0 A

with A = eKz/n, B = e - K ' /n cosh(2K/n), and C = e- Kz/n sinh(2K/n), (2.6)

where the rows or columns are addressed by the states (+1, +1), (+1, -1), (-1, +1),

(-1, -1) of (mij, mi+lj) or (mij+, mi+l,j+l) respectively. The index i ranges from 1

to N, the number of initial quantum spins, and the index j ranges from 0 to 2n, the

number of inserted sets of kets plus the two states of the matrix element of Eq. (2.5).

The expression in Eq. (2.6) is the direct result of the local calculation, described in

the preceding paragraph, of

mij,mi+ljlexp [(K/n)(o--i+ + aY'i'+) + (K/ )o o,+l] mij+l,mi+lj+l), (2.7)

where mij is the eigenvalue of af in the inserted set j. The above clearly corresponds

to a classical spin-' Ising model, with local constraints, namely excluded nearest-

neighbor quartets of states, due to the zeroes in the matrix in Eq. (2.6).

III. Boundary Conditions of the Classical Model

A. Corresponding to the partition function of the XXZ model

In Suzuki's original work, the trace of Eq. (2.5) is taken, in order to obtain the

partition function of the XXZ Heisenberg model. This yields the partition function

of the equivalent classical d = 2 model with periodic boundary conditions along the

j direction as defined in Eq. (2.6), mi,o mi,2n. The boundary condition along the i

direction is always determined by that of the XXZ model, which we take as periodic

in the entirety of this article. Furthermore, N is taken to be large (approaching the

thermodynamic limit) and even.

23



B. Corresponding to the z-aligned state of the XXZ model

The diagonal matrix element of Eq. (2.5) with respect to the quantum

state I{mi = +1}) yields, in the classical d = 2 model, the pinned "up" boundary

conditions mi,o = +1 = mi,2n. The constraints [Eq. (2.6)] do not allow the creation

of a "down" spin (mij = -1), so that only one state, {mi,j = +1}, occurs in the

classical system. Thus,

({mi = l}leIPXXz{mi = +1}) = e-PHI(±1=+1,+ 1i+1)

= ANn = eNK. (2.8)

The energy of the z-aligned state, NKz, is the ground-state energy of the XXZ model

for K > IKI and K. = K.

C. Corresponding to a single spin wave

Consider the matrix element of Eq. (2.5) between states such as

I{mi, = +l},m=, - -1) Ir). This yields the partition function of the classical

d = 2 model with pinned up boundary conditions at rows j = 0 and j = 2n, except

for the spins at i = r and i = r2n, respectively, which are pinned down. Since

the constraints [Eq. (2.6)] do not allow the creation or destruction of a down spin,

each row j has one and only one down spin, which, from row to row, may remain at

the same position r, or move to r ± 1 with an interaction square, respectively, with

Boltzmann weight B or C according to the interations in Eq. (2.6). Consider the

transfer matrix of the classical system, connecting every other row, with respect to

the single spin-wave basis set

Ik) = 1 eikrlr), k = 2p/N, p = 1, .. ,N. (2.9)VOr ,
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A little algebra starting from Eq. (2.6) yields, for this transfer matrix, to leading

order in l/n,

(k le-3O.t/ne 2/nIk) = - (k', k)e[NK - 4 Kz+ 4 K coskl/n (2.10)

where S(k', k) = 1,0 for k' = k, k' -4 k. Thus, the partition function of the entire

system (of n pairs of rows) is

(k' (e- 11/ne PW23/n)nk) = 8(k', k)eNKz-4KZ+4 K cosk, (2.11)

which yields the well-known single spin-wave energy

63e = -4KZ + 4K cos k. (2.12)

D. Corresponding to two spin waves

Consider the matrix element of Eq. (2.5) between the states such

as {mij,,, = +l},mi=r,,, = -1) _ r,r'). This yields the partition function of the

classical d = 2 model with pinned up boundary conditions at rows j = 0 and j = 2n,

except for the spins at i = ro, r' and i = r2n, rT, respectively, which are pinned down.

Similarly to the previous case, each row j has two and only two down spins, which

from row to row, may remain at the same positions r, r', or each or both move to

neighboring positions within an interaction square, with Boltzmann weights dictated

by Eq. (2.6). Again consider the transfer matrix of the classical system, connecting

every other row,

.{(rl, r'le-Px/e-h2/n Irl,r2) + (rI,r'le-x/lne-2/nlr2, r)}. (2.13)

There are two terms in Eq. (2.13) because, in going between the rows, either down

spin can match to a give down spin in the other row. There is a leading factor of

. because the down spins are indistinguishable, so that a summation over (rl,r 2)
2
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double counts the states. With respect to another two-spin-wave basis set,

Ik, p)= 1 eik(rl+r2)/21r,r2 = r + p), k = 2p/N, p = 1,...,

This transfer matrix has the form

I{(k' pIIe-37l ne-N3 ?2/nIk, p) + (k', p'ie- 3 Xlj/ne-'Hf3 2/nIk, -p)}.
2

It reduces to leading order in 1/n to

1

2

where

M(p', p) =

5(k', k)AN-4[M(p', ) + eikNIM(p, N- p)],

1

7

7

1-
7

7

1-a 7

7 1

N. (2.14)

(2.15)

(2.16)

with

a = 4Kz/n, = (4K/n) cos(k/2),

and where p', p are between 1 and N - 1 inclusive. The eigenvectors of this tranfer

matrix have the form

Y(p) = xP + b N- P, with b = e- ikN/2 = ±1. (2.17)

One set of eigensolutions are extended (unbound) spin-wave pair states with x = eiq

in Eq. (2.17). Their eigenvalues are

e[(N-8)K+S8K cos(k/2) cos q]/n (2.18)
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where, as specified above, k = 27rp/N, p = 1,..., N, and q is determined for b = +1

by

(K/Kz) cos(k/2) - cos q = sin q tan(Nq/2), (2.19)

and for b = -1 by

(K/Kz) cos(k/2) - cos q = -sin q cot(Nq/2). (2.20)

For I(K/K.)cos(k/2)l > 1, graphical analysis shows that Eq. (2.19) accounts for

(N/2)(N/2) solutions and Eq. (2.20) accounts for (N/2)[(N/2) - 1] solutions. For

I(K/K.) cos(k/2) < 1, again graphical analysis shows that Eq. (2.19) accounts for

(N/2)[(N/2) - 1] solutions and Eq. (2.20) accounts for (N/2)[(N/2)- 2] solutions. In

the latter case, a set of N eigensolutions of bound spin-wave pair states occurs, with

x = (K/K) cos(k/2)1 in Eq. (2.17), and eigenvalue

e{(N -4)K,+4 [K cos(k / 2) 2/ K ,}/ln (2.21)

The expressions in (2.18) and (2.21), with their exponents multiplied by n, yield the

corresponding Boltmann weights of the entire system. Thus, the extended spin-wave

pair energies are

-/e2 = -8K, + 8K cos(k/2) cos q

= -8Kg + 4K[cos(k/2 + q) + cos(k/2 - q)], (2.22)

which in fact equals the sum of the energies [Eq. (2.12)] of two single spin waves with

wave numbers (k/2) ± q. The bound spin-wave pair states, occurring

for I(K/K) cos(k/2)l < 1 as above, have energy

- P/2 = -4Kg + 4[K cos(k/2)12 /K,. (2.23)

The above account for all of the spin-wave pair states, and agree with the previous

works [7, 8, 9, 10].
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A particulate analogy to two interacting spin waves, from the diagonalization of

the matrix in Eq. (2.16), is given in Appendix A. A renormalization-group transfor-

mation is derived in Appendix B, with asymptotic flow behavior that is fixed point

or chaotic, distinguishing the bound or extended spin-wave pairs, respectively.

E. Corresponding to three spin waves

The matrix element of Eq. (2.5) between the states such as

[{mi¢r,,,,, = +l},mi=,,,,,r = -1) is considered. The classical d = 2 model has

pinned up boundary conditions at rows j = 0 and j = 2n, except for the spins at

i = r, r, r and i = r r,r' respectively, which are pinned down. Each row j

has three and only three down spins, which from row to row, may remain at the same

positions r, r', r", or move to neighboring positions within an interaction square, with

Boltzmann weights dictated by Eq. (2.6). The transfer matrix of the classical system,

connecting every other row, with respect to the three-spin-wave basis set

Ik,pi,p3) 1 eik(rl +r2+r3)/3 Jr = r2-p 1 ,r 2, r3 = r2 + P3),

with k = 2rp/N, p = 1, . . ., N..., pi = 1., N - 2,

and p3 = 1,..., N- 1- pi, (2.24)

has the form

{ (kp' p I, 3e-?l'ne-l k, pI, p3) + (k', p, p' Ie-P lne-Pli2nk, -P1 - P3, p1)

+(k', p, p le-Plne-P /nk P3, -PI - p3)}. (2.25)
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Again, there are three terms in Eq. (2.25) because, in going between the rows, any

one of the three down spins can match to a given down spin in the other row (which

fixes the other two matches). There is a leading factor of because the down spins

are indistinguishable, so that a summation over (pl,T2,p3) triple counts the states.

The first term in the parentheses of Eq. (2.25), for exmaple, reduces to leading order

in l/n to

6(k, k)AN-6B6 ((p, pl)5(p3, p3){1 + a[S(pl, 1) + (p3, 1) + (pl + p3, N- 1)]}

+C{[eik/38(p;,pi - 1) + e-ik/38(pl,pl + 1)]S(p',p3)

+,(pl, p)[e-i"/3a(p, p3 - 1) + eik/38(p, p3 + 1)]

+eik/38(p ,pi + 1)(p',p3- 1) + e-ik/36(pl, pl - 1)6(p,p + )}). (2.26)

The transfer matrix of Eq. (2.25) has a set of bound-state eigenvectors of the form

Y(p1,P3) = Y(P1,P3) + by(N - pi - P3,P1) + b2y(p3, N - pl - P3), (2.27)

with

b = e- iNk/3

Y(P1,p3) = e-i(Pl-P3)P1+P3

sin(k/3 + 0) = sin k//l + 4(K./K)cos(k) + 4(K/K) 2,

where the spatial decay is determined by

x = sin(k/3 + 0)/sin(k/3 - 2), Ix1 < 1, (2.28)

where the bound-state restriction Il < 1 is satisfied for (K/K,)cos k < [4(KI/K)2 - 3].

The corresponding eigenvalues are

exp{[(N - 4)K, + 4Kx cos(k/3 + 0)]/n}

= exp{[(N - 4)K, + 4K2 (2Kz + K cos k)/(4K - K2 )l/n}. (2.29)
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Thus, the corresponding three-spin-wave bound-state energies are

-3e3 = -4K + 4Kz cos(k/3 + q)

= -4K, + 4K2(2K2 + K cos k)/(4K~ - K2). (2.30)

These bound-state energies are depicted in Fig. 2-2. The particulate analogy to three

interacting spin waves, from the diagonalization of the matrix in Eq. (2.26), is noted

in Appendix A.

IV. Conclusion

As seen above, the continuum energetics of the elementary excitations of a d-dimen-

sional quantum model are contained in the equivalent (d + 1)-dimensional classical

model, even though the latter is a discrete-spin model. This is due to the fact that the

extreme anisotropy of the classical model reduces the problem to a diagonalization

of the Hamiltonian, as n - oo. In this process, we have derived three-spin-wave

bound-state energies for the XXZ Heisenberg chain.

The implementation of our method is rather different from Bethe ansatz [7] studies

of quantum systems. The method can also be generalized to, for example, spin-s

systems. Our method is also much simpler, and therefore much more transparent,

than the "quantum inverse scattering method." [11]

The procedure introduced here of using the Suzuki-Trotter formula with restricted

boundary conditions may be useful for obtaining "renormalized" or "dressed" energy

spectra for elementary excitations in more difficult problems, such as ones in which

the transfer matrix does not conserve the number of fluctuations. More generally, it

is likely that diverse effective studies of quantum systems can be built around the

Suzuki-Trotter mapping.
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Figure 2-2: (a) Bound-state energy spectra for three spin waves, as derived in
Sec. III E and given in Eq. (2.27). Bound-state energy spectra for K/Kz < 0 or k < 0
are related to these curves by s3(K/K,, k) = 3 (-K/K, k + 7r) = E3(K/K,,-k). (b)
Regions in which the three-spin-wave bound states with energies given in Eq. (2.30)
occur. The lower boundary reaches k = r/2 as K/Kz goes to infinity.
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the initial stage of this research.

Appendix A: Particulate Analogy to Interacting Spin Waves

The matrix in Eq. (2.16) can be written as

M(p', p) = {'A2 + a[6 (p, 1) + S(p,N - 1)] + (1 - a + 27)}S(p', p), (2.31)

where A2 is the discrete Laplacian operator,

A2y(p') = Y(p' + 1) - 2Y(p') + Y(p' - 1). (2.32)

Accordingly, diagonalizing M is equivalent to solving the one-dimensional discrete

Schr6dinger equation for a particle of mass m in an infinite well from p = 1 to

p = N - 1, subject to a potential at the edge sites, namely

V(p) = -th2 /12m(KIKz) cos(k/2) I[8(p, 1) + (p, N - 1)1. (2.33)

The absolute value is obtained by considering the vectors (-1)PY(p)

when (K/Kz) cos(k/2) < 0. The particle of this Schr6dinger equation may have eigen-

states bound to the edges. The condition for this turns out to be (K/Kz) cos(k/2)1 <

1. The combination of two matrices in Eq. (2.16) selects half of the even and odd

eigenfunctions of M, for both bound and extended states.

Simlarly, the three-spin-wave problem of Sec. III E is equivalent to the two-

dimensional discrete Schr6dinger equation for a particle in an equilateral-triangle

infinite well, with a potential along the sides that doubles at the corners.
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Appendix B: Renormalization-Group Analysis of the Two-

Spin-Wave Eigenvalue Problem

The eigenvalue A problem for the matrix M in Eq. (2.16) reduces to the N- 1

equations

Fxl + x2 = 0, Xp_1 Gxp + xp+l = 0 for p = 2 to N - 2,

XN-2 + FXN-1 = 0, (2.34)

where

F = (1 - A)/7 and G = (1 -a- A)/7. (2.35)

A renormalization-group recursion [12] can be constructed by substituting every other

equation into the remaining ones, resulting in N/2 equations of the same form, but

with renormalized coefficients:

F'= 1-FG and G'=2-G 2 . (2.36)

The procedure is repeated, but with one of the edge coefficients having its recursion

modified as

F' = 1 - G2 + G/F, (2.37)

if the starting number of equations is even, in which case this number is halved. In any

case, the recursion of the inner coefficient G depends only on itself. It has unstable

fixed points at G* = 1 and -2, with a preimage of the latter at G = 2. This recursion

remains chaotic in the interval IG < 2, and runs away to the fixed point G* = -oo

and F* = -oo for IG > 2. The extended and bound states found in Sec. III D,

in fact, respectively fall into the chaotic and runaway fixed-point renormalization-

group behaviors. In previous works on electronic [13] and harmonic [14] chains, it

was similarly found that extended and localized states, respectively, have chaotic and

fixed-point renormalization-group behaviors [15].
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2.2 Quantum XY-Model

The model Hamiltonian for the classical XY model in two dimensions is

- P37 = K E cos(0i - j), (2.38)
(ij)

where (ij) denotes nearest neighbors i and j and Oi is the angle describing the vector

at site i. Equation (2.38) represents systems from two-dimensional superfluids to

liquid crystals.

Low temperature expansion of the Hamiltonian yields a gaussian model:

- - K [I (, -j)2/2] . (2.39)
(ij)

Fluctuations drive long-wavelength spin waves such that misalignment grows loga-

rithmically with distance and long range order is destroyed. Mermin and Wagner2

proved rigorously that there can be no long range order - i.e. M = 0 even in the low

temperature phase - for the XY model in two dimensions. Nevertheless, Stanley3

showed using high-temperature series expansion that the susceptibility diverged to

indicate a finite-temperature critical point.

Kosterlitz and Thouless4 realized that there was the possibility for other types of

excitations which could appear in addition to the slow variations of 0 observed in the

Gaussian model. These excitations are topological defects called vortices. A vortex

pair is depicted in Fig. 2-3.

Vortices arise from the fact that the cosine function that defines the original model

is periodic. Following the angle around a defect counterclockwise leads to a change

of phase equal to an integer multiple of 27r:

0 -+ 0 + 27rQ. (2.40)

2 N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1967).
3 H.E. Stanley, Phys. Rev. Lett. 20, 150 (1968).
4 J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973); J.M. Kosterlitz, J. Phys. C 7,

1046 (1974).
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f 85// /-/ t

characterized by . The "charges" Q [defined in Eq. (2.40)] are determined by mea-
suring the change in the angle if one follows a closed path counterclockwise around
the vortex. Note that is unaffected far away from a vortex pair.

One can calculate the energy, entropy, and free energy of a lone vortex:

-PE = 27rKln(L/a), (2.41)

fiTS = In (L/a)2 , (2.42)

-I3F = -/(E - TS) = (-27rK + 2)ln(L/a). (2.43)

The system is unstable to the formation of single vortices at temperature high enough

such that K < K, = 7r- .

At low temperatures vortices could appear in pairs (a +1 vortex with a -1 vortex)

with a non-divergent energy since the defects neutralize each other and far away

Qnet = 0. Pairs of vortices are also found to unbind at K = Kc.

Kosterlitz and Thouless description for what happens at the phase transition

appeals strongly to intuition. For high temperatures, there is a free gas of vortices

which bind into pairs below the K,.

Renormalization-group treatments of interacting vortices were carried out by sev-
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eral groups.5

The two-dimensional XY model is peculiar because the low temperature phase is

not an ordered phase, in the conventional sense. Its onset is also unlike most other

phase transitions because instead of power law divergences at the critical point (as

discussed in Ch. 1),

M- ( T T) '

quantities like the correlation length in the XY model diverge with an exponential

dependence as the critical temperature is approached from above,

expA/fT - Tc}, (2.44)

where A is a constant.

In the following article, "Entanglement Transition in the Two-Dimensional Quan-

tum XY Model," I examine the quantum mechanical analog of Eq. (2.38). I propose

an intuitive picture which readily distinguishes the high and low temperature phases

and allows for direct quantitative analysis. This published work may be found in

Phys. Rev. B 49, 7040 (1994).

5J.M. Kosterlitz, J. Phys. C 7, 1046 (1974); J.V. Jose, L.P. Kadanoff, S. Kirkpatrick, and D.R.
Nelson, Phys. Rev. B 16, 1217 (1977); A.N. Berker and D.R. Nelson, Phys. Rev. B 19, 2488
(1979).
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Entanglement Transition in the

Two-Dimensional Quantum XY Model

Daniel P. Aalberts
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Abstract

We use the Suzuki-Trotter transformation to map exactly the

fully quantum mechanical XY model in 2-dimensions to a clas-

sical system in (2 + l)-dimensions. In the latter formulation the

phase transition is intuitively described and order parameters are

introduced. A Monte Carlo study confirms this picture's tran-

sition takes the Kosterlitz-Thouless form. Two additional lo-

cal symmetries which have, to date, been neglected in Quantum

Monte Carlo simulations, are revealed and used.
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The d = 2 spin-' XY model has been extensively studied because it is the simplest

unsolved model incorporating non-commuting operators. It is defined by

-PH = K (c r + ( uj), (2.45)
(i )

where /3-l = kT, (ij) denotes nearest neighbors, and ar are the spin-' Pauli operators.

In the classical (vector) equivalent of Eq. (2.45), Kosterlitz and Thouless [1] showed

how the binding and unbinding of pairs of topological defects called vortices lead to

a transition to a low-temperature phase with infinite correlation length but no long-

range order. One may question whether quantum fluctuations might change the form

of this marginal transition or destroy it altogether.

Several techniques have been used on the spin-2 problem. A high-temperature

series [2] indicated a finite critical temperature and a divergent susceptibility but

was unable to determine whether the transition took the Kosterlitz-Thouless (KT)

form. Work [3] was carried out by neglecting commutator terms arising in the Boltz-

mann weight, which indicated a divergence in the specific heat of the system. The

Suzuki-Trotter (ST) transformation [4], which maps a d-dimensional quantum sys-

tem to a (d + 1)-dimensional system with classical variables, has primarily enabled

Monte Carlo (MC) simulations.[5] MC studies examined quantum vortex operators

or calculated susceptabilities or correlation functions [6, 7, 8, 9]. Recent MC results

indicate that although quantum fluctuations suppress the transition temperature, the

KT transition remains [9].

One difficulty common to all of these techinques is that one cannot visualize

the problem as one can with, say, vector representations of classical spins. This

is a general problem in quantum statistical mechanics which the ST mapping may

alleviate. Curiously, describing what happens when the temperature is lowered in the

ST representation of the d = 2 spin-1 XY model is as simple as visualizing a pot

of spaghetti cooking: the strands begin as rigid poles but as they soften they begin

to tangle until they wind around one another. Our approach will be to take the ST

transformation at face value to formulate a picture of the transition in the (2+1)-
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dimensional system, quantify by inventing order parameters, and then verify with a

MC study. The critical temperature Tc = 1.50 + 0.03 is inferred from the scaling

behavior of these quantities. Also, while preparing the MC calculation, additional

local symmetry operations are discovered.

The partition function is calculated using the Trotter [10] transformation popu-

larized by Suzuki. The ST identity [4] is

Z = Tr{e- H} = Tr{e-/(H1+H2+H3+H4)},

Z = lim Tr{(e- Hl/n... e-H4 /n)n}, (2.46)

where H. are sub-Hamiltonians which couple groups of nearest neighbors on a square

lattice and where Periodic Boundary Conditions (PBC's) in the spatial directions are

used. A complete set of states is inserted between each exponential operator. With

the trace yielding periodic boundary conditions in the "Trotter dimension," there are

a total of 4n interactions, each involving four spins (the shaded squares of Fig. 2-4),

stacked above each lattice point. Each of the 4n terms in Eq. (2.46) is a product of

the nearest-neighbor interactions belonging to the relavent sub-Hamiltonian:

({s}IeHp/n I{s}) = II [s(Si, )S(S, S)
(ij)EI

+(2K/n)6(s, s')6(s, s,)6(s, -si)] , (2.47)

with si = +l; 6, the Kronecker delta-function; and K, the inverse temperature.

Corrections of O(n -2 ) vanish in the large n limit. The magnetization is conserved in

the i basis representation.

Becuase of the spatial asymmetry of the ST mapping, it is convenient to follow the

paths the up spins trace out through the lattice in the Trotter dimension, fi. One can

think of these trails as poles (the + spins) which wander in a background of vacancies

(the - spins). In the large n limit, Eq. (2.47) says a plus spin is unlikely to hop at

any given plaquette; however, with n opportunities there should be O(K) hops per

nearest-neighbor pair. That expectation will be modified somewhat because PBC's
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Figure 2-4: The Suzuki-Trotter mapping relates groups of nearest-neighbor quantum
couplings in two dimensions ( and in the figure) to a series of interactions in (2 + 1)
dimensions. Quantum spins are evaluated in a particular basis (yielding Ising spins)
and evolve in the additional, "Trotter," dimension, . Each shaded square represents
a plaquette interaction which couples two Ising spins at one Trotter height with two
Ising spins at the next Trotter height.
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in the Trotter dimension require that hops assemble to make loops above the d = 2

lattice. "Diagrams" represent connected groups of hops if we imagine looking down

the n axis.

At infinite temperature, K = 0, so the hopping term in Eq. (2.47) is disallowed

and the configurations have only poles and vacancies. At high temperatures (K << 1),

most of the poles will not hop [diagram of Fig. 2-5(a)] or will hop to a vacant neighbor

and hop-back [Fig. 2-5(b)]. In both cases the pole's PBC in the Trotter direction is

met by itself.

At lower temperatures (larger K), another class of excitations begin to contribute.

'These groups of poles meet PBC's by exchanging positions (twisting, tangling) in the

rTrotter dimension. "Tangles" are poles which meet each other's PBC's. Entangling

diagrams [Figs. 2-5(c)-2-5(e)] involve at least four hops (on a square lattice) and

contribute a factor of (2K) 4 /4! per diagram to the partition function sum.

Diagrams with a large number of hops pay a large energy price via the partition

function factor (2K)NhoP,/Nhop,! per ordered, directed diagram; however, the large

number of ways of ordering internal to the diagram size ultimately favors larger

twisted/entangled diagrams at lower temperatures [11]. This is easily demonstrated

by summing the weights, z, of all -site diagrams. To leading order in K: z = 2,

,z2 = 8K2 , z 3 :- 32K4 , z4 = 32K4 . (Note that z4 is the first deviation from ze

K:42 (-1).) Figure 2-6 is a diagramatic representation of a configuration obtained in a

MIC simulation with linear dimension L = 12 and with K = 0.65.

Work on the "winding number" W provides further insight into the nature of the

transition. The winding number measures the net flow of particle lines in the real

dimension as paths are followed up the added dimension. Marcu's MC measurement

in the spin-' XY model [8] and others' work [12] on a system related by universality

indicates that at high temperature (W1 2) = 0 with a universal jump to (IW12) 0

in the low temperature phase. This work indicates, in our language, that tangles

extend across the system in the low temperature phase. Tangles woven together

(Like chain mail) appear in the same diagram. As the temperature decreases to the

critical temperature T,, the largest diagram grows to eventually "percolate" to the
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(d) twist

y
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(e) countertwist

Figure 2-5: Local symmetry operations for MC study: (a)-(c) were used previously;
(d)-(e) are introduced here. Dark triangles mark the group of spins in the (2 + 1)-
dimensional system which must be simultaneously flipped (s' = -s) in a MC trial.
In (a), an entire pole of + spins is exchanged for - spins; in (b), by flipping the eight
marked spins, a + pole hops across the bottom plaquette and hops back via the top
plaquette; in (c), four plaquette hops make two + poles wind around each other. (d)
and (e) are operations which wind one + (or -) pole around a loop. If neighbor poles
have the same spin, there can be no hopping. Depicted beneath each are examples of
diagramatic representations (the paths of + poles above the two-dimensional lattice
as seen looking down i) generated by the operation.
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Figure 2-6: Diagrammatic representation of a configuration generated by a Monte
Carlo simulation on a 12 x 12 lattice with periodic boundary conditions at K = 0.65.
Solid circles represent up spins; arrows, hopping. The largest diagram (connected
group of hops) involves 49 sites.
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system size. For T < T,, the tangling becomes more complicated and remains infinite.

Consistency with the KT picture is suggested by the divergence of the length scales

in this formulation, the tangle length and the diagram size.

Now we convert the concepts of tangles and diagrams into calculable quantities.

New order parameters are the expectation value for the number of poles contributing

to a tangle, r, and the expectation value of the diagram size, D. To calculate r, follow

a pole in the Trotter direction and count the number of times periodic boundary

conditions must be employed before returning to the original lattice point. D is

calculated by marking every point which is interconnected by hops, counting the

number of points in the diagram, and averaging. A third order parameter, (rl 2 ),

measures the average deviation squared of the top and the bottom of a pole on the

d = 2 lattice. Because the number of hops is O(K), (r12 ) will not diverge at finite

K.

MC methods test the qualitative picture described above. Previously used [6,

8, 9, 13] symmetry operations [Figs. 2-5(a)-2-5(c): global-spin-flip, eight-spin-flip,

four-spin-flip] neglect some basic diagrams; therefore, we introduce the new sym-

metry operations shown in Figs. 2-5(d)-2-5(e): twist, and countertwist. Entangling

operations [Fig. 2-5(c)-2-5(e)] are introduced only in their most compact (in fi) incar-

nations. In hopes of better sampling the phase space, the eight-spin-flip is generalized

to all length scales by having the hop back take place 1 (the original eight-spin-flip),

2, 4, 8, ... , 2P,m&x < n Trotter height unit cells above the hop. The winding number

global operation is not used in this simulation.

By calculating dot products of maps of the displacements, r, at different times,

we found that correlations fell off with a decay rate of 5 MC steps (MCS) which

became our sampling rate. The Trotter number n = 25 was chosen to keep errors of

fundamental diagrams small.
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Figure 2-7: (a) D and (b) r are calculated in our MC study at different coupling
constants K and system sizes L2. Points are typically generated with 5000 MCS,
sampling every 5 MCS after discarding 500 MCS.
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The results of our MC simulation are displayed in Fig. 2-7. The correlation length

can be inferred from the crossover of D and r from scaling with, to independence

from, the system size. The diagram size gives a measure of the average correlated

area, so

D ' d2r r-he - /

l2 to ,if L <<
D - L2 if (2.48){L42 n , if L >

where is the correlation function critical exponent. So for each temperature, D

and r are fit as powers of L for L < and as constants for L > . In this way, (

is located for each temperature. In Fig. 2-8, the large lattice limit (L > ) for the

order parameters (Doo and oo), are plotted alongside the correlation lengths derived

from D and r (D and ,). A critical temperature, Tc = 1.50 ± 0.03, is obtained from

fitting all of these quantities to the KT form divergence

C exp{A/ T- T}, (2.49)

where A and C are constants.

A correlation function is needed to study short-range correlations and to calculate

y(T) for T < T,. We propose that x-y correlation can be measured by considering

points within the same diagram correlated and points in different diagrams uncorre-

lated.

Large lattice, large Trotter number simulations should be run to study nearer T,.

I thank A. Nihat Berker for helpful comments and for suggesting the problem.

This work was supported by the U.S. Department of Energy under Grant No. DE-

FG02-92ER45473.
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Figure 2-8: Correlation lengths (D and &) and the large lattice limits (Do and rt)
calculated from Fig. 2-7(a,b) are fit to the KT form [Eq. (2.49)]. Tc = 1.5 is used.
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Chapter 3

Gels

In this chapter, I describe several calculations on the properties of gels. In Section 3.1,

I use a recently developed Monte Carlo simulation technique to study the scaling

properties of gels: I study Flory's supposition that free polymers behave in the same

way as polymers in a gel. These are the first direct simulations of gels that I am aware

of. In Section 3.2, I add to the simulation interactions between the gel and the solvent

which lead to experimentally observed first-order phase transitions in ionic gels. In

Section 3.3, we construct a Hamiltonian to model the quenched random Coulombic

interactions between monomer groups of different types in polyampholytic gels.
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3.1 Gel Scaling Behavior

Determination of Scaling Exponents

of Polymer Gels

Daniel P. Aalberts

Department of Physics, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA

Abstract

The scaling exponents of polymer networks in two and three di-

mensions are studied via the Bond Fluctuation Method. It is

found that the distance between cross-links follows the scaling

law for self-avoiding random walks, RL N, and that the vol-

ume of the gel scales like Rd which confirms a supposition of

Flory.

PACS Numbers: 82.70.Gg, 64.60.Fr, 36.20.Ey, 36.20.Hb
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Although numerical methods have proven useful for studying the statistical prop-

erties of polymer chains, they generally fail when forced to deal with branched poly-

mers and gels. The kink-jump, crankshaft, bead-spring, and reptation Monte Carlo

approaches [1] as well as Molecular Dynamics [2] simulations are means of generating

statistical fluctuations in the positions of the chains while preserving excluded vol-

ume constraints. The recently developed Bond Fluctuation Method (BFM) combines

computational ease with the possibility of studying branched polymers and polymer-

polymer interactions[3].

The BFM approximates a polymer as a bead necklace. Model polymers are com-

posed of hard-core spheres tethered to give connectivity. The separation of tethered

beads is constrained to lie within a maximum distance which prohibits, for a given

bead size, chain crossings. The BFM has its roots in a paper on tethered surfaces [4]

where a square-well potential between connected spheres was used. In that work, a

bead could move a fixed distance in any of 47r steradians in each Monte Carlo Step

(MCS). Carmesin and Kremer [3] discretized the spatial locations of the beads and

achieved computational ease and the speed necessary to observe dynamics consistent

with those predicted by the Rouse model [5]. BFM studies have been performed

in two dimensions [3, 6, 7] and in three dimensions [3, 8, 9, 10, 11, 12]. The BFM

also avoids many shortcomings of other numerical techniques such as trapped con-

figurations and the inability to include cross-links. Thus, star polymers and gels are

numerically accessible to the BFM.

In this paper, the scaling behavior of gels is studied using the BFM. Gels are sim-

ply networks of polymer chains. A convenient mental picture is that of a fishnet: the

segments of rope (polymer chains) wriggle about but some topological order is pre-

served through the knots (cross-links). Scaling behavior is insensitive to small-scale

details so the BFM should prove reliable even with simplifications such as discretiza-

tion. Gels are an interesting class of materials which share properties with solids

(global connectivity) and liquids (disorder). They are familiar to us as the dessert

Jello, or as casings for medicines, or as the water absorbing element in modern di-

a.pers. Mean-field theories for gels were developed by Flory and Huggins [13] but
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microscopic simulations were not previously possible.

The characteristic length scale Rp of polymers measures the average distance from

end-to-end of the chain. It is well known that the random walk scales like

Rp u N, (3.1)

with v = 1/2 for an N-step walk. The non-intersection restriction of real chains

tends to extend the walk leading to an increase of the exponent v. Flory's mean-field

theory estimate for self-avoiding random walks yields an exponent v = 3/(d + 2)

Flory assumed that the chains, even in a gel, would scale with the same power law

RL Nv, where RL is the distance between cross-links. The volume occupied by the

gel would then scale as V - Rd. These assumptions are at the heart of Flory's theory

for gels [13] although the notation has since evolved [5, 15]. I use the BFM to study

this supposition.

A gel is a network of chains interconnected by cross-links. A model gel of the

type used in these simulations is depicted in Fig. 3-1. Cross-links form a topological

lattice interconnected by chains of the same length. The networks considered have

L repeating units per edge with (n - 1) beads separating nearest neighbor cross-

links. Internal coordinate i gives the topological location of a bead while the spatial

coordinate of bead i is given by ri. In addition, a logical array marking the positions

of the beads in physical space is stored as S(r). The memory requirements of storing

the three-dimensional array S(r) ultimately limit the gel sizes considered.

The simulation is carried out by randomly choosing a bead i and a direction for

a move of unit length. The move is accepted if, at the new position, it does not

make the bead overlap with another nor violates the tethered-bead constraint for

the neighboring sites. Cross-link moves are attempted d times per MCS to improve

diffusivity of these highly constrained points.

For significant improvements in computation time, the hard-core exclusion condi-

tion is evaluated by logical or operations on S(rhc) for all sites rh, which would be

prohibited by the new position. In two dimensions, with a bead size of p2 , = 4, this
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Figure 3-1: Configuration for a model two-dimensional gel. The number (n - 1) of
beads in a chain is 7. The number of unit cells on each side L is 5. Cross-links are
depicted with gray boxes.

amounts to checking if there is a bead in any one of the three sites in which beads

might overlap - violating the hard-core exclusion - if the bead move were allowed.

In three dimensions, with beads of p in 9, this amounts to checking twenty-five

sites.

The tethering constraint can be implemented for any bead size pmin. Table 3.1

lists pairs of values for Pmin and pma,, which prevent chains from crossing in two

or three dimensions. Some work has appeared in the literature [8, 14] with values

2 1 2 3 4 5 6 8 9

P2M. (d= 2) 2 10 1 - 113 20 1 - 34 34
p 2 (d = 3) 2 3 8 8 10 14 16 18

Table 3.1: Self-consistent tethered-bead conditions in d = 2,3: p2 Ir2 p2 

inconsistent with Table 3.1 and therefore allows polymer chains to pass through one

another. While this "phantom chain" approach may allow interacting polymers to

find ground states more readily in a simulated annealing for random ionic interactions,
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it violates the topological constraint of a real chain. Deutsch [12] is able to use a larger

pma, than in Table 3.1 by imposing, somewhat arbitrarily, an additional constraint

prohibiting a collection of latice vectors with r < pma,. For the simulations in three

dimensions, I chose to work with pmin = 3 in order to allow for "inchworm" diffusion:

beads are allowed to separate by a unit thus allowing for direct translational motion

rather than merely rotations around bond angles.

Data is taken after a number r0 of Monte Carlo Steps. In the characteristic time,

r0 = (bnL)2 MCS, a bead would diffuse the length of the sample via random walk

dynamics if unimpeded by the constraints of the network[4]. The distance between

neighboring beads b is taken to be the integer value in the center of the square-well

potential; in this work b = 3 for both dimensionalities presented here. Since r0 is

the decay time for the spatially longest - and thus slowest - decay mode in the

Rouse model [5], when averages are computed, independent configurations should be

guaranteed.

The order parameters studied are: (i) the area in d = 2 (volume in d = 3) and (ii)

the average distance RL between cross-links. In two dimensions, the area is calculated

by summing up the contributions from each bead on the perimeter. This is done by

calculating the cross products of the vector from the center of mass to a bead on the

network's perimeter and the vector connecting that bead to its neighbor. The total

area for a gel in the xy-plane is:

1
A = E [(R, - RCOM) x (R+ 1 - Rs)l] , (3.2)

where R, labels beads on the gel's surface, its perimeter, with s increasing counter-

clockwise and RCOM defines the position of the center of mass.

In three dimensions, the volume was estimated by locally computing the volume of

the polyhedron formed from the lattice of cross-link points that compose the surface

of the network. Local volumes AV of tetrahedra are determined using three vectors

- one from the center of mass to the surface point and two from the surface point
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to nearest neighbor surface points - and taking the vector triple product:

AV = I[(R,- R) x (R,, - R.)] (R. - ROM), (3.3)

where the subscript s labels a cross-link point on the surface and s' and s" label

neighbor cross-link points. The total volume is calculated by summing over all AV

contributions. This summation scans the surface twice so one must divide by 2 to

correct for this double counting.

The scaling results of the gel simulations for the cross-link distance RL are given

in Fig. 3-2. The scaling of Rp of free polymer chains is also given for comparison in

Fig. 3-2 to indicate the effect of the network. Values for the exponents v derived from

Fig. 3-2 are plotted in Fig. 3-3 as a function of system size.

Flory assumed that cross-linking would leave the distribution of end-to-end vec-

tors unchanged; Fig. 3-3 indicates, however, that without the topological constraint

of crosslinking, free polymer chains scale with a somewhat (5%) smaller exponent.

Overall, corrections due to the network are relatively small.

This 5% effect can be qualitatively understood by realizing that there is a higher

than average density around the cross-links which will straighten the chains locally.

Increasing the number of chains meeting at cross-links should make that effect more

pronounced. In addition, the influence of nearby chains will tend to reduce perpen-

dicular deviations and enhance the length. Another possibility is that the scaling

exponent of a self-avoiding random loop differs from that of a self-avoiding random

walk.

Another effect of the network is the growth of the effective chain link (the intercept

in Fig. 3-2) with greater system size L. As L increases, so does the fraction of chains

in the interior of the gel relative to those on the surface. Perpendicular fluctuations

are more inhibited for interior chains because the density of beads is higher on all

sides. Because the density of beads near interior crosslinks is greater than on the

surface, chains will tend to be straighter.
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Figure 3-2: Scaling data for the distance between cross-links RL from the Monte
Carlo simulation. Data are given for gels and chains in (a) two dimensions and (b)
three dimensions. Points are typically generated with 50ro MCS, sampling every
To = (3Ln) 2 MCS, after discarding 10T0 MCS.
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Figure 3-3: Scaling exponents derived from Fig. 3-2 plotted as a function of L, where
Ld is the number of unit cells in the gel.

Figure 3-4 demonstrates that the data is consistent with V R for d = 2.

Deviations observed for d = 3 where V - R(2' 9250+004) may be due to the small size

of the systems although no systematic dependences were observed as L was varied.

Flory-Huggins theories for gels [13] generally assume gaussian exponents (v = 1/2)

but these simulations clearly indicate self-avoiding walk exponents are nearer the

mark. These data indicate the scaling regime extends to short chains.

The effect of random cross-linking and dangling ends on the exponents observed

could be interesting because the scaling exponent might change. At low densities,

polymers are well separated from one another and self-avoiding random walk expo-

nents characterize end-to-end distances; at high densities, chains eventually interpen-

etrate and gaussian scaling is observed [15]. P.-G. de Gennes hypothesized that gels

are at the overlap threshold for polymer chains [5] so the presence of extra chains

could lead to cross-over of v to a more gaussian character.

Interactions with the solvent lead to first-order phase transitions in real gels.

Simulations have recently been completed on these interacting systems [16].
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Figure 3-4: As a function of RL: (a) the area of two-dimensional gels, and (b) the
volume of three-dimensional gels.
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I thank A. Nihat Berker for insights into scaling theory and for a critical reading

of the manuscript. I am grateful to Yakov Kantor for helpful discussions. This work
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3.2 Interacting Gels

Microscopic Simulation of Phase Transition

in Interacting Ionic Gels

Daniel P. Aalberts

Department of Physics, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA

Abstract

Gels are known to exist in expanded or collapsed phases. Inter-

acting polymer networks are studied using the Bond Fluctuation

Method in two dimensions. Two interactions - the quality of

the solvent and the work done by a gas of counterions - suffice

to characterize the first-order phase transition in these simula-

tions. A technique is introduced which prevents local attractive

interactions from hindering global relaxation. Simulation results

are compared with Tanaka et al.'s experiments on ionic gels.

PACS Numbers: 82.70.Gg, 64.70.Fx, 36.20.-r, 5.70.Ln
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First-order phase transitions in ionic gels have been observed experimentally by

Tanaka et al. [1]. Unfortunately, until recently, numerical techniques only allowed for

simulations of polymer chains. Cross-linking and other branching were not possible

because connectivity constraints prevented cross-links from moving under the local

symmetry operations which generate the statistical ensemble in the various tech-

niques, namely, the kink-jump, crankshaft, and reptation, which are Monte Carlo

approaches [2] as well as Molecular Dynamics [3] simulations are means of generating

statistical fluctuations in the positions of chains while preserving excluded volume

constraints. The invention of the Bond Fluctuation Method (BFM) changed this sit-

uation. Branching and cross-links can be included in the BFM [4]; thus, star polymers

and gels are numerically accessible for the first time.

In this paper, I use the BFM to study the phase transition of gels, which are

simply networks of polymers. I also introduce a method which prevents attractive

interactions from inhibiting the global relaxation of the gel. Gels are an interesting

class of materials used commercially to deliver drugs and make cement. Gels are also

present in our eyes and joints. Mean-field theories for gels were developed by Flory

and Huggins [5] but microscopic simulations have not been possible [6] until recently.

The BFM approximates a polymer as a bead necklace. The hard-core spheres of

these model polymers exclude volume and the tethering constraint between connected

beads enforces connectivity of the network. The separation rij between beads i and

j must satisfy both the hard-core repulsion between beads and also the tethering

constraint, if they are neighbors on a chain:

rij > pmin, for all pairs ij, (3.4)

rij < Pma, when ij are chain neighbors. (3.5)

By constraining the separation pmaz of connected beads for a given hard-core bead

size pmi,, chain crossings are prohibited [6]. The positions of the beads are discretized

to a lattice in real space for computational efficiency [4]; for example, the hard-core

calculation is simplified by storing bead positions in a logical array and by using
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Figure 3-5: Configuration for an interacting gel in two dimensions. n - 1 = 4 is the
number of beads in a chain. L = 5 is the number of unit cells on a side. Polymer-
polymer coupling Jp = -2 and hydrogen ion coupling JH = 5 are used. Cross-links
are depicted with shaded squares.

tables for distances. BFM studies have been performed for polymer chains in two

dimensions [4, 7] and in three dimensions [4, 9, 10, 11, 12, 13] and for gels in two and

three dimensions [6].

A gel network is a collection of chains interconnected by cross-links. The gel in

this simulation is constructed with chains of the same length connected at cross-links

where four chains intersect, except on the boundary. A convenient mental picture

of the two-dimensional gel is that of a fishnet: the segments of rope (the polymer

chains) can wriggle around but some global topological order is maintained by the

knots (the cross-links). The networks considered (shown in Fig. 3-5) were composed

of (L + 1)2 cross-links in a spatially fluctuating array topologically equivalent to a

sqare lattice connected by chains with (n - 1) beads between cross-links.
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Assuming no interactions between the chains in the network the decay time, in

Monte Carlo Steps (MCS), of the slowest mode in the Rouse model [8, 14] is

To= (bnL)2 , (3.6)

where b is a characteristic distance between neighboring beads. When p,min, = 2 and

Pmaz = 13, this characteristic distance is taken to be b = 3. With averages computed

after 0 MCS, statistically independent configurations should be guaranteed.

In every MCS, a move for each bead is attempted once (twice for cross-links to

improve the diffusivity of these more highly constrained beads). In each move, the

bead and the direction of the move of unit length are randomly selected. One must

check to make sure the proposed position does not make the bead overlap with any

other bead and that the tethered-bead constraint for the neighboring sites is not

violated. If these constraints (Eqs. 3.4 and 3.5) are satisfied then one calculates the

interaction energies and uses Metropolis sampling [2] to determine if the move is

accepted.

Two interactions are considered. The first measures the relative affinity of a

chain to be surrounded by solvent as opposed to by other polymers and is called the

polymer-polymer interaction. The second is the work done to electrically confine the

gas of counter-ions in the solvent to the volume of the gel and is called the hydrogen

ion pressure.

Experimentally, the quality of the solvent is varied by altering the relative fraction

of water and acetone which compose the solvent [1]. The polymer-polymer interaction

gives the relative preference for a bead to sit next to solvent or some other bead. In

the simulation, other beads j within a thin shell around the bead i, such that

rij < pp, (3.7)

are subject to Jp. The radius of the shell is taken to be the tethering radius,

pP = Pmax, (3.8)
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so tethered beads are always within pp; thus, tethered beads do not effect the dynam-

ics of the solution since in each valid bead-move there is no change in the interaction

energy due to tethered beads.

The second interaction is the hydrogen ion term. In the experiments of Tanaka et

al. [1], the gels are composed of chains with varying acidic monomeric unit concen-

trations. For the experiments, acrylamide gels were made and then by base-catalysed

hydrolysis, monomers of acrylamide were slowly converted to monomers of acrylic

acid (-CONH 2 to -COOH). Acrylamide has a pKa of about 15 but acrylic acid

has pKa of 4.5. By definition, when pH = pK,, half of the species is in the ionized

form (A- plus free H+ ion) and the other half is neutral (AH). The experiments

were carried out at a neutral pH of 7, where acrylic acid is generally ionized while

acrylamide is generally neutral.

The degree of ionization affects the dynamics of the gel because the counter-ions

of the acid (H+) are confined by coulomb interactions to the volume occupied by the

gel. Inside the gel, the charge of the hydrogen ions is compensated by the uniform

background of negative charge of the ionized acrylic acid monomer A-. When an

H+ tries to leave the volume of the gel, the coulomb force pulls it back inside. By

Newton's third law, this force acts on the surface of the gel and is known as the

hydrogen ion pressure.

To a first approximation, hydrogen ions behave like an ideal gas confined to a

volume V or, for the two dimensional case considered here, an area A. The work AW

done against this pressure contributes the hydrogen ion part of the Boltzmann weight

A -NH+kBTAW =-NH+kTA, (3.9)A A, (3.9)
A

A(-f7-(H) = JHCO A, (3.10)

where p-l = kBT and the normalization factor

4NbeadsCo = 2nbd (3.11)
2n
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is constructed, for pmin = 2, to be the minimum area the gel can occupy divided by

the largest AA for close-packed beads.

In this work, the hydrogen ion pressure Boltzmann weight [Eq. (3.10)] is calculated

whenever a surface crosslink move is attempted. This approach is not necessary in

d = 2 because the chains compose a well-defined surface but may be generalized to

d = 3. The surfaceof a gel in three dimensions cannot be defined locally because of

the large holes between the chains at the surface of the gel; however, the cross-links

form a topological array which makes it possible to define a simply-connected surface

-- one without holes - for this lattice of branch points.

If one conducts the simulation as described above, in the region where Jp < Jit,

ergodically trapped close-packed configurations result. The system phase separates

into two phases: one dense, the other dilute. Chains are stretched out completely

in the dilute phase hence the beads will not be drawn closer together by enhancing

the binding strength. This scenario, while exhibiting two-phase coexistence familiar

in first-order phase transitions, also indicates a failure in the simulation technique to

ergodically sample the equilibrium. The underlying assumption of a uniform back-

ground of negative charges in the gel is also violated by two-phase coexistence states.

Close-packed, tightly bound states are non-diffusive because there is an activation

energy required to separate beads before the pair can move. This is clearly unphysical

since there should be no impediment for large clusters to move, without the BFM's

discretizing of space. One way to overcome this obstacle would have been to introduce

cluster moves to the simulation; however, global connectivity constraints complicate

implementing this approach.

Some degeneracy had to be built into the dense phase to compensate for these

problems. To ensure diffusion, the number of beads benefitting from the local in-

teraction energy Jp is capped at six. The contribution to the Hamiltonian for the

polymer-polymer interaction is:

- Plp =-Jp min(6, Aj), (3.12)
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where A/i is the number of beads within a distance pp of bead i. The cap on the

number interacting is reasonable on physical grounds as well: in close packed systems

in two dimensions there are six nearest-neighbors. Without this cap, further-neighbors

benefit from this interaction even though Jp measures the relative benefit of excluding

solvent molecules which is a short range effect. In the simulation seven or more beads

may come within pp, but without additional energetic benefit; with the cap, beads

tend to be spaced further apart, and diffusivity improves.

Since the beads on the perimeter form a simply connected surface in the xy-plane,

the area was calculated by summing up contributions from each bead on the surface

1
A= 2 [(R. - RCOM) X (Rs+ 1 - Rs)] , (3.13)

where R, label sequence of points on the gel's surface with s increasing counter-

clockwise around the perimeter and where RCOM is the position of the gel's center of

mass.

The results of the gel simulations for L = 5 and n = 5 are given in Figs. 3-7

and 3-8. In Figure 3-7, the polymer-polymer interaction Jp is scanned for various

fixed hydrogen ion coupling JH. Hysteresis loops indicate first-order transitions and

are observed for JH g 8. In Figure 3-8, Jp is held fixed while JH is varied: Phase

separation is evident for Jp < -2. Quantitative agreement between values for the

area obtained by scanning in each direction confirms that thermodynamic minima

have been found.

This work is the first use of the BFM to study phase transitions in cross-linked

material. A method was introduced for interactions of a bead with its surroundings

which prevents the system from getting "stuck" and allows it to find the global min-

ima. To generalize to three dimensions, it is important to use minimally p,,,min = 3 in

order to allow for "inchworm" diffusion of bound beads leading to global relaxation [6].

I thank A. Nihat Berker for suggesting this problem and for critical reading of the

manuscript. This work is supported by the US National Science Foundation Grant

No. DMR-90-22933.
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3.3 Polyampholyte Gels

High-Degeneracy Ordering

of Polyampholyte Gels

from a Random-Field Model

Daniel P. Aalberts and A. Nihat Berker

Department of Physics, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA

Abstract

Recent experiments by Annaka and Tanaka have yielded mul-

tiple coexistence loops for gels with random positive and neg-

ative ionic groups, demonstrating the existence of up to seven

distinct macroscopic phases distinguished by volume discontinu-

ities. We introduce for this system a microscopic model in which

the randomness translates into random fields resulting in compet-

ing quenched random interactions in a spin system. The model

yields the multiple coexistence of phases, as well as volume ver-

sus excess charge curves, similar to the experimental results. The

many phases can be understood as randomly coordinated phases.

PACS Numbers: 82.70.Gg, 61.25.Hq, 75.10.Nr, 87.15.Da
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Gels have been known to undergo a phase transition between a swollen and a col-

lapsed phase [1]. Recently, many additional phases have been discovered by Annaka

and Tanaka [2] in gels with random positive and negative ionic monomer groups.

These phases are distinguished from each other and from the usual swollen and col-

lapsed phases by density and local environment [2-4]. At the same final pH and

temperature, depending on the path taken to that point in thermodynamic phase

space, a multiplicity of phases is observed. In this paper, we develop a microscopic

model for this phenomenon. The microscopic physical picture of this system leads

to a spin model with two types of local degrees of freedom, coupled by compet-

ing quenched random interactions due to random fields. This spin model yields the

multiple coexistence phenomena. The many phases can be understood as randomly

coordinated phases. The model also yields volume versus charge curves in qualitative

agreement with experiment [5] and another type of theory [6, 7].

The measurements of diameter versus pH on gels with diferent ratios of acrylic

acid (the anionic group) and MAPTAC (methyl-amido-propyl-trimethyl ammonium

chloride, the cationic group) share a general feature [2]: As pH is changed from either

extreme toward neutral, a large jump occurs from the swollen phase to the collapsed

phase; as the pH is changed from neutral toward either extreme, many smaller jumps

occur as the gel expands.

The microscopic picture of these systems is as follows. The gel is composed of

crosslinked polymer chains that contain random sequences of ionic groups. In a very

acidic (basic) solution, the anionic (cationic) groups are neutralized and the cationic

(anionic) groups are ionized; therefore, the gel swells from self-repulsion [6], although

this repulsion is somewhat screened by the excess opposite charge in the solvent. As

the pH is brought toward neutrality, both groups become partially ionized. Opposite

charges can bind randomly across the gel, which lowers the energy and the entropy;

the reduction of entropy arises from restricting the self-avoiding random walk of

polymers.

We now build a model for these systems. The gel is modelled by volume elements

i arranged as a simple cubic lattice. Each volume element, referred to as a site from
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here on, is randomly assigned a net cationic or anionic character. For a cationic

(anionic) site i, the local variable qi = +1 (-1) or 0 denotes, respectively, ionized or

neutralized states. This amounts to a spin-1 Ising (Blume-Emery-Griffiths) model [8]

under a random field randomly suppressing one of the magnetized states at each site.

The relative abundance of ionized or neutralized states is controlled by the pH, which

equals the ionization reaction constant pKa (pKb) of an acid (base) when half the

substance is ionized and half is neutral in the absence of other interactions. This

contribution to the Hamiltonian can be expressed as

-'HpH = Ei Aiqi, (3.14)

Ai = (To/T)(pH - pK.) and = (To/T)(pKb - pH),

for cationic or anionic components, respectively, where To = 298 is the standard

temperature and T is the actual temperature.

In the gel, charges interact via the Coulomb potential. In this model, the first way

in which the Coulomb interaction manifests itself is that oppositely ionized neighbor-

ing sites can bind. The local variable bi = 1 (0) denotes, respectively, that the site i

is bound (unbound) to another nearby site. When a bond forms, the charges involved

offset each other, thereby neutralizing their interactions with other charges. Thus,

each site can participate in only one bond, so that the b = 1 states occur in pairs.

We take a bond to be possible between a site and its six nearest neighbors, twelve

second neighbors, and eight third neighbors. In other words, all of the sites within

a 2 x 2 x 2 unit cell mutually interact and each site participates in eight unit cells.

This contribution to the Hamiltonian can be expressed as

- Pl7bind = E JBbi, (3.15)

where 2JB > 0 is the binding energy. Since binding contracts the gel, a normalized

measure of volume is

v = 1-(bi). (3.16)
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Another way in which the Coulomb potential manifests itself is by the interaction

of nearby but unbound charges. Such a contribution to the Hamiltonian can be

expressed as

- B37ci = E (Jo - Jb)qiqj(1 - bi)(1 - bj), (3.17)
i ij

where the first sum is over the unit cubes , the second sum is over the sites of each

unit cube, and b is the number of bound pairs within cube . The occurence of

two opposing terms, with interaction constants J and J1, allows for the drastically

different local environments of expansion and contraction. On the one hand, in the

absence of bound pairs (b, = 0), the local gel is expanded and envelopes the counter-

ions from the solution. If the unit cube is populated by like charges, it will admit

counterions of the opposite sign and be in an energetically favorable state. If the

unit cube is populated by unlike charges, the counterions will interact with their like

charges on the gel and cause an energetically unfavorable state. On the other hand,

in the presence of bound pairs (by > 0), the local gel is contracted and its charges

interact directly, energetically favorably for unlike charges and vice versa. The higher

the number of bound pairs b,, the more contracted is the gel, with the interaction

getting stronger as Jib,.

Thus, the complete Hamiltonian is

- 37- = E Z(Jo - Jlb,)qiqj(l - b)(1 - bj ) + (Aiqi + JBbi). (3.18)
iA ij i

In the determination of b,, the contribution of a bound pair belonging to several unit

cubes is shared by the latter, so that edge, face-diagonal, and body-diagonal pairs

respectively contribute , , and 1 to each IL. We have studied the model defined by

the Hamiltonian of Eq. (3.18) using Monte Carlo simulation and have found that the

distinctive qualitative features of the polyampholyte gel experiments are reproduced.

Data is shown below at 33% MAPTAC concentration, with which the largest number

of distinct phases was observed experimentally [2, 3]. An 8 x 8 x 8 system with

open boundary conditions was simulated, with JB = 2(To/T), Jo = 0.2(To/T), and

J = 1.6(To/T).
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To demonstrate the multiplicity of collapsed phases, the system at a given pH

was annealed (heated and cooled) repeatedly. The systems at extremal pH are in the

maximally expanded phase at lower temperatures, as seen for pH = 2.0 in Fig. 3-9(a)

and pH = 15.0 in Fig. 3-9(e). The system at neutral pH = 7.0 is in the maximally

collapsed phase at lower temperatures, as seen in Fig. 3-9(c). By contrast, the systems

at intermediate pH indeed access, at lower temperatures, multiple phases with distinct

partial collapses, when they are cycled up and down the temperature scale, as seen

for pH = 2.4 in Fig. 3-9(b) and pH = 13.25 in Fig. 3-9(d).

Fig. 3-10(a) shows the volume of the gel as a function of the excess charge in the

gel, Q = k Ei qj, where N is the number of volume elements in the model. The

characteristic flat bottom, sandwiched between the sharp rises, seen experimentally

(Figs. 3-10(b,c) from Ref. [5]), is thus obtained from the model.

We have thus constructed a model Hamiltonian of coupled charge and binding de-

grees of freedom, based on microscopic phenomenology, that captures the qualitative

behavior observed by Annaka and Tanaka in their experiments [2, 3] on polyampholyte

gels. The model can be discussed in spin language: A random field on an s = 1 model

induces a quenched random spatial distribution of possible opposite spin states that

equilibrate with zero-spin states via the pH. The non-zero spins represent the ionized

monomers and have alternate local binding configurations bringing together opposite

pairs. As the occurrence of the up and down spins is changed via the pH, the system

moves from maximal binding (collapsed gel) to non-binding (expanded gel). In be-

tween, in the partial binding regimes, the multiplicity of local binding configurations

gives rise to a macroscopic diversity, namely the coexistence of multiple phases with

distinct partial collapses.

We thank Prof. Toyoichi Tanaka for many useful discussions. This research was

supported by the US National Science Foundation Grant No. DMR-90-22933.
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Chapter 4

Conclusions and Future Prospects

In this thesis I have had the pleasure to work on two of the most interesting topics

in statistical physics today: quantum systems and random systems. I developed new

microscopic models and theoretical methods for the understanding of these systems.

There is much work still to be done in both topics.

In the topic of quantum statistical mechanics, two major thrusts come readily to

mind. First, it would be most rewarding to learn how to construct renormalization

group calculations for quantum systems. I believe that having a visual and intuitive

picture for the transition like that developed in Chapter 2 is a key element towards

that end. It would also be rewarding to study the cross-over between quantum and

classical systems in order to understand better their relation to each other.

Second, both magnetic Hamiltonians studied in Chapter 2 have Bose-Einstein

quantum statistics, meaning wavefunctions are even under particle exchange. Study-

ing Fermionic systems (i.e., electronic problems) in which exchanging particles leads

to a minus sign for the wavefunction, adds another layer of complexity. This minus

sign stymies Quantum Monte Carlo simulations and other theoretical approaches.

Perhaps it is possible to invent ways of representing Fermionic systems using the

Suzuki-Trotter mapping or some other technique which will make these problems

more tractable.

Similarly, for the field of random systems, there are two major areas which deserve

mention. Biological problems are receiving much attention because of the analogies

81



to statistical physics. In biology, one is interested in determining how competing

atomic interactions lead to objects of biological import on larger and larger length

scales: proteins, cells, organisms. In addition, it seems that the language of phase

transitions may be helpful (i) to express how cells with the same genetic information

can develop to serve such different functions as neurons, muscles, skin, and so on; and

(ii) to characterize diseases such as cataracts, sickle-cell anemia, kidney stones, and

Alzheimer's disease.

Finally, in systems with random competing interactions glassy states are often

observed. Glassy states are those in which true thermodynamic equilibrium has not

been reached but the system freezes into some deep local free energy minima. Among

other applications, these kinds of systems have been used to model memory storage

in the brain. Other interesting questions arise from their study: How do non-ergodic

states occur? Can the limitations of the replica-symmetry breaking approach to

solving these problems be overcome? Can some sort of scaling theory be constructed

in which non-equilibrium properties are observed?
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