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Abstract

A public domain code ”Object Oriented Finite ele-
ment analysis for materials science” (OOF) has been
extended to include tools for analysis of viscoelastic
materials. Utility of these tools has been discussed
along with possible applications in this publication.
Added features in OOF include means to quantita-
tively analyze the spatiotemporal response of a com-
posite polymeric material in dynamic as well as in
static deformation conditions. These coupled with
the existing features of OOF, in particular, the com-
plete analysis of mechanical characteristics of ma-
terials provide a comprehensive tool for the stud-
ies of timedependent behavior of variety of mate-
rials including polymeric solid composites, polymer
nanocomposites, polymer blends, block copolymers,
and so on. The viscoelastic module draws its strength
from the underlying OOF architecture to provide a
macroscopic evaluation of mechanical properties us-
ing microstructural details. An application of this
module for deformation analysis is the characteriza-
tion of mechanical behavior a polymer nanocompos-
ites. The deformation behaviour of polymer compos-
ite depends on the combined characteristic relaxation
times of its consituents as well as its microstructural
details. Results of analysis are expected to provide
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better insight into the role of microstructure as well
as the role of interphase on the average mechanical
properties and their variations.

1 Introduction

Polymeric composites show a very wide range of me-
chanical responses, determined by the microstructure
and inherent mechanical response of the constituent
materials. The mechanical response of constituent
polymer materials itself is determined by the orien-
tation and the ease of motion of component macro-
molecules [1]. This concerted motion of the macro-
molecules manifests usually as a macroscopic vis-
coelastic deformation response of the polymeric ma-
terial. In general, the viscoelastic response could en-
compass of a range of relaxation time scales reflecting
the multiple time and length scales of dynamics of
the macromolecular structure on deformation. When
multiple phases are present as in the case of a com-
posite along with the constituent properties, the inte-
face properties also play a crucial role in dictating the
mechanical behaviour of the entire composite. The
mechanical behaviour often differs on the surface, in-
terface or within small domains of a composite and
any one these behaviour could drastic alter macro-
scopic deformation behaviour of the sample.

From the point of view of applications, it is impera-
tive that the interactions between the different defor-
mation mechanisms are well understood and charac-
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Figure 1: Microstructures that can analysed with
viscoelastic module for OOF. The microstructure on
the left and right correspond to a PS-PMMA thin
film and glass filled epoxy composite material respec-
tively.

terized accordingly. One area of importance for vis-
coelastic composite material is the structural materi-
als with desirable dissipation characteristics. Reduc-
tion of noise or damping vibration is a crucial aspect
for components in many device applications. Alter-
natively, a small disipation composite may be use-
ful in dimensional stability of the composite material
structure. These design goals are usually acheived by
tuning the properties of the constituents of the com-
posite or microstructural topology [2] therby altering
the damping charcteristics of the polymer composite.

Realization of the design goal of a device for its de-
formation properties often depends on the model cho-
sen for characterizing the composite material. There
are several analytical models in the literature for the
estimation the composite properties from a given set
of constituent properties with a simple microstruc-
ture[3]. These models are restricted to simple mor-
phologies and microstructures and usually in the limit
of small volume fractions of inclusions. There also
have been attempts to extend to higher volume frac-
tion of inclusions inthe composite but the success is
still limited to either uniformly random structures or
uniformly ordered structures. Most of the real com-
posite microstructure fall in between these two ex-
tremes.

Finite element methods provide an excellent alter-
native for evaluation of the material response, partic-

7 mer rheology. The analytical methods provide a cost

effective way to infer the bounds on the properties of
the composite material for a given set of constituent
materials and the FEM methodology extends it to
pinpoint the composite microstructure that shows the
desired charactristic of the composite material.

2 Viscoelastic behaviour

A distinctive feature of the mechanical behavior of
polymers is their time dependent response to the ap-
plied stress or strain which depends on the rate of
loading. The behavior can be thought of as being
in between the ideal solid and liquid behaviour. At
low temperatures and high strain rates, these materi-
als display solid like Hookean behaviour and in high
temperatures and low strain rates, polymers exhibit
liquid like, viscous behaviour.

Figure 2: Standard linear solid - spring and dashpot
model for viscoelastic behavior.

In the intermediate ranges of temperature and
strain rates, the deformation is usually more compli-
cated. This deformation behaviour is usually mod-
elled with the assumption that the deformations are



small and can be decomposed to purely elastic and
purely viscous components. This is the assump-
tion of linear viscoelastic behaviour and this com-
bined with the Boltzmanns superposition principle
leads to a simpler picture of deformation behaviour
of polymeric material. There are a variety of spring-
dashpot models which recover the deformation be-
haviour of viscoelastic material at appropriate exper-
imental conditions. We chose standard linear solid
model, which is basically a several Maxwell element
constructed in parellel, for the description of linear
viscoelasticity (see Figure 2). This model recovers
both solid and liquid like behavior in appropriate ex-
perimental conditions.

An intergral representation of the constitutive
equation for the viscoelastic response is given as
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where dot refers to time derivate.
The relaxation function or the kernel is given as
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where G, is the long term modulus (solid like), G;’s
are the partial modulii with corresponding relaxation
time scales 7;. This expression forms the Prony series
for the relaxation function.

For the simpler case of deviatoric stress,
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3 Finite element method for
viscoelastic behavior

The integro-differential constitutive equation as given
in previous equation is difficult to handle numerically,
as it requires entire history of process to be stored for
the evaluation of current state of the deformation.
Even with a cutoff of few hundreds of timesteps in

memory would enormously slow down the computa-
tional speed, as for every step in memory entire state
of the system needs to be stored. We improved upon
an algorithm originally proposed by the Zienkiewics
and Taylor [4], wherein the total time is decomposed
into several intervals. To evaluate the current defor-
mation state, the integrals need to be evaluated only
for the current time interval, and a recursion provides
the information about state of the system in previ-
ous time step. The details of this routine are given
elsewhere. This eliminates the necessity of storage of
entire history and helps increasing the speed of sim-
ulation process.

Figure 3: A typical OOF output : inhomogenous spa-
tial distribution of stress component o, along with
the temporal evolution of average micromechanical
quantities. This snapshot is from a DMA analysis of
glass beads in a polymeric matrix.

Object oriented finite element analysis for material
science, originally, could handle both thermal and de-
formation behaviour analysis of homogenous as well
as composite materials. In this work, we have intro-
duced a set of dynamic and static test methods for
the analysis of time dependent viscoelastic deforma-
tions.

The description of the local fields subjected to the
constraints provided by the microstructural details
and the boundary conditions results on a set of equa-
tions for the nodes of the finite element mesh, given
by

KU=F (4)

where K is the stiffness matrix of the material, U
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Figure 4: Comparison between the experimental re-
sults (square markers) and exact analytical results
(lines) for a viscoelastic solid with single relaxation

time.

is the vector of nodal positions and F is the vector
of body forces and forces arising from loading con-
ditions. This forms the simplest description of the
finite element process. The details of the finite ele-
ment implementation can be found elsewhere.

The deformation state of the system or the local
fields evolve with time and these spatiotemporal so-
lutions for the integrodifferential equation (eqn. 3)
are obtained using using a Newton Ralphson solver.
Since, the tangent matrices necessary for the Newton
Ralphson solver are independent of state variables,
the solver converges rapidly, hence simplifying the
computation. The boundary conditions for the sys-
tem are determined by the kind of experiment chosen
and by independent specification. The viscoelastic
response for a time varying loading is obtained by
succesively solving for the resulatant finite element
mesh and updating the stress fields recursively.

The model is validated using several different con-
ditions. To verify the model and the working of the fi-
nite element method, a dynamical mechanical analy-
sis simulation for a homogenous solid is studied. The
Prony series was restricted to a single term to keep
the analysis simple. The results are compared with
exact analytical solutions as shown in Figure. 4.

4 Static and dynamic experi-
ments

4.1 Static experiments

The viscoelastic behaviour as defined previously is
a dynamic phenomena, that is, the response of the
sytem varies with time. The ’static’ experiments in
this case refers to the condition on loading or defor-
mation applied: constant loading in creep experme-
nts or the constant applied deformation in the case
of stress relaxation experiments. Both of the above
experiments can be performed on a microstructure.
The object oriented technique with which the OOF
package has been built, allows also to superimpose
two different loads in different directions.
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Figure 5: Kinds of virtual experiments that can be
performed (a)stress-strain relationships, (b)loading
- unloading experiments, (c¢) dynamical mechanical
analysis (d) constant strain rate experiments or com-
binations of different loading conditions.

4.2 Dynamical Mechanical Analysis

Often applications involving composite materials re-
quire response to variable loading at high or low fre-
quencies depending on the application. (For exam-
ple as a dampner, the composite would be expected
to absorb the high frequency component of loading



without any sign of degradation.) So it is pertinent
to analyze composite behaviour in these kinds of de-
formation conditions. Modified OOF (this work) in-
corporates a suite of tests including dynamical me-
chanical tests wherein the frquency, initial phases of
the applied oscillatory deformation field can be spec-
ified.
The variations of stress and strain are given by (in
complex notation)
e(t) = egexp(iwt)

(5)

o(t) = ooexp(i(wt + 9))

(6)

where ¢ is the phase lag or phase angle.
The overall complex modulus is then given by,

G* = @exp(i(S)
€o

(7)

The real part of the complex modulus (G1) is re-
ferred to as the storage modulus as it is relates to
the amount elastic energy stored in the system. The
imaginary part of the complex modulux (G2) is re-
ferred to loss modulus and is measure of energy dis-
sipation due to viscous flow in each cycle of deforma-
tion.

In a homogenous viscoelastic material with a sin-
gle time scale involved, the complex modulii can be
derived easily. Figure 4 shows a comparison between
the analytically derived spectra and the results from
finite element analysis for a homogenous sample.

In addition to the static experiments and DMA
tests, constant strain rate experiments can also be
performed on a polymeric composite. These also
would provide information regarding the dissipation
of energy and limiting behaviour of the composite
structures.

Results of the virtual experiments in OOF are
normally presented as spatial distribution of the
micromechanical quantities. Complete imformation
about the local deformations are embedded in these
distributions. For the polymeric composites, along
with the all the field component distriutions, the dis-
sipated energy distribution, and the stored energy
distributions can be quantitatively studied. Several
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Figure 6: A typical OOF virtual experiment

other quantifiers for local deformation like the local
viscosity have also been incorporated.

Several applications could be envisaged which can-
make use of this viscoelastic deformation analysis
module. For example, effect of microstructural de-
tails for inclusions in polymeric matrix : soft inclu-
sions on a hard matrix, as in rubber toughened poly-
mer acrylic material and hard fillers on a soft matrix
like a carbon black on polymer composite. In addi-
tion, we also investigate the effect of interfacial prop-
erties, specifically the relaxation time scales, on these
composite materials. As discussed in preceeding sec-
tions, the interphase plays a crucial role in deter-
mining the deformation properties of the composite
system. For example, in core-sheel PMMA /rubber
system, good adhesion between the acrylic matrix -
a coploymer based upon poly(methylmethacrylate) -
and the rubber particle is particularly important in
acheiving high performance. The toughening parti-



cles are composed of a core of acrylic particles with
a outer shell bonded with rubber. The study of the
dynamical response of these composite are expected
to provide insights into the roles of the components in
the toughening behvior. Morphology and microstruc-
ture also play important roles in designing the desired
mechanical property for a composite. The stress dis-
tribution for a deformation process depends on these
factors and can ultimately decide the strength the
material.

5 Conclusions

The public domain code OOF has been extended
to include tools for analysis of viscoelastic materi-
als while retaining all its powerful features. Added
features in OOF include means to quantitatively ana-
lyze the spatiotemporal response of a composite poly-
meric material in dynamic as well as in static defor-
mation conditions. These coupled with the existing
features of OQF, in particular, the complete analysis
of mechanical characteristics of materials provide a
comprehensive tool for the studies of timedependent
behaviour of variety of materials including polymeric
solid composites, polymer nano composites, polymer
blends, block copolymers, and so on. The viscoelastic
module draws its strength from the underlying OOF
architecture to provide a macroscopic evaluation of
mechanical properties using microstructural details.

The correlation between the macroscopic mechan-
ical property on the processing conditions can also
be analysed thorugh the dependence of microstruc-
tural details on the processing conditions. This is
also being envisaged as a tool for the analysis of evo-
lution of phase separating of polymer mixtures in thin
films and for the study of interfacial interactions. The
strength of this module lies in its apparent simplicity
and easy to use approach with menu driven functional
capabilities. However, a limitation of this module, in
its present form, is its use of linear viscoelastic for-
malism to calculate the mechanical response. Work
is underway to eliminate this limitation by utilizing
available experimental data to the fullest extent as
inputs to individual component material of a com-
posite.
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