16.901: Optimization Project
Design of Film Cooling for Combustor Liners
Sample Solution

1 Background

The temperatures within the primary zone of a combustor are significantly higher than the temperatures which
most materials can withstand without significant deterioration. Thus, a critical aspect of the design of a
combustor is the development of a method to cool the liner walls of a combustor such that the temperatures
which the liner temperatures are well below the limit of the material. A typical method to cool a combustor
liner is through film cooling. Film cooling consists of diverting air from the main flow path prior to combustion
and then re-introducing this air along the liner surface to provide a film of cooler air to protect the liner.

In this project, you will consider the optimization of a liner film cooling design. The numerical simulation of
the liner cooling is based on the finite-difference method developed in Project Two for 16.901. In this project,
the cooling air velocity, Ugpo1, and the height of the cooling film, h, are the two design variables. To make
certain that the design is realistic, the design variables are bounded by:

50m/s < Ueoot <250 m/s
0.001 m < h < 0.005 m

The values (or range of values) of all the parameters are given in Table 1.

| Parameter | Definition | Value |

kg air conductivity 0.1 W/(mK)
ks wall conductivity 26.0 W/(m K)
h height of cooling passage 0.001 - 0.005 m
L axial length between cooling passages 0.3 m

Uhot velocity of hot flow 100 m/sec

Ucool velocity of cool flow 50 - 250 m/sec

Thot temperature of hot flow 2200 K

Teootl temperature of cool flow 800 K
tw thickness of liner wall 0.0015 m

Table 1: Parameter definitions and values

2 Tasks

2.1 Minimization of liner temperature (20%)

In this first task, we consider the minimization of the maximum liner temperature, Ti,ax. Note, Tihax is assumed
to occur on the upper surface at the outlet of the computational domain. The design parameters were non-
dimensionalized and mapped such that they both range from —1 to +1 as follows:

Ucool — min Ucool h —minh

e + max Ueoor — min Uoo; 2 + maxh — min h

where min U, is the lower bound of the design range for U.,o, etc. Then, Matlab’s fmincon optimization
routine was used to minimize Ty, over the design space. fmincon calculated the necessary derivatives through
finite differencing for this task. The minimal value was found to be Tj,ax = 1180.4 K and occured at U,y = 250
m/sec and h = 0.005 m. This design point is logical since the minimum temperature is expected to occur for



the design with the maximum cooling air flow and height. Clearly, U.,, and h are at the boundary of the design
space.

The optimization for this problem was begun at the center of the design space (i.e. at Ugpo = 150 m/sec
and h = 0.003 m). The optimization history was

Uselter F-count f(x) constraint Step-size derivative Procedure
1 3 -0.0099065 -1 1 -0.037
2 7 -0.0235035 -0.8135 1 -1.66e+05 Hessian modified
3 11 -0.0920041 0 1 -1.8e-09

Optimization terminated successfully:
Search direction less than 2*options.TolX and
maximum constraint violation is less than options.TolCon
Active Constraints:
3
4

The main Matlab source code for the temperature minimization is the minT.m script.

2.2 Minimization of cooling mass flow (20%)

In this task, we minimize the mass flow in the cooling film for a given maximum temperature limit. Specifically,
we solve the following problem:

minm = U.oorh such that Tinax = Tiim.

In this task, T}, = 1300 K. The temperature constraint is set in the following non-dimensional manner:

Tmax

—1=0.
ZZ—1lz'm

As in the previous case, finite-difference derivatives have been used. The main script for the optimization is in
optliner.m. Starting from the center of the design space, the optimal design occurs for Uepor = 189.7 m/sec
and h = 0.001m, giving a mass flow of r = 0.192 m?/sec. The iteration history for the case is:

max Directional
Iter F-count f(x) constraint Step-size derivative Procedure

1 3 0.45 0.009906 1 -0.0656

2 7 0.384226 0.006096 1 0.097 Hessian modified twice
3 25 0.38422 0.006096 -6.1e-05 -0.0227

4 29 0.360757 0.002662 1 0.00674

5 33 0.367434 0.0001362 1 0.000366 Hessian modified

6 37 0.367799 7.998e-06 1 -0.000152 Hessian modified twice
7 41 0.367647 2.128e-06 1 -0.0102 Hessian modified twice
8 45 0.35741 7.668e-05 1 -0.0181

9 49 0.338858 0.0003395 1 -0.17 Hessian modified twice
10 53 0.154972 0.02271 1 0.0173

11 b7 0.172227 0.01157 1 0.00926

12 61 0.181486 0.006055 1 0.00995

13 65 0.191484 0.0006509 1 0.00118

14 69 0.192632 8.006e-05 1 -0.000587 Hessian modified twice
15 73 0.191928 0.0001628 1 0.0003 Hessian modified

16 7 0.192227 1.209e-06 1 -1.23e-05 Hessian modified

Optimization terminated successfully:



2.3 Minimization of cooling mass flow with analytic derivatives (40%)

Analytic sensitivity derivatives were added to the Matlab source code for the objective function (i.e. 7) and
the constraint equation with respect to the design variables. The derivatives of 7w are simple as they depend
directly on the design variables,

drin
= h
dUcool ’
drin
E = Ucool-

Since the design variables have been non-dimensionalized, the sensitivity derivatives with respect to the scaled
design variables are,

dm  maxUcy —minUcoor dmn
d_5l71 B 2 dUcool ’
drin~ maxh —minh dm

dzy 2 dh’

The constraint equation depends on the states of the finite-difference film-cooling model. Specifically, the value
of Tiax is the temperature at on the upper surface at the outlet which is found by solving the finite-difference
model. For example, consider the dependence of Ti,.x on h, the derivative may be found as follows,

ATmax  Tmax | 0Tmax dT

= + = 1

dh oh o7 dh’ (1)
where T is the vector of temperatures solved in the finite-difference model. Since Tj,ax does not directly depend
on the design variables, % = 0. Furthermore, % is a vector of zeros except for the entry corresponding

to the upper surface, outlet location where the derivative is one. Thus, the remaining difficulty is to find %.
Writing the governing equations of the finite-difference model as a set of residual equations we have,

R(f,h) — 0.

Note, the residual equation also depends on U,y but for this derivation, we have not shown this explicitly.
Then, if we consider a perturbation in A which will create a perturbation in 7', we have,

ﬁ(f+df,h+dh) —0.

Then, in the limit of small changes, we may Taylor series this result to produce,

S - OR - OR
R(T+dT,h+dh) NR(T,h) gl + S =0,
Or, re-arranging this we find,
oRdf _ oft
oT dh ~  Oh’
Plugging this result into Equation (1) gives,
AThnax ¢T6_R’
dh oh’
where the adjoint v satisfies,
LT
O _ OTwax"
oT or
A similar result exists for Ugpor,
dlwax _ 7 OR
dUcool B 6U'z':ool -



This adjoint-based sensitivity derivative was implemented in condif.m.

For the constraint 7};,, = 1300 K, the optimization was re-run with the analytic derivatives. The optimum
occurs for Ugoer = 190.5 m/sec and h = 0.001m, giving a mass flow of 1 = 0.192 m?/sec and clearly matches
the finite-differenced derivative optimization from Section 2.2. The iteration history for the case is:

max Directional
Iter F-count f(x) constraint Step-size derivative Procedure

1 1 0.45 0.009906 1 -0.0943

2 3 0.359221 0.0001474 1 -0.173

3 6 0.266075 7.981e-06 0.5 -0.0976 Hessian modified twice
4 9 0.215392 0.001534 0.5 -0.0394

5 12 0.194336 0.002947 0.5 -0.0073

6 14 0.183999 0.004592 1 0.00811

7 16 0.192196 0.0001133 1 8.32e-06 Hessian modified
8 18 0.192168 4.955e-05 1 1.9e-05 Hessian modified
9 20 0.192162 3.339e-05 1 6.11e-05 Hessian modified
10 22 0.192224 3.274e-08 1 6e-08 Hessian modified

Optimization terminated successfully:

Comparing the work with finite-difference sensitivity derivatives to the adjoint-based analytic derivatives, clearly
the finite-differenced sensitivity derivative case required 77 function evaluations compared to only 22 evaluations

- T
for the analytic derivatives. We note, however, that the analytic derivatives requires the inversion of 2& . Thus,
a single evaluation of the function and derivatives is about twice as expensive than a single function evaluation
in the finite-differenced version.

2.4 Parametric study of cooling mass flow minimization (20%)

Using the constrained optimization with analytic derivatives developed in the previous section, a trade study
was performed by varying 7j;,, from 1200 K to 1400 K. The results are shown in Figure 1.

The variation of min i versus Tj;,,, shows that 7 increases with decreasing T7;,,. This trend is expected as
the lower temperature will require larger liner cooling, and therefore higher mass flows.

The location of the designs in the two-dimensional design space show that at the most stringent temperature
constraint (i.e. lowest T}y ), the largest mass flow is used with U,,o at its maximum value and h nearly at
its largest value. As Tj;, is increased, the h value decreases while U, remains at the maximum limit of 250
m/sec. Eventually, at Tj;, = 1275K, the value of U,y decreases from the maximum boundary value. At this
point, further increases in Ty;,, cause further descreases of U.,o,; while b is fixed at the minimum value of 0.001
m.
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Figure 1: Trade study for varying maximum temperature limits, T7;,,.



