16.901: Optimization Project Design of Film Cooling for Combustor Liners Sample Solution

1 Background

The temperatures within the primary zone of a combustor are significantly higher than the temperatures which most materials can withstand without significant deterioration. Thus, a critical aspect of the design of a combustor is the development of a method to cool the liner walls of a combustor such that the temperatures which the liner temperatures are well below the limit of the material. A typical method to cool a combustor liner is through film cooling. Film cooling consists of diverting air from the main flow path prior to combustion and then re-introducing this air along the liner surface to provide a film of cooler air to protect the liner.

In this project, you will consider the optimization of a liner film cooling design. The numerical simulation of the liner cooling is based on the finite-difference method developed in Project Two for 16.901. In this project, the cooling air velocity, U_{cool} , and the height of the cooling film, h, are the two design variables. To make certain that the design is realistic, the design variables are bounded by:

$$50 \text{ m/s} \le U_{cool} \le 250 \text{ m/s}$$

 $0.001 \text{ m} \le h \le 0.005 \text{ m}$

The values (or range of values) of all the parameters are given in Table 1.

Parameter	Definition	Value
k_g	air conductivity	$0.1 \ W/(m \ K)$
k_w	wall conductivity	$26.0 \ W/(m \ K)$
h	height of cooling passage	0.001 - 0.005 m
L	axial length between cooling passages	0.3 m
U_{hot}	velocity of hot flow	$100 \mathrm{\ m/sec}$
U_{cool}	velocity of cool flow	50 - 250 m/sec
T_{hot}	temperature of hot flow	$2200 \; { m K}$
T_{cool}	temperature of cool flow	800 K
t_w	thickness of liner wall	0.0015 m

Table 1: Parameter definitions and values

2 Tasks

2.1 Minimization of liner temperature (20%)

In this first task, we consider the minimization of the maximum liner temperature, T_{max} . Note, T_{max} is assumed to occur on the upper surface at the outlet of the computational domain. The design parameters were non-dimensionalized and mapped such that they both range from -1 to +1 as follows:

$$x_1 = -1 + 2 \frac{U_{cool} - \min U_{cool}}{\max U_{cool} - \min U_{cool}} \qquad x_2 = -1 + 2 \frac{h - \min h}{\max h - \min h}$$

where min U_{cool} is the lower bound of the design range for U_{cool} , etc. Then, Matlab's **fmincon** optimization routine was used to minimize T_{max} over the design space. **fmincon** calculated the necessary derivatives through finite differencing for this task. The minimal value was found to be $T_{\text{max}} = 1180.4 \, K$ and occurred at $U_{cool} = 250 \, \text{m/sec}$ and $h = 0.005 \, \text{m}$. This design point is logical since the minimum temperature is expected to occur for

the design with the maximum cooling air flow and height. Clearly, U_{cool} and h are at the boundary of the design space.

The optimization for this problem was begun at the center of the design space (i.e. at $U_{cool} = 150 \text{ m/sec}$ and h = 0.003 m). The optimization history was

UseIter	F-cou	nt $f(x)$	constraint	Step-size	deriva	tive Procedure
1	3	-0.0099065	-1	1	-0.037	
2	7	-0.0235035	-0.8135	1	-1.66e+05	Hessian modified
3	11	-0.0920041	0	1	-1.8e-09	

 ${\tt Optimization}\ {\tt terminated}\ {\tt successfully:}$

Search direction less than 2*options.TolX and

maximum constraint violation is less than options. TolCon

Active Constraints:

3 4

The main Matlab source code for the temperature minimization is the minT.m script.

2.2 Minimization of cooling mass flow (20%)

In this task, we minimize the mass flow in the cooling film for a given maximum temperature limit. Specifically, we solve the following problem:

$$\min \dot{m} = U_{cool}h$$
 such that $T_{\max} = T_{lim}$.

In this task, $T_{lim} = 1300 \, \text{K}$. The temperature constraint is set in the following non-dimensional manner:

$$\frac{T_{\text{max}}}{T_{lim}} - 1 = 0.$$

As in the previous case, finite-difference derivatives have been used. The main script for the optimization is in **optliner.m**. Starting from the center of the design space, the optimal design occurs for $U_{cool} = 189.7$ m/sec and h = 0.001 m, giving a mass flow of $\dot{m} = 0.192$ m^2/sec . The iteration history for the case is:

			max		Directional	
Iter	F-count	f(x)	constraint	Step-size	derivative	Procedure
1	3	0.45	0.009906	1	-0.0656	
2	7	0.384226	0.006096	1	0.097	Hessian modified twice
3	25	0.38422	0.006096	-6.1e-05	-0.0227	
4	29	0.360757	0.002662	1	0.00674	
5	33	0.367434	0.0001362	1	0.000366	Hessian modified
6	37	0.367799	7.998e-06	1	-0.000152	Hessian modified twice
7	41	0.367647	2.128e-06	1	-0.0102	Hessian modified twice
8	45	0.35741	7.668e-05	1	-0.0181	
9	49	0.338858	0.0003395	1	-0.17	Hessian modified twice
10	53	0.154972	0.02271	1	0.0173	
11	57	0.172227	0.01157	1	0.00926	
12	61	0.181486	0.006055	1	0.00995	
13	65	0.191484	0.0006509	1	0.00118	
14	69	0.192632	8.006e-05	1	-0.000587	Hessian modified twice
15	73	0.191928	0.0001628	1	0.0003	Hessian modified
16	77	0.192227	1.209e-06	1	-1.23e-05	Hessian modified

Optimization terminated successfully:

2.3 Minimization of cooling mass flow with analytic derivatives (40%)

Analytic sensitivity derivatives were added to the Matlab source code for the objective function (i.e. \dot{m}) and the constraint equation with respect to the design variables. The derivatives of \dot{m} are simple as they depend directly on the design variables,

$$\begin{array}{rcl} \displaystyle \frac{d\dot{m}}{dU_{cool}} & = & h, \\ \\ \displaystyle \frac{d\dot{m}}{dh} & = & U_{cool}. \end{array}$$

Since the design variables have been non-dimensionalized, the sensitivity derivatives with respect to the scaled design variables are,

$$\begin{array}{ll} \frac{d\dot{m}}{dx_1} & = & \frac{\max U_{cool} - \min U_{cool}}{2} \frac{d\dot{m}}{dU_{cool}}, \\ \frac{d\dot{m}}{dx_2} & = & \frac{\max h - \min h}{2} \frac{d\dot{m}}{dh}. \end{array}$$

The constraint equation depends on the states of the finite-difference film-cooling model. Specifically, the value of T_{max} is the temperature at on the upper surface at the outlet which is found by solving the finite-difference model. For example, consider the dependence of T_{max} on h, the derivative may be found as follows,

$$\frac{dT_{\text{max}}}{dh} = \frac{\partial T_{\text{max}}}{\partial h} + \frac{\partial T_{\text{max}}}{\partial \vec{T}} \frac{d\vec{T}}{dh},\tag{1}$$

where \vec{T} is the vector of temperatures solved in the finite-difference model. Since $T_{\rm max}$ does not directly depend on the design variables, $\frac{\partial T_{\rm max}}{\partial h} = 0$. Furthermore, $\frac{\partial T_{\rm max}}{\partial \vec{T}}$ is a vector of zeros except for the entry corresponding to the upper surface, outlet location where the derivative is one. Thus, the remaining difficulty is to find $\frac{d\vec{T}}{dh}$. Writing the governing equations of the finite-difference model as a set of residual equations we have,

$$\vec{R}\left(\vec{T},h\right) = 0.$$

Note, the residual equation also depends on U_{cool} but for this derivation, we have not shown this explicitly. Then, if we consider a perturbation in h which will create a perturbation in \vec{T} , we have,

$$\vec{R}\left(\vec{T}+d\vec{T},h+dh\right)=0.$$

Then, in the limit of small changes, we may Taylor series this result to produce,

$$\vec{R} \left(\vec{T} + d\vec{T}, h + dh \right) \approx \vec{R} \left(\vec{T}, h \right) + \frac{\partial \vec{R}}{\partial \vec{T}} d\vec{T} + \frac{\partial \vec{R}}{\partial h} dh = 0.$$

Or, re-arranging this we find,

$$\frac{\partial \vec{R}}{\partial \vec{T}} \frac{d\vec{T}}{dh} = -\frac{\partial \vec{R}}{\partial h}.$$

Plugging this result into Equation (1) gives,

$$\frac{dT_{\text{max}}}{dh} = -\psi^T \frac{\partial \vec{R}}{\partial h},$$

where the adjoint ψ satisfies,

$$\frac{\partial \vec{R}}{\partial \vec{T}}^T \psi = \frac{\partial T_{\text{max}}}{\partial \vec{T}}^T.$$

A similar result exists for U_{cool} ,

$$\frac{dT_{\text{max}}}{dU_{cool}} = -\psi^T \frac{\partial \vec{R}}{\partial U_{cool}}.$$

This adjoint-based sensitivity derivative was implemented in **condif.m**.

For the constraint $T_{lim} = 1300 \, K$, the optimization was re-run with the analytic derivatives. The optimum occurs for $U_{cool} = 190.5 \, \text{m/sec}$ and $h = 0.001 \, \text{m}$, giving a mass flow of $\dot{m} = 0.192 \, m^2/\text{sec}$ and clearly matches the finite-differenced derivative optimization from Section 2.2. The iteration history for the case is:

			max		Directional	L
Iter	F-count	f(x)	constraint	Step-size	derivative	e Procedure
1	1	0.45	0.009906	1	-0.0943	
2	3	0.359221	0.0001474	1	-0.173	
3	6	0.266075	7.981e-06	0.5	-0.0976	Hessian modified twice
4	9	0.215392	0.001534	0.5	-0.0394	
5	12	0.194336	0.002947	0.5	-0.0073	
6	14	0.183999	0.004592	1	0.00811	
7	16	0.192196	0.0001133	1	8.32e-06	Hessian modified
8	18	0.192168	4.955e-05	1	1.9e-05	Hessian modified
9	20	0.192162	3.339e-05	1	6.11e-05	Hessian modified
10	22	0.192224	3.274e-08	1	6e-08	Hessian modified

Optimization terminated successfully:

Comparing the work with finite-difference sensitivity derivatives to the adjoint-based analytic derivatives, clearly the finite-differenced sensitivity derivative case required 77 function evaluations compared to only 22 evaluations for the analytic derivatives. We note, however, that the analytic derivatives requires the inversion of $\frac{\partial \vec{R}}{\partial \vec{T}}^T$. Thus, a single evaluation of the function and derivatives is about twice as expensive than a single function evaluation in the finite-differenced version.

2.4 Parametric study of cooling mass flow minimization (20%)

Using the constrained optimization with analytic derivatives developed in the previous section, a trade study was performed by varying T_{lim} from 1200 K to 1400 K. The results are shown in Figure 1.

The variation of $\min \dot{m}$ versus T_{lim} shows that \dot{m} increases with decreasing T_{lim} . This trend is expected as the lower temperature will require larger liner cooling, and therefore higher mass flows.

The location of the designs in the two-dimensional design space show that at the most stringent temperature constraint (i.e. lowest $T_{\rm lim}$), the largest mass flow is used with U_{cool} at its maximum value and h nearly at its largest value. As T_{lim} is increased, the h value decreases while U_{cool} remains at the maximum limit of 250 m/sec. Eventually, at $T_{lim} = 1275K$, the value of U_{cool} decreases from the maximum boundary value. At this point, further increases in T_{lim} cause further descreases of U_{cool} while h is fixed at the minimum value of 0.001 m.

(b) Optimum design variables versus T_{lim}

Figure 1: Trade study for varying maximum temperature limits, T_{lim} .