
16.901 Project #1

Due Date: March 3, 2pm


1 Background 

Modeling the dynamics of an airplane can be very complex. Twelve state variables are required to describe 
the motion: three states for position, three for velocity, three for angular orientation, and three angular rates. 
However, this system of twelve coupled differential equations can be simplified greatly by linearization and 
some assumptions. These simplifications yield two decoupled four-state systems, one describing longitudinal 
motion and the other describing lateral motion. 

The longitudinal modes can be simplified even more to give fairly accurate decoupled models of the 
familiar pheugoid and short-period modes. The lateral system cannot be simplified as easily to solve for 
the three lateral modes: Dutch roll, spiral mode, and roll mode. The Dutch roll mode is a combination of 
yawing and rolling oscillations. In the roll mode, the roll rate reaches steady state quickly. The spiral mode 
can be slightly stable or unstable. An unstable spiral mode can lead to divergence from the flight path or 
result in a spiral dive. These lateral modes will be the topic of the first programming project and will be 
the basis for most of the questions in this homework assignment. 

1.1 Definition of coordinate systems and variables 

The motion of the aircraft is measured relative to a fixed frame; however, the properties of the aircraft are 
often known in a coordinate system relative to the aircraft body. Thus, the states to be determined are the 
the relative position, motion, angular orientation, and angular rate of the body frame. Figure 1 shows the 
forces (X , Y , Z), moments (L, M , N ), angular rates of rotation (p, q, r) with respect to the body axes (x b, 
yb, zb). 

Figure 1: Definition of body coordinate system attached to the aircraft 

The Table 1 defines the relevant variables. The linearized equations of motion are written in terms of 
stability derivatives, the first derivatives of the forces and moments with respect to the states. These are 

∂Ygenerally written in subscript notation. For example, Yβ ≡ 
∂β . Often stability derivatives are given in a 
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Symbol Description 

States Δβ Side-slip angle perturbation 
Δp Roll rate perturbation 
Δr Yaw rate perturbation 
Δφ Roll angle perturbation 

Forces and Moments Y Side force (Force in y direction) 
L Rolling moment (Moment about x axis) 
N Yawing moment (Moment about z axis) 

Other quantities Q Dynamic pressure 
S Planform area 
b Wingspan 
W Weight of aircraft 
m Mass of aircraft 

Ix, Iz , Ixz Momentw of inertia 
g Gravitational acceleration 

M0 Mach number 
h0 altitude 
u0 Initial velocity in x direction 

Table 1: Explanation of Variables 

Yβ = QSCyβ , Lβ = QSbClβ , Nβ = QSbCnβ 

Yp =	 QSb Cyp , Lp = QSb2 

Clp , Np = QSb2 

Cnp2u0 2u0 2u0 

Yr =	 QSb Cyr , Lr = QSb2 

Clr , Nr = QSb2 

Cnr2u0 2u0 2u0 

Table 2: Stability derivative non-dimensional definitions 

non-dimensional form, such as Cyβ as the non-dimensionalized form of Yβ . Specifically, the definitions in 
Table 2 are conventional and will be used in this homework and project. Values of the stability derivatives 
and dimensions for the airplanes we will study in this homework and project are given in Table 3. 

1.2 Equations of motion 

The linearized equations of lateral motion are given in Equation (1)-(4). Equation (1) is the conservation of 
y-momentum. Equation (2) is the conservation of x-angular momentum. Equation (3) is the conservation 
of z-angular momentum. Finally, Equation (4) is the relation between the roll angle and the roll rate. 
Specifically, the governing equations take the following form: 

d 
mu0 − Yβ Δβ − YpΔp + (mu0 − Yr ) Δr − mgΔφ = 0 (1)

dt 

d d 
−Lβ Δβ + Ix − Lp Δp − Ixz + Lr Δr = 0 (2)

dt dt 

d d 
−Nβ Δβ − Ixz + Np Δp + Iz − Nr Δr = 0 (3)

dt dt 

d 
Δφ = Δp (4)

dt 

2 



� � 
� � 

Quantity Values for 747 Values for F-104 

Cyβ -0.96 -1.17 
Cyp 0 0 
Cyr 0 0 
Clβ -0.221 -0.175 
Clp -0.45 -0.285 
Clr 0.101 0.265 
Cnβ 0.150 0.50 
Cnp -0.121 -0.14 
Cnr -0.30 -0.75 
S 5500 f t2 196.1 f t2 

b 195.68 f t 21.94 f t 
h Sea level Sea level 

M0 0.25 0.257 
W 636600 lbs 16300 lbs 
Ix 18.2 × 106 slug f t2 3549 slug f t2 

Iz 49.7 × 106 slug f t2 59669 slug f t2 

Ixz 0.97 × 106 slug f t2 0 

Table 3: Stability derivatives and dimensions for 747 and F-104 at sea level 

Assignment 

• Implement the following six integration methods: 

– 1st order Adams-Bashforth (AB1). More commonly known as Forward Euler. 

– 2nd order Adams-Bashforth (AB2). 

– 1st order Adams-Moulton (AM1). More commonly known as Backward Euler. 

– 2nd order Adams-Moulton (AM2). More commonly known as Trapezoidal Method. 

– 2-stage Runge-Kutta (RK2). 

– 4-stage Runge-Kutta (RK4). 

Turn in hard copies of your algorithms with your project write-up. 

We will study the accuracy and efficiency of these 6 methods applied to the following problem: Find 
u(t) from t = 0s to t = 30s for the following initial condition: 

Δβ (0) = 0.1 rad, Δp (0) = 0, Δr (0) = 0, Δφ (0) = 0 

NOTE: the final time has been shortened compared to Homework #2. 

•	 For this assignment, the measure of accuracy will be the maximum error in the sideslip angle pertur­
bation (at any iteration), i.e., 

E ≡ max 
� Δβ̂n 

− Δβ(nΔt)
� 

n 

where Δβ̂n is the value of the sideslip angle perturbation calculated by the integration method at 
the n-th iteration. For both airplanes and using all integration methods, determine the accuracy for 
timesteps of Δt = 0.001, 0.01, 0.1, and 1.0 seconds. Specifically, fill in the results in a table similar 
to Table 4. For both aircraft, please discuss which methods exhibit their predicted global order of 
accuracy as the timestep decreases? Explain your answer. 
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Δt AB1 AB2 AM1 AM2 RK2 RK4 

1.0 
0.1 
0.01 
0.001 

Table 4: Accuracy convergence study for Boeing 747 

AB1 AB2 AM1 AM2 RK2 RK4 

WU 1.0 

Table 5: Work Units for a single iteration of each integration method. 

•	 In order to compare the work involved in these methods, we need a single ’currency’ which is relatively 
independent of the particular computer, network, version of software compiler, etc. We will use the 
computational time required to run a single iteration of the Forward Euler method (AB1) as our Work 
Unit (WU). To find the WU’s for an iteration of the other methods, run each of them for a few hundred 
iterations and calculate the average time required for a single iteration. MAKE SURE TO DO THIS 
ON THE SAME COMPUTER, IMMEDIATELY AFTER EACH OTHER to reduce the possibility of 
varying conditions affecting the timings. In Matlab, the command to use to find the current time is 
called cputime (look up this command in the Matlab help to see its usage). Then, normalize these 
timings by the Forward Euler timings to calculate the WU for an iteration of each method. Report 
the WU for an iteration of each method in a table such as Table 5. Note: refer to the discussion 
in the sample solution to Homework #2 to see what the expected behavior should be. If you get 
something very different from the discussion in that sample solution, you probably have a bug or have 
not implemented your method efficiently. 

•	 Based on the results in the tables for the accuracy study and the known computational work costs 
of each algorithm, estimate the amount of work required (i.e. in terms of WU) for each method to 
achieve an accuracy of 0.0001 radians for β for each airplane (you might use a table like Table 6. Try to 
explain the WU results based on your understanding of the methods and their accuracy and stability. 
Which method would you recommend for efficiently solving these aircraft lateral dynamics equations? 

Aircraft AB1 AB2 AM1 AM2 RK2 RK4 

747 
F-104 

Table 6: Work Unit requirements to achieve an accuracy of 0.0001 rads for the sideslip angle. 
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