16.901: ODE Integration Project
The Use of Swirl for Cleaning Nuclear Rocket Plumes
Due Date: February 25, 2pm

1 Background

Nuclear thermal rockets offer the combination of high thrust and high specific impulse making them ideal
candidates for the transportation of large payloads in short times. The basic concept behind nuclear thermal
propulsion is to use a critical mass of Uranium to heat hydrogen gas which is then accelerated out a nozzle.
Unfortunately, a severe limitation is placed on nuclear thermal propulsion due to the potential for radioactive
material to be dispersed. Thus, a critical need exists to develop efficient methods for extracting radioactive
material from the plume prior to exhausting into the atmosphere.

In this project, we will consider the use of swirl in the rocket plume as a means to separate heavy
Uranium particles from the hydrogen gas. The basic idea is that the heavy particles will be accelerated
circumferentially due to the swirling gas flow. However, due to their large density, these particles cannot
maintain their radial location and move to the outside of the plume where they can be efficiently skimmed
from the main hydrogen gas path. In this project, numerical methods will be developed to trace the particle
trajectories and determine the potential for particle separation using swirling flow.

NOTE: This project is based on the Master’s Thesis of David Oh, M.I.T., 1993.

1.1 Rocket Configuration and Flow

Swirl vanes

Figure 1: Rocket configuration and flow

We will study a simplified rocket configuration with a constant radius R, and axial length L as shown in
Figure 1. The flow through the chamber is assumed to have a constant axial velocity W,. The swirl vanes
have been designed to create a solid body rotating flow such that the circumferential velocity of the gas is
given by,

U0g = Qr.
At the exit of the rocket chamber, skimmers have been located at a radial location Rs. The parameters for
this problem are defined in Table 1.

1.2 Particle Trajectory Equations
The location of a particle is denoted as &,. The particle motion is governed by,

b= F
Mmplp = I,



| Parameter | Definition | Value |

Py gas density 0.3 kg/m3

Pp particle density 12700 kg/m?

a particle radius 1 pm, 10 pm, 100 pm
R, radius of rocket 0.15m

Ry radius of skimmer 0.14 m

L length of rocket 1m
W, axial velocity of gas 1100 m/s

Kg gas viscosity 3 x 10° kg/(m sec)

Q0 rotation rate of gas | 5000 rad/sec, 10000 rad/sec

Table 1: Parameter definitions and values

where m,, is the mass of the particle and F is force acting on the particle. The force is composed of a pressure
and a drag force,
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We will assume that the gas is in radial equilibrium, thus the only pressure gradient is in the radial direction
and given by,

dp Uef,

ar =P
Finally, if during the integration of the particle, its trajectory reaches the outer radius of the chamber, the
particle can be assumed to remain near the wall (in its boundary layer) and slowly moves into the skimmer.

1.3 Particle Inlet Distribution and Cleaning Efficiency

For this work, we will assume that the particles are uniformly distributed at the inlet. Also, we will assume
that the initial velocity of the particles is equal to the gas axial velocity, W,. Thus, the particles enter the
swirling flow region with only axial velocity. The cleaning efficiency, 7, is defined as the fraction of particles
which are cleaned,

where IV, is the total number of particles, and n,, is the number of particles removed by the skimmers. For
the uniform distribution case with constant initial conditions on the particle velocity, this can be calculated

from,
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where R, is the initial radius of the inner-most particles which can be skimmed off the flow.



2 Tasks

2.1 Dimensional Analysis

Conduct a dimensional analysis of this problem. Specifically, for the cleaning efficiency, n, determine the
number of independent non-dimensional parameters which govern the behavior of . Then, determine the
specific non-dimensional parameters which you will use in the remainder of the project.

Note: while the number of independent non-dimensional parameters is unique, the specific choice of
which non-dimensional parameters to use is not. Thus, it is helpful to use some engineering judgement in
finalizing on your choice of parameters. This may take some iteration.

2.2 Reduction to a First-Order System

Reduce the order of the system to first-order by introducing additional states to produce a set of coupled,
nonlinear, first-order ODE’s. Specifically, choose the states to be the Cartesian components of particle’s
velocity and position, i.e. up, vp, wp and x,, yp, and z,. Thus, the final system will have the form,

Up Fu(p, Vpy Wy, Ty, Yp, 2p, t)
Up fo(tp, vp, Wy, Tp, Yp, 2p, t)
Wy — fw(upavmwpvxpvypvzpvt)
Tp fae(Upy Vpy Wp, Ty, Yp, 2py )
Yp fy(Ups Vp, Wy, T, Yp, 2p, t)
2p fe(up, vp, wp, Tp, Yp, 2p, t)

Please leave the equations in symbolic form! Do not substitute the specific values for the input
parameters given in Table 1.

2.3 Linearization and Eigenvalues

Linearize the governing equations about time ¢ = 7 to produce a set of linear equations,
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where A is a 6 x 6 matrix and @, (t) = u,(t) — u,(7) and similarly for the other perturbation states. Note:
the forcing terms f may depend on time and on the particle velocity and position at ¢ = 7, but they cannot
depend on the perturbation states t,, etc. To linearize the original equations, we will assume that all of the
perturbation states are small. Again, leave the linearized equations in a symbolic form.

Assuming that the particle’s axial velocity was initialized to W, at ¢ = 0, calculate the eigenvalues of
this linearized set of equations in a symbolic form. Note: the linearization we have done to arrive at these
equations probably will require that ¢ — 7 is small to remain valid. So, the eigenvalues which correspond to
long time behavior are likely to be less meaningful. Fortunately, for numerical stability, it is the short time
scales (i.e. the large magnitude eigenvalues) which are important.

Compare the timescales implied by these eigenvalues with each other and with the approximate time for
the particle to traverse the length of the rocket chamber. Under what conditions will this problem be stiff?
Using the specific values of the input parameters given in Table 1, is this problem stiff for the particular
cases being studied in this project? If yes, describe the conditions under which this stiffness occurs.

2.4 Implementation of ODE Integration Methods

Implement the following numerical methods to integrate the nonlinear particle ODE’s:



e First- and second-order Adams-Bashforth (note: First-order = Forward Euler)

e First- and second-order Adams-Moulton (note: First-order = Backward Euler, Second-order = Trape-
zoidal Rule)

e Second- and fourth-order Runge-Kutta (note: choose any of the popular variations for these two)

Use constant timesteps for all methods. In the write-up, briefly describe these methods. In particular, for
the Adams-Moulton, which are implicit methods, discuss how you solved the nonlinear coupled equations at
each timestep.

2.5 Study of Numerical Accuracy and Computational Work

In this section, you will study the accuracy and the computational work for each of the 6 methods described
above.

1. In order to compare the work involved in these methods, we need a single 'currency’ which is relatively
independent of the particular computer, network, version of software or compiler, etc. We will use the
computational time required to run a single iteration of the forward Euler method as our Work Unit
(WU). To find the WU’s for an iteration of the other methods, run each of them for a few hundred
iterations and calculate the average time required for a single iteration. MAKE SURE TO DO THIS
ON THE SAME COMPUTER, IMMEDIATELY AFTER EACH OTHER to reduce the possibility of
varying conditions affecting the timings. Then, normalize these timings by the Forward Euler timings
to calculate the WU for an iteration of each method. Report the WU for an iteration of each method
in a table.

2. Using each of the methods, calculate the cleaning efficiency, n, to a precision of 0.01 over the entire
range of conditions (note: make sure to do use the results of your dimensional anaylsis when possible).
To do this, you will first need to calculate R, (defined above) by running the particle integration for a
series of initial radial positions with some fixed time step. From this, you can then calculate 7. Then,
decrease the timestep by some amount (say 50%), and re-run your procedure to find R, and 7. If
the answer remains the same to within 0.01, then you have achieved your accuracy limit. Try to find
the maximum timestep size for each method which would achieve your accuracy limit. Then, for each
method and under each combination of operating conditions required, report the data in a table similar
to Table 2.

| Method || Atmax | WU /trajectory | Estimated n at Atmax |
AB1
AB2
AM1
AM?2
RK2
RK4

Table 2: Work requirements and 7 estimates for each method under the operating conditions X

3. Thoroughly discuss the results of the accuracy and work study of the different integration methods.
Try to explain the WU results based on your understanding of the methods and their accuracy and
stability.

4. For each of the methods, plot the trajectory of a particle using different timesteps. To do this, plot
the trajectory in the (z,y) plane as the z coordinate only sets the terminal time. Do you observe any
stability problems using larger timesteps for any of the methods? If so, can these stability limits be
explained using the eigenvalues from the linearized analysis you performed above and your knowledge
of the stability limits of the different methods?



