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16.901 Project #2

Sample Solution


1 Background 

We will simulate the compressible inviscid flow through a varying-area duct in this project. The goal is to 
gain some understanding of the convergence behavior of Computational Fluid Dynamics algorithms applied 
to this problem for varying mesh size and under different flow conditions. In particular, we will use a 
first-order upwind spatial approximation with a Forward Euler timestep algorithm. 

The cross-sectional area of the duct has a constant area section, a smooth converging section to a throat, 
a smooth diverging section to a final constant area section. The specific geometry is given by, 

For 0 ≤ x ≤ x1 : A(x) = A0, 
1 

For x1 ≤ x ≤ x2 : A(x) = A0 + 
2
(A1 − A0) {1 − cos [π(x − x1)/(x2 − x1)]} , 

1 
For x2 ≤ x ≤ x3 : A(x) = A1 + 

2
(A2 − A1) {1 − cos [π(x − x2)/(x3 − x2)]} , 

For x3 ≤ x ≤ x4 : A(x) = A2. 

For the problem in this project, we will set: 

x1 = 1 m 

x2 = 2 m 

x3 = 3 m 

x4 = 4 m 

A0 = 10 m 2 

A1 = 8 m 2 

A2 = 12 m 2 

The flow through the duct will be set by a pressure difference occurring form inlet to the outlet. Specif­
ically, at the inlet, we will assume that the total pressure and the total temperature are equal to sea level 
atmospheric conditions: 

P0inlet = 101, 327 N/m2 

T0inlet = 288.15 K 

At the outlet, we will solve the flow for three different static pressures specifically, 

poutlet/P0inlet = 0.70, 0.90, and 0.995. 

The quasi-1D Euler equations can be written in a control volume form as, 

d xR 

UA dx + F (U (xL)) A(xL) − F (U (xR)) A(xR ) = S (1)
dt xL 

where U and F are, 
    

ρ ρu 
U =  ρu  , F =  ρu2 + p  , 

ρE ρuH 
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and S is a source term vector due to the area-variation, 
  

0 
xR

S =  p dA  . xL 

0 

As described in Homework #4, ρ is the density, u is the flow velocity, p is the pressure, and E is the total 
energy. H is the total enthalpy and is related to the previous quantities by, 

H = E + 
p
. 

ρ 

Note, the total energy (E) and total enthalpy (H) are related to the energy (e) and enthalpy (h) by the 
following, 

E = 
1 

e + u 2 

2 

H = 
1 

h + u 2 

2 

To close this set of equations, we will assume the working fluid is air and can be assumed to be an ideal, 
perfect gas. In this case, the state equations for the pressure and energy are, 

p = ρRT, (2) 

e = cv T, (3) 

where R is the gas constant, T is the temperature, and cv is the specific heat at constant volume. Another 
useful thermodynamic quantity is the specific heat at constant pressure, cp, which is related to R and cv by, 

cp − cv = R. 

Also, the ratio of specific heats γ = cp/cv . For air, we will assume that, 

γ = 1.4 R = 287.06 m 2(s 2K)−1 

As shown in Homework #4, the pressure can be related to the conservative state vector by, 

1 
p = (γ − 1) ρE − ρu2 . 
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Finally, for a perfect gas, the speed of sound, c is given by, 

γp 
c = . 

ρ 

1.1 Discrete Equations for Interior Cells 

We begin by dividing the duct into Nx equal divisions (producing Nx cells). The unknowns will be the 
average-values of the state vector U in each cell, i.e. you will be solving for U j for j = 1 to Nx. 

For every cell in the interior of the domain (i.e. j = 2 to Nx −1), we will use a discrete form of Equation (1) 
to find a new value at every iteration. Specifically, the discretization which you need to implement for the 
project is, 

U n+1 − U n 
j j 

Vj + Rj
n = 0, (4)

Δtn 

where Rj
n is the local residual vector for cell j at iteration n. This local residual is defined as, 

Rj
n = F̂ (Uj

n , Uj
n 
+1)Aj+ 1 − F̂ (Uj

n 
−1, Uj

n)Aj− 1 − Sj
n . (5)

2 2 
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ˆThe function F has been written already (as a Matlab script called Fupwind.m) and is available on the 
course website as an additional attachment. This function, known as a flux function, takes the left and right 
state vector (and the value of γ) at a face between two cells, and returns the flux which has been determined 
by properly upwinding the states to the face. The resulting difference approximation would be equivalent 
to a standard 1st order upwind discretization if the problem were just scalar convection instead of the Euler 
equations. NOTE: the order in which the states are given in the flux function input list is important. Do 
not reverse them! 

The source term is approximated as, 
  

0 

j (Aj+ 1 − Aj− 
2 
)  . (6)Sj

n =  pn 
1 

2 

0 

Also, Vj is the volume of cell j and should be approximated by, 

1 
Vj = 

2
(Aj− 1 + Aj+ 1 

2 
)Δx. 
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1.2 Timestep Calculation 

The timestep will be set with the following CFL condition, 

Nx 

Δtn = CFL min(Δtn 
j ), 

j=1 

where, 
Δx 

Δtn = .j |uj | + cj 

While you can experiment with the CFL number you use to determine the timestep, von Neumann stability 
analysis suggests that the CFL ≤ 1 to remain stable. My suggestion would be to use a CFL = 0.9 for all 
of the simulations you will perform in this project. 

1.3 Boundary Condition Implementation 

At the inlet, we need to determine the state vector U1 by imposing boundary conditions. Specifically, we 
need to have three pieces of information that can be manipulated to uniquely determine the state vector 
(since the state vector has three components). We assume the inlet flow to be subsonic, as a result, only two 
pieces of information may be set while the third piece of information must come from the interior states. 
The two pieces of information we will set are the total pressure and total temperature at the inlet. From 
cell j = 2, we will use the velocity, u2. Thus, these three pieces of information can be used to determine the 
state vector U1, i.e. 

U1 = U (P0inlet, T0inlet, u2) 

Note: by this notation, it is meant that given the total pressure, total temperature, and velocity, the entire 
state vector can be determined. 

At the outlet, we also will assume a subsonic flow. In this situation, we specify only one condition and 
take two pieces of information from the interior. For this assignment, we will set the static pressure and take 
the entropy, S, and J+ (known as Riemann invariant) from the interior. A definition of entropy for an ideal 
gas is, 

p
S = . 

ργ 

The definition of J+ is, 
c 

J+ = u + 2 . 
γ − 1 

Thus, to find the outlet state vector, we need to combine this information, 

UNx = U (poutlet, SNx −1, J+Nx−1
) 
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1.4 Initial Condition 

For all of the cases run, use an initial of stagnation flow from the inlet conditions. That is, set u = 0, 
p = P0inlet, and T = T0inlet everywhere in the duct prior to the first iteration. 

2 Assignment 

2.1 Implementation of Discretization 

The source code for which solves the Quasi-1D Euler equations is available on the 16.901 web site with this 
solution. 

2.2 Residual Convergence Check 

The convergence check should satisfy two properties: 

• As the discrete solution is approached, the residual measure should also approach zero. 

•	 The residual measure should not be strongly dependent on the number of cells used to solve a given 
problem. 

To develop our measure, we propose the following analytic quantity: 

L � �2
dρ 

RMS(t) = dx. 
0 dt 

Since this integral is only a function of time for a given problem, then a discrete version of this should 
behave in approximately the same manner and not be strongly dependent on the number of cells. The 
discrete version can be derived as follows, 

Nx−1 � �2 
ρn+1 − ρn 

RMSn = � i i Δx,
Δt 

i=2 

Nx−1 
� �2n = Rmassj /Vj Δx. 

i=2 

Note: the sum is only from i = 2 to Nx − 1 because the first and last cells do not have residuals as the 
boundary conditions are imposed at these locations. 

To demonstrate the relatively small sensitivity to grid size, the results from the p outlet/P0inlet = 0.70 
cases for all grids can be seen in Figures 1-4. The RMS histories show clearly that the absolute levels are 
the same for all grid sizes, with finer grids having somewhat more detailed variations of the RMS residual 
and taking more iterations to converge (this longer convergence will be discussed below). 

The criterion used to determine convergence was that the ratio of the current RMS residual to the 
maximum RMS residual for all iterations is less than 10−4: 

RMSn 

Convergence tolerance: ≤ 10−4 . 
maxn 

k=1 RMSk 

This level was determined to be adequate by observing the behavior of two outputs of the simulation, 
specifically, the outlet total pressure P0outlet and the outlet mass flow rate moutlet. As shown by the transonic˙ 
results in Figures 1-4, these outputs have approached an asymptotic value by the iteration at which the 
convergence tolerance criteria was met. Thus, the RMS-based convergence check seems reasonable. Similar 
behaviors were observed in all simulations. 
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2.3 Simulations 

The Mach number distributions for the three different pressure ratios using all grids are shown in Figures 5-7. 
Also, the behavior of the total pressure ratio P0outlet/P0inlet and the outlet massflow rate versus pressure 
ratio poutlet/P0inlet for all four grids are shown in Figures 8 and 9, respectively. 

With respect to grid size, the solutions are clearly converging, however, the two flows with pressure ratios 
near one are still changing appreciably with grid size even in moving from N x = 80 to Nx = 160. For 
example, for poutlet/P0inlet = 0.9, the mass flow rate changes by approximately 2% in moving from N x = 80 
to Nx = 160. However, for the poutlet/P0inlet = 0.7, the mass flow rate changes only 0.005%. The reason 
the flow rate is largely unaffected by numerical errors in this larger pressure drop case is that the flow is 
transonic and therefore is choked. Since the Mach number is well above the limiting choking condition which 
occurs when M = 1, numerical errors will have only a small impact on the flow rate. This behavior can be 
confirmed from the Mach number distributions in Figure 5 and 6. For the choked case, the Mach number 
distribution changes only near the shock. However, for the lower Mach number case, the entire Mach number 
distribution is shifting upward, therefore representing an increasing flow rate. 

2.4 Iterations and Timings 

For the 12 simulations run in the previous section, the number of iterations and the CPU time required to 
reach convergence are given in Tables 1 and 2. As can be observed, the number of iterations and CPU time 
increase with increasing grid size (Nx) and as poutlet/P0inlet → 1. 

The dependence of the number of iterations on grid size can be explained as follows. The time step is 
limited by the CFL condition such that, 

Δx 
Δt ∝ ,

ū + c̄  

where ū and c̄  are typical (i.e. average) values of the flow velocity and speed of sound throughout the domain. 
¯Note, we assume that u > 0. Thus, as the spacing is decreased, the timestep is also decreased. Since the 

simulation is time-marched to a ’steady’ answer, there will be some finite time, T , at which the change in 
the state vector will be small, independent of the mesh resolution. As a result, the number of iterations for 
convergence will be, 

u + c̄) T (¯T T (¯ u + c̄)
Niters = ∝ = Nx . 

Δt Δx L 

As a result, one would expect that the number of iterations would double if the number of cells doubled. 
This trend is clearly observed in Table 1. 

The dependence of the CPU time on grid size can be explained as follows. As we saw, the number of 
iterations is expected to scale with the number of cells. Furthermore, the work required for a single iteration 
also scales with the number of cells as a residual is calculated for every cell. Thus, we expect, 

Work 
Work = × Niters

Iter 

∝ Nx × Nx 
u + c̄) 

= N 2 T (¯T (¯ u + c̄) 
. xL L 

Thus, the work scales with N 2 
x . Clearly, the CPU timings in Table 2 show this dependence. 

The dependence of the number of iterations and the CPU time on poutlet/P0inlet can be explained as 
follows. The time for convergence, T , which we discussed above, will require that all errors have propagated 
through the domain. Thus, the slowest-moving wave will tend to set T . If we assume that the average flow 
is subsonic with 0 < ū < c̄, then, 

L 
T ∝ 

min (c̄  − ¯ u)u, ¯ 

Thus, the number of iterations for convergence should behave as, 

ū + c̄  
Niters ∝ Nx . 

min (c̄  − ¯ u)u, ¯ 
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poutlet/P0inlet 

Nx 0.70 0.90 0.995 

20 368 791 1746 
40 768 1760 3559 
80 1584 3705 6592 
160 3227 7117 14316 

Table 1: Iteration requirements versus grid size (Nx) and pressure ratio. 

poutlet/P0inlet 

Nx 0.70 0.90 0.995 

20 2.3 5.1 11.2 
40 9.4 22.3 43.7 
80 38.1 89.7 159.6 
160 153.1 336.6 683.7 

Table 2: CPU time requirements versus grid size (Nx) and pressure ratio. 

Or, re-writing this in terms of the average-Mach number gives, 

M̄ + 1 
Niters ∝ Nx � � .¯ ¯min 1 − M, M 

From the plots in Figures 5-7, we (very crudely) approximate the average-Mach numbers as follows: 

M̄ (poutlet/P0inlet = 0.7) ≈ 0.7 

M̄ (poutlet/P0inlet = 0.9) ≈ 0.5 

M̄ (poutlet/P0inlet = 0.995) ≈ 0.1 

Thus, we expect the number is iterations to scale as follows: 

Niters (poutlet/P0inlet = 0.7) ∝ 5.7Nx 

Niters (poutlet/P0inlet = 0.9) ∝ 3Nx 

Niters (poutlet/P0inlet = 0.995) ∝ 11Nx 

These trends are not quite observed. Clearly, the number of iterations for the p outlet/P0inlet = 0.995 case is 
the largest as predicted by the analysis. However, the transonic shocked case is the fastest converging, which 
is not predicted by the analysis. My guess is that the chocked nature of the transonic flow helps converge 
the flow; however, this has not been confirmed. 
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Figure 1: Mach number distribution and convergence behavior for p outlet/P0inlet = 0.7 and Nx = 20. 
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Figure 2: Mach number distribution and convergence behavior for p outlet/P0inlet = 0.7 and Nx = 40. 
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Figure 3: Mach number distribution and convergence behavior for p outlet/P0inlet = 0.7 and Nx = 80. 
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Figure 4: Mach number distribution and convergence behavior for p outlet/P0inlet = 0.7 and Nx = 160. 
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Figure 5: Mach number distribution for poutlet/P0inlet = 0.7 for all grids. 
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Figure 6: Mach number distribution for poutlet/P0inlet = 0.9 for all grids. 
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Figure 7: Mach number distribution for poutlet/P0inlet = 0.995 for all grids. 
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Figure 8: Outlet total pressure behavior with poutlet/P0inlet and Nx. 
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Figure 9: Outlet mass flow rate behavior with poutlet/P0inlet and Nx. 
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