
16.901: Finite Element Method Project

Heat Transfer in a Turbine Blade

Sample Solution

1 Background

In the first stages of a turbine, the blades are subjected to a high temperature flow due to the hot gas produced
in the combustor. As a result, turbine blades are often internally cooled by pumping low temperature air
through the blades in passages. In this project, we will simulate the heat transfer in an internally cooled
turbine blade using a finite element discretization. The blade with the four internal cooling passages is shown
in Figure 1 including the coarse grid elements (which are triangular). The blade and the problem we are
considering is actually representative of a large turbine used in power generation.

−0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 1: Blade geometry with cooling passages including coarse grid

The heat transfer equation is a diffusion equation for the temperature,

∇
2T = 0, (1)

Recall that the heat transfer rate is given by,

~q = −k∇T.

where k is the thermal conductivity of the blade material. The boundary conditions will all be convective
heat transfer conditions. For the blade surface, the heat flux out of the blade will be given by,

~q · ~n = hext (T − Text) ,

where hext is the convective heat transfer coefficient and Text is the temperature outside the blade. Note, ~n
is a normal pointing out of the blade so that ~q · ~n represents the heat flux out of the blade. Similarly for the
heat flux at a cooling passage,

~q · ~n = hint (T − Tint) .

Again, ~n is out of the blade (into the cooling passage) so that ~q · ~n represents the heat flux out of the blade.
In the grids, the dimensions of the blade have been non-dimensionalized by the chord length, L. So, the

coordinate values are actually x/L and y/L. The temperatures are,

Text = 1300◦C Tint = 200◦C

Also, the heat transfer coefficients in non-dimensional form are,

hextL

k
= 14.0

hintL

k
= 4.7

1

2 Tasks

2.1 Finite Element Method Implementation

The first task was to develop an FEM solver for this problem. Three grids of triangular elements were
provided for the blade stored in the MATLAB datafiles g0012coarse.mat, g0012medium.mat, and
g0012fine.mat

The convective heat transfer boundary condition implementation was based on the standard approach
for implementing Robin-type conditions. Specifically, the weighted residual statement for Equation (1) is,

∫

Γ

w∇T · ~nds −

∫ ∫

Ω

∇w · ∇T dA = 0,

where w is the weight functions. On the boundaries Γ, the normal gradient of the temperature can be
related to the temperature using the convective heat transfer boundary condition. For example, on the
interior surface,

∇T · ~n = −
1

k
~q · ~n

= −
hint

k
(T − Tint) .

An analogous expression exists for the external surface. Thus, the weighted residual statement will be (after
multiplication by negative one),

∫

Γ

w
hbc

k
(T − Tbc) ds +

∫ ∫

Ω

∇w · ∇T dA = 0,

where Tbc and hbc are the specified gas temperatures and heat transfer coefficients at the boundary.
The numerical implementation of this boundary integral term is as follows. First, we note that the

integral is zero except for weight functions at nodes on the boundary. Given a boundary edge with nodes i
and j, we have two integrals to construct for that edge, specifically,

∫

Γ

wi

hbc

k
(T − Tbc) ds, and

∫

Γ

wj

hbc

k
(T − Tbc) ds.

For a given edge, the values of Tbc and hbc are constant. However, since we are using a linear element, the
temperature T will vary linearly from node i to node j along the edge. Thus, for a given distance, s, along
the edge from node i, the temperature is,

T (s) = Ti + (Tj − Ti)
s

le

where le is the length of the edge. Furthermore, since we are using a Galerkin approximation, the weight
functions also vary linearly taking a value of 1 at the node and dropping to zero at the other node,

wi(s) = 1 −
s

le

wj(s) =
s

le

Substituting these expressions for the temperature and weight functions into the boundary integrals and
performing the integration gives,

∫

Γ

wi

hbc

k
(T − Tbc) ds =

hbcle
k

(

1

3
Ti +

1

6
Tj −

1

2
Tbc

)

∫

Γ

wj

hbc

k
(T − Tbc) ds =

hbcle
k

(

1

6
Ti +

1

3
Tj −

1

2
Tbc

)

2

mahlaw
®

mahlaw

Grid Nodes Elements hmax/L Tmax (C) Tmin (C) CPU Time (sec)

Coarse 230 299 0.024 1299.8 911.4 0.1
Medium 424 574 0.016 1299.8 910.1 0.2

Fine 1425 2296 0.008 1299.8 908.3 2.1

Table 1: Comparison of number of nodes, elements, cell size, minimum and maximum blade temperatures,
and CPU time for three grids.

Since these boundary integral terms include dependences on Ti and Tj they will alter the stiffness matrix, in
addition to setting the right-hand side through the Tbc term. For more details of the computational imple-
mentation, a thoroughly commented MATLAB source code has been included in the archive file distributed
with this solution.

Plots of the temperature distributions on all three grids are shown in Figure 2. The temperature is largest
at the trailing edge, and to a lesser extent, the leading edge. At these locations, the temperature is almost
exactly the external temperature of 1300◦C. This occurs because the blade is thin in these regions and far
from the cooling flow passages. Consider the trailing edge: since the temperature above and below is 1300 ◦C
and no cooling flow is near, the temperature must be nearly uniform and set by the external temperature.

2.2 Study of Accuracy and Work

The results of the simulations, including the CPU time required, are given in Table 1. The grid size hmax was
defined as the maximum circumradius of all elements, where the circumradius for an element is the radius
of the circle through the nodes of the element. This can be calculated by intersecting the median segments
from any two of the elements three edges. Note: the median segment of an edge is the line perpendicular
to the edge passing through its midpoint. These median segments are equidistant to the nodes of the edge.
Thus, interesting two median segments produces the point at which all three nodes are equidistant, i.e. the
center of the circumcircle.

A shown in Table 1, the maximum cell size is a factor of two and three times larger for the medium and
coarse meshes relative to the fine mesh. Of particular interest is the behavior of Tmax. Tmax is constant and
independent of the mesh resolution. As discussed above, this is due to the temperature in the leading and
trailing edge regions being dominated by the external temperature. As a result, grid resolution does not
impact its behavior. In contrast, Tmin is changing and continues to decrease with increasing grid resolution.
Since the change in Tmin is larger from the medium-to-fine mesh (1.8◦C) than the coarse-to-medium mesh
(1.3◦C), it appears that the results are not sufficiently resolved. If the results were approach the asymptotic
result, we would tend to expect them to decrease more slowly as the mesh resolution were increased.

For the CPU times, we would expect two significant effects. First, in assembling the stiffness matrix,
the work is proportional to the number of elements, which will be roughly proportional to the number of
nodes. Second, in solving the linear system for the temperatures, we are using Matlab’s matrix division
routine which is Gaussian elimination. Since Gaussian elimination is O(N 3) work where N is the number of
unknowns, we expect a portion of the CPU time to scale with the number of nodes cubed. Thus, for larger
grids (i.e. more nodes), we expect the CPU time for scale with N 3 since the O(N) effect will eventually
be small by comparison. For the two smallest grids, we see the CPU time doubles. Since the number of
nodes approximately doubled as well, this indicates the linear work term is dominating over the Gaussian
elimination time. However, in moving to the largest mesh, the work jumps a factor of 10 to 2.1 seconds.
Since the number of nodes increased by 3.4, this indicates that the CPU time has increased faster than
O(N). In short, the Gaussian elimination time is starting to be the dominant factor in the solution time.

Finally, if we wish to have accuracy within 10◦C of the exact answer, we can probably using any of the
existing grids since the entire change of temperature is about 3 degrees. However, to be certain, additional
meshes should be run to see if the temperature is approaching an asymptotic answer.

3

mahlaw

mahlaw
®

mahlaw
®

snauti

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Temperature

900

950

1000

1050

1100

1150

1200

1250

1300

(a) Coarse grid

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Temperature

900

950

1000

1050

1100

1150

1200

1250

1300

(b) Medium grid

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Temperature

900

950

1000

1050

1100

1150

1200

1250

1300

(c) Fine grid

Figure 2: Temperature distribution for finite element simulations

4

2.3 Design Recommendations

At the leading and trailing edges, we basically have two choices. One would be to somehow lower the external
temperatures. This can be done by blowing cool air from inside the blade onto the surface of the blade (this
is known as film cooling). The result is that the temperature observed from the blade’s view is lower since it
will be some mix of the high gas path temperature and the lower cooling air temperature. The other option
is to find a way to have cooling air reach the internal portions of the blade near the leading and trailing
edge. At the leading edge, this is done by so-called ’showerhead’ cooling in which cool air is blown on the
internal leading surface. At the trailing edge, a series of thin slots is often manufactured in the chordwise
direction through which the cooling air can travel. This cooling air then leaves the airfoil at the trailing
edge. The result is that the thin trailing edge region does have some cooling air which will help to lower the
temperatures locally.

5

snauti
MATLAB is a trademark of The MathWorks, Inc.

snauti
®

