

Oral Presentations:

How to translate data into an oral presentation

6.021J: Quantitative Physiology Fall 2002 Massachusetts Institute of Technology

© Dennis Freeman and Mya Poe 2002

- Primary goal is to explain a technical finding (the message is primarily oral).
- Slides provide visual reinforcement of the spoken message.
- Bad slides can distract the audience by being irrelevant, confusing, or inconsistent.

Step 1: Complete your project

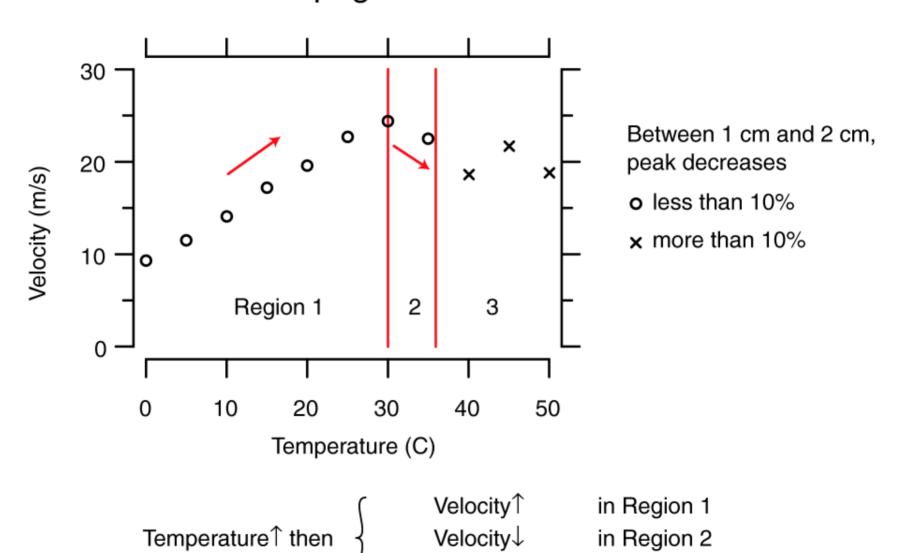
- Organize your data
- Locate trends in your data and isolate specific results
- Distill information to key points

Very similar to preparing a written report!

Step 2: Plan the presentation

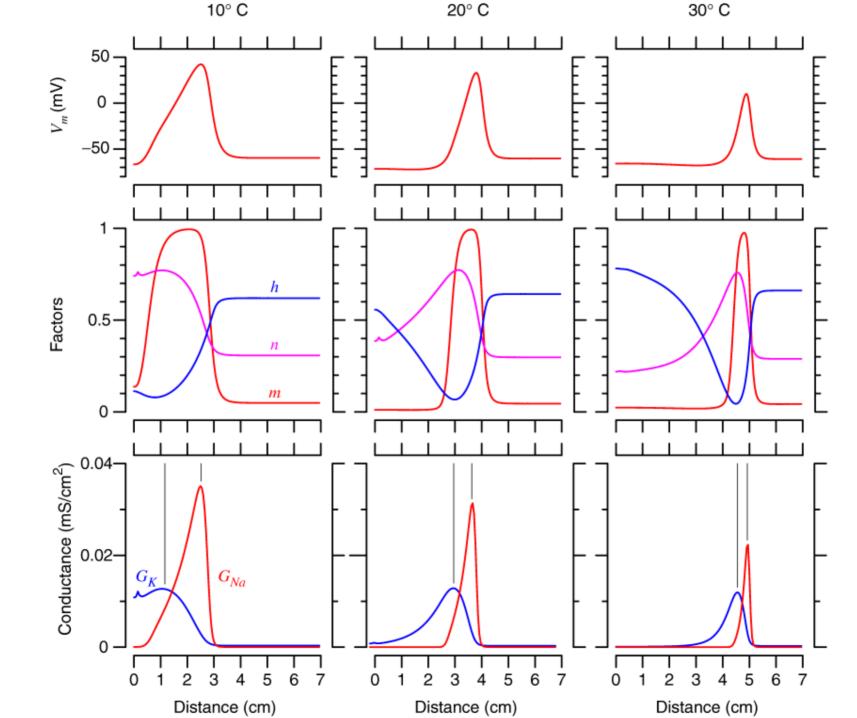
- Who is the audience?
- How much time do you have?
 - Budget under time
- Equipment or room constraints?

Step 3: Draft the presentation

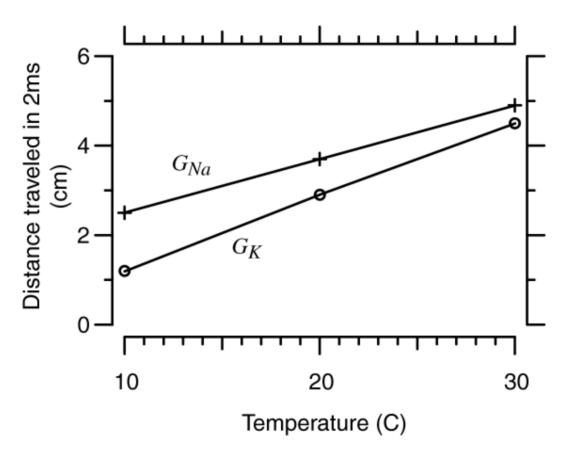

- Sketch candidate slides
- Combine slides to create story-board
- Develop 2-3 bullet points for each slide
- Add slides to fill in gaps, remove slides to eliminate redundancy

Results

- Develop 2-3 relevant figures
- Distill information about each figure into 2-3 bullet points
- Include key words in figures to remind yourself (and audience) of each bullet point
- Figure should allow listener to fill in gaps due to lapses in attention


Т	t_{p1}	t_{p2}	velocity	
(C)	(ms)	(ms)	(m/s)	
0	1.52	2.60	9.25	
5	1.15	2.02	11.49	
10	0.89	1.60	14.08	
15	0.71	1.29	17.24	
20	0.56	1.07	19.60	
25	0.47	0.91	22.72	
30	0.40	0.81	24.39	
35	0.37	0.81	22.72	
40	0.31	0.85	18.51	
45	0.56	1.01	22.22	
50	0.58	1.11	18.86	

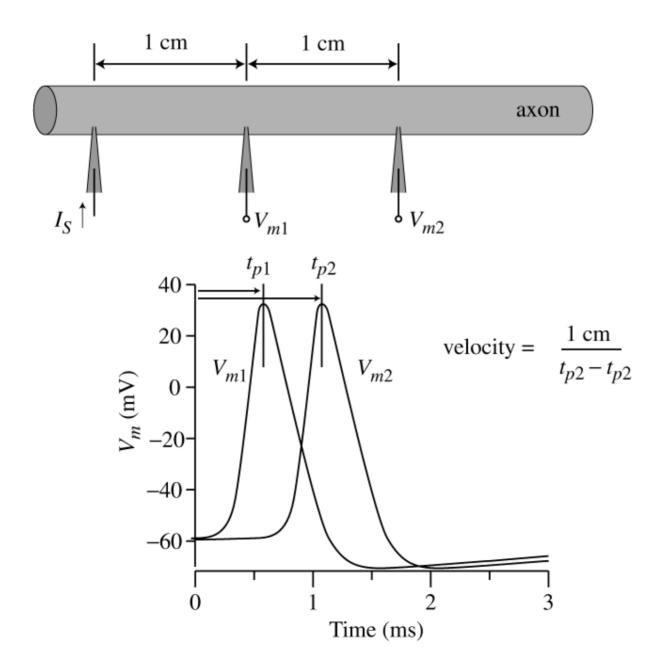
Three Effects of Temperature on Propagated Action Potentials



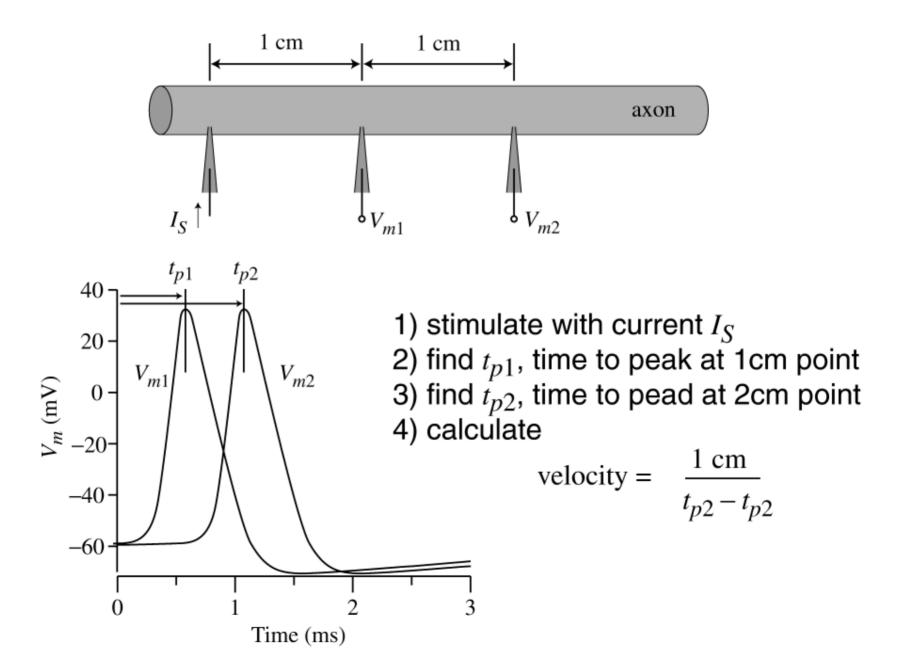
Propagation Fails

in Region 3

Increasing Temperature Speeds Sodium and Potassium Conductances



... but rate of increase greater for potassium!


Methods

- Distill Methods to key procedures
 - HH will use theoretical methods
- Numbered list is fine
- Do not show equations (unless they are extremely simple and friendly)

Methods: Calculating Velocity of Propagation

Methods: Calculating Velocity of Propagation

Discussion

 Limit discussion points to most important details (related to Results)

Summary

- Increasing temperature increases velocity of propagation ... but only for a range of low temperatures.
- Increasing temperature above a critical temperature
 blocks the propagation of action potentials.
- Thermal block results because inactivation processes increase faster with temperature than do activation processes.

- Explains the goals and purpose of the project
- Ideally, these goals and purpose relate to the Discussion points

Introduction

Question: Will action potentials propagate faster at higher temperatures?

Pro: Rates of many chemical reactions increase with increasing temperature. Therefore it seems reasonable that the electro-chemical reactions underlying neural conduction would occur more rapidly at higher temperatures.

Con: However, excessive heat leads to stroke, which represents profound neurological failure.

Goal: Develop a mathematical model for effects of temperature based on the Hodgkin-Huxley model of neural excitation.

Title Slide

- Titles
 - Informative
 - Specific
 - Understandable at a glance
- Your name and partner's name
- Date

Step 4: Edit the Slide Show

- Edit slides for coherence
- Check for balance and coherency in story-board
- Spell-check and proofread

Step 5: Prepare for Q&A

- Anticipate questions not covered in the presentation
- Brainstorm, considering:
 - Audience
 - Scope
- OK to acknowledge gaps in knowledge

Step 6: PRACTICE

- Make sure that you meet the time limit
- Practice speaking slowly
- Know your quirks
- Use visuals as cues, not note cards
- Know how to use the equipment

Step 7: The Big Day

- Arrive early
- Check equipment
- Check voice projection
 - How loudly do you need to speak?
- Have a printed copy of your presentation + backup
- If you get lost, stop and regroup.

Presentation Priority Given to:

- Sophomores (CIM)
- Must be available on 12/6 to present
- Both partners agree to present
- Successfully-written frog lab
- Undergrads over grad students

-

Presentation Details

- Presentations given on 12/6
 - Between 9am and 11am
 - 15 minute talk + 5 min Q&A
- All slides loaded on course computer prior to 9am
- Rough draft = all slides completed, including bullet points & transitions
- Writing clinic = mock presentation

Presentation Tips

Length:

7-8 slides for 15 minute presentation

Font Size:

Title44 pt

Subtitles 28 pt

Other text20 pt

Tips, cont'd

Visual Elements:

- Should not interfere with text
- Use animation sparingly
- Understandable at a glance

Color Scheme

- Use a light background with dark text if the lighting is dim
- Keep colors consistent

HH Grade Sheet: Presentations

First draft (10%). Critique (5%).

Presentation Structure (15%).

A: all information is well organized in proper sections with smooth transitions between sections. Visual elements were effective. B: overall organization is understandable but could be improved in one section of the presentation or in minor instances throughout the presentation.

C: repeated organizational problems that interfere with presentation coherence. Poor presentation of visual information.

Delivery of Presentation (10%).

A: delivery was clear with appropriate use of non-verbal gestures. Verbal articulation and timing were appropriate.

B: several awkward moments or slips in verbal clarity.

C: repeated awkwardness in presentation, and/or repeated problems with verbal clarity. Presentation too long.

Clarity and Conciseness of Technical Information (10%)

A: technical flow is clear: introduction motivates a topic, results focus on that topic, conclusions follow from results, relevant methods are described.

B: no more than one major lapse in technical clarity.

C: more than one major lapse in technical clarity.

Conceptual Correctness (20%).

A: interpretations of results are technically correct.

B: interpretations are not well supported.

C: major errors.

Insightfulness (30%).

A: Recognized an interesting issue and developed at least one way to understand it. B: Thorough description of WHAT happened

without a clear understanding of WHY it happened.

C. Confusion about what happaned